postgresql/src/backend/access/brin/brin.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1919 lines
55 KiB
C
Raw Normal View History

BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* brin.c
* Implementation of BRIN indexes for Postgres
*
* See src/backend/access/brin/README for details.
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/brin/brin.c
*
* TODO
* * ScalarArrayOpExpr (amsearcharray -> SK_SEARCHARRAY)
*/
#include "postgres.h"
#include "access/brin.h"
#include "access/brin_page.h"
#include "access/brin_pageops.h"
#include "access/brin_xlog.h"
#include "access/relation.h"
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
#include "access/reloptions.h"
#include "access/relscan.h"
#include "access/table.h"
#include "access/tableam.h"
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
#include "access/xloginsert.h"
#include "catalog/index.h"
#include "catalog/pg_am.h"
#include "commands/vacuum.h"
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
#include "miscadmin.h"
#include "pgstat.h"
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
#include "postmaster/autovacuum.h"
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
#include "storage/bufmgr.h"
#include "storage/freespace.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/datum.h"
Split up guc.c for better build speed and ease of maintenance. guc.c has grown to be one of our largest .c files, making it a bottleneck for compilation. It's also acquired a bunch of knowledge that'd be better kept elsewhere, because of our not very good habit of putting variable-specific check hooks here. Hence, split it up along these lines: * guc.c itself retains just the core GUC housekeeping mechanisms. * New file guc_funcs.c contains the SET/SHOW interfaces and some SQL-accessible functions for GUC manipulation. * New file guc_tables.c contains the data arrays that define the built-in GUC variables, along with some already-exported constant tables. * GUC check/assign/show hook functions are moved to the variable's home module, whenever that's clearly identifiable. A few hard- to-classify hooks ended up in commands/variable.c, which was already a home for miscellaneous GUC hook functions. To avoid cluttering a lot more header files with #include "guc.h", I also invented a new header file utils/guc_hooks.h and put all the GUC hook functions' declarations there, regardless of their originating module. That allowed removal of #include "guc.h" from some existing headers. The fallout from that (hopefully all caught here) demonstrates clearly why such inclusions are best minimized: there are a lot of files that, for example, were getting array.h at two or more levels of remove, despite not having any connection at all to GUCs in themselves. There is some very minor code beautification here, such as renaming a couple of inconsistently-named hook functions and improving some comments. But mostly this just moves code from point A to point B and deals with the ensuing needs for #include adjustments and exporting a few functions that previously weren't exported. Patch by me, per a suggestion from Andres Freund; thanks also to Michael Paquier for the idea to invent guc_funcs.c. Discussion: https://postgr.es/m/587607.1662836699@sss.pgh.pa.us
2022-09-13 17:05:07 +02:00
#include "utils/guc.h"
#include "utils/index_selfuncs.h"
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
#include "utils/memutils.h"
#include "utils/rel.h"
/*
* We use a BrinBuildState during initial construction of a BRIN index.
* The running state is kept in a BrinMemTuple.
*/
typedef struct BrinBuildState
{
Relation bs_irel;
int bs_numtuples;
Buffer bs_currentInsertBuf;
BlockNumber bs_pagesPerRange;
BlockNumber bs_currRangeStart;
BrinRevmap *bs_rmAccess;
BrinDesc *bs_bdesc;
BrinMemTuple *bs_dtuple;
} BrinBuildState;
/*
* Struct used as "opaque" during index scans
*/
typedef struct BrinOpaque
{
BlockNumber bo_pagesPerRange;
BrinRevmap *bo_rmAccess;
BrinDesc *bo_bdesc;
} BrinOpaque;
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
#define BRIN_ALL_BLOCKRANGES InvalidBlockNumber
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
static BrinBuildState *initialize_brin_buildstate(Relation idxRel,
BrinRevmap *revmap, BlockNumber pagesPerRange);
static void terminate_brin_buildstate(BrinBuildState *state);
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
static void brinsummarize(Relation index, Relation heapRel, BlockNumber pageRange,
bool include_partial, double *numSummarized, double *numExisting);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
static void form_and_insert_tuple(BrinBuildState *state);
static void union_tuples(BrinDesc *bdesc, BrinMemTuple *a,
BrinTuple *b);
Close some holes in BRIN page assignment In some corner cases, it is possible for the BRIN index relation to be extended by brin_getinsertbuffer but the new page not be used immediately for anything by its callers; when this happens, the page is initialized and the FSM is updated (by brin_getinsertbuffer) with the info about that page, but these actions are not WAL-logged. A later index insert/update can use the page, but since the page is already initialized, the initialization itself is not WAL-logged then either. Replay of this sequence of events causes recovery to fail altogether. There is a related corner case within brin_getinsertbuffer itself, in which we extend the relation to put a new index tuple there, but later find out that we cannot do so, and do not return the buffer; the page obtained from extension is not even initialized. The resulting page is lost forever. To fix, shuffle the code so that initialization is not the responsibility of brin_getinsertbuffer anymore, in normal cases; instead, the initialization is done by its callers (brin_doinsert and brin_doupdate) once they're certain that the page is going to be used. When either those functions determine that the new page cannot be used, before bailing out they initialize the page as an empty regular page, enter it in FSM and WAL-log all this. This way, the page is usable for future index insertions, and WAL replay doesn't find trying to insert tuples in pages whose initialization didn't make it to the WAL. The same strategy is used in brin_getinsertbuffer when it cannot return the new page. Additionally, add a new step to vacuuming so that all pages of the index are scanned; whenever an uninitialized page is found, it is initialized as empty and WAL-logged. This closes the hole that the relation is extended but the system crashes before anything is WAL-logged about it. We also take this opportunity to update the FSM, in case it has gotten out of date. Thanks to Heikki Linnakangas for finding the problem that kicked some additional analysis of BRIN page assignment code. Backpatch to 9.5, where BRIN was introduced. Discussion: https://www.postgresql.org/message-id/20150723204810.GY5596@postgresql.org
2015-08-12 19:20:38 +02:00
static void brin_vacuum_scan(Relation idxrel, BufferAccessStrategy strategy);
static bool add_values_to_range(Relation idxRel, BrinDesc *bdesc,
BrinMemTuple *dtup, Datum *values, bool *nulls);
static bool check_null_keys(BrinValues *bval, ScanKey *nullkeys, int nnullkeys);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* BRIN handler function: return IndexAmRoutine with access method parameters
* and callbacks.
*/
Datum
brinhandler(PG_FUNCTION_ARGS)
{
IndexAmRoutine *amroutine = makeNode(IndexAmRoutine);
amroutine->amstrategies = 0;
amroutine->amsupport = BRIN_LAST_OPTIONAL_PROCNUM;
Implement operator class parameters PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-30 18:17:11 +02:00
amroutine->amoptsprocnum = BRIN_PROCNUM_OPTIONS;
amroutine->amcanorder = false;
amroutine->amcanorderbyop = false;
amroutine->amcanbackward = false;
amroutine->amcanunique = false;
amroutine->amcanmulticol = true;
amroutine->amoptionalkey = true;
amroutine->amsearcharray = false;
amroutine->amsearchnulls = true;
amroutine->amstorage = true;
amroutine->amclusterable = false;
amroutine->ampredlocks = false;
amroutine->amcanparallel = false;
amroutine->amcaninclude = false;
amroutine->amusemaintenanceworkmem = false;
amroutine->amsummarizing = true;
amroutine->amparallelvacuumoptions =
VACUUM_OPTION_PARALLEL_CLEANUP;
amroutine->amkeytype = InvalidOid;
amroutine->ambuild = brinbuild;
amroutine->ambuildempty = brinbuildempty;
amroutine->aminsert = brininsert;
amroutine->ambulkdelete = brinbulkdelete;
amroutine->amvacuumcleanup = brinvacuumcleanup;
amroutine->amcanreturn = NULL;
amroutine->amcostestimate = brincostestimate;
amroutine->amoptions = brinoptions;
amroutine->amproperty = NULL;
amroutine->ambuildphasename = NULL;
amroutine->amvalidate = brinvalidate;
amroutine->amadjustmembers = NULL;
amroutine->ambeginscan = brinbeginscan;
amroutine->amrescan = brinrescan;
amroutine->amgettuple = NULL;
amroutine->amgetbitmap = bringetbitmap;
amroutine->amendscan = brinendscan;
amroutine->ammarkpos = NULL;
amroutine->amrestrpos = NULL;
amroutine->amestimateparallelscan = NULL;
amroutine->aminitparallelscan = NULL;
amroutine->amparallelrescan = NULL;
PG_RETURN_POINTER(amroutine);
}
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* A tuple in the heap is being inserted. To keep a brin index up to date,
* we need to obtain the relevant index tuple and compare its stored values
* with those of the new tuple. If the tuple values are not consistent with
* the summary tuple, we need to update the index tuple.
*
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
* If autosummarization is enabled, check if we need to summarize the previous
* page range.
*
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
* If the range is not currently summarized (i.e. the revmap returns NULL for
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
* it), there's nothing to do for this tuple.
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
*/
bool
brininsert(Relation idxRel, Datum *values, bool *nulls,
ItemPointer heaptid, Relation heapRel,
IndexUniqueCheck checkUnique,
bool indexUnchanged,
IndexInfo *indexInfo)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
BlockNumber pagesPerRange;
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
BlockNumber origHeapBlk;
BlockNumber heapBlk;
BrinDesc *bdesc = (BrinDesc *) indexInfo->ii_AmCache;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
BrinRevmap *revmap;
Buffer buf = InvalidBuffer;
MemoryContext tupcxt = NULL;
MemoryContext oldcxt = CurrentMemoryContext;
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
bool autosummarize = BrinGetAutoSummarize(idxRel);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
revmap = brinRevmapInitialize(idxRel, &pagesPerRange, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
/*
* origHeapBlk is the block number where the insertion occurred. heapBlk
* is the first block in the corresponding page range.
*/
origHeapBlk = ItemPointerGetBlockNumber(heaptid);
heapBlk = (origHeapBlk / pagesPerRange) * pagesPerRange;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
for (;;)
{
bool need_insert = false;
OffsetNumber off;
BrinTuple *brtup;
BrinMemTuple *dtup;
CHECK_FOR_INTERRUPTS();
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
/*
* If auto-summarization is enabled and we just inserted the first
* tuple into the first block of a new non-first page range, request a
* summarization run of the previous range.
