// Copyright 2015 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include #include "common/assert.h" #include "common/logging/log.h" #include "core/core.h" #include "core/file_sys/program_metadata.h" #include "core/hle/kernel/errors.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/process.h" #include "core/hle/kernel/resource_limit.h" #include "core/hle/kernel/scheduler.h" #include "core/hle/kernel/thread.h" #include "core/hle/kernel/vm_manager.h" #include "core/memory.h" #include "core/settings.h" namespace Kernel { namespace { /** * Sets up the primary application thread * * @param owner_process The parent process for the main thread * @param kernel The kernel instance to create the main thread under. * @param entry_point The address at which the thread should start execution * @param priority The priority to give the main thread */ void SetupMainThread(Process& owner_process, KernelCore& kernel, VAddr entry_point, u32 priority) { // Setup page table so we can write to memory Memory::SetCurrentPageTable(&owner_process.VMManager().page_table); // Initialize new "main" thread const VAddr stack_top = owner_process.VMManager().GetTLSIORegionEndAddress(); auto thread_res = Thread::Create(kernel, "main", entry_point, priority, 0, owner_process.GetIdealCore(), stack_top, owner_process); SharedPtr thread = std::move(thread_res).Unwrap(); // Register 1 must be a handle to the main thread const Handle guest_handle = owner_process.GetHandleTable().Create(thread).Unwrap(); thread->SetGuestHandle(guest_handle); thread->GetContext().cpu_registers[1] = guest_handle; // Threads by default are dormant, wake up the main thread so it runs when the scheduler fires thread->ResumeFromWait(); } } // Anonymous namespace CodeSet::CodeSet() = default; CodeSet::~CodeSet() = default; SharedPtr Process::Create(Core::System& system, std::string&& name) { auto& kernel = system.Kernel(); SharedPtr process(new Process(system)); process->name = std::move(name); process->resource_limit = kernel.GetSystemResourceLimit(); process->status = ProcessStatus::Created; process->program_id = 0; process->process_id = kernel.CreateNewProcessID(); process->capabilities.InitializeForMetadatalessProcess(); std::mt19937 rng(Settings::values.rng_seed.value_or(0)); std::uniform_int_distribution distribution; std::generate(process->random_entropy.begin(), process->random_entropy.end(), [&] { return distribution(rng); }); kernel.AppendNewProcess(process); return process; } SharedPtr Process::GetResourceLimit() const { return resource_limit; } ResultCode Process::ClearSignalState() { if (status == ProcessStatus::Exited) { LOG_ERROR(Kernel, "called on a terminated process instance."); return ERR_INVALID_STATE; } if (!is_signaled) { LOG_ERROR(Kernel, "called on a process instance that isn't signaled."); return ERR_INVALID_STATE; } is_signaled = false; return RESULT_SUCCESS; } ResultCode Process::LoadFromMetadata(const FileSys::ProgramMetadata& metadata) { program_id = metadata.GetTitleID(); ideal_core = metadata.GetMainThreadCore(); is_64bit_process = metadata.Is64BitProgram(); vm_manager.Reset(metadata.GetAddressSpaceType()); const auto& caps = metadata.GetKernelCapabilities(); const auto capability_init_result = capabilities.InitializeForUserProcess(caps.data(), caps.size(), vm_manager); if (capability_init_result.IsError()) { return capability_init_result; } return handle_table.SetSize(capabilities.GetHandleTableSize()); } void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) { // Allocate and map the main thread stack // TODO(bunnei): This is heap area that should be allocated by the kernel and not mapped as part // of the user address space. vm_manager .MapMemoryBlock(vm_manager.GetTLSIORegionEndAddress() - stack_size, std::make_shared>(stack_size, 0), 0, stack_size, MemoryState::Stack) .Unwrap(); vm_manager.LogLayout(); ChangeStatus(ProcessStatus::Running); SetupMainThread(*this, kernel, entry_point, main_thread_priority); } void Process::PrepareForTermination() { ChangeStatus(ProcessStatus::Exiting); const auto stop_threads = [this](const