yuzu/src/core/hle/kernel/k_process.cpp

707 lines
23 KiB
C++
Raw Normal View History

chore: make yuzu REUSE compliant [REUSE] is a specification that aims at making file copyright information consistent, so that it can be both human and machine readable. It basically requires that all files have a header containing copyright and licensing information. When this isn't possible, like when dealing with binary assets, generated files or embedded third-party dependencies, it is permitted to insert copyright information in the `.reuse/dep5` file. Oh, and it also requires that all the licenses used in the project are present in the `LICENSES` folder, that's why the diff is so huge. This can be done automatically with `reuse download --all`. The `reuse` tool also contains a handy subcommand that analyzes the project and tells whether or not the project is (still) compliant, `reuse lint`. Following REUSE has a few advantages over the current approach: - Copyright information is easy to access for users / downstream - Files like `dist/license.md` do not need to exist anymore, as `.reuse/dep5` is used instead - `reuse lint` makes it easy to ensure that copyright information of files like binary assets / images is always accurate and up to date To add copyright information of files that didn't have it I looked up who committed what and when, for each file. As yuzu contributors do not have to sign a CLA or similar I couldn't assume that copyright ownership was of the "yuzu Emulator Project", so I used the name and/or email of the commit author instead. [REUSE]: https://reuse.software Follow-up to 01cf05bc75b1e47beb08937439f3ed9339e7b254
2022-05-15 02:06:02 +02:00
// SPDX-FileCopyrightText: 2015 Citra Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
2018-01-01 20:38:34 +01:00
#include <algorithm>
#include <bitset>
#include <ctime>
#include <memory>
#include <random>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/file_sys/program_metadata.h"
#include "core/hle/kernel/code_set.h"
#include "core/hle/kernel/k_memory_block_manager.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_resource_limit.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_shared_memory.h"
2021-09-25 17:01:53 +02:00
#include "core/hle/kernel/k_shared_memory_info.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"
#include "core/memory.h"
namespace Kernel {
namespace {
/**
* Sets up the primary application thread
*
* @param system The system instance to create the main thread under.
* @param owner_process The parent process for the main thread
* @param priority The priority to give the main thread
*/
void SetupMainThread(Core::System& system, KProcess& owner_process, u32 priority, VAddr stack_top) {
2020-04-09 04:19:12 +02:00
const VAddr entry_point = owner_process.PageTable().GetCodeRegionStart();
2022-11-03 15:22:05 +01:00
ASSERT(owner_process.GetResourceLimit()->Reserve(LimitableResource::ThreadCountMax, 1));
KThread* thread = KThread::Create(system.Kernel());
SCOPE_EXIT({ thread->Close(); });
ASSERT(KThread::InitializeUserThread(system, thread, entry_point, 0, stack_top, priority,
2023-03-07 18:01:07 +01:00
owner_process.GetIdealCoreId(),
std::addressof(owner_process))
.IsSuccess());
// Register 1 must be a handle to the main thread
Handle thread_handle{};
2023-03-07 18:01:07 +01:00
owner_process.GetHandleTable().Add(std::addressof(thread_handle), thread);
thread->GetContext32().cpu_registers[0] = 0;
thread->GetContext64().cpu_registers[0] = 0;
thread->GetContext32().cpu_registers[1] = thread_handle;
thread->GetContext64().cpu_registers[1] = thread_handle;
2022-06-16 02:53:49 +02:00
if (system.DebuggerEnabled()) {
thread->RequestSuspend(SuspendType::Debug);
}
2022-06-16 02:53:49 +02:00
// Run our thread.
void(thread->Run());
}
} // Anonymous namespace
Result KProcess::Initialize(KProcess* process, Core::System& system, std::string process_name,
ProcessType type, KResourceLimit* res_limit) {
auto& kernel = system.Kernel();
process->name = std::move(process_name);
2023-03-07 22:45:13 +01:00
process->m_resource_limit = res_limit;
process->m_system_resource_address = 0;
process->m_state = State::Created;
process->m_program_id = 0;
process->m_process_id = type == ProcessType::KernelInternal ? kernel.CreateNewKernelProcessID()
: kernel.CreateNewUserProcessID();
process->m_capabilities.InitializeForMetadatalessProcess();
process->m_is_initialized = true;
std::mt19937 rng(Settings::values.rng_seed.GetValue().value_or(std::time(nullptr)));
std::uniform_int_distribution<u64> distribution;
2023-03-07 22:45:13 +01:00
std::generate(process->m_random_entropy.begin(), process->m_random_entropy.end(),
[&] { return distribution(rng); });
kernel.AppendNewProcess(process);
// Clear remaining fields.