*/
if (autosummarize &&
heapBlk > 0 &&
heapBlk == origHeapBlk &&
ItemPointerGetOffsetNumber(heaptid) == FirstOffsetNumber)
{
BlockNumber lastPageRange = heapBlk - 1;
BrinTuple *lastPageTuple;
lastPageTuple =
brinGetTupleForHeapBlock(revmap, lastPageRange, &buf, &off,
NULL, BUFFER_LOCK_SHARE, NULL);
if (!lastPageTuple)
{
bool recorded;
recorded = AutoVacuumRequestWork(AVW_BRINSummarizeRange,
RelationGetRelid(idxRel),
lastPageRange);
if (!recorded)
ereport(LOG,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("request for BRIN range summarization for index \"%s\" page %u was not recorded",
RelationGetRelationName(idxRel),
lastPageRange)));
}
else
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
}
brtup = brinGetTupleForHeapBlock(revmap, heapBlk, &buf, &off,
NULL, BUFFER_LOCK_SHARE, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/* if range is unsummarized, there's nothing to do */
if (!brtup)
break;
/* First time through in this statement? */
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
if (bdesc == NULL)
{
MemoryContextSwitchTo(indexInfo->ii_Context);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
bdesc = brin_build_desc(idxRel);
indexInfo->ii_AmCache = (void *) bdesc;
MemoryContextSwitchTo(oldcxt);
}
/* First time through in this brininsert call? */
if (tupcxt == NULL)
{
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
tupcxt = AllocSetContextCreate(CurrentMemoryContext,
"brininsert cxt",
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
ALLOCSET_DEFAULT_SIZES);
MemoryContextSwitchTo(tupcxt);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
dtup = brin_deform_tuple(bdesc, brtup, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
need_insert = add_values_to_range(idxRel, bdesc, dtup, values, nulls);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
if (!need_insert)
{
/*
* The tuple is consistent with the new values, so there's nothing
* to do.
*/
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
}
else
{
Page page = BufferGetPage(buf);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
ItemId lp = PageGetItemId(page, off);
Size origsz;
BrinTuple *origtup;
Size newsz;
BrinTuple *newtup;
bool samepage;
/*
* Make a copy of the old tuple, so that we can compare it after
* re-acquiring the lock.
*/
origsz = ItemIdGetLength(lp);
origtup = brin_copy_tuple(brtup, origsz, NULL, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* Before releasing the lock, check if we can attempt a same-page
* update. Another process could insert a tuple concurrently in
* the same page though, so downstream we must be prepared to cope
* if this turns out to not be possible after all.
*/
newtup = brin_form_tuple(bdesc, heapBlk, dtup, &newsz);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
samepage = brin_can_do_samepage_update(buf, origsz, newsz);
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
/*
* Try to update the tuple. If this doesn't work for whatever
* reason, we need to restart from the top; the revmap might be
* pointing at a different tuple for this block now, so we need to
* recompute to ensure both our new heap tuple and the other
* inserter's are covered by the combined tuple. It might be that
* we don't need to update at all.
*/
if (!brin_doupdate(idxRel, pagesPerRange, revmap, heapBlk,
buf, off, origtup, origsz, newtup, newsz,
samepage))
{
/* no luck; start over */
MemoryContextResetAndDeleteChildren(tupcxt);
continue;
}
}
/* success! */
break;
}
brinRevmapTerminate(revmap);
if (BufferIsValid(buf))
ReleaseBuffer(buf);
MemoryContextSwitchTo(oldcxt);
if (tupcxt != NULL)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
MemoryContextDelete(tupcxt);
return false;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
/*
* Initialize state for a BRIN index scan.
*
* We read the metapage here to determine the pages-per-range number that this
* index was built with. Note that since this cannot be changed while we're
* holding lock on index, it's not necessary to recompute it during brinrescan.
*/
IndexScanDesc
brinbeginscan(Relation r, int nkeys, int norderbys)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
IndexScanDesc scan;
BrinOpaque *opaque;
scan = RelationGetIndexScan(r, nkeys, norderbys);
opaque = palloc_object(BrinOpaque);
opaque->bo_rmAccess = brinRevmapInitialize(r, &opaque->bo_pagesPerRange,
scan->xs_snapshot);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
opaque->bo_bdesc = brin_build_desc(r);
scan->opaque = opaque;
return scan;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
/*
* Execute the index scan.
*
* This works by reading index TIDs from the revmap, and obtaining the index
* tuples pointed to by them; the summary values in the index tuples are
* compared to the scan keys. We return into the TID bitmap all the pages in
* ranges corresponding to index tuples that match the scan keys.
*
* If a TID from the revmap is read as InvalidTID, we know that range is
* unsummarized. Pages in those ranges need to be returned regardless of scan
* keys.
*/
int64
bringetbitmap(IndexScanDesc scan, TIDBitmap *tbm)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
Relation idxRel = scan->indexRelation;
Buffer buf = InvalidBuffer;
BrinDesc *bdesc;
Oid heapOid;
Relation heapRel;
BrinOpaque *opaque;
BlockNumber nblocks;
BlockNumber heapBlk;
int totalpages = 0;
FmgrInfo *consistentFn;
MemoryContext oldcxt;
MemoryContext perRangeCxt;
BrinMemTuple *dtup;
BrinTuple *btup = NULL;
Size btupsz = 0;
ScanKey **keys,
**nullkeys;
int *nkeys,
*nnullkeys;
char *ptr;
Size len;
char *tmp PG_USED_FOR_ASSERTS_ONLY;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
opaque = (BrinOpaque *) scan->opaque;
bdesc = opaque->bo_bdesc;
pgstat_count_index_scan(idxRel);
/*
* We need to know the size of the table so that we know how long to
* iterate on the revmap.
*/
heapOid = IndexGetRelation(RelationGetRelid(idxRel), false);
heapRel = table_open(heapOid, AccessShareLock);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
nblocks = RelationGetNumberOfBlocks(heapRel);
table_close(heapRel, AccessShareLock);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* Make room for the consistent support procedures of indexed columns. We
* don't look them up here; we do that lazily the first time we see a scan
* key reference each of them. We rely on zeroing fn_oid to InvalidOid.
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
*/
consistentFn = palloc0_array(FmgrInfo, bdesc->bd_tupdesc->natts);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
/*
* Make room for per-attribute lists of scan keys that we'll pass to the
* consistent support procedure. We don't know which attributes have scan
* keys, so we allocate space for all attributes. That may use more memory
* but it's probably cheaper than determining which attributes are used.
*
* We keep null and regular keys separate, so that we can pass just the
* regular keys to the consistent function easily.
*
* To reduce the allocation overhead, we allocate one big chunk and then
* carve it into smaller arrays ourselves. All the pieces have exactly the
* same lifetime, so that's OK.
*
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
* XXX The widest index can have 32 attributes, so the amount of wasted
* memory is negligible. We could invent a more compact approach (with
* just space for used attributes) but that would make the matching more
* complex so it's not a good trade-off.
*/
len =
MAXALIGN(sizeof(ScanKey *) * bdesc->bd_tupdesc->natts) + /* regular keys */
MAXALIGN(sizeof(ScanKey) * scan->numberOfKeys) * bdesc->bd_tupdesc->natts +
MAXALIGN(sizeof(int) * bdesc->bd_tupdesc->natts) +
MAXALIGN(sizeof(ScanKey *) * bdesc->bd_tupdesc->natts) + /* NULL keys */
MAXALIGN(sizeof(ScanKey) * scan->numberOfKeys) * bdesc->bd_tupdesc->natts +
MAXALIGN(sizeof(int) * bdesc->bd_tupdesc->natts);
ptr = palloc(len);
tmp = ptr;
keys = (ScanKey **) ptr;
ptr += MAXALIGN(sizeof(ScanKey *) * bdesc->bd_tupdesc->natts);
nullkeys = (ScanKey **) ptr;
ptr += MAXALIGN(sizeof(ScanKey *) * bdesc->bd_tupdesc->natts);
nkeys = (int *) ptr;
ptr += MAXALIGN(sizeof(int) * bdesc->bd_tupdesc->natts);
nnullkeys = (int *) ptr;
ptr += MAXALIGN(sizeof(int) * bdesc->bd_tupdesc->natts);
for (int i = 0; i < bdesc->bd_tupdesc->natts; i++)
{
keys[i] = (ScanKey *) ptr;
ptr += MAXALIGN(sizeof(ScanKey) * scan->numberOfKeys);
nullkeys[i] = (ScanKey *) ptr;
ptr += MAXALIGN(sizeof(ScanKey) * scan->numberOfKeys);
}
Assert(tmp + len == ptr);
/* zero the number of keys */
memset(nkeys, 0, sizeof(int) * bdesc->bd_tupdesc->natts);
memset(nnullkeys, 0, sizeof(int) * bdesc->bd_tupdesc->natts);
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
/* Preprocess the scan keys - split them into per-attribute arrays. */
for (int keyno = 0; keyno < scan->numberOfKeys; keyno++)
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
{
ScanKey key = &scan->keyData[keyno];
AttrNumber keyattno = key->sk_attno;
/*
* The collation of the scan key must match the collation used in the
* index column (but only if the search is not IS NULL/ IS NOT NULL).
* Otherwise we shouldn't be using this index ...
*/
Assert((key->sk_flags & SK_ISNULL) ||
(key->sk_collation ==
TupleDescAttr(bdesc->bd_tupdesc,
keyattno - 1)->attcollation));
/*
* First time we see this index attribute, so init as needed.
*
* This is a bit of an overkill - we don't know how many scan keys are
* there for this attribute, so we simply allocate the largest number
* possible (as if all keys were for this attribute). This may waste a
* bit of memory, but we only expect small number of scan keys in
* general, so this should be negligible, and repeated repalloc calls
* are not free either.
*/
if (consistentFn[keyattno - 1].fn_oid == InvalidOid)
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
{
FmgrInfo *tmp;
/* First time we see this attribute, so no key/null keys. */
Assert(nkeys[keyattno - 1] == 0);
Assert(nnullkeys[keyattno - 1] == 0);
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
tmp = index_getprocinfo(idxRel, keyattno,
BRIN_PROCNUM_CONSISTENT);
fmgr_info_copy(&consistentFn[keyattno - 1], tmp,
CurrentMemoryContext);
}
/* Add key to the proper per-attribute array. */
if (key->sk_flags & SK_ISNULL)
{
nullkeys[keyattno - 1][nnullkeys[keyattno - 1]] = key;
nnullkeys[keyattno - 1]++;
}
else
{
keys[keyattno - 1][nkeys[keyattno - 1]] = key;
nkeys[keyattno - 1]++;
}
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
}
/* allocate an initial in-memory tuple, out of the per-range memcxt */
dtup = brin_new_memtuple(bdesc);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* Setup and use a per-range memory context, which is reset every time we
* loop below. This avoids having to free the tuples within the loop.