std::vector>& thread_list) { for (auto& thread : thread_list) { if (thread->GetOwnerProcess() != this) continue; if (thread == system.CurrentScheduler().GetCurrentThread()) continue; // TODO(Subv): When are the other running/ready threads terminated? ASSERT_MSG(thread->GetStatus() == ThreadStatus::WaitSynchAny || thread->GetStatus() == ThreadStatus::WaitSynchAll, "Exiting processes with non-waiting threads is currently unimplemented"); thread->Stop(); } }; stop_threads(system.Scheduler(0).GetThreadList()); stop_threads(system.Scheduler(1).GetThreadList()); stop_threads(system.Scheduler(2).GetThreadList()); stop_threads(system.Scheduler(3).GetThreadList()); ChangeStatus(ProcessStatus::Exited); } /** * Finds a free location for the TLS section of a thread. * @param tls_slots The TLS page array of the thread's owner process. * Returns a tuple of (page, slot, alloc_needed) where: * page: The index of the first allocated TLS page that has free slots. * slot: The index of the first free slot in the indicated page. * alloc_needed: Whether there's a need to allocate a new TLS page (All pages are full). */ static std::tuple FindFreeThreadLocalSlot( const std::vector>& tls_slots) { // Iterate over all the allocated pages, and try to find one where not all slots are used. for (std::size_t page = 0; page < tls_slots.size(); ++page) { const auto& page_tls_slots = tls_slots[page]; if (!page_tls_slots.all()) { // We found a page with at least one free slot, find which slot it is for (std::size_t slot = 0; slot < page_tls_slots.size(); ++slot) { if (!page_tls_slots.test(slot)) { return std::make_tuple(page, slot, false); } } } } return std::make_tuple(0, 0, true); } VAddr Process::MarkNextAvailableTLSSlotAsUsed(Thread& thread) { auto [available_page, available_slot, needs_allocation] = FindFreeThreadLocalSlot(tls_slots); const VAddr tls_begin = vm_manager.GetTLSIORegionBaseAddress(); if (needs_allocation) { tls_slots.emplace_back(0); // The page is completely available at the start available_page = tls_slots.size() - 1; available_slot = 0; // Use the first slot in the new page // Allocate some memory from the end of the linear heap for this region. auto& tls_memory = thread.GetTLSMemory(); tls_memory->insert(tls_memory->end(), Memory::PAGE_SIZE, 0); vm_manager.RefreshMemoryBlockMappings(tls_memory.get()); vm_manager.MapMemoryBlock(tls_begin + available_page * Memory::PAGE_SIZE, tls_memory, 0, Memory::PAGE_SIZE, MemoryState::ThreadLocal); } tls_slots[available_page].set(available_slot); return tls_begin + available_page * Memory::PAGE_SIZE + available_slot * Memory::TLS_ENTRY_SIZE; } void Process::FreeTLSSlot(VAddr tls_address) { const VAddr tls_base = tls_address - vm_manager.GetTLSIORegionBaseAddress(); const VAddr tls_page = tls_base / Memory::PAGE_SIZE; const VAddr tls_slot = (tls_base % Memory::PAGE_SIZE) / Memory::TLS_ENTRY_SIZE; tls_slots[tls_page].reset(tls_slot); } void Process::LoadModule(CodeSet module_, VAddr base_addr) { const auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions, MemoryState memory_state) { const auto vma = vm_manager .MapMemoryBlock(segment.addr + base_addr, module_.memory, segment.offset, segment.size, memory_state) .Unwrap(); vm_manager.Reprotect(vma, permissions); }; // Map CodeSet segments MapSegment(module_.CodeSegment(), VMAPermission::ReadExecute, MemoryState::CodeStatic); MapSegment(module_.RODataSegment(), VMAPermission::Read, MemoryState::CodeMutable); MapSegment(module_.DataSegment(), VMAPermission::ReadWrite, MemoryState::CodeMutable); // Clear instruction cache in CPU JIT system.InvalidateCpuInstructionCaches(); } Process::Process(Core::System& system) : WaitObject{system.Kernel()}, address_arbiter{system}, system{system} {} Process::~Process() = default; void Process::Acquire(Thread* thread) { ASSERT_MSG(!ShouldWait(thread), "Object unavailable!"); } bool Process::ShouldWait(Thread* thread) const { return !is_signaled; } void Process::ChangeStatus(ProcessStatus new_status) { if (status == new_status) { return; } status = new_status; is_signaled = true; WakeupAllWaitingThreads(); } } // namespace Kernel