shader/decode: Split memory and texture instructions decoding

This commit is contained in:
ReinUsesLisp 2019-02-22 02:19:45 -03:00
parent c3471bf618
commit 48e6f77c03
8 changed files with 539 additions and 501 deletions

View File

@ -73,6 +73,7 @@ set(HASH_FILES
"${VIDEO_CORE}/shader/decode/integer_set.cpp"
"${VIDEO_CORE}/shader/decode/integer_set_predicate.cpp"
"${VIDEO_CORE}/shader/decode/memory.cpp"
"${VIDEO_CORE}/shader/decode/texture.cpp"
"${VIDEO_CORE}/shader/decode/other.cpp"
"${VIDEO_CORE}/shader/decode/predicate_set_predicate.cpp"
"${VIDEO_CORE}/shader/decode/predicate_set_register.cpp"

View File

@ -47,6 +47,7 @@ add_custom_command(OUTPUT scm_rev.cpp
"${VIDEO_CORE}/shader/decode/integer_set.cpp"
"${VIDEO_CORE}/shader/decode/integer_set_predicate.cpp"
"${VIDEO_CORE}/shader/decode/memory.cpp"
"${VIDEO_CORE}/shader/decode/texture.cpp"
"${VIDEO_CORE}/shader/decode/other.cpp"
"${VIDEO_CORE}/shader/decode/predicate_set_predicate.cpp"
"${VIDEO_CORE}/shader/decode/predicate_set_register.cpp"

View File

@ -74,6 +74,7 @@ add_library(video_core STATIC
shader/decode/hfma2.cpp
shader/decode/conversion.cpp
shader/decode/memory.cpp
shader/decode/texture.cpp
shader/decode/float_set_predicate.cpp
shader/decode/integer_set_predicate.cpp
shader/decode/half_set_predicate.cpp

View File

@ -1446,6 +1446,7 @@ public:
Flow,
Synch,
Memory,
Texture,
FloatSet,
FloatSetPredicate,
IntegerSet,
@ -1576,14 +1577,14 @@ private:
INST("1110111101010---", Id::ST_L, Type::Memory, "ST_L"),
INST("1110111011010---", Id::LDG, Type::Memory, "LDG"),
INST("1110111011011---", Id::STG, Type::Memory, "STG"),
INST("110000----111---", Id::TEX, Type::Memory, "TEX"),
INST("1101111101001---", Id::TXQ, Type::Memory, "TXQ"),
INST("1101-00---------", Id::TEXS, Type::Memory, "TEXS"),
INST("1101101---------", Id::TLDS, Type::Memory, "TLDS"),
INST("110010----111---", Id::TLD4, Type::Memory, "TLD4"),
INST("1101111100------", Id::TLD4S, Type::Memory, "TLD4S"),
INST("110111110110----", Id::TMML_B, Type::Memory, "TMML_B"),
INST("1101111101011---", Id::TMML, Type::Memory, "TMML"),
INST("110000----111---", Id::TEX, Type::Texture, "TEX"),
INST("1101111101001---", Id::TXQ, Type::Texture, "TXQ"),
INST("1101-00---------", Id::TEXS, Type::Texture, "TEXS"),
INST("1101101---------", Id::TLDS, Type::Texture, "TLDS"),
INST("110010----111---", Id::TLD4, Type::Texture, "TLD4"),
INST("1101111100------", Id::TLD4S, Type::Texture, "TLD4S"),
INST("110111110110----", Id::TMML_B, Type::Texture, "TMML_B"),
INST("1101111101011---", Id::TMML, Type::Texture, "TMML"),
INST("111000110000----", Id::EXIT, Type::Trivial, "EXIT"),
INST("11100000--------", Id::IPA, Type::Trivial, "IPA"),
INST("1111101111100---", Id::OUT_R, Type::Trivial, "OUT_R"),

View File

@ -165,6 +165,7 @@ u32 ShaderIR::DecodeInstr(NodeBlock& bb, u32 pc) {
{OpCode::Type::Hfma2, &ShaderIR::DecodeHfma2},
{OpCode::Type::Conversion, &ShaderIR::DecodeConversion},
{OpCode::Type::Memory, &ShaderIR::DecodeMemory},
{OpCode::Type::Texture, &ShaderIR::DecodeTexture},
{OpCode::Type::FloatSetPredicate, &ShaderIR::DecodeFloatSetPredicate},
{OpCode::Type::IntegerSetPredicate, &ShaderIR::DecodeIntegerSetPredicate},
{OpCode::Type::HalfSetPredicate, &ShaderIR::DecodeHalfSetPredicate},