*/
perRangeCxt = AllocSetContextCreate(CurrentMemoryContext,
"bringetbitmap cxt",
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
ALLOCSET_DEFAULT_SIZES);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
oldcxt = MemoryContextSwitchTo(perRangeCxt);
/*
* Now scan the revmap. We start by querying for heap page 0,
* incrementing by the number of pages per range; this gives us a full
* view of the table.
*/
for (heapBlk = 0; heapBlk < nblocks; heapBlk += opaque->bo_pagesPerRange)
{
bool addrange;
bool gottuple = false;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
BrinTuple *tup;
OffsetNumber off;
Size size;
CHECK_FOR_INTERRUPTS();
MemoryContextResetAndDeleteChildren(perRangeCxt);
tup = brinGetTupleForHeapBlock(opaque->bo_rmAccess, heapBlk, &buf,
&off, &size, BUFFER_LOCK_SHARE,
scan->xs_snapshot);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
if (tup)
{
gottuple = true;
btup = brin_copy_tuple(tup, size, btup, &btupsz);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
}
/*
* For page ranges with no indexed tuple, we must return the whole
* range; otherwise, compare it to the scan keys.
*/
if (!gottuple)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
addrange = true;
}
else
{
dtup = brin_deform_tuple(bdesc, btup, dtup);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
if (dtup->bt_placeholder)
{
/*
* Placeholder tuples are always returned, regardless of the
* values stored in them.
*/
addrange = true;
}
else
{
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
int attno;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* Compare scan keys with summary values stored for the range.
* If scan keys are matched, the page range must be added to
* the bitmap. We initially assume the range needs to be
* added; in particular this serves the case where there are
* no keys.
*/
addrange = true;
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
for (attno = 1; attno <= bdesc->bd_tupdesc->natts; attno++)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
BrinValues *bval;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
Datum add;
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
Oid collation;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* skip attributes without any scan keys (both regular and
* IS [NOT] NULL)
*/
if (nkeys[attno - 1] == 0 && nnullkeys[attno - 1] == 0)
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
continue;
bval = &dtup->bt_columns[attno - 1];
Fix handling of empty ranges and NULLs in BRIN BRIN indexes did not properly distinguish between summaries for empty (no rows) and all-NULL ranges, treating them as essentially the same thing. Summaries were initialized with allnulls=true, and opclasses simply reset allnulls to false when processing the first non-NULL value. This however produces incorrect results if the range starts with a NULL value (or a sequence of NULL values), in which case we forget the range contains NULL values when adding the first non-NULL value. This happens because the allnulls flag is used for two separate purposes - to mark empty ranges (not representing any rows yet) and ranges containing only NULL values. Opclasses don't know which of these cases it is, and so don't know whether to set hasnulls=true. Setting the flag in both cases would make it correct, but it would also make BRIN indexes useless for queries with IS NULL clauses. All ranges start empty (and thus allnulls=true), so all ranges would end up with either allnulls=true or hasnulls=true. The severity of the issue is somewhat reduced by the fact that it only happens when adding values to an existing summary with allnulls=true. This can happen e.g. for small tables (because a summary for the first range exists for all BRIN indexes), or for tables with large fraction of NULL values in the indexed columns. Bulk summarization (e.g. during CREATE INDEX or automatic summarization) that processes all values at once is not affected by this issue. In this case the flags were updated in a slightly different way, not forgetting the NULL values. To identify empty ranges we use a new flag, stored in an unused bit in the BRIN tuple header so the on-disk format remains the same. A matching flag is added to BrinMemTuple, into a 3B gap after bt_placeholder. That means there's no risk of ABI breakage, although we don't actually pass the BrinMemTuple to any public API. We could also skip storing index tuples for empty summaries, but then we'd have to always process such ranges - even if there are no rows in large parts of the table (e.g. after a bulk DELETE), it would still require reading the pages etc. So we store them, but ignore them when building the bitmap. Backpatch to 11. The issue exists since BRIN indexes were introduced in 9.5, but older releases are already EOL. Backpatch-through: 11 Reviewed-by: Justin Pryzby, Matthias van de Meent, Alvaro Herrera Discussion: https://postgr.es/m/402430e4-7d9d-6cf1-09ef-464d80afff3b@enterprisedb.com
2023-05-19 00:00:22 +02:00
/*
* If the BRIN tuple indicates that this range is empty,
* we can skip it: there's nothing to match. We don't
* need to examine the next columns.
*/
if (dtup->bt_empty_range)
{
addrange = false;
break;
}
/*
* First check if there are any IS [NOT] NULL scan keys,
* and if we're violating them. In that case we can
* terminate early, without invoking the support function.
*
* As there may be more keys, we can only determine
* mismatch within this loop.
*/
if (bdesc->bd_info[attno - 1]->oi_regular_nulls &&
!check_null_keys(bval, nullkeys[attno - 1],
nnullkeys[attno - 1]))
{
/*
* If any of the IS [NOT] NULL keys failed, the page
* range as a whole can't pass. So terminate the loop.
*/
addrange = false;
break;
}
/*
* So either there are no IS [NOT] NULL keys, or all
* passed. If there are no regular scan keys, we're done -
* the page range matches. If there are regular keys, but
* the page range is marked as 'all nulls' it can't
* possibly pass (we're assuming the operators are
* strict).
*/
/* No regular scan keys - page range as a whole passes. */
if (!nkeys[attno - 1])
continue;
Pass all scan keys to BRIN consistent function at once This commit changes how we pass scan keys to BRIN consistent function. Instead of passing them one by one, we now pass all scan keys for a given attribute at once. That makes the consistent function a bit more complex, as it has to loop through the keys, but it does allow more elaborate opclasses that can use multiple keys to eliminate ranges much more effectively. The existing BRIN opclasses (minmax, inclusion) don't really benefit from this change. The primary purpose is to allow future opclases to benefit from seeing all keys at once. This does change the BRIN API, because the signature of the consistent function changes (a new parameter with number of scan keys). So this breaks existing opclasses, and will require supporting two variants of the code for different PostgreSQL versions. We've considered supporting two variants of the consistent, but we've decided not to do that. Firstly, there's another patch that moves handling of NULL values from the opclass, which means the opclasses need to be updated anyway. Secondly, we're not aware of any out-of-core BRIN opclasses, so it does not seem worth the extra complexity. Bump catversion, because of pg_proc changes. Author: Tomas Vondra <tomas.vondra@postgresql.org> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Reviewed-by: Nikita Glukhov <n.gluhov@postgrespro.ru> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-23 00:12:19 +01:00
Assert((nkeys[attno - 1] > 0) &&
(nkeys[attno - 1] <= scan->numberOfKeys));
/* If it is all nulls, it cannot possibly be consistent. */
if (bval->bv_allnulls)
{
addrange = false;
break;
}
Support the old signature of BRIN consistent function Commit a1c649d889 changed the signature of the BRIN consistent function by adding a new required parameter. Treating the parameter as optional, which would make the change backwards incompatibile, was rejected with the justification that there are few out-of-core extensions, so it's not worth adding making the code more complex, and it's better to deal with that in the extension. But after further thought, that would be rather problematic, because pg_upgrade simply dumps catalog contents and the same version of an extension needs to work on both PostgreSQL versions. Supporting both variants of the consistent function (with 3 or 4 arguments) makes that possible. The signature is not the only thing that changed, as commit 72ccf55cb9 moved handling of IS [NOT] NULL keys from the support procedures. But this change is backward compatible - handling the keys in exension is unnecessary, but harmless. The consistent function will do a bit of unnecessary work, but it should be very cheap. This also undoes most of the changes to the existing opclasses (minmax and inclusion), making them use the old signature again. This should make backpatching simpler. Catversion bump, because of changes in pg_amproc. Author: Tomas Vondra <tomas.vondra@postgresql.org> Author: Nikita Glukhov <n.gluhov@postgrespro.ru> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: Masahiko Sawada <masahiko.sawada@enterprisedb.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-26 13:17:56 +01:00
/*
* Collation from the first key (has to be the same for
* all keys for the same attribute).
Support the old signature of BRIN consistent function Commit a1c649d889 changed the signature of the BRIN consistent function by adding a new required parameter. Treating the parameter as optional, which would make the change backwards incompatibile, was rejected with the justification that there are few out-of-core extensions, so it's not worth adding making the code more complex, and it's better to deal with that in the extension. But after further thought, that would be rather problematic, because pg_upgrade simply dumps catalog contents and the same version of an extension needs to work on both PostgreSQL versions. Supporting both variants of the consistent function (with 3 or 4 arguments) makes that possible. The signature is not the only thing that changed, as commit 72ccf55cb9 moved handling of IS [NOT] NULL keys from the support procedures. But this change is backward compatible - handling the keys in exension is unnecessary, but harmless. The consistent function will do a bit of unnecessary work, but it should be very cheap. This also undoes most of the changes to the existing opclasses (minmax and inclusion), making them use the old signature again. This should make backpatching simpler. Catversion bump, because of changes in pg_amproc. Author: Tomas Vondra <tomas.vondra@postgresql.org> Author: Nikita Glukhov <n.gluhov@postgrespro.ru> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: Masahiko Sawada <masahiko.sawada@enterprisedb.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-26 13:17:56 +01:00
*/
collation = keys[attno - 1][0]->sk_collation;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* Check whether the scan key is consistent with the page
* range values; if so, have the pages in the range added
* to the output bitmap.