2023-03-07 22:45:13 +01:00
process->m_num_running_threads = 0;
process->m_is_signaled = false;
process->m_exception_thread = nullptr;
process->m_is_suspended = false;
process->m_schedule_count = 0;
process->m_is_handle_table_initialized = false;
// Open a reference to the resource limit.
2023-03-07 22:45:13 +01:00
process->m_resource_limit->Open();
R_SUCCEED();
}
void KProcess::DoWorkerTaskImpl() {
UNIMPLEMENTED();
}
KResourceLimit* KProcess::GetResourceLimit() const {
2023-03-07 22:45:13 +01:00
return m_resource_limit;
}
void KProcess::IncrementRunningThreadCount() {
2023-03-07 22:45:13 +01:00
ASSERT(m_num_running_threads.load() >= 0);
++m_num_running_threads;
}
void KProcess::DecrementRunningThreadCount() {
2023-03-07 22:45:13 +01:00
ASSERT(m_num_running_threads.load() > 0);
2023-03-07 22:45:13 +01:00
if (const auto prev = m_num_running_threads--; prev == 1) {
// TODO(bunnei): Process termination to be implemented when multiprocess is supported.
}
}
u64 KProcess::GetTotalPhysicalMemoryAvailable() {
2023-03-07 22:45:13 +01:00
const u64 capacity{m_resource_limit->GetFreeValue(LimitableResource::PhysicalMemoryMax) +
m_page_table.GetNormalMemorySize() + GetSystemResourceSize() + m_image_size +
m_main_thread_stack_size};
2023-03-07 16:49:41 +01:00
if (const auto pool_size = m_kernel.MemoryManager().GetSize(KMemoryManager::Pool::Application);
capacity != pool_size) {
LOG_WARNING(Kernel, "capacity {} != application pool size {}", capacity, pool_size);
}
2023-03-07 22:45:13 +01:00
if (capacity < m_memory_usage_capacity) {
2020-04-09 04:19:12 +02:00
return capacity;
}
2023-03-07 22:45:13 +01:00
return m_memory_usage_capacity;
}
u64 KProcess::GetTotalPhysicalMemoryAvailableWithoutSystemResource() {
2019-07-07 20:48:11 +02:00
return GetTotalPhysicalMemoryAvailable() - GetSystemResourceSize();
}
u64 KProcess::GetTotalPhysicalMemoryUsed() {
2023-03-07 22:45:13 +01:00
return m_image_size + m_main_thread_stack_size + m_page_table.GetNormalMemorySize() +
GetSystemResourceSize();
}
u64 KProcess::GetTotalPhysicalMemoryUsedWithoutSystemResource() {
2019-07-07 20:48:11 +02:00
return GetTotalPhysicalMemoryUsed() - GetSystemResourceUsage();
}
bool KProcess::ReleaseUserException(KThread* thread) {
2023-03-07 16:49:41 +01:00
KScopedSchedulerLock sl{m_kernel};
2023-03-07 22:45:13 +01:00
if (m_exception_thread == thread) {
m_exception_thread = nullptr;
// Remove waiter thread.
bool has_waiters{};
if (KThread* next = thread->RemoveKernelWaiterByKey(
std::addressof(has_waiters),
2023-03-07 22:45:13 +01:00
reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)));
next != nullptr) {
next->EndWait(ResultSuccess);
}
2023-03-07 16:49:41 +01:00
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
return true;
} else {
return false;
}
}
void KProcess::PinCurrentThread(s32 core_id) {
2023-03-07 22:45:13 +01:00
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the current thread.
KThread* cur_thread =
2023-03-07 16:49:41 +01:00
m_kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
// If the thread isn't terminated, pin it.
if (!cur_thread->IsTerminationRequested()) {
// Pin it.
PinThread(core_id, cur_thread);
cur_thread->Pin(core_id);
// An update is needed.
2023-03-07 16:49:41 +01:00
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
}
void KProcess::UnpinCurrentThread(s32 core_id) {
2023-03-07 22:45:13 +01:00
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the current thread.
