// Copyright 2014 Citra Emulator Project / PPSSPP Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #pragma once #include #include #include #include #include "common/common_types.h" #include "common/spin_lock.h" #include "core/arm/arm_interface.h" #include "core/hle/kernel/object.h" #include "core/hle/kernel/synchronization_object.h" #include "core/hle/result.h" namespace Common { class Fiber; } namespace Core { class ARM_Interface; class System; } // namespace Core namespace Kernel { class GlobalScheduler; class KernelCore; class Process; class Scheduler; enum ThreadPriority : u32 { THREADPRIO_HIGHEST = 0, ///< Highest thread priority THREADPRIO_MAX_CORE_MIGRATION = 2, ///< Highest priority for a core migration THREADPRIO_USERLAND_MAX = 24, ///< Highest thread priority for userland apps THREADPRIO_DEFAULT = 44, ///< Default thread priority for userland apps THREADPRIO_LOWEST = 63, ///< Lowest thread priority THREADPRIO_COUNT = 64, ///< Total number of possible thread priorities. }; enum ThreadType : u32 { THREADTYPE_USER = 0x1, THREADTYPE_KERNEL = 0x2, THREADTYPE_HLE = 0x4, THREADTYPE_IDLE = 0x8, THREADTYPE_SUSPEND = 0x10, }; enum ThreadProcessorId : s32 { /// Indicates that no particular processor core is preferred. THREADPROCESSORID_DONT_CARE = -1, /// Run thread on the ideal core specified by the process. THREADPROCESSORID_IDEAL = -2, /// Indicates that the preferred processor ID shouldn't be updated in /// a core mask setting operation. THREADPROCESSORID_DONT_UPDATE = -3, THREADPROCESSORID_0 = 0, ///< Run thread on core 0 THREADPROCESSORID_1 = 1, ///< Run thread on core 1 THREADPROCESSORID_2 = 2, ///< Run thread on core 2 THREADPROCESSORID_3 = 3, ///< Run thread on core 3 THREADPROCESSORID_MAX = 4, ///< Processor ID must be less than this /// Allowed CPU mask THREADPROCESSORID_DEFAULT_MASK = (1 << THREADPROCESSORID_0) | (1 << THREADPROCESSORID_1) | (1 << THREADPROCESSORID_2) | (1 << THREADPROCESSORID_3) }; enum class ThreadStatus { Ready, ///< Ready to run Paused, ///< Paused by SetThreadActivity or debug WaitHLEEvent, ///< Waiting for hle event to finish WaitSleep, ///< Waiting due to a SleepThread SVC WaitIPC, ///< Waiting for the reply from an IPC request WaitSynch, ///< Waiting due to WaitSynchronization WaitMutex, ///< Waiting due to an ArbitrateLock svc WaitCondVar, ///< Waiting due to an WaitProcessWideKey svc WaitArb, ///< Waiting due to a SignalToAddress/WaitForAddress svc Dormant, ///< Created but not yet made ready Dead ///< Run to completion, or forcefully terminated }; enum class ThreadWakeupReason { Signal, // The thread was woken up by WakeupAllWaitingThreads due to an object signal. Timeout // The thread was woken up due to a wait timeout. }; enum class ThreadActivity : u32 { Normal = 0, Paused = 1, }; enum class ThreadSchedStatus : u32 { None = 0, Paused = 1, Runnable = 2, Exited = 3, }; enum class ThreadSchedFlags : u32 { ProcessPauseFlag = 1 << 4, ThreadPauseFlag = 1 << 5, ProcessDebugPauseFlag = 1 << 6, KernelInitPauseFlag = 1 << 8, }; enum class ThreadSchedMasks : u32 { LowMask = 0x000f, HighMask = 0xfff0, ForcePauseMask = 0x0070, }; class Thread final : public SynchronizationObject { public: explicit Thread(KernelCore& kernel); ~Thread() override; using MutexWaitingThreads = std::vector>; using ThreadContext32 = Core::ARM_Interface::ThreadContext32; using ThreadContext64 = Core::ARM_Interface::ThreadContext64; using ThreadSynchronizationObjects = std::vector>; using HLECallback = std::function thread)>; /** * Creates and returns a new thread. The new thread is immediately scheduled * @param system The instance of the whole system * @param name The friendly name desired for the thread * @param entry_point The address at which the thread should start execution * @param priority The thread's priority * @param arg User data to pass to the thread * @param processor_id The ID(s) of the processors on which the thread is desired to be run * @param stack_top The address of the thread's stack top * @param owner_process The parent process for the thread, if null, it's a kernel thread * @return A shared pointer to the newly