*
Support the old signature of BRIN consistent function Commit a1c649d889 changed the signature of the BRIN consistent function by adding a new required parameter. Treating the parameter as optional, which would make the change backwards incompatibile, was rejected with the justification that there are few out-of-core extensions, so it's not worth adding making the code more complex, and it's better to deal with that in the extension. But after further thought, that would be rather problematic, because pg_upgrade simply dumps catalog contents and the same version of an extension needs to work on both PostgreSQL versions. Supporting both variants of the consistent function (with 3 or 4 arguments) makes that possible. The signature is not the only thing that changed, as commit 72ccf55cb9 moved handling of IS [NOT] NULL keys from the support procedures. But this change is backward compatible - handling the keys in exension is unnecessary, but harmless. The consistent function will do a bit of unnecessary work, but it should be very cheap. This also undoes most of the changes to the existing opclasses (minmax and inclusion), making them use the old signature again. This should make backpatching simpler. Catversion bump, because of changes in pg_amproc. Author: Tomas Vondra <tomas.vondra@postgresql.org> Author: Nikita Glukhov <n.gluhov@postgrespro.ru> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: Masahiko Sawada <masahiko.sawada@enterprisedb.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-26 13:17:56 +01:00
* The opclass may or may not support processing of
* multiple scan keys. We can determine that based on the
* number of arguments - functions with extra parameter
* (number of scan keys) do support this, otherwise we
* have to simply pass the scan keys one by one.
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
*/
Support the old signature of BRIN consistent function Commit a1c649d889 changed the signature of the BRIN consistent function by adding a new required parameter. Treating the parameter as optional, which would make the change backwards incompatibile, was rejected with the justification that there are few out-of-core extensions, so it's not worth adding making the code more complex, and it's better to deal with that in the extension. But after further thought, that would be rather problematic, because pg_upgrade simply dumps catalog contents and the same version of an extension needs to work on both PostgreSQL versions. Supporting both variants of the consistent function (with 3 or 4 arguments) makes that possible. The signature is not the only thing that changed, as commit 72ccf55cb9 moved handling of IS [NOT] NULL keys from the support procedures. But this change is backward compatible - handling the keys in exension is unnecessary, but harmless. The consistent function will do a bit of unnecessary work, but it should be very cheap. This also undoes most of the changes to the existing opclasses (minmax and inclusion), making them use the old signature again. This should make backpatching simpler. Catversion bump, because of changes in pg_amproc. Author: Tomas Vondra <tomas.vondra@postgresql.org> Author: Nikita Glukhov <n.gluhov@postgrespro.ru> Reviewed-by: Mark Dilger <hornschnorter@gmail.com> Reviewed-by: Alexander Korotkov <aekorotkov@gmail.com> Reviewed-by: Masahiko Sawada <masahiko.sawada@enterprisedb.com> Reviewed-by: John Naylor <john.naylor@enterprisedb.com> Discussion: https://postgr.es/m/c1138ead-7668-f0e1-0638-c3be3237e812@2ndquadrant.com
2021-03-26 13:17:56 +01:00
if (consistentFn[attno - 1].fn_nargs >= 4)
{
/* Check all keys at once */
add = FunctionCall4Coll(&consistentFn[attno - 1],
collation,
PointerGetDatum(bdesc),
PointerGetDatum(bval),
PointerGetDatum(keys[attno - 1]),
Int32GetDatum(nkeys[attno - 1]));
addrange = DatumGetBool(add);
}
else
{
/*
* Check keys one by one
*
* When there are multiple scan keys, failure to meet
* the criteria for a single one of them is enough to
* discard the range as a whole, so break out of the
* loop as soon as a false return value is obtained.
*/
int keyno;
for (keyno = 0; keyno < nkeys[attno - 1]; keyno++)
{
add = FunctionCall3Coll(&consistentFn[attno - 1],
keys[attno - 1][keyno]->sk_collation,
PointerGetDatum(bdesc),
PointerGetDatum(bval),
PointerGetDatum(keys[attno - 1][keyno]));
addrange = DatumGetBool(add);
if (!addrange)
break;
}
}
/*
* If we found a scan key eliminating the range, no need
* to check additional ones.
*/
if (!addrange)
break;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
}
}
/* add the pages in the range to the output bitmap, if needed */
if (addrange)
{
BlockNumber pageno;
for (pageno = heapBlk;
Don't add non-existent pages to bitmap from BRIN The code in bringetbitmap() simply added the whole matching page range to the TID bitmap, as determined by pages_per_range, even if some of the pages were beyond the end of the heap. The query then might fail with an error like this: ERROR: could not open file "base/20176/20228.2" (target block 262144): previous segment is only 131021 blocks In this case, the relation has 262093 pages (131072 and 131021 pages), but we're trying to acess block 262144, i.e. first block of the 3rd segment. At that point _mdfd_getseg() notices the preceding segment is incomplete, and fails. Hitting this in practice is rather unlikely, because: * Most indexes use power-of-two ranges, so segments and page ranges align perfectly (segment end is also a page range end). * The table size has to be just right, with the last segment being almost full - less than one page range from full segment, so that the last page range actually crosses the segment boundary. * Prefetch has to be enabled. The regular page access checks that pages are not beyond heap end, but prefetch does not. On older releases (before 12) the execution stops after hitting the first non-existent page, so the prefetch distance has to be sufficient to reach the first page in the next segment to trigger the issue. Since 12 it's enough to just have prefetch enabled, the prefetch distance does not matter. Fixed by not adding non-existent pages to the TID bitmap. Backpatch all the way back to 9.6 (BRIN indexes were introduced in 9.5, but that release is EOL). Backpatch-through: 9.6
2021-04-07 15:58:35 +02:00
pageno <= Min(nblocks, heapBlk + opaque->bo_pagesPerRange) - 1;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
pageno++)
{
MemoryContextSwitchTo(oldcxt);
tbm_add_page(tbm, pageno);
totalpages++;
MemoryContextSwitchTo(perRangeCxt);
}
}
}
MemoryContextSwitchTo(oldcxt);
MemoryContextDelete(perRangeCxt);
if (buf != InvalidBuffer)
ReleaseBuffer(buf);
/*
* XXX We have an approximation of the number of *pages* that our scan
* returns, but we don't have a precise idea of the number of heap tuples
* involved.
*/
return totalpages * 10;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
/*
* Re-initialize state for a BRIN index scan
*/
void
brinrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
ScanKey orderbys, int norderbys)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
/*
* Other index AMs preprocess the scan keys at this point, or sometime
* early during the scan; this lets them optimize by removing redundant
* keys, or doing early returns when they are impossible to satisfy; see
* _bt_preprocess_keys for an example. Something like that could be added
* here someday, too.
*/
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
if (scankey && scan->numberOfKeys > 0)
memmove(scan->keyData, scankey,
scan->numberOfKeys * sizeof(ScanKeyData));
}
/*
* Close down a BRIN index scan
*/
void
brinendscan(IndexScanDesc scan)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
BrinOpaque *opaque = (BrinOpaque *) scan->opaque;
brinRevmapTerminate(opaque->bo_rmAccess);
brin_free_desc(opaque->bo_bdesc);
pfree(opaque);
}
/*
* Per-heap-tuple callback for table_index_build_scan.
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
*
* Note we don't worry about the page range at the end of the table here; it is
* present in the build state struct after we're called the last time, but not
* inserted into the index. Caller must ensure to do so, if appropriate.
*/
static void
brinbuildCallback(Relation index,
ItemPointer tid,
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
Datum *values,
bool *isnull,
bool tupleIsAlive,
void *brstate)
{
BrinBuildState *state = (BrinBuildState *) brstate;
BlockNumber thisblock;
thisblock = ItemPointerGetBlockNumber(tid);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* If we're in a block that belongs to a future range, summarize what
* we've got and start afresh. Note the scan might have skipped many
* pages, if they were devoid of live tuples; make sure to insert index
* tuples for those too.
*/
while (thisblock > state->bs_currRangeStart + state->bs_pagesPerRange - 1)
{
BRIN_elog((DEBUG2,
"brinbuildCallback: completed a range: %u--%u",
state->bs_currRangeStart,
state->bs_currRangeStart + state->bs_pagesPerRange));
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/* create the index tuple and insert it */
form_and_insert_tuple(state);
/* set state to correspond to the next range */
state->bs_currRangeStart += state->bs_pagesPerRange;
/* re-initialize state for it */
brin_memtuple_initialize(state->bs_dtuple, state->bs_bdesc);
}
/* Accumulate the current tuple into the running state */
(void) add_values_to_range(index, state->bs_bdesc, state->bs_dtuple,
values, isnull);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
/*
* brinbuild() -- build a new BRIN index.
*/
IndexBuildResult *
brinbuild(Relation heap, Relation index, IndexInfo *indexInfo)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
IndexBuildResult *result;
double reltuples;
double idxtuples;
BrinRevmap *revmap;
BrinBuildState *state;
Buffer meta;
BlockNumber pagesPerRange;
/*
* We expect to be called exactly once for any index relation.
*/
if (RelationGetNumberOfBlocks(index) != 0)
elog(ERROR, "index \"%s\" already contains data",
RelationGetRelationName(index));
/*
* Critical section not required, because on error the creation of the
* whole relation will be rolled back.
*/
meta = ExtendBufferedRel(EB_REL(index), MAIN_FORKNUM, NULL,
EB_LOCK_FIRST | EB_SKIP_EXTENSION_LOCK);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
Assert(BufferGetBlockNumber(meta) == BRIN_METAPAGE_BLKNO);
brin_metapage_init(BufferGetPage(meta), BrinGetPagesPerRange(index),
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
BRIN_CURRENT_VERSION);
MarkBufferDirty(meta);
if (RelationNeedsWAL(index))
{
xl_brin_createidx xlrec;
XLogRecPtr recptr;
Page page;
xlrec.version = BRIN_CURRENT_VERSION;
xlrec.pagesPerRange = BrinGetPagesPerRange(index);
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
XLogBeginInsert();
XLogRegisterData((char *) &xlrec, SizeOfBrinCreateIdx);
XLogRegisterBuffer(0, meta, REGBUF_WILL_INIT | REGBUF_STANDARD);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
recptr = XLogInsert(RM_BRIN_ID, XLOG_BRIN_CREATE_INDEX);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
page = BufferGetPage(meta);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
PageSetLSN(page, recptr);
}
UnlockReleaseBuffer(meta);
/*
* Initialize our state, including the deformed tuple state.
*/
revmap = brinRevmapInitialize(index, &pagesPerRange, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
state = initialize_brin_buildstate(index, revmap, pagesPerRange);
/*
* Now scan the relation. No syncscan allowed here because we want the
* heap blocks in physical order.