View File

@ -17,24 +17,6 @@ using Tegra::Shader::Attribute;
using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;
using Tegra::Shader::Register;
using Tegra::Shader::TextureMiscMode;
using Tegra::Shader::TextureProcessMode;
using Tegra::Shader::TextureType;
static std::size_t GetCoordCount(TextureType texture_type) {
switch (texture_type) {
case TextureType::Texture1D:
return 1;
case TextureType::Texture2D:
return 2;
case TextureType::Texture3D:
case TextureType::TextureCube:
return 3;
default:
UNIMPLEMENTED_MSG("Unhandled texture type: {}", static_cast<u32>(texture_type));
return 0;
}
}
u32 ShaderIR::DecodeMemory(NodeBlock& bb, u32 pc) {
const Instruction instr = {program_code[pc]};
@ -247,194 +229,6 @@ u32 ShaderIR::DecodeMemory(NodeBlock& bb, u32 pc) {
}
break;
}
case OpCode::Id::TEX: {
UNIMPLEMENTED_IF_MSG(instr.tex.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
if (instr.tex.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TEX.NODEP implementation is incomplete");
}
const TextureType texture_type{instr.tex.texture_type};
const bool is_array = instr.tex.array != 0;
const bool depth_compare = instr.tex.UsesMiscMode(TextureMiscMode::DC);
const auto process_mode = instr.tex.GetTextureProcessMode();
WriteTexInstructionFloat(
bb, instr, GetTexCode(instr, texture_type, process_mode, depth_compare, is_array));
break;
}
case OpCode::Id::TEXS: {
const TextureType texture_type{instr.texs.GetTextureType()};
const bool is_array{instr.texs.IsArrayTexture()};
const bool depth_compare = instr.texs.UsesMiscMode(TextureMiscMode::DC);
const auto process_mode = instr.texs.GetTextureProcessMode();
if (instr.texs.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TEXS.NODEP implementation is incomplete");
}
const Node4 components =
GetTexsCode(instr, texture_type, process_mode, depth_compare, is_array);
if (instr.texs.fp32_flag) {
WriteTexsInstructionFloat(bb, instr, components);
} else {
WriteTexsInstructionHalfFloat(bb, instr, components);
}
break;
}
case OpCode::Id::TLD4: {
ASSERT(instr.tld4.array == 0);
UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::NDV),
"NDV is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::PTP),
"PTP is not implemented");
if (instr.tld4.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TLD4.NODEP implementation is incomplete");
}
const auto texture_type = instr.tld4.texture_type.Value();
const bool depth_compare = instr.tld4.UsesMiscMode(TextureMiscMode::DC);
const bool is_array = instr.tld4.array != 0;
WriteTexInstructionFloat(bb, instr,
GetTld4Code(instr, texture_type, depth_compare, is_array));
break;
}
case OpCode::Id::TLD4S: {
UNIMPLEMENTED_IF_MSG(instr.tld4s.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
if (instr.tld4s.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TLD4S.NODEP implementation is incomplete");
}
const bool depth_compare = instr.tld4s.UsesMiscMode(TextureMiscMode::DC);
const Node op_a = GetRegister(instr.gpr8);
const Node op_b = GetRegister(instr.gpr20);
// TODO(Subv): Figure out how the sampler type is encoded in the TLD4S instruction.
std::vector<Node> coords;
if (depth_compare) {
// Note: TLD4S coordinate encoding works just like TEXS's
const Node op_y = GetRegister(instr.gpr8.Value() + 1);
coords.push_back(op_a);
coords.push_back(op_y);
coords.push_back(op_b);
} else {
coords.push_back(op_a);
coords.push_back(op_b);
}
std::vector<Node> extras;
extras.push_back(Immediate(static_cast<u32>(instr.tld4s.component)));
const auto& sampler =
GetSampler(instr.sampler, TextureType::Texture2D, false, depth_compare);
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, {}, {}, extras, element};
values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy));
}
WriteTexsInstructionFloat(bb, instr, values);
break;
}
case OpCode::Id::TXQ: {
if (instr.txq.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TXQ.NODEP implementation is incomplete");
}
// TODO: The new commits on the texture refactor, change the way samplers work.
// Sadly, not all texture instructions specify the type of texture their sampler
// uses. This must be fixed at a later instance.
const auto& sampler =
GetSampler(instr.sampler, Tegra::Shader::TextureType::Texture2D, false, false);
u32 indexer = 0;
switch (instr.txq.query_type) {
case Tegra::Shader::TextureQueryType::Dimension: {
for (u32 element = 0; element < 4; ++element) {
if (!instr.txq.IsComponentEnabled(element)) {
continue;
}
MetaTexture meta{sampler, {}, {}, {}, element};
const Node value =
Operation(OperationCode::TextureQueryDimensions, meta, GetRegister(instr.gpr8));
SetTemporal(bb, indexer++, value);
}
for (u32 i = 0; i < indexer; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i));
}
break;
}
default:
UNIMPLEMENTED_MSG("Unhandled texture query type: {}",
static_cast<u32>(instr.txq.query_type.Value()));
}
break;
}
case OpCode::Id::TMML: {
UNIMPLEMENTED_IF_MSG(instr.tmml.UsesMiscMode(Tegra::Shader::TextureMiscMode::NDV),
"NDV is not implemented");
if (instr.tmml.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TMML.NODEP implementation is incomplete");
}
auto texture_type = instr.tmml.texture_type.Value();
const bool is_array = instr.tmml.array != 0;
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false);
std::vector<Node> coords;
// TODO: Add coordinates for different samplers once other texture types are implemented.
switch (texture_type) {
case TextureType::Texture1D:
coords.push_back(GetRegister(instr.gpr8));
break;
case TextureType::Texture2D:
coords.push_back(GetRegister(instr.gpr8.Value() + 0));
coords.push_back(GetRegister(instr.gpr8.Value() + 1));
break;
default:
UNIMPLEMENTED_MSG("Unhandled texture type {}", static_cast<u32>(texture_type));
// Fallback to interpreting as a 2D texture for now
coords.push_back(GetRegister(instr.gpr8.Value() + 0));
coords.push_back(GetRegister(instr.gpr8.Value() + 1));
texture_type = TextureType::Texture2D;
}
for (u32 element = 0; element < 2; ++element) {
auto params = coords;
MetaTexture meta{sampler, {}, {}, {}, element};
const Node value = Operation(OperationCode::TextureQueryLod, meta, std::move(params));
SetTemporal(bb, element, value);
}
for (u32 element = 0; element < 2; ++element) {
SetRegister(bb, instr.gpr0.Value() + element, GetTemporal(element));
}
break;
}
case OpCode::Id::TLDS: {
const Tegra::Shader::TextureType texture_type{instr.tlds.GetTextureType()};
const bool is_array{instr.tlds.IsArrayTexture()};
UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::MZ), "MZ is not implemented");
if (instr.tlds.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TLDS.NODEP implementation is incomplete");
}
WriteTexsInstructionFloat(bb, instr, GetTldsCode(instr, texture_type, is_array));
break;
}
default:
UNIMPLEMENTED_MSG("Unhandled memory instruction: {}", opcode->get().GetName());
}
@ -442,291 +236,4 @@ u32 ShaderIR::DecodeMemory(NodeBlock& bb, u32 pc) {
return pc;
}
const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler, TextureType type,
bool is_array, bool is_shadow) {
const auto offset = static_cast<std::size_t>(sampler.index.Value());
// If this sampler has already been used, return the existing mapping.
const auto itr =
std::find_if(used_samplers.begin(), used_samplers.end(),
[&](const Sampler& entry) { return entry.GetOffset() == offset; });
if (itr != used_samplers.end()) {
ASSERT(itr->GetType() == type && itr->IsArray() == is_array &&
itr->IsShadow() == is_shadow);
return *itr;
}
// Otherwise create a new mapping for this sampler
const std::size_t next_index = used_samplers.size();
const Sampler entry{offset, next_index, type, is_array, is_shadow};
return *used_samplers.emplace(entry).first;
}
void ShaderIR::WriteTexInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components) {
u32 dest_elem = 0;
for (u32 elem = 0; elem < 4; ++elem) {
if (!instr.tex.IsComponentEnabled(elem)) {
// Skip disabled components
continue;
}
SetTemporal(bb, dest_elem++, components[elem]);
}
// After writing values in temporals, move them to the real registers
for (u32 i = 0; i < dest_elem; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i));
}
}
void ShaderIR::WriteTexsInstructionFloat(NodeBlock& bb, Instruction instr,
const Node4& components) {
// TEXS has two destination registers and a swizzle. The first two elements in the swizzle
// go into gpr0+0 and gpr0+1, and the rest goes into gpr28+0 and gpr28+1
u32 dest_elem = 0;
for (u32 component = 0; component < 4; ++component) {
if (!instr.texs.IsComponentEnabled(component))
continue;
SetTemporal(bb, dest_elem++, components[component]);
}
for (u32 i = 0; i < dest_elem; ++i) {
if (i < 2) {
// Write the first two swizzle components to gpr0 and gpr0+1
SetRegister(bb, instr.gpr0.Value() + i % 2, GetTemporal(i));
} else {
ASSERT(instr.texs.HasTwoDestinations());
// Write the rest of the swizzle components to gpr28 and gpr28+1
SetRegister(bb, instr.gpr28.Value() + i % 2, GetTemporal(i));
}
}
}
void ShaderIR::WriteTexsInstructionHalfFloat(NodeBlock& bb, Instruction instr,
const Node4& components) {
// TEXS.F16 destionation registers are packed in two registers in pairs (just like any half
// float instruction).
Node4 values;
u32 dest_elem = 0;
for (u32 component = 0; component < 4; ++component) {
if (!instr.texs.IsComponentEnabled(component))
continue;
values[dest_elem++] = components[component];
}
if (dest_elem == 0)
return;
std::generate(values.begin() + dest_elem, values.end(), [&]() { return Immediate(0); });
const Node first_value = Operation(OperationCode::HPack2, values[0], values[1]);
if (dest_elem <= 2) {
SetRegister(bb, instr.gpr0, first_value);
return;
}
SetTemporal(bb, 0, first_value);
SetTemporal(bb, 1, Operation(OperationCode::HPack2, values[2], values[3]));
SetRegister(bb, instr.gpr0, GetTemporal(0));
SetRegister(bb, instr.gpr28, GetTemporal(1));
}
Node4 ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, std::vector<Node> coords,
Node array, Node depth_compare, u32 bias_offset) {
const bool is_array = array;
const bool is_shadow = depth_compare;
UNIMPLEMENTED_IF_MSG((texture_type == TextureType::Texture3D && (is_array || is_shadow)) ||
(texture_type == TextureType::TextureCube && is_array && is_shadow),
"This method is not supported.");
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, is_shadow);
const bool lod_needed = process_mode == TextureProcessMode::LZ ||
process_mode == TextureProcessMode::LL ||
process_mode == TextureProcessMode::LLA;
// LOD selection (either via bias or explicit textureLod) not supported in GL for
// sampler2DArrayShadow and samplerCubeArrayShadow.
const bool gl_lod_supported =
!((texture_type == Tegra::Shader::TextureType::Texture2D && is_array && is_shadow) ||
(texture_type == Tegra::Shader::TextureType::TextureCube && is_array && is_shadow));
const OperationCode read_method =
lod_needed && gl_lod_supported ? OperationCode::TextureLod : OperationCode::Texture;
UNIMPLEMENTED_IF(process_mode != TextureProcessMode::None && !gl_lod_supported);
std::vector<Node> extras;
if (process_mode != TextureProcessMode::None && gl_lod_supported) {
if (process_mode == TextureProcessMode::LZ) {
extras.push_back(Immediate(0.0f));
} else {
// If present, lod or bias are always stored in the register indexed by the gpr20
// field with an offset depending on the usage of the other registers