KThread* cur_thread =
2023-03-07 16:49:41 +01:00
m_kernel.Scheduler(static_cast<std::size_t>(core_id)).GetSchedulerCurrentThread();
// Unpin it.
cur_thread->Unpin();
UnpinThread(core_id, cur_thread);
// An update is needed.
2023-03-07 16:49:41 +01:00
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
void KProcess::UnpinThread(KThread* thread) {
2023-03-07 22:45:13 +01:00
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the thread's core id.
const auto core_id = thread->GetActiveCore();
// Unpin it.
UnpinThread(core_id, thread);
thread->Unpin();
// An update is needed.
2023-03-07 16:49:41 +01:00
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
Result KProcess::AddSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address,
[[maybe_unused]] size_t size) {
// Lock ourselves, to prevent concurrent access.
2023-03-07 22:45:13 +01:00
KScopedLightLock lk(m_state_lock);
2021-09-25 17:01:53 +02:00
// Try to find an existing info for the memory.
KSharedMemoryInfo* shemen_info = nullptr;
const auto iter = std::find_if(
2023-03-07 22:45:13 +01:00
m_shared_memory_list.begin(), m_shared_memory_list.end(),
2021-09-25 17:01:53 +02:00
[shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
2023-03-07 22:45:13 +01:00
if (iter != m_shared_memory_list.end()) {
2021-09-25 17:01:53 +02:00
shemen_info = *iter;
}
if (shemen_info == nullptr) {
2023-03-07 16:49:41 +01:00
shemen_info = KSharedMemoryInfo::Allocate(m_kernel);
2021-09-25 17:01:53 +02:00
R_UNLESS(shemen_info != nullptr, ResultOutOfMemory);
shemen_info->Initialize(shmem);
2023-03-07 22:45:13 +01:00
m_shared_memory_list.push_back(shemen_info);
2021-09-25 17:01:53 +02:00
}
2021-09-25 17:01:53 +02:00
// Open a reference to the shared memory and its info.
shmem->Open();
2021-09-25 17:01:53 +02:00
shemen_info->Open();
R_SUCCEED();
}
void KProcess::RemoveSharedMemory(KSharedMemory* shmem, [[maybe_unused]] VAddr address,
[[maybe_unused]] size_t size) {
// Lock ourselves, to prevent concurrent access.
2023-03-07 22:45:13 +01:00
KScopedLightLock lk(m_state_lock);
2021-09-25 17:01:53 +02:00
KSharedMemoryInfo* shemen_info = nullptr;
const auto iter = std::find_if(
2023-03-07 22:45:13 +01:00
m_shared_memory_list.begin(), m_shared_memory_list.end(),
2021-09-25 17:01:53 +02:00
[shmem](const KSharedMemoryInfo* info) { return info->GetSharedMemory() == shmem; });
2023-03-07 22:45:13 +01:00
if (iter != m_shared_memory_list.end()) {
2021-09-25 17:01:53 +02:00
shemen_info = *iter;
}
ASSERT(shemen_info != nullptr);
if (shemen_info->Close()) {
2023-03-07 22:45:13 +01:00
m_shared_memory_list.erase(iter);
2023-03-07 16:49:41 +01:00
KSharedMemoryInfo::Free(m_kernel, shemen_info);
2021-09-25 17:01:53 +02:00
}
// Close a reference to the shared memory.
shmem->Close();
}
2022-06-14 00:36:30 +02:00
void KProcess::RegisterThread(KThread* thread) {
2023-03-07 22:45:13 +01:00
KScopedLightLock lk{m_list_lock};
2022-06-14 00:36:30 +02:00
2023-03-07 22:45:13 +01:00
m_thread_list.push_back(thread);
}
2022-06-14 00:36:30 +02:00
void KProcess::UnregisterThread(KThread* thread) {
2023-03-07 22:45:13 +01:00
KScopedLightLock lk{m_list_lock};
2022-06-14 00:36:30 +02:00
2023-03-07 22:45:13 +01:00
m_thread_list.remove(thread);
}
u64 KProcess::GetFreeThreadCount() const {
2023-03-07 22:45:13 +01:00
if (m_resource_limit != nullptr) {
const auto current_value =
2023-03-07 22:45:13 +01:00
m_resource_limit->GetCurrentValue(LimitableResource::ThreadCountMax);
const auto limit_value = m_resource_limit->GetLimitValue(LimitableResource::ThreadCountMax);
return limit_value - current_value;
} else {
return 0;
}
}
Result KProcess::Reset() {
// Lock the process and the scheduler.