*/
reltuples = table_index_build_scan(heap, index, indexInfo, false, true,
brinbuildCallback, (void *) state, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/* process the final batch */
form_and_insert_tuple(state);
/* release resources */
idxtuples = state->bs_numtuples;
brinRevmapTerminate(state->bs_rmAccess);
terminate_brin_buildstate(state);
/*
* Return statistics
*/
result = palloc_object(IndexBuildResult);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
result->heap_tuples = reltuples;
result->index_tuples = idxtuples;
return result;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
void
brinbuildempty(Relation index)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
Buffer metabuf;
/* An empty BRIN index has a metapage only. */
metabuf = ExtendBufferedRel(EB_REL(index), INIT_FORKNUM, NULL,
EB_LOCK_FIRST | EB_SKIP_EXTENSION_LOCK);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/* Initialize and xlog metabuffer. */
START_CRIT_SECTION();
brin_metapage_init(BufferGetPage(metabuf), BrinGetPagesPerRange(index),
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
BRIN_CURRENT_VERSION);
MarkBufferDirty(metabuf);
log_newpage_buffer(metabuf, true);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
END_CRIT_SECTION();
UnlockReleaseBuffer(metabuf);
}
/*
* brinbulkdelete
* Since there are no per-heap-tuple index tuples in BRIN indexes,
* there's not a lot we can do here.
*
* XXX we could mark item tuples as "dirty" (when a minimum or maximum heap
* tuple is deleted), meaning the need to re-run summarization on the affected
Fix BRIN to use SnapshotAny during summarization For correctness of summarization results, it is critical that the snapshot used during the summarization scan is able to see all tuples that are live to all transactions -- including tuples inserted or deleted by in-progress transactions. Otherwise, it would be possible for a transaction to insert a tuple, then idle for a long time while a concurrent transaction executes summarization of the range: this would result in the inserted value not being considered in the summary. Previously we were trying to use a MVCC snapshot in conjunction with adding a "placeholder" tuple in the index: the snapshot would see all committed tuples, and the placeholder tuple would catch insertions by any new inserters. The hole is that prior insertions by transactions that are still in progress by the time the MVCC snapshot was taken were ignored. Kevin Grittner reported this as a bogus error message during vacuum with default transaction isolation mode set to repeatable read (because the error report mentioned a function name not being invoked during), but the problem is larger than that. To fix, tweak IndexBuildHeapRangeScan to have a new mode that behaves the way we need using SnapshotAny visibility rules. This change simplifies the BRIN code a bit, mainly by removing large comments that were mistaken. Instead, rely on the SnapshotAny semantics to provide what it needs. (The business about a placeholder tuple needs to remain: that covers the case that a transaction inserts a a tuple in a page that summarization already scanned.) Discussion: https://www.postgresql.org/message-id/20150731175700.GX2441@postgresql.org In passing, remove a couple of unused declarations from brin.h and reword a comment to be proper English. This part submitted by Kevin Grittner. Backpatch to 9.5, where BRIN was introduced.
2015-08-05 21:20:50 +02:00
* range. Would need to add an extra flag in brintuples for that.
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
*/
IndexBulkDeleteResult *
brinbulkdelete(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback, void *callback_state)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
/* allocate stats if first time through, else re-use existing struct */
if (stats == NULL)
stats = palloc0_object(IndexBulkDeleteResult);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
return stats;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
/*
* This routine is in charge of "vacuuming" a BRIN index: we just summarize
* ranges that are currently unsummarized.
*/
IndexBulkDeleteResult *
brinvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
Relation heapRel;
/* No-op in ANALYZE ONLY mode */
if (info->analyze_only)
return stats;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
if (!stats)
stats = palloc0_object(IndexBulkDeleteResult);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
stats->num_pages = RelationGetNumberOfBlocks(info->index);
/* rest of stats is initialized by zeroing */
heapRel = table_open(IndexGetRelation(RelationGetRelid(info->index), false),
AccessShareLock);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
Close some holes in BRIN page assignment In some corner cases, it is possible for the BRIN index relation to be extended by brin_getinsertbuffer but the new page not be used immediately for anything by its callers; when this happens, the page is initialized and the FSM is updated (by brin_getinsertbuffer) with the info about that page, but these actions are not WAL-logged. A later index insert/update can use the page, but since the page is already initialized, the initialization itself is not WAL-logged then either. Replay of this sequence of events causes recovery to fail altogether. There is a related corner case within brin_getinsertbuffer itself, in which we extend the relation to put a new index tuple there, but later find out that we cannot do so, and do not return the buffer; the page obtained from extension is not even initialized. The resulting page is lost forever. To fix, shuffle the code so that initialization is not the responsibility of brin_getinsertbuffer anymore, in normal cases; instead, the initialization is done by its callers (brin_doinsert and brin_doupdate) once they're certain that the page is going to be used. When either those functions determine that the new page cannot be used, before bailing out they initialize the page as an empty regular page, enter it in FSM and WAL-log all this. This way, the page is usable for future index insertions, and WAL replay doesn't find trying to insert tuples in pages whose initialization didn't make it to the WAL. The same strategy is used in brin_getinsertbuffer when it cannot return the new page. Additionally, add a new step to vacuuming so that all pages of the index are scanned; whenever an uninitialized page is found, it is initialized as empty and WAL-logged. This closes the hole that the relation is extended but the system crashes before anything is WAL-logged about it. We also take this opportunity to update the FSM, in case it has gotten out of date. Thanks to Heikki Linnakangas for finding the problem that kicked some additional analysis of BRIN page assignment code. Backpatch to 9.5, where BRIN was introduced. Discussion: https://www.postgresql.org/message-id/20150723204810.GY5596@postgresql.org
2015-08-12 19:20:38 +02:00
brin_vacuum_scan(info->index, info->strategy);
brinsummarize(info->index, heapRel, BRIN_ALL_BLOCKRANGES, false,
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
&stats->num_index_tuples, &stats->num_index_tuples);
table_close(heapRel, AccessShareLock);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
return stats;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
/*
* reloptions processor for BRIN indexes
*/
bytea *
brinoptions(Datum reloptions, bool validate)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
static const relopt_parse_elt tab[] = {
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
{"pages_per_range", RELOPT_TYPE_INT, offsetof(BrinOptions, pagesPerRange)},
{"autosummarize", RELOPT_TYPE_BOOL, offsetof(BrinOptions, autosummarize)}
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
};
return (bytea *) build_reloptions(reloptions, validate,
RELOPT_KIND_BRIN,
sizeof(BrinOptions),
tab, lengthof(tab));
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
/*
* SQL-callable function to scan through an index and summarize all ranges
* that are not currently summarized.
*/
Datum
brin_summarize_new_values(PG_FUNCTION_ARGS)
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
{
Datum relation = PG_GETARG_DATUM(0);
return DirectFunctionCall2(brin_summarize_range,
relation,
Int64GetDatum((int64) BRIN_ALL_BLOCKRANGES));
}
/*
* SQL-callable function to summarize the indicated page range, if not already
* summarized. If the second argument is BRIN_ALL_BLOCKRANGES, all
* unsummarized ranges are summarized.
*/
Datum
brin_summarize_range(PG_FUNCTION_ARGS)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
Oid indexoid = PG_GETARG_OID(0);
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
int64 heapBlk64 = PG_GETARG_INT64(1);
BlockNumber heapBlk;
Oid heapoid;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
Relation indexRel;
Relation heapRel;
Oid save_userid;
int save_sec_context;
int save_nestlevel;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
double numSummarized = 0;
if (RecoveryInProgress())
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("recovery is in progress"),
errhint("BRIN control functions cannot be executed during recovery.")));
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
if (heapBlk64 > BRIN_ALL_BLOCKRANGES || heapBlk64 < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("block number out of range: %lld",
(long long) heapBlk64)));
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
heapBlk = (BlockNumber) heapBlk64;
/*
* We must lock table before index to avoid deadlocks. However, if the
* passed indexoid isn't an index then IndexGetRelation() will fail.
* Rather than emitting a not-very-helpful error message, postpone
* complaining, expecting that the is-it-an-index test below will fail.
*/
heapoid = IndexGetRelation(indexoid, true);
if (OidIsValid(heapoid))
{
heapRel = table_open(heapoid, ShareUpdateExclusiveLock);
/*
* Autovacuum calls us. For its benefit, switch to the table owner's
* userid, so that any index functions are run as that user. Also
* lock down security-restricted operations and arrange to make GUC
* variable changes local to this command. This is harmless, albeit
* unnecessary, when called from SQL, because we fail shortly if the
* user does not own the index.
*/
GetUserIdAndSecContext(&save_userid, &save_sec_context);
SetUserIdAndSecContext(heapRel->rd_rel->relowner,
save_sec_context | SECURITY_RESTRICTED_OPERATION);
save_nestlevel = NewGUCNestLevel();
}
else
{
heapRel = NULL;
/* Set these just to suppress "uninitialized variable" warnings */
save_userid = InvalidOid;
save_sec_context = -1;
save_nestlevel = -1;
}
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
indexRel = index_open(indexoid, ShareUpdateExclusiveLock);
/* Must be a BRIN index */
if (indexRel->rd_rel->relkind != RELKIND_INDEX ||
indexRel->rd_rel->relam != BRIN_AM_OID)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a BRIN index",
RelationGetRelationName(indexRel))));
/* User must own the index (comparable to privileges needed for VACUUM) */
if (heapRel != NULL && !object_ownercheck(RelationRelationId, indexoid, save_userid))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_INDEX,
RelationGetRelationName(indexRel));
/*
* Since we did the IndexGetRelation call above without any lock, it's
* barely possible that a race against an index drop/recreation could have
* netted us the wrong table. Recheck.
*/
if (heapRel == NULL || heapoid != IndexGetRelation(indexoid, false))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_TABLE),
2021-04-14 09:10:57 +02:00
errmsg("could not open parent table of index \"%s\"",
RelationGetRelationName(indexRel))));
/* OK, do it */
brinsummarize(indexRel, heapRel, heapBlk, true, &numSummarized, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/* Roll back any GUC changes executed by index functions */
AtEOXact_GUC(false, save_nestlevel);
/* Restore userid and security context */
SetUserIdAndSecContext(save_userid, save_sec_context);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
relation_close(indexRel, ShareUpdateExclusiveLock);
relation_close(heapRel, ShareUpdateExclusiveLock);
PG_RETURN_INT32((int32) numSummarized);
}
/*
* SQL-callable interface to mark a range as no longer summarized
*/
Datum
brin_desummarize_range(PG_FUNCTION_ARGS)
{
Oid indexoid = PG_GETARG_OID(0);
int64 heapBlk64 = PG_GETARG_INT64(1);
BlockNumber heapBlk;
Oid heapoid;
Relation heapRel;
Relation indexRel;
bool done;
if (RecoveryInProgress())
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("recovery is in progress"),
errhint("BRIN control functions cannot be executed during recovery.")));
if (heapBlk64 > MaxBlockNumber || heapBlk64 < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("block number out of range: %lld",
(long long) heapBlk64)));
heapBlk = (BlockNumber) heapBlk64;
/*
* We must lock table before index to avoid deadlocks. However, if the
* passed indexoid isn't an index then IndexGetRelation() will fail.