created thread */ static ResultVal> Create(Core::System& system, ThreadType type_flags, std::string name, VAddr entry_point, u32 priority, u64 arg, s32 processor_id, VAddr stack_top, Process* owner_process); /** * Creates and returns a new thread. The new thread is immediately scheduled * @param system The instance of the whole system * @param name The friendly name desired for the thread * @param entry_point The address at which the thread should start execution * @param priority The thread's priority * @param arg User data to pass to the thread * @param processor_id The ID(s) of the processors on which the thread is desired to be run * @param stack_top The address of the thread's stack top * @param owner_process The parent process for the thread, if null, it's a kernel thread * @param thread_start_func The function where the host context will start. * @param thread_start_parameter The parameter which will passed to host context on init * @return A shared pointer to the newly created thread */ static ResultVal> Create(Core::System& system, ThreadType type_flags, std::string name, VAddr entry_point, u32 priority, u64 arg, s32 processor_id, VAddr stack_top, Process* owner_process, std::function&& thread_start_func, void* thread_start_parameter); std::string GetName() const override { return name; } void SetName(std::string new_name) { name = std::move(new_name); } std::string GetTypeName() const override { return "Thread"; } static constexpr HandleType HANDLE_TYPE = HandleType::Thread; HandleType GetHandleType() const override { return HANDLE_TYPE; } bool ShouldWait(const Thread* thread) const override; void Acquire(Thread* thread) override; bool IsSignaled() const override; /** * Gets the thread's current priority * @return The current thread's priority */ u32 GetPriority() const { return current_priority; } /** * Gets the thread's nominal priority. * @return The current thread's nominal priority. */ u32 GetNominalPriority() const { return nominal_priority; } /** * Sets the thread's current priority * @param priority The new priority */ void SetPriority(u32 priority); /// Adds a thread to the list of threads that are waiting for a lock held by this thread. void AddMutexWaiter(std::shared_ptr thread); /// Removes a thread from the list of threads that are waiting for a lock held by this thread. void RemoveMutexWaiter(std::shared_ptr thread); /// Recalculates the current priority taking into account priority inheritance. void UpdatePriority(); /// Changes the core that the thread is running or scheduled to run on. ResultCode SetCoreAndAffinityMask(s32 new_core, u64 new_affinity_mask); /** * Gets the thread's thread ID * @return The thread's ID */ u64 GetThreadID() const { return thread_id; } /// Resumes a thread from waiting void ResumeFromWait(); void OnWakeUp(); ResultCode Start(); /// Cancels a waiting operation that this thread may or may not be within. /// /// When the thread is within a waiting state, this will set the thread's /// waiting result to signal a canceled wait. The function will then resume /// this thread. /// void CancelWait(); void SetSynchronizationResults(SynchronizationObject* object, ResultCode result); SynchronizationObject* GetSignalingObject() const { return signaling_object; } ResultCode GetSignalingResult() const { return signaling_result; } /** * Retrieves the index that this particular object occupies in the list of objects * that the thread passed to WaitSynchronization, starting the search from the last element. * * It is used to set the output index of WaitSynchronization when the thread is awakened. * * When a thread wakes up due to an object signal, the kernel will use the index of the last * matching object in the wait objects list in case of having multiple instances of the same * object in the list. * * @param object Object to query the index of. */ s32 GetSynchronizationObjectIndex(std::shared_ptr object) const; /** * Stops a thread, invalidating it from further use */ void Stop(); /* * Returns the Thread Local Storage address of the current thread * @returns VAddr of the thread's TLS */ VAddr GetTLSAddress() const { return tls_address; } /* * Returns the value of the TPIDR_EL0 Read/Write system register for this thread. * @returns The value of the TPIDR_EL0 register. */ u64 GetTPIDR_EL0() const { return tpidr_el0; } /// Sets the value of the TPIDR_EL0 Read/Write system register for this thread. void SetTPIDR_EL0(u64 value) { tpidr_el0 = value; } /* * Returns the address of the current thread's command buffer, located in the TLS. * @returns VAddr of the thread's command buffer. */ VAddr GetCommandBufferAddress() const; ThreadContext32& GetContext32() { return context_32; } const ThreadContext32& GetContext32() const { return context_32; } ThreadContext64& GetContext64() { return context_64; } const ThreadContext64& GetContext64() const { return context_64; } bool IsHLEThread() const { return (type & THREADTYPE_HLE) != 0; } bool IsSuspendThread() const { return (type & THREADTYPE_SUSPEND) != 0; } bool IsIdleThread() const { return (type & THREADTYPE_IDLE) != 0; } bool WasRunning() const { return was_running; } void SetWasRunning(bool value) { was_running = value; } std::shared_ptr& GetHostContext(); ThreadStatus GetStatus() const { return status; } void SetStatus(ThreadStatus new_status); u64 GetLastRunningTicks() const { return last_running_ticks; } u64 GetTotalCPUTimeTicks() const { return total_cpu_time_ticks; } void UpdateCPUTimeTicks(u64 ticks) { total_cpu_time_ticks += ticks; } s32 GetProcessorID() const { return processor_id; } void SetProcessorID(s32 new_core) { processor_id = new_core; } Process* GetOwnerProcess() { return owner_process; } const Process* GetOwnerProcess() const { return owner_process; } const ThreadSynchronizationObjects& GetSynchronizationObjects() const { return *wait_objects; } void SetSynchronizationObjects(ThreadSynchronizationObjects* objects) { wait_objects = objects; } void ClearSynchronizationObjects() { for (const auto& waiting_object : *wait_objects) { waiting_object->RemoveWaitingThread(SharedFrom(this)); } wait_objects->clear(); } /// Determines whether all the objects this thread is waiting on are ready. bool AllSynchronizationObjectsReady() const; const MutexWaitingThreads& GetMutexWaitingThreads() const { return wait_mutex_threads; } Thread* GetLockOwner() const { return lock_owner.get(); } void SetLockOwner(std::shared_ptr owner) { lock_owner = std::move(owner); } VAddr GetCondVarWaitAddress() const { return condvar_wait_address; } void SetCondVarWaitAddress(VAddr address) { condvar_wait_address = address; } VAddr GetMutexWaitAddress() const { return mutex_wait_address; } void SetMutexWaitAddress(VAddr address) { mutex_wait_address = address; } Handle GetWaitHandle() const { return wait_handle; } void SetWaitHandle(Handle handle) { wait_handle = handle; } VAddr GetArbiterWaitAddress() const { return arb_wait_address; } void SetArbiterWaitAddress(VAddr address) { arb_wait_address = address; } bool HasHLECallback() const { return hle_callback != nullptr; } void SetHLECallback(HLECallback callback) { hle_callback = std::move(callback); } void SetHLETimeEvent(Handle time_event) { hle_time_event = time_event; } void SetHLESyncObject(SynchronizationObject* object) { hle_object = object; } Handle GetHLETimeEvent() const { return hle_time_event; } SynchronizationObject* GetHLESyncObject() const { return hle_object; } void InvalidateHLECallback() { SetHLECallback(nullptr); } bool InvokeHLECallback(std::shared_ptr thread); u32 GetIdealCore() const { return ideal_core; } u64 GetAffinityMask() const { return affinity_mask; } ResultCode SetActivity(ThreadActivity value); /// Sleeps this thread for the given amount of nanoseconds. ResultCode Sleep(s64 nanoseconds); /// Yields this thread without rebalancing loads. std::pair YieldSimple(); /// Yields this thread and does a load rebalancing. std::pair YieldAndBalanceLoad(); /// Yields this thread and if the core is left idle, loads are rebalanced std::pair YieldAndWaitForLoadBalancing(); void IncrementYieldCount() { yield_count++; } u64 GetYieldCount() const { return yield_count; } ThreadSchedStatus GetSchedulingStatus() const { return static_cast(scheduling_state & static_cast(ThreadSchedMasks::LowMask)); } bool IsRunnable() const { return scheduling_state == static_cast(ThreadSchedStatus::Runnable); } bool IsRunning() const { return is_running; } void SetIsRunning(bool value) { is_running = value; } bool IsSyncCancelled() const { return is_sync_cancelled; } void SetSyncCancelled(bool value) { is_sync_cancelled = value; } Handle GetGlobalHandle() const { return global_handle; } bool IsWaitingForArbitration() const { return waiting_for_arbitration; } void WaitForArbitration(bool set) { waiting_for_arbitration = set; } bool IsWaitingSync() const { return is_waiting_on_sync; } void SetWaitingSync(bool is_waiting) { is_waiting_on_sync = is_waiting; } bool IsPendingTermination() const { return will_be_terminated || GetSchedulingStatus() == ThreadSchedStatus::Exited; } bool IsPaused() const { return pausing_state != 0; } bool IsContinuousOnSVC() const { return is_continuous_on_svc; } void SetContinuousOnSVC(bool is_continuous) { is_continuous_on_svc = is_continuous; } bool IsPhantomMode() const { return is_phantom_mode; } void SetPhantomMode(bool phantom) { is_phantom_mode = phantom; } bool HasExited() const { return has_exited; } private: friend class GlobalScheduler; friend class Scheduler; void SetSchedulingStatus(ThreadSchedStatus new_status); void AddSchedulingFlag(ThreadSchedFlags flag); void RemoveSchedulingFlag(ThreadSchedFlags flag); void SetCurrentPriority(u32 new_priority); Common::SpinLock context_guard{}; ThreadContext32 context_32{}; ThreadContext64 context_64{}; std::shared_ptr host_context{}; u64 thread_id = 0; ThreadStatus status = ThreadStatus::Dormant; VAddr entry_point = 0; VAddr stack_top = 0; ThreadType type; /// Nominal thread priority, as set by the emulated application. /// The nominal priority is the thread priority without priority /// inheritance taken into account. u32 nominal_priority = 0; /// Current thread priority. This may change over the course of the /// thread's lifetime in order to facilitate priority inheritance. u32 current_priority = 0; u64 total_cpu_time_ticks = 0; ///< Total CPU running ticks. u64 last_running_ticks = 0; ///< CPU tick when thread was last running u64 yield_count = 0; ///< Number of redundant yields carried by this thread. ///< a redundant yield is one where no scheduling is changed s32 processor_id = 0; VAddr tls_address = 0; ///< Virtual address of the Thread Local Storage of the thread u64 tpidr_el0 = 0; ///< TPIDR_EL0 read/write system register. /// Process that owns this thread Process* owner_process; /// Objects that the thread is waiting on, in the same order as they were /// passed to WaitSynchronization. ThreadSynchronizationObjects* wait_objects; SynchronizationObject* signaling_object; ResultCode signaling_result{RESULT_SUCCESS}; /// List of threads that are waiting for a mutex that is held by this thread. MutexWaitingThreads wait_mutex_threads; /// Thread that owns the lock that this thread is waiting for. std::shared_ptr lock_owner; /// If waiting on a ConditionVariable, this is the ConditionVariable address VAddr condvar_wait_address = 0; /// If waiting on a Mutex, this is the mutex address VAddr mutex_wait_address = 0; /// The handle used to wait for the mutex. Handle wait_handle = 0; /// If waiting for an AddressArbiter, this is the address being waited on. VAddr arb_wait_address{0}; bool waiting_for_arbitration{}; /// Handle used as userdata to reference this object when inserting into the CoreTiming queue. Handle global_handle = 0; /// Callback for HLE Events HLECallback hle_callback; Handle hle_time_event; SynchronizationObject* hle_object; Scheduler* scheduler = nullptr; u32 ideal_core{0xFFFFFFFF}; u64 affinity_mask{0x1}; s32 ideal_core_override = -1; u64 affinity_mask_override = 0x1; u32 affinity_override_count = 0; u32 scheduling_state = 0; u32 pausing_state = 0; bool is_running = false; bool is_waiting_on_sync = false; bool is_sync_cancelled = false; bool is_continuous_on_svc = false; bool will_be_terminated = false; bool is_phantom_mode = false; bool has_exited = false; bool was_running = false; std::string name; }; } // namespace Kernel