2023-03-07 22:45:13 +01:00
KScopedLightLock lk(m_state_lock);
2023-03-07 16:49:41 +01:00
KScopedSchedulerLock sl{m_kernel};
// Validate that we're in a state that we can reset.
2023-03-07 22:45:13 +01:00
R_UNLESS(m_state != State::Terminated, ResultInvalidState);
R_UNLESS(m_is_signaled, ResultInvalidState);
// Clear signaled.
2023-03-07 22:45:13 +01:00
m_is_signaled = false;
R_SUCCEED();
}
Result KProcess::SetActivity(ProcessActivity activity) {
2022-06-14 00:36:30 +02:00
// Lock ourselves and the scheduler.
2023-03-07 22:45:13 +01:00
KScopedLightLock lk{m_state_lock};
KScopedLightLock list_lk{m_list_lock};
2023-03-07 16:49:41 +01:00
KScopedSchedulerLock sl{m_kernel};
2022-06-14 00:36:30 +02:00
// Validate our state.
2023-03-07 22:45:13 +01:00
R_UNLESS(m_state != State::Terminating, ResultInvalidState);
R_UNLESS(m_state != State::Terminated, ResultInvalidState);
2022-06-14 00:36:30 +02:00
// Either pause or resume.
if (activity == ProcessActivity::Paused) {
// Verify that we're not suspended.
2023-03-07 22:45:13 +01:00
R_UNLESS(!m_is_suspended, ResultInvalidState);
2022-06-14 00:36:30 +02:00
// Suspend all threads.
2023-03-07 22:45:13 +01:00
for (auto* thread : this->GetThreadList()) {
2022-06-14 00:36:30 +02:00
thread->RequestSuspend(SuspendType::Process);
}
// Set ourselves as suspended.
SetSuspended(true);
} else {
ASSERT(activity == ProcessActivity::Runnable);
// Verify that we're suspended.
2023-03-07 22:45:13 +01:00
R_UNLESS(m_is_suspended, ResultInvalidState);
2022-06-14 00:36:30 +02:00
// Resume all threads.
2023-03-07 22:45:13 +01:00
for (auto* thread : this->GetThreadList()) {
2022-06-14 00:36:30 +02:00
thread->Resume(SuspendType::Process);
}
// Set ourselves as resumed.
SetSuspended(false);
}
R_SUCCEED();
2022-06-14 00:36:30 +02:00
}
Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size) {
2023-03-07 22:45:13 +01:00
m_program_id = metadata.GetTitleID();
m_ideal_core = metadata.GetMainThreadCore();
m_is_64bit_process = metadata.Is64BitProgram();
m_system_resource_size = metadata.GetSystemResourceSize();
m_image_size = code_size;
2020-04-09 04:19:12 +02:00
2022-11-03 15:22:05 +01:00
KScopedResourceReservation memory_reservation(
2023-03-07 22:45:13 +01:00
m_resource_limit, LimitableResource::PhysicalMemoryMax, code_size + m_system_resource_size);
if (!memory_reservation.Succeeded()) {
LOG_ERROR(Kernel, "Could not reserve process memory requirements of size {:X} bytes",
2023-03-07 22:45:13 +01:00
code_size + m_system_resource_size);
R_RETURN(ResultLimitReached);
}
2023-03-12 04:10:38 +01:00
// Initialize process address space
2023-03-07 22:45:13 +01:00
if (const Result result{m_page_table.InitializeForProcess(
metadata.GetAddressSpaceType(), false, false, false, KMemoryManager::Pool::Application,
2023-03-07 22:45:13 +01:00
0x8000000, code_size, std::addressof(m_kernel.GetAppSystemResource()),
m_resource_limit)};
2020-04-09 04:19:12 +02:00
result.IsError()) {
R_RETURN(result);
2020-04-09 04:19:12 +02:00
}
2020-04-09 04:19:12 +02:00
// Map process code region
2023-03-07 22:45:13 +01:00
if (const Result result{m_page_table.MapProcessCode(m_page_table.GetCodeRegionStart(),
code_size / PageSize, KMemoryState::Code,
KMemoryPermission::None)};
2020-04-09 04:19:12 +02:00
result.IsError()) {
R_RETURN(result);
2020-04-09 04:19:12 +02:00
}
2020-04-09 04:19:12 +02:00
// Initialize process capabilities
const auto& caps{metadata.GetKernelCapabilities()};
if (const Result result{
2023-03-07 22:45:13 +01:00