* Rather than emitting a not-very-helpful error message, postpone
* complaining, expecting that the is-it-an-index test below will fail.
*
* Unlike brin_summarize_range(), autovacuum never calls this. Hence, we
* don't switch userid.
*/
heapoid = IndexGetRelation(indexoid, true);
if (OidIsValid(heapoid))
heapRel = table_open(heapoid, ShareUpdateExclusiveLock);
else
heapRel = NULL;
indexRel = index_open(indexoid, ShareUpdateExclusiveLock);
/* Must be a BRIN index */
if (indexRel->rd_rel->relkind != RELKIND_INDEX ||
indexRel->rd_rel->relam != BRIN_AM_OID)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a BRIN index",
RelationGetRelationName(indexRel))));
/* User must own the index (comparable to privileges needed for VACUUM) */
if (!object_ownercheck(RelationRelationId, indexoid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_INDEX,
RelationGetRelationName(indexRel));
/*
* Since we did the IndexGetRelation call above without any lock, it's
* barely possible that a race against an index drop/recreation could have
* netted us the wrong table. Recheck.
*/
if (heapRel == NULL || heapoid != IndexGetRelation(indexoid, false))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_TABLE),
2021-04-14 09:10:57 +02:00
errmsg("could not open parent table of index \"%s\"",
RelationGetRelationName(indexRel))));
/* the revmap does the hard work */
do
{
done = brinRevmapDesummarizeRange(indexRel, heapBlk);
}
while (!done);
relation_close(indexRel, ShareUpdateExclusiveLock);
relation_close(heapRel, ShareUpdateExclusiveLock);
PG_RETURN_VOID();
}
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* Build a BrinDesc used to create or scan a BRIN index
*/
BrinDesc *
brin_build_desc(Relation rel)
{
BrinOpcInfo **opcinfo;
BrinDesc *bdesc;
TupleDesc tupdesc;
int totalstored = 0;
int keyno;
long totalsize;
MemoryContext cxt;
MemoryContext oldcxt;
cxt = AllocSetContextCreate(CurrentMemoryContext,
"brin desc cxt",
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
ALLOCSET_SMALL_SIZES);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
oldcxt = MemoryContextSwitchTo(cxt);
tupdesc = RelationGetDescr(rel);
/*
* Obtain BrinOpcInfo for each indexed column. While at it, accumulate
* the number of columns stored, since the number is opclass-defined.
*/
opcinfo = palloc_array(BrinOpcInfo *, tupdesc->natts);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
for (keyno = 0; keyno < tupdesc->natts; keyno++)
{
FmgrInfo *opcInfoFn;
Form_pg_attribute attr = TupleDescAttr(tupdesc, keyno);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
opcInfoFn = index_getprocinfo(rel, keyno + 1, BRIN_PROCNUM_OPCINFO);
opcinfo[keyno] = (BrinOpcInfo *)
DatumGetPointer(FunctionCall1(opcInfoFn, attr->atttypid));
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
totalstored += opcinfo[keyno]->oi_nstored;
}
/* Allocate our result struct and fill it in */
totalsize = offsetof(BrinDesc, bd_info) +
sizeof(BrinOpcInfo *) * tupdesc->natts;
bdesc = palloc(totalsize);
bdesc->bd_context = cxt;
bdesc->bd_index = rel;
bdesc->bd_tupdesc = tupdesc;
bdesc->bd_disktdesc = NULL; /* generated lazily */
bdesc->bd_totalstored = totalstored;
for (keyno = 0; keyno < tupdesc->natts; keyno++)
bdesc->bd_info[keyno] = opcinfo[keyno];
pfree(opcinfo);
MemoryContextSwitchTo(oldcxt);
return bdesc;
}
void
brin_free_desc(BrinDesc *bdesc)
{
/* make sure the tupdesc is still valid */
Assert(bdesc->bd_tupdesc->tdrefcount >= 1);
/* no need for retail pfree */
MemoryContextDelete(bdesc->bd_context);
}
/*
* Fetch index's statistical data into *stats
*/
void
brinGetStats(Relation index, BrinStatsData *stats)
{
Buffer metabuffer;
Page metapage;
BrinMetaPageData *metadata;
metabuffer = ReadBuffer(index, BRIN_METAPAGE_BLKNO);
LockBuffer(metabuffer, BUFFER_LOCK_SHARE);
metapage = BufferGetPage(metabuffer);
metadata = (BrinMetaPageData *) PageGetContents(metapage);
stats->pagesPerRange = metadata->pagesPerRange;
stats->revmapNumPages = metadata->lastRevmapPage - 1;
UnlockReleaseBuffer(metabuffer);
}
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* Initialize a BrinBuildState appropriate to create tuples on the given index.
*/
static BrinBuildState *
initialize_brin_buildstate(Relation idxRel, BrinRevmap *revmap,
BlockNumber pagesPerRange)
{
BrinBuildState *state;
state = palloc_object(BrinBuildState);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
state->bs_irel = idxRel;
state->bs_numtuples = 0;
state->bs_currentInsertBuf = InvalidBuffer;
state->bs_pagesPerRange = pagesPerRange;
state->bs_currRangeStart = 0;
state->bs_rmAccess = revmap;
state->bs_bdesc = brin_build_desc(idxRel);
state->bs_dtuple = brin_new_memtuple(state->bs_bdesc);
return state;
}
/*
* Release resources associated with a BrinBuildState.
*/
static void
terminate_brin_buildstate(BrinBuildState *state)
{
Improve FSM management for BRIN indexes. BRIN indexes like to propagate additions of free space into the upper pages of their free space maps as soon as the new space is known, even when it's just on one individual index page. Previously this required calling FreeSpaceMapVacuum, which is quite an expensive thing if the map is large. Use the FreeSpaceMapVacuumRange function recently added by commit c79f6df75 to reduce the amount of work done for this purpose. Fix a couple of places that neglected to do the upper-page vacuuming at all after recording new free space. If the policy is to be that BRIN should do that, it should do it everywhere. Do RecordPageWithFreeSpace unconditionally in brin_page_cleanup, and do FreeSpaceMapVacuum unconditionally in brin_vacuum_scan. Because of the FSM's imprecise storage of free space, the old complications here seldom bought anything, they just slowed things down. This approach also provides a predictable path for FSM corruption to be repaired. Remove premature RecordPageWithFreeSpace call in brin_getinsertbuffer where it's about to return an extended page to the caller. The caller should do that, instead, after it's inserted its new tuple. Fix the one caller that forgot to do so. Simplify logic in brin_doupdate's same-page-update case by postponing brin_initialize_empty_new_buffer to after the critical section; I see little point in doing it before. Avoid repeat calls of RelationGetNumberOfBlocks in brin_vacuum_scan. Avoid duplicate BufferGetBlockNumber and BufferGetPage calls in a couple of places where we already had the right values. Move a BRIN_elog debug logging call out of a critical section; that's pretty unsafe and I don't think it buys us anything to not wait till after the critical section. Move the "*extended = false" step in brin_getinsertbuffer into the routine's main loop. There's no actual bug there, since the loop can't iterate with *extended still true, but it doesn't seem very future-proof as coded; and it's certainly not documented as a loop invariant. This is all from follow-on investigation inspired by commit c79f6df75. Discussion: https://postgr.es/m/5801.1522429460@sss.pgh.pa.us
2018-04-04 20:26:04 +02:00
/*
* Release the last index buffer used. We might as well ensure that
* whatever free space remains in that page is available in FSM, too.