extras.push_back(GetRegister(instr.gpr20.Value() + bias_offset));
}
}
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto copy_coords = coords;
MetaTexture meta{sampler, array, depth_compare, extras, element};
values[element] = Operation(read_method, meta, std::move(copy_coords));
}
return values;
}
Node4 ShaderIR::GetTexCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, bool depth_compare, bool is_array) {
const bool lod_bias_enabled =
(process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ);
const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement(
texture_type, depth_compare, is_array, lod_bias_enabled, 4, 5);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is the gpr8 or gpr8 + 1 when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
std::vector<Node> coords;
for (std::size_t i = 0; i < coord_count; ++i) {
coords.push_back(GetRegister(coord_register + i));
}
// 1D.DC in OpenGL the 2nd component is ignored.
if (depth_compare && !is_array && texture_type == TextureType::Texture1D) {
coords.push_back(Immediate(0.0f));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
Node dc{};
if (depth_compare) {
// Depth is always stored in the register signaled by gpr20 or in the next register if lod
// or bias are used
const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0);
dc = GetRegister(depth_register);
}
return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, 0);
}
Node4 ShaderIR::GetTexsCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, bool depth_compare, bool is_array) {
const bool lod_bias_enabled =
(process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ);
const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement(
texture_type, depth_compare, is_array, lod_bias_enabled, 4, 4);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is stored in gpr8 field or (gpr8 + 1) when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
const u64 last_coord_register =
(is_array || !(lod_bias_enabled || depth_compare) || (coord_count > 2))
? static_cast<u64>(instr.gpr20.Value())
: coord_register + 1;
const u32 bias_offset = coord_count > 2 ? 1 : 0;
std::vector<Node> coords;
for (std::size_t i = 0; i < coord_count; ++i) {
const bool last = (i == (coord_count - 1)) && (coord_count > 1);
coords.push_back(GetRegister(last ? last_coord_register : coord_register + i));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
Node dc{};
if (depth_compare) {
// Depth is always stored in the register signaled by gpr20 or in the next register if lod
// or bias are used
const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0);
dc = GetRegister(depth_register);
}
return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_offset);
}
Node4 ShaderIR::GetTld4Code(Instruction instr, TextureType texture_type, bool depth_compare,
bool is_array) {
const std::size_t coord_count = GetCoordCount(texture_type);
const std::size_t total_coord_count = coord_count + (is_array ? 1 : 0);
const std::size_t total_reg_count = total_coord_count + (depth_compare ? 1 : 0);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is the gpr8 or gpr8 + 1 when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
std::vector<Node> coords;
for (size_t i = 0; i < coord_count; ++i)
coords.push_back(GetRegister(coord_register + i));
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, depth_compare);
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, GetRegister(array_register), {}, {}, element};
values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy));
}
return values;
}
Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is_array) {
const std::size_t type_coord_count = GetCoordCount(texture_type);
const bool lod_enabled = instr.tlds.GetTextureProcessMode() == TextureProcessMode::LL;
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// if is array gpr20 is used
const u64 coord_register = is_array ? instr.gpr20.Value() : instr.gpr8.Value();
const u64 last_coord_register =
((type_coord_count > 2) || (type_coord_count == 2 && !lod_enabled)) && !is_array
? static_cast<u64>(instr.gpr20.Value())
: coord_register + 1;
std::vector<Node> coords;
for (std::size_t i = 0; i < type_coord_count; ++i) {
const bool last = (i == (type_coord_count - 1)) && (type_coord_count > 1);
coords.push_back(GetRegister(last ? last_coord_register : coord_register + i));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
// When lod is used always is in gpr20
const Node lod = lod_enabled ? GetRegister(instr.gpr20) : Immediate(0);
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false);
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, array, {}, {lod}, element};
values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy));
}
return values;
}
std::tuple<std::size_t, std::size_t> ShaderIR::ValidateAndGetCoordinateElement(
TextureType texture_type, bool depth_compare, bool is_array, bool lod_bias_enabled,
std::size_t max_coords, std::size_t max_inputs) {
const std::size_t coord_count = GetCoordCount(texture_type);
std::size_t total_coord_count = coord_count + (is_array ? 1 : 0) + (depth_compare ? 1 : 0);
const std::size_t total_reg_count = total_coord_count + (lod_bias_enabled ? 1 : 0);
if (total_coord_count > max_coords || total_reg_count > max_inputs) {
UNIMPLEMENTED_MSG("Unsupported Texture operation");
total_coord_count = std::min(total_coord_count, max_coords);
}
// 1D.DC OpenGL is using a vec3 but 2nd component is ignored later.
total_coord_count +=
(depth_compare && !is_array && texture_type == TextureType::Texture1D) ? 1 : 0;
return {coord_count, total_coord_count};
}
} // namespace VideoCommon::Shader