m_capabilities.InitializeForUserProcess(caps.data(), caps.size(), m_page_table)};
2020-04-09 04:19:12 +02:00
result.IsError()) {
R_RETURN(result);
}
2020-04-09 04:19:12 +02:00
// Set memory usage capacity
switch (metadata.GetAddressSpaceType()) {
case FileSys::ProgramAddressSpaceType::Is32Bit:
case FileSys::ProgramAddressSpaceType::Is36Bit:
case FileSys::ProgramAddressSpaceType::Is39Bit:
2023-03-07 22:45:13 +01:00
m_memory_usage_capacity =
m_page_table.GetHeapRegionEnd() - m_page_table.GetHeapRegionStart();
2020-04-09 04:19:12 +02:00
break;
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
2023-03-07 22:45:13 +01:00
m_memory_usage_capacity =
m_page_table.GetHeapRegionEnd() - m_page_table.GetHeapRegionStart() +
m_page_table.GetAliasRegionEnd() - m_page_table.GetAliasRegionStart();
2020-04-09 04:19:12 +02:00
break;
default:
ASSERT(false);
break;
2020-04-09 04:19:12 +02:00
}
// Create TLS region
2023-03-07 22:45:13 +01:00
R_TRY(this->CreateThreadLocalRegion(std::addressof(m_plr_address)));
memory_reservation.Commit();
2020-04-09 04:19:12 +02:00
2023-03-07 22:45:13 +01:00
R_RETURN(m_handle_table.Initialize(m_capabilities.GetHandleTableSize()));
}
void KProcess::Run(s32 main_thread_priority, u64 stack_size) {
2023-03-07 22:45:13 +01:00
ASSERT(this->AllocateMainThreadStack(stack_size) == ResultSuccess);
m_resource_limit->Reserve(LimitableResource::ThreadCountMax, 1);
2023-03-07 22:45:13 +01:00
const std::size_t heap_capacity{m_memory_usage_capacity -
(m_main_thread_stack_size + m_image_size)};
ASSERT(!m_page_table.SetMaxHeapSize(heap_capacity).IsError());
2023-03-07 22:45:13 +01:00
this->ChangeState(State::Running);
2023-03-07 22:45:13 +01:00
SetupMainThread(m_kernel.System(), *this, main_thread_priority, m_main_thread_stack_top);
}
void KProcess::PrepareForTermination() {
2023-03-07 22:45:13 +01:00
this->ChangeState(State::Terminating);
const auto stop_threads = [this](const std::vector<KThread*>& in_thread_list) {
for (auto* thread : in_thread_list) {
if (thread->GetOwnerProcess() != this)
continue;
2023-03-07 16:49:41 +01:00
if (thread == GetCurrentThreadPointer(m_kernel))
continue;
// TODO(Subv): When are the other running/ready threads terminated?
ASSERT_MSG(thread->GetState() == ThreadState::Waiting,
"Exiting processes with non-waiting threads is currently unimplemented");
thread->Exit();
}
};
2023-03-07 16:49:41 +01:00
stop_threads(m_kernel.System().GlobalSchedulerContext().GetThreadList());
2023-03-07 22:45:13 +01:00
this->DeleteThreadLocalRegion(m_plr_address);
m_plr_address = 0;
2023-03-07 22:45:13 +01:00
if (m_resource_limit) {
m_resource_limit->Release(LimitableResource::PhysicalMemoryMax,
m_main_thread_stack_size + m_image_size);
}
ChangeState(State::Terminated);
}
void KProcess::Finalize() {
2021-09-25 17:01:53 +02:00
// Free all shared memory infos.
{
2023-03-07 22:45:13 +01:00
auto it = m_shared_memory_list.begin();
while (it != m_shared_memory_list.end()) {
2021-09-25 17:01:53 +02:00
KSharedMemoryInfo* info = *it;
KSharedMemory* shmem = info->GetSharedMemory();
while (!info->Close()) {
shmem->Close();
}
shmem->Close();
2023-03-07 22:45:13 +01:00
it = m_shared_memory_list.erase(it);
2023-03-07 16:49:41 +01:00
KSharedMemoryInfo::Free(m_kernel, info);
2021-09-25 17:01:53 +02:00
}
}
// Release memory to the resource limit.
2023-03-07 22:45:13 +01:00
if (m_resource_limit != nullptr) {
m_resource_limit->Close();
m_resource_limit = nullptr;
}
// Finalize the page table.