*/
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
if (!BufferIsInvalid(state->bs_currentInsertBuf))
{
Page page;
Improve FSM management for BRIN indexes. BRIN indexes like to propagate additions of free space into the upper pages of their free space maps as soon as the new space is known, even when it's just on one individual index page. Previously this required calling FreeSpaceMapVacuum, which is quite an expensive thing if the map is large. Use the FreeSpaceMapVacuumRange function recently added by commit c79f6df75 to reduce the amount of work done for this purpose. Fix a couple of places that neglected to do the upper-page vacuuming at all after recording new free space. If the policy is to be that BRIN should do that, it should do it everywhere. Do RecordPageWithFreeSpace unconditionally in brin_page_cleanup, and do FreeSpaceMapVacuum unconditionally in brin_vacuum_scan. Because of the FSM's imprecise storage of free space, the old complications here seldom bought anything, they just slowed things down. This approach also provides a predictable path for FSM corruption to be repaired. Remove premature RecordPageWithFreeSpace call in brin_getinsertbuffer where it's about to return an extended page to the caller. The caller should do that, instead, after it's inserted its new tuple. Fix the one caller that forgot to do so. Simplify logic in brin_doupdate's same-page-update case by postponing brin_initialize_empty_new_buffer to after the critical section; I see little point in doing it before. Avoid repeat calls of RelationGetNumberOfBlocks in brin_vacuum_scan. Avoid duplicate BufferGetBlockNumber and BufferGetPage calls in a couple of places where we already had the right values. Move a BRIN_elog debug logging call out of a critical section; that's pretty unsafe and I don't think it buys us anything to not wait till after the critical section. Move the "*extended = false" step in brin_getinsertbuffer into the routine's main loop. There's no actual bug there, since the loop can't iterate with *extended still true, but it doesn't seem very future-proof as coded; and it's certainly not documented as a loop invariant. This is all from follow-on investigation inspired by commit c79f6df75. Discussion: https://postgr.es/m/5801.1522429460@sss.pgh.pa.us
2018-04-04 20:26:04 +02:00
Size freespace;
BlockNumber blk;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
page = BufferGetPage(state->bs_currentInsertBuf);
Improve FSM management for BRIN indexes. BRIN indexes like to propagate additions of free space into the upper pages of their free space maps as soon as the new space is known, even when it's just on one individual index page. Previously this required calling FreeSpaceMapVacuum, which is quite an expensive thing if the map is large. Use the FreeSpaceMapVacuumRange function recently added by commit c79f6df75 to reduce the amount of work done for this purpose. Fix a couple of places that neglected to do the upper-page vacuuming at all after recording new free space. If the policy is to be that BRIN should do that, it should do it everywhere. Do RecordPageWithFreeSpace unconditionally in brin_page_cleanup, and do FreeSpaceMapVacuum unconditionally in brin_vacuum_scan. Because of the FSM's imprecise storage of free space, the old complications here seldom bought anything, they just slowed things down. This approach also provides a predictable path for FSM corruption to be repaired. Remove premature RecordPageWithFreeSpace call in brin_getinsertbuffer where it's about to return an extended page to the caller. The caller should do that, instead, after it's inserted its new tuple. Fix the one caller that forgot to do so. Simplify logic in brin_doupdate's same-page-update case by postponing brin_initialize_empty_new_buffer to after the critical section; I see little point in doing it before. Avoid repeat calls of RelationGetNumberOfBlocks in brin_vacuum_scan. Avoid duplicate BufferGetBlockNumber and BufferGetPage calls in a couple of places where we already had the right values. Move a BRIN_elog debug logging call out of a critical section; that's pretty unsafe and I don't think it buys us anything to not wait till after the critical section. Move the "*extended = false" step in brin_getinsertbuffer into the routine's main loop. There's no actual bug there, since the loop can't iterate with *extended still true, but it doesn't seem very future-proof as coded; and it's certainly not documented as a loop invariant. This is all from follow-on investigation inspired by commit c79f6df75. Discussion: https://postgr.es/m/5801.1522429460@sss.pgh.pa.us
2018-04-04 20:26:04 +02:00
freespace = PageGetFreeSpace(page);
blk = BufferGetBlockNumber(state->bs_currentInsertBuf);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
ReleaseBuffer(state->bs_currentInsertBuf);
RecordPageWithFreeSpace(state->bs_irel, blk, freespace);
Improve FSM management for BRIN indexes. BRIN indexes like to propagate additions of free space into the upper pages of their free space maps as soon as the new space is known, even when it's just on one individual index page. Previously this required calling FreeSpaceMapVacuum, which is quite an expensive thing if the map is large. Use the FreeSpaceMapVacuumRange function recently added by commit c79f6df75 to reduce the amount of work done for this purpose. Fix a couple of places that neglected to do the upper-page vacuuming at all after recording new free space. If the policy is to be that BRIN should do that, it should do it everywhere. Do RecordPageWithFreeSpace unconditionally in brin_page_cleanup, and do FreeSpaceMapVacuum unconditionally in brin_vacuum_scan. Because of the FSM's imprecise storage of free space, the old complications here seldom bought anything, they just slowed things down. This approach also provides a predictable path for FSM corruption to be repaired. Remove premature RecordPageWithFreeSpace call in brin_getinsertbuffer where it's about to return an extended page to the caller. The caller should do that, instead, after it's inserted its new tuple. Fix the one caller that forgot to do so. Simplify logic in brin_doupdate's same-page-update case by postponing brin_initialize_empty_new_buffer to after the critical section; I see little point in doing it before. Avoid repeat calls of RelationGetNumberOfBlocks in brin_vacuum_scan. Avoid duplicate BufferGetBlockNumber and BufferGetPage calls in a couple of places where we already had the right values. Move a BRIN_elog debug logging call out of a critical section; that's pretty unsafe and I don't think it buys us anything to not wait till after the critical section. Move the "*extended = false" step in brin_getinsertbuffer into the routine's main loop. There's no actual bug there, since the loop can't iterate with *extended still true, but it doesn't seem very future-proof as coded; and it's certainly not documented as a loop invariant. This is all from follow-on investigation inspired by commit c79f6df75. Discussion: https://postgr.es/m/5801.1522429460@sss.pgh.pa.us
2018-04-04 20:26:04 +02:00
FreeSpaceMapVacuumRange(state->bs_irel, blk, blk + 1);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
brin_free_desc(state->bs_bdesc);
pfree(state->bs_dtuple);
pfree(state);
}
/*
* On the given BRIN index, summarize the heap page range that corresponds
* to the heap block number given.
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
*
* This routine can run in parallel with insertions into the heap. To avoid
* missing those values from the summary tuple, we first insert a placeholder
* index tuple into the index, then execute the heap scan; transactions
* concurrent with the scan update the placeholder tuple. After the scan, we
* union the placeholder tuple with the one computed by this routine. The
* update of the index value happens in a loop, so that if somebody updates
* the placeholder tuple after we read it, we detect the case and try again.
* This ensures that the concurrently inserted tuples are not lost.
*
* A further corner case is this routine being asked to summarize the partial
* range at the end of the table. heapNumBlocks is the (possibly outdated)
* table size; if we notice that the requested range lies beyond that size,
* we re-compute the table size after inserting the placeholder tuple, to
* avoid missing pages that were appended recently.
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
*/
static void
summarize_range(IndexInfo *indexInfo, BrinBuildState *state, Relation heapRel,
BlockNumber heapBlk, BlockNumber heapNumBlks)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
Buffer phbuf;
BrinTuple *phtup;
Size phsz;
OffsetNumber offset;
BlockNumber scanNumBlks;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* Insert the placeholder tuple
*/
phbuf = InvalidBuffer;
phtup = brin_form_placeholder_tuple(state->bs_bdesc, heapBlk, &phsz);
offset = brin_doinsert(state->bs_irel, state->bs_pagesPerRange,
state->bs_rmAccess, &phbuf,
heapBlk, phtup, phsz);
/*
* Compute range end. We hold ShareUpdateExclusive lock on table, so it
* cannot shrink concurrently (but it can grow).
*/
Assert(heapBlk % state->bs_pagesPerRange == 0);
if (heapBlk + state->bs_pagesPerRange > heapNumBlks)
{
/*
* If we're asked to scan what we believe to be the final range on the
* table (i.e. a range that might be partial) we need to recompute our
* idea of what the latest page is after inserting the placeholder
* tuple. Anyone that grows the table later will update the
* placeholder tuple, so it doesn't matter that we won't scan these
* pages ourselves. Careful: the table might have been extended
* beyond the current range, so clamp our result.
*
* Fortunately, this should occur infrequently.
*/
scanNumBlks = Min(RelationGetNumberOfBlocks(heapRel) - heapBlk,
state->bs_pagesPerRange);
}
else
{
/* Easy case: range is known to be complete */
scanNumBlks = state->bs_pagesPerRange;
}
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* Execute the partial heap scan covering the heap blocks in the specified
* page range, summarizing the heap tuples in it. This scan stops just
* short of brinbuildCallback creating the new index entry.
Fix BRIN to use SnapshotAny during summarization For correctness of summarization results, it is critical that the snapshot used during the summarization scan is able to see all tuples that are live to all transactions -- including tuples inserted or deleted by in-progress transactions. Otherwise, it would be possible for a transaction to insert a tuple, then idle for a long time while a concurrent transaction executes summarization of the range: this would result in the inserted value not being considered in the summary. Previously we were trying to use a MVCC snapshot in conjunction with adding a "placeholder" tuple in the index: the snapshot would see all committed tuples, and the placeholder tuple would catch insertions by any new inserters. The hole is that prior insertions by transactions that are still in progress by the time the MVCC snapshot was taken were ignored. Kevin Grittner reported this as a bogus error message during vacuum with default transaction isolation mode set to repeatable read (because the error report mentioned a function name not being invoked during), but the problem is larger than that. To fix, tweak IndexBuildHeapRangeScan to have a new mode that behaves the way we need using SnapshotAny visibility rules. This change simplifies the BRIN code a bit, mainly by removing large comments that were mistaken. Instead, rely on the SnapshotAny semantics to provide what it needs. (The business about a placeholder tuple needs to remain: that covers the case that a transaction inserts a a tuple in a page that summarization already scanned.) Discussion: https://www.postgresql.org/message-id/20150731175700.GX2441@postgresql.org In passing, remove a couple of unused declarations from brin.h and reword a comment to be proper English. This part submitted by Kevin Grittner. Backpatch to 9.5, where BRIN was introduced.
2015-08-05 21:20:50 +02:00
*
* Note that it is critical we use the "any visible" mode of
* table_index_build_range_scan here: otherwise, we would miss tuples
* inserted by transactions that are still in progress, among other corner
* cases.
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
*/
state->bs_currRangeStart = heapBlk;
table_index_build_range_scan(heapRel, state->bs_irel, indexInfo, false, true, false,
heapBlk, scanNumBlks,
brinbuildCallback, (void *) state, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* Now we update the values obtained by the scan with the placeholder
* tuple. We do this in a loop which only terminates if we're able to
* update the placeholder tuple successfully; if we are not, this means
* somebody else modified the placeholder tuple after we read it.
*/
for (;;)
{
BrinTuple *newtup;
Size newsize;
bool didupdate;
bool samepage;
CHECK_FOR_INTERRUPTS();
/*
* Update the summary tuple and try to update.
*/
newtup = brin_form_tuple(state->bs_bdesc,
heapBlk, state->bs_dtuple, &newsize);
samepage = brin_can_do_samepage_update(phbuf, phsz, newsize);
didupdate =
brin_doupdate(state->bs_irel, state->bs_pagesPerRange,
state->bs_rmAccess, heapBlk, phbuf, offset,
phtup, phsz, newtup, newsize, samepage);
brin_free_tuple(phtup);
brin_free_tuple(newtup);
/* If the update succeeded, we're done. */
if (didupdate)
break;
/*
* If the update didn't work, it might be because somebody updated the
* placeholder tuple concurrently. Extract the new version, union it
* with the values we have from the scan, and start over. (There are
* other reasons for the update to fail, but it's simple to treat them
* the same.)
*/
phtup = brinGetTupleForHeapBlock(state->bs_rmAccess, heapBlk, &phbuf,
&offset, &phsz, BUFFER_LOCK_SHARE,
NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/* the placeholder tuple must exist */
if (phtup == NULL)
elog(ERROR, "missing placeholder tuple");
phtup = brin_copy_tuple(phtup, phsz, NULL, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
LockBuffer(phbuf, BUFFER_LOCK_UNLOCK);
/* merge it into the tuple from the heap scan */
union_tuples(state->bs_bdesc, state->bs_dtuple, phtup);
}
ReleaseBuffer(phbuf);
}
/*
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
* Summarize page ranges that are not already summarized. If pageRange is
* BRIN_ALL_BLOCKRANGES then the whole table is scanned; otherwise, only the
* page range containing the given heap page number is scanned.