View File

@ -0,0 +1,525 @@
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <vector>
#include <fmt/format.h>
#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/shader/shader_ir.h"
namespace VideoCommon::Shader {
using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;
using Tegra::Shader::Register;
using Tegra::Shader::TextureMiscMode;
using Tegra::Shader::TextureProcessMode;
using Tegra::Shader::TextureType;
static std::size_t GetCoordCount(TextureType texture_type) {
switch (texture_type) {
case TextureType::Texture1D:
return 1;
case TextureType::Texture2D:
return 2;
case TextureType::Texture3D:
case TextureType::TextureCube:
return 3;
default:
UNIMPLEMENTED_MSG("Unhandled texture type: {}", static_cast<u32>(texture_type));
return 0;
}
}
u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
const Instruction instr = {program_code[pc]};
const auto opcode = OpCode::Decode(instr);
switch (opcode->get().GetId()) {
case OpCode::Id::TEX: {
UNIMPLEMENTED_IF_MSG(instr.tex.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
if (instr.tex.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TEX.NODEP implementation is incomplete");
}
const TextureType texture_type{instr.tex.texture_type};
const bool is_array = instr.tex.array != 0;
const bool depth_compare = instr.tex.UsesMiscMode(TextureMiscMode::DC);
const auto process_mode = instr.tex.GetTextureProcessMode();
WriteTexInstructionFloat(
bb, instr, GetTexCode(instr, texture_type, process_mode, depth_compare, is_array));
break;
}
case OpCode::Id::TEXS: {
const TextureType texture_type{instr.texs.GetTextureType()};
const bool is_array{instr.texs.IsArrayTexture()};
const bool depth_compare = instr.texs.UsesMiscMode(TextureMiscMode::DC);
const auto process_mode = instr.texs.GetTextureProcessMode();
if (instr.texs.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TEXS.NODEP implementation is incomplete");
}
const Node4 components =
GetTexsCode(instr, texture_type, process_mode, depth_compare, is_array);
if (instr.texs.fp32_flag) {
WriteTexsInstructionFloat(bb, instr, components);
} else {
WriteTexsInstructionHalfFloat(bb, instr, components);
}
break;
}
case OpCode::Id::TLD4: {
ASSERT(instr.tld4.array == 0);
UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::NDV),
"NDV is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::PTP),
"PTP is not implemented");
if (instr.tld4.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TLD4.NODEP implementation is incomplete");
}
const auto texture_type = instr.tld4.texture_type.Value();
const bool depth_compare = instr.tld4.UsesMiscMode(TextureMiscMode::DC);
const bool is_array = instr.tld4.array != 0;
WriteTexInstructionFloat(bb, instr,
GetTld4Code(instr, texture_type, depth_compare, is_array));
break;
}
case OpCode::Id::TLD4S: {
UNIMPLEMENTED_IF_MSG(instr.tld4s.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
if (instr.tld4s.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TLD4S.NODEP implementation is incomplete");
}
const bool depth_compare = instr.tld4s.UsesMiscMode(TextureMiscMode::DC);
const Node op_a = GetRegister(instr.gpr8);
const Node op_b = GetRegister(instr.gpr20);
// TODO(Subv): Figure out how the sampler type is encoded in the TLD4S instruction.
std::vector<Node> coords;
if (depth_compare) {
// Note: TLD4S coordinate encoding works just like TEXS's
const Node op_y = GetRegister(instr.gpr8.Value() + 1);
coords.push_back(op_a);
coords.push_back(op_y);
coords.push_back(op_b);
} else {
coords.push_back(op_a);
coords.push_back(op_b);
}
std::vector<Node> extras;
extras.push_back(Immediate(static_cast<u32>(instr.tld4s.component)));
const auto& sampler =
GetSampler(instr.sampler, TextureType::Texture2D, false, depth_compare);
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, {}, {}, extras, element};
values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy));
}
WriteTexsInstructionFloat(bb, instr, values);
break;
}
case OpCode::Id::TXQ: {
if (instr.txq.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TXQ.NODEP implementation is incomplete");
}
// TODO: The new commits on the texture refactor, change the way samplers work.
// Sadly, not all texture instructions specify the type of texture their sampler
// uses. This must be fixed at a later instance.
const auto& sampler =
GetSampler(instr.sampler, Tegra::Shader::TextureType::Texture2D, false, false);