2023-03-07 22:45:13 +01:00
m_page_table.Finalize();
// Perform inherited finalization.
KAutoObjectWithSlabHeapAndContainer<KProcess, KWorkerTask>::Finalize();
}
Result KProcess::CreateThreadLocalRegion(VAddr* out) {
KThreadLocalPage* tlp = nullptr;
VAddr tlr = 0;
// See if we can get a region from a partially used TLP.
{
2023-03-07 16:49:41 +01:00
KScopedSchedulerLock sl{m_kernel};
2023-03-07 22:45:13 +01:00
if (auto it = m_partially_used_tlp_tree.begin(); it != m_partially_used_tlp_tree.end()) {
tlr = it->Reserve();
ASSERT(tlr != 0);
if (it->IsAllUsed()) {
tlp = std::addressof(*it);
2023-03-07 22:45:13 +01:00
m_partially_used_tlp_tree.erase(it);
m_fully_used_tlp_tree.insert(*tlp);
}
*out = tlr;
R_SUCCEED();
}
}
// Allocate a new page.
2023-03-07 16:49:41 +01:00
tlp = KThreadLocalPage::Allocate(m_kernel);
R_UNLESS(tlp != nullptr, ResultOutOfMemory);
2023-03-07 16:49:41 +01:00
auto tlp_guard = SCOPE_GUARD({ KThreadLocalPage::Free(m_kernel, tlp); });
// Initialize the new page.
2023-03-07 16:49:41 +01:00
R_TRY(tlp->Initialize(m_kernel, this));
// Reserve a TLR.
tlr = tlp->Reserve();
ASSERT(tlr != 0);
// Insert into our tree.
{
2023-03-07 16:49:41 +01:00
KScopedSchedulerLock sl{m_kernel};
if (tlp->IsAllUsed()) {
2023-03-07 22:45:13 +01:00
m_fully_used_tlp_tree.insert(*tlp);
} else {
2023-03-07 22:45:13 +01:00
m_partially_used_tlp_tree.insert(*tlp);
}
}
// We succeeded!
tlp_guard.Cancel();
*out = tlr;
R_SUCCEED();
}
Result KProcess::DeleteThreadLocalRegion(VAddr addr) {
KThreadLocalPage* page_to_free = nullptr;
// Release the region.
{
2023-03-07 16:49:41 +01:00
KScopedSchedulerLock sl{m_kernel};
// Try to find the page in the partially used list.
2023-03-07 22:45:13 +01:00
auto it = m_partially_used_tlp_tree.find_key(Common::AlignDown(addr, PageSize));
if (it == m_partially_used_tlp_tree.end()) {
// If we don't find it, it has to be in the fully used list.
2023-03-07 22:45:13 +01:00
it = m_fully_used_tlp_tree.find_key(Common::AlignDown(addr, PageSize));
R_UNLESS(it != m_fully_used_tlp_tree.end(), ResultInvalidAddress);
// Release the region.
it->Release(addr);
// Move the page out of the fully used list.
KThreadLocalPage* tlp = std::addressof(*it);
2023-03-07 22:45:13 +01:00
m_fully_used_tlp_tree.erase(it);
if (tlp->IsAllFree()) {
page_to_free = tlp;
} else {
2023-03-07 22:45:13 +01:00
m_partially_used_tlp_tree.insert(*tlp);
}
} else {
// Release the region.
it->Release(addr);
// Handle the all-free case.
KThreadLocalPage* tlp = std::addressof(*it);
if (tlp->IsAllFree()) {
2023-03-07 22:45:13 +01:00
m_partially_used_tlp_tree.erase(it);
page_to_free = tlp;
}
}
}
// If we should free the page it was in, do so.