* If include_partial is true, then the partial range at the end of the table
* is summarized, otherwise not.
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
*
* For each new index tuple inserted, *numSummarized (if not NULL) is
2015-01-19 14:34:29 +01:00
* incremented; for each existing tuple, *numExisting (if not NULL) is
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
* incremented.
*/
static void
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
brinsummarize(Relation index, Relation heapRel, BlockNumber pageRange,
bool include_partial, double *numSummarized, double *numExisting)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
BrinRevmap *revmap;
BrinBuildState *state = NULL;
IndexInfo *indexInfo = NULL;
BlockNumber heapNumBlocks;
BlockNumber pagesPerRange;
Buffer buf;
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
BlockNumber startBlk;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
revmap = brinRevmapInitialize(index, &pagesPerRange, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/* determine range of pages to process */
heapNumBlocks = RelationGetNumberOfBlocks(heapRel);
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
if (pageRange == BRIN_ALL_BLOCKRANGES)
startBlk = 0;
else
{
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
startBlk = (pageRange / pagesPerRange) * pagesPerRange;
heapNumBlocks = Min(heapNumBlocks, startBlk + pagesPerRange);
}
if (startBlk > heapNumBlocks)
{
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
/* Nothing to do if start point is beyond end of table */
brinRevmapTerminate(revmap);
return;
BRIN auto-summarization Previously, only VACUUM would cause a page range to get initially summarized by BRIN indexes, which for some use cases takes too much time since the inserts occur. To avoid the delay, have brininsert request a summarization run for the previous range as soon as the first tuple is inserted into the first page of the next range. Autovacuum is in charge of processing these requests, after doing all the regular vacuuming/ analyzing work on tables. This doesn't impose any new tasks on autovacuum, because autovacuum was already in charge of doing summarizations. The only actual effect is to change the timing, i.e. that it occurs earlier. For this reason, we don't go any great lengths to record these requests very robustly; if they are lost because of a server crash or restart, they will happen at a later time anyway. Most of the new code here is in autovacuum, which can now be told about "work items" to process. This can be used for other things such as GIN pending list cleaning, perhaps visibility map bit setting, both of which are currently invoked during vacuum, but do not really depend on vacuum taking place. The requests are at the page range level, a granularity for which we did not have SQL-level access; we only had index-level summarization requests via brin_summarize_new_values(). It seems reasonable to add SQL-level access to range-level summarization too, so add a function brin_summarize_range() to do that. Authors: Álvaro Herrera, based on sketch from Simon Riggs. Reviewed-by: Thomas Munro. Discussion: https://postgr.es/m/20170301045823.vneqdqkmsd4as4ds@alvherre.pgsql
2017-04-01 19:00:53 +02:00
}
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/*
* Scan the revmap to find unsummarized items.
*/
buf = InvalidBuffer;
for (; startBlk < heapNumBlocks; startBlk += pagesPerRange)
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
{
BrinTuple *tup;
OffsetNumber off;
/*
* Unless requested to summarize even a partial range, go away now if
* we think the next range is partial. Caller would pass true when it
* is typically run once bulk data loading is done
* (brin_summarize_new_values), and false when it is typically the
* result of arbitrarily-scheduled maintenance command (vacuuming).
*/
if (!include_partial &&
(startBlk + pagesPerRange > heapNumBlocks))
break;
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
CHECK_FOR_INTERRUPTS();
tup = brinGetTupleForHeapBlock(revmap, startBlk, &buf, &off, NULL,
BUFFER_LOCK_SHARE, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
if (tup == NULL)
{
/* no revmap entry for this heap range. Summarize it. */
if (state == NULL)
{
/* first time through */
Assert(!indexInfo);
state = initialize_brin_buildstate(index, revmap,
pagesPerRange);
indexInfo = BuildIndexInfo(index);
}
summarize_range(indexInfo, state, heapRel, startBlk, heapNumBlocks);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
/* and re-initialize state for the next range */
brin_memtuple_initialize(state->bs_dtuple, state->bs_bdesc);
if (numSummarized)
*numSummarized += 1.0;
}
else
{
if (numExisting)
*numExisting += 1.0;
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
}
}
if (BufferIsValid(buf))
ReleaseBuffer(buf);
/* free resources */
brinRevmapTerminate(revmap);
if (state)
Fix BRIN to use SnapshotAny during summarization For correctness of summarization results, it is critical that the snapshot used during the summarization scan is able to see all tuples that are live to all transactions -- including tuples inserted or deleted by in-progress transactions. Otherwise, it would be possible for a transaction to insert a tuple, then idle for a long time while a concurrent transaction executes summarization of the range: this would result in the inserted value not being considered in the summary. Previously we were trying to use a MVCC snapshot in conjunction with adding a "placeholder" tuple in the index: the snapshot would see all committed tuples, and the placeholder tuple would catch insertions by any new inserters. The hole is that prior insertions by transactions that are still in progress by the time the MVCC snapshot was taken were ignored. Kevin Grittner reported this as a bogus error message during vacuum with default transaction isolation mode set to repeatable read (because the error report mentioned a function name not being invoked during), but the problem is larger than that. To fix, tweak IndexBuildHeapRangeScan to have a new mode that behaves the way we need using SnapshotAny visibility rules. This change simplifies the BRIN code a bit, mainly by removing large comments that were mistaken. Instead, rely on the SnapshotAny semantics to provide what it needs. (The business about a placeholder tuple needs to remain: that covers the case that a transaction inserts a a tuple in a page that summarization already scanned.) Discussion: https://www.postgresql.org/message-id/20150731175700.GX2441@postgresql.org In passing, remove a couple of unused declarations from brin.h and reword a comment to be proper English. This part submitted by Kevin Grittner. Backpatch to 9.5, where BRIN was introduced.
2015-08-05 21:20:50 +02:00
{
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
terminate_brin_buildstate(state);
Fix BRIN to use SnapshotAny during summarization For correctness of summarization results, it is critical that the snapshot used during the summarization scan is able to see all tuples that are live to all transactions -- including tuples inserted or deleted by in-progress transactions. Otherwise, it would be possible for a transaction to insert a tuple, then idle for a long time while a concurrent transaction executes summarization of the range: this would result in the inserted value not being considered in the summary. Previously we were trying to use a MVCC snapshot in conjunction with adding a "placeholder" tuple in the index: the snapshot would see all committed tuples, and the placeholder tuple would catch insertions by any new inserters. The hole is that prior insertions by transactions that are still in progress by the time the MVCC snapshot was taken were ignored. Kevin Grittner reported this as a bogus error message during vacuum with default transaction isolation mode set to repeatable read (because the error report mentioned a function name not being invoked during), but the problem is larger than that. To fix, tweak IndexBuildHeapRangeScan to have a new mode that behaves the way we need using SnapshotAny visibility rules. This change simplifies the BRIN code a bit, mainly by removing large comments that were mistaken. Instead, rely on the SnapshotAny semantics to provide what it needs. (The business about a placeholder tuple needs to remain: that covers the case that a transaction inserts a a tuple in a page that summarization already scanned.) Discussion: https://www.postgresql.org/message-id/20150731175700.GX2441@postgresql.org In passing, remove a couple of unused declarations from brin.h and reword a comment to be proper English. This part submitted by Kevin Grittner. Backpatch to 9.5, where BRIN was introduced.
2015-08-05 21:20:50 +02:00
pfree(indexInfo);
}
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
}
/*
* Given a deformed tuple in the build state, convert it into the on-disk
* format and insert it into the index, making the revmap point to it.
*/
static void
form_and_insert_tuple(BrinBuildState *state)
{
BrinTuple *tup;
Size size;
tup = brin_form_tuple(state->bs_bdesc, state->bs_currRangeStart,
state->bs_dtuple, &size);
brin_doinsert(state->bs_irel, state->bs_pagesPerRange, state->bs_rmAccess,
&state->bs_currentInsertBuf, state->bs_currRangeStart,
tup, size);
state->bs_numtuples++;
pfree(tup);
}
/*
* Given two deformed tuples, adjust the first one so that it's consistent
* with the summary values in both.
*/
static void
union_tuples(BrinDesc *bdesc, BrinMemTuple *a, BrinTuple *b)
{
int keyno;
BrinMemTuple *db;
MemoryContext cxt;
MemoryContext oldcxt;
/* Use our own memory context to avoid retail pfree */
cxt = AllocSetContextCreate(CurrentMemoryContext,
"brin union",
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
ALLOCSET_DEFAULT_SIZES);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
oldcxt = MemoryContextSwitchTo(cxt);
db = brin_deform_tuple(bdesc, b, NULL);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
MemoryContextSwitchTo(oldcxt);
Fix handling of empty ranges and NULLs in BRIN BRIN indexes did not properly distinguish between summaries for empty (no rows) and all-NULL ranges, treating them as essentially the same thing. Summaries were initialized with allnulls=true, and opclasses simply reset allnulls to false when processing the first non-NULL value. This however produces incorrect results if the range starts with a NULL value (or a sequence of NULL values), in which case we forget the range contains NULL values when adding the first non-NULL value. This happens because the allnulls flag is used for two separate purposes - to mark empty ranges (not representing any rows yet) and ranges containing only NULL values. Opclasses don't know which of these cases it is, and so don't know whether to set hasnulls=true. Setting the flag in both cases would make it correct, but it would also make BRIN indexes useless for queries with IS NULL clauses. All ranges start empty (and thus allnulls=true), so all ranges would end up with either allnulls=true or hasnulls=true. The severity of the issue is somewhat reduced by the fact that it only happens when adding values to an existing summary with allnulls=true. This can happen e.g. for small tables (because a summary for the first range exists for all BRIN indexes), or for tables with large fraction of NULL values in the indexed columns. Bulk summarization (e.g. during CREATE INDEX or automatic summarization) that processes all values at once is not affected by this issue. In this case the flags were updated in a slightly different way, not forgetting the NULL values. To identify empty ranges we use a new flag, stored in an unused bit in the BRIN tuple header so the on-disk format remains the same. A matching flag is added to BrinMemTuple, into a 3B gap after bt_placeholder. That means there's no risk of ABI breakage, although we don't actually pass the BrinMemTuple to any public API. We could also skip storing index tuples for empty summaries, but then we'd have to always process such ranges - even if there are no rows in large parts of the table (e.g. after a bulk DELETE), it would still require reading the pages etc. So we store them, but ignore them when building the bitmap. Backpatch to 11. The issue exists since BRIN indexes were