u32 indexer = 0;
switch (instr.txq.query_type) {
case Tegra::Shader::TextureQueryType::Dimension: {
for (u32 element = 0; element < 4; ++element) {
if (!instr.txq.IsComponentEnabled(element)) {
continue;
}
MetaTexture meta{sampler, {}, {}, {}, element};
const Node value =
Operation(OperationCode::TextureQueryDimensions, meta, GetRegister(instr.gpr8));
SetTemporal(bb, indexer++, value);
}
for (u32 i = 0; i < indexer; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i));
}
break;
}
default:
UNIMPLEMENTED_MSG("Unhandled texture query type: {}",
static_cast<u32>(instr.txq.query_type.Value()));
}
break;
}
case OpCode::Id::TMML: {
UNIMPLEMENTED_IF_MSG(instr.tmml.UsesMiscMode(Tegra::Shader::TextureMiscMode::NDV),
"NDV is not implemented");
if (instr.tmml.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TMML.NODEP implementation is incomplete");
}
auto texture_type = instr.tmml.texture_type.Value();
const bool is_array = instr.tmml.array != 0;
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false);
std::vector<Node> coords;
// TODO: Add coordinates for different samplers once other texture types are implemented.
switch (texture_type) {
case TextureType::Texture1D:
coords.push_back(GetRegister(instr.gpr8));
break;
case TextureType::Texture2D:
coords.push_back(GetRegister(instr.gpr8.Value() + 0));
coords.push_back(GetRegister(instr.gpr8.Value() + 1));
break;
default:
UNIMPLEMENTED_MSG("Unhandled texture type {}", static_cast<u32>(texture_type));
// Fallback to interpreting as a 2D texture for now
coords.push_back(GetRegister(instr.gpr8.Value() + 0));
coords.push_back(GetRegister(instr.gpr8.Value() + 1));
texture_type = TextureType::Texture2D;
}
for (u32 element = 0; element < 2; ++element) {
auto params = coords;
MetaTexture meta{sampler, {}, {}, {}, element};
const Node value = Operation(OperationCode::TextureQueryLod, meta, std::move(params));
SetTemporal(bb, element, value);
}
for (u32 element = 0; element < 2; ++element) {
SetRegister(bb, instr.gpr0.Value() + element, GetTemporal(element));
}
break;
}
case OpCode::Id::TLDS: {
const Tegra::Shader::TextureType texture_type{instr.tlds.GetTextureType()};
const bool is_array{instr.tlds.IsArrayTexture()};
UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::MZ), "MZ is not implemented");
if (instr.tlds.UsesMiscMode(TextureMiscMode::NODEP)) {
LOG_WARNING(HW_GPU, "TLDS.NODEP implementation is incomplete");
}
WriteTexsInstructionFloat(bb, instr, GetTldsCode(instr, texture_type, is_array));
break;
}
default:
UNIMPLEMENTED_MSG("Unhandled memory instruction: {}", opcode->get().GetName());
}
return pc;
}
const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler, TextureType type,
bool is_array, bool is_shadow) {
const auto offset = static_cast<std::size_t>(sampler.index.Value());
// If this sampler has already been used, return the existing mapping.
const auto itr =
std::find_if(used_samplers.begin(), used_samplers.end(),
[&](const Sampler& entry) { return entry.GetOffset() == offset; });
if (itr != used_samplers.end()) {
ASSERT(itr->GetType() == type && itr->IsArray() == is_array &&
itr->IsShadow() == is_shadow);
return *itr;
}
// Otherwise create a new mapping for this sampler
const std::size_t next_index = used_samplers.size();
const Sampler entry{offset, next_index, type, is_array, is_shadow};
return *used_samplers.emplace(entry).first;
}
void ShaderIR::WriteTexInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components) {
u32 dest_elem = 0;
for (u32 elem = 0; elem < 4; ++elem) {
if (!instr.tex.IsComponentEnabled(elem)) {
// Skip disabled components
continue;
}
SetTemporal(bb, dest_elem++, components[elem]);
}
// After writing values in temporals, move them to the real registers
for (u32 i = 0; i < dest_elem; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporal(i));
}
}
void ShaderIR::WriteTexsInstructionFloat(NodeBlock& bb, Instruction instr,
const Node4& components) {
// TEXS has two destination registers and a swizzle. The first two elements in the swizzle
// go into gpr0+0 and gpr0+1, and the rest goes into gpr28+0 and gpr28+1
u32 dest_elem = 0;
for (u32 component = 0; component < 4; ++component) {
if (!instr.texs.IsComponentEnabled(component))
continue;
SetTemporal(bb, dest_elem++, components[component]);
}
for (u32 i = 0; i < dest_elem; ++i) {
if (i < 2) {
// Write the first two swizzle components to gpr0 and gpr0+1
SetRegister(bb, instr.gpr0.Value() + i % 2, GetTemporal(i));
} else {
ASSERT(instr.texs.HasTwoDestinations());
// Write the rest of the swizzle components to gpr28 and gpr28+1
SetRegister(bb, instr.gpr28.Value() + i % 2, GetTemporal(i));
}
}
}
void ShaderIR::WriteTexsInstructionHalfFloat(NodeBlock& bb, Instruction instr,
const Node4& components) {
// TEXS.F16 destionation registers are packed in two registers in pairs (just like any half
// float instruction).
Node4 values;
u32 dest_elem = 0;
for (u32 component = 0; component < 4; ++component) {
if (!instr.texs.IsComponentEnabled(component))
continue;
values[dest_elem++] = components[component];
}
if (dest_elem == 0)
return;
std::generate(values.begin() + dest_elem, values.end(), [&]() { return Immediate(0); });
const Node first_value = Operation(OperationCode::HPack2, values[0], values[1]);
if (dest_elem <= 2) {
SetRegister(bb, instr.gpr0, first_value);
return;
}
SetTemporal(bb, 0, first_value);
SetTemporal(bb, 1, Operation(OperationCode::HPack2, values[2], values[3]));
SetRegister(bb, instr.gpr0, GetTemporal(0));
SetRegister(bb, instr.gpr28, GetTemporal(1));
}
Node4 ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, std::vector<Node> coords,
Node array, Node depth_compare, u32 bias_offset) {
const bool is_array = array;
const bool is_shadow = depth_compare;
UNIMPLEMENTED_IF_MSG((texture_type == TextureType::Texture3D && (is_array || is_shadow)) ||
(texture_type == TextureType::TextureCube && is_array && is_shadow),
"This method is not supported.");
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, is_shadow);
const bool lod_needed = process_mode == TextureProcessMode::LZ ||
process_mode == TextureProcessMode::LL ||
process_mode == TextureProcessMode::LLA;
// LOD selection (either via bias or explicit textureLod) not supported in GL for
// sampler2DArrayShadow and samplerCubeArrayShadow.
const bool gl_lod_supported =
!((texture_type == Tegra::Shader::TextureType::Texture2D && is_array && is_shadow) ||
(texture_type == Tegra::Shader::TextureType::TextureCube && is_array && is_shadow));
const OperationCode read_method =
lod_needed && gl_lod_supported ? OperationCode::TextureLod : OperationCode::Texture;
UNIMPLEMENTED_IF(process_mode != TextureProcessMode::None && !gl_lod_supported);
std::vector<Node> extras;
if (process_mode != TextureProcessMode::None && gl_lod_supported) {
if (process_mode == TextureProcessMode::LZ) {
extras.push_back(Immediate(0.0f));
} else {
// If present, lod or bias are always stored in the register indexed by the gpr20
// field with an offset depending on the usage of the other registers
extras.push_back(GetRegister(instr.gpr20.Value() + bias_offset));
}
}
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto copy_coords = coords;
MetaTexture meta{sampler, array, depth_compare, extras, element};
values[element] = Operation(read_method, meta, std::move(copy_coords));
}
return values;
}
Node4 ShaderIR::GetTexCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, bool depth_compare, bool is_array) {
const bool lod_bias_enabled =
(process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ);
const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement(
texture_type, depth_compare, is_array, lod_bias_enabled, 4, 5);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is the gpr8 or gpr8 + 1 when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
std::vector<Node> coords;
for (std::size_t i = 0; i < coord_count; ++i) {
coords.push_back(GetRegister(coord_register + i));
}
// 1D.DC in OpenGL the 2nd component is ignored.
if (depth_compare && !is_array && texture_type == TextureType::Texture1D) {
coords.push_back(Immediate(0.0f));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
Node dc{};
if (depth_compare) {
// Depth is always stored in the register signaled by gpr20 or in the next register if lod
// or bias are used
const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0);
dc = GetRegister(depth_register);
}
return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, 0);
}
Node4 ShaderIR::GetTexsCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, bool depth_compare, bool is_array) {
const bool lod_bias_enabled =
(process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ);