if (page_to_free != nullptr) {
page_to_free->Finalize();
2023-03-07 16:49:41 +01:00
KThreadLocalPage::Free(m_kernel, page_to_free);
}
R_SUCCEED();
}
bool KProcess::InsertWatchpoint(Core::System& system, VAddr addr, u64 size,
DebugWatchpointType type) {
2023-03-07 22:45:13 +01:00
const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
return wp.type == DebugWatchpointType::None;
})};
2023-03-07 22:45:13 +01:00
if (watch == m_watchpoints.end()) {
return false;
}
watch->start_address = addr;
watch->end_address = addr + size;
watch->type = type;
for (VAddr page = Common::AlignDown(addr, PageSize); page < addr + size; page += PageSize) {
2023-03-07 22:45:13 +01:00
m_debug_page_refcounts[page]++;
system.Memory().MarkRegionDebug(page, PageSize, true);
}
return true;
}
bool KProcess::RemoveWatchpoint(Core::System& system, VAddr addr, u64 size,
DebugWatchpointType type) {
2023-03-07 22:45:13 +01:00
const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
return wp.start_address == addr && wp.end_address == addr + size && wp.type == type;
})};
2023-03-07 22:45:13 +01:00
if (watch == m_watchpoints.end()) {
return false;
}
watch->start_address = 0;
watch->end_address = 0;
watch->type = DebugWatchpointType::None;
for (VAddr page = Common::AlignDown(addr, PageSize); page < addr + size; page += PageSize) {
2023-03-07 22:45:13 +01:00
m_debug_page_refcounts[page]--;
if (!m_debug_page_refcounts[page]) {
system.Memory().MarkRegionDebug(page, PageSize, false);
}
}
return true;
}
void KProcess::LoadModule(CodeSet code_set, VAddr base_addr) {
2020-04-09 04:19:12 +02:00
const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
Svc::MemoryPermission permission) {
2023-03-07 22:45:13 +01:00
m_page_table.SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
};
2023-03-07 16:49:41 +01:00
m_kernel.System().Memory().WriteBlock(*this, base_addr, code_set.memory.data(),
code_set.memory.size());
2020-04-09 04:19:12 +02:00
ReprotectSegment(code_set.CodeSegment(), Svc::MemoryPermission::ReadExecute);
ReprotectSegment(code_set.RODataSegment(), Svc::MemoryPermission::Read);
ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite);
}
bool KProcess::IsSignaled() const {
2023-03-07 22:45:13 +01:00
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
return m_is_signaled;
}
2023-03-07 16:49:41 +01:00
KProcess::KProcess(KernelCore& kernel)
2023-03-07 22:45:13 +01:00
: KAutoObjectWithSlabHeapAndContainer{kernel}, m_page_table{m_kernel.System()},
m_handle_table{m_kernel}, m_address_arbiter{m_kernel.System()},
m_condition_var{m_kernel.System()}, m_state_lock{m_kernel}, m_list_lock{m_kernel} {}
KProcess::~KProcess() = default;
void KProcess::ChangeState(State new_state) {
2023-03-07 22:45:13 +01:00
if (m_state == new_state) {
return;
}
2023-03-07 22:45:13 +01:00
m_state = new_state;
m_is_signaled = true;
this->NotifyAvailable();
}
Result KProcess::AllocateMainThreadStack(std::size_t stack_size) {
2022-12-28 01:51:37 +01:00
// Ensure that we haven't already allocated stack.
2023-03-07 22:45:13 +01:00
ASSERT(m_main_thread_stack_size == 0);
2022-12-28 01:51:37 +01:00
// Ensure that we're allocating a valid stack.
stack_size = Common::AlignUp(stack_size, PageSize);
// R_UNLESS(stack_size + image_size <= m_max_process_memory, ResultOutOfMemory);
2023-03-07 22:45:13 +01:00
R_UNLESS(stack_size + m_image_size >= m_image_size, ResultOutOfMemory);
2022-12-28 01:51:37 +01:00
// Place a tentative reservation of memory for our new stack.
KScopedResourceReservation mem_reservation(this, Svc::LimitableResource::PhysicalMemoryMax,
stack_size);
R_UNLESS(mem_reservation.Succeeded(), ResultLimitReached);
// Allocate and map our stack.
if (stack_size) {
KProcessAddress stack_bottom;
2023-03-07 22:45:13 +01:00
R_TRY(m_page_table.MapPages(std::addressof(stack_bottom), stack_size / PageSize,
KMemoryState::Stack, KMemoryPermission::UserReadWrite));
2022-12-28 01:51:37 +01:00
2023-03-07 22:45:13 +01:00
m_main_thread_stack_top = stack_bottom + stack_size;
m_main_thread_stack_size = stack_size;
2022-12-28 01:51:37 +01:00
}
2020-04-09 04:19:12 +02:00
2022-12-28 01:51:37 +01:00
// We succeeded! Commit our memory reservation.
mem_reservation.Commit();
2020-04-09 04:19:12 +02:00
R_SUCCEED();
}
2018-01-01 20:38:34 +01:00
} // namespace Kernel