const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement(
texture_type, depth_compare, is_array, lod_bias_enabled, 4, 4);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is stored in gpr8 field or (gpr8 + 1) when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
const u64 last_coord_register =
(is_array || !(lod_bias_enabled || depth_compare) || (coord_count > 2))
? static_cast<u64>(instr.gpr20.Value())
: coord_register + 1;
const u32 bias_offset = coord_count > 2 ? 1 : 0;
std::vector<Node> coords;
for (std::size_t i = 0; i < coord_count; ++i) {
const bool last = (i == (coord_count - 1)) && (coord_count > 1);
coords.push_back(GetRegister(last ? last_coord_register : coord_register + i));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
Node dc{};
if (depth_compare) {
// Depth is always stored in the register signaled by gpr20 or in the next register if lod
// or bias are used
const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0);
dc = GetRegister(depth_register);
}
return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_offset);
}
Node4 ShaderIR::GetTld4Code(Instruction instr, TextureType texture_type, bool depth_compare,
bool is_array) {
const std::size_t coord_count = GetCoordCount(texture_type);
const std::size_t total_coord_count = coord_count + (is_array ? 1 : 0);
const std::size_t total_reg_count = total_coord_count + (depth_compare ? 1 : 0);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is the gpr8 or gpr8 + 1 when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
std::vector<Node> coords;
for (size_t i = 0; i < coord_count; ++i)
coords.push_back(GetRegister(coord_register + i));
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, depth_compare);
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, GetRegister(array_register), {}, {}, element};
values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy));
}
return values;
}
Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is_array) {
const std::size_t type_coord_count = GetCoordCount(texture_type);
const bool lod_enabled = instr.tlds.GetTextureProcessMode() == TextureProcessMode::LL;
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// if is array gpr20 is used
const u64 coord_register = is_array ? instr.gpr20.Value() : instr.gpr8.Value();
const u64 last_coord_register =
((type_coord_count > 2) || (type_coord_count == 2 && !lod_enabled)) && !is_array
? static_cast<u64>(instr.gpr20.Value())
: coord_register + 1;
std::vector<Node> coords;
for (std::size_t i = 0; i < type_coord_count; ++i) {
const bool last = (i == (type_coord_count - 1)) && (type_coord_count > 1);
coords.push_back(GetRegister(last ? last_coord_register : coord_register + i));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
// When lod is used always is in gpr20
const Node lod = lod_enabled ? GetRegister(instr.gpr20) : Immediate(0);
const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, false);
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, array, {}, {lod}, element};
values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy));
}
return values;
}
std::tuple<std::size_t, std::size_t> ShaderIR::ValidateAndGetCoordinateElement(
TextureType texture_type, bool depth_compare, bool is_array, bool lod_bias_enabled,
std::size_t max_coords, std::size_t max_inputs) {
const std::size_t coord_count = GetCoordCount(texture_type);
std::size_t total_coord_count = coord_count + (is_array ? 1 : 0) + (depth_compare ? 1 : 0);
const std::size_t total_reg_count = total_coord_count + (lod_bias_enabled ? 1 : 0);
if (total_coord_count > max_coords || total_reg_count > max_inputs) {
UNIMPLEMENTED_MSG("Unsupported Texture operation");
total_coord_count = std::min(total_coord_count, max_coords);
}
// 1D.DC OpenGL is using a vec3 but 2nd component is ignored later.
total_coord_count +=
(depth_compare && !is_array && texture_type == TextureType::Texture1D) ? 1 : 0;
return {coord_count, total_coord_count};
}
} // namespace VideoCommon::Shader

View File

@ -614,6 +614,7 @@ private:
u32 DecodeHfma2(NodeBlock& bb, u32 pc);
u32 DecodeConversion(NodeBlock& bb, u32 pc);
u32 DecodeMemory(NodeBlock& bb, u32 pc);
u32 DecodeTexture(NodeBlock& bb, u32 pc);
u32 DecodeFloatSetPredicate(NodeBlock& bb, u32 pc);
u32 DecodeIntegerSetPredicate(NodeBlock& bb, u32 pc);
u32 DecodeHalfSetPredicate(NodeBlock& bb, u32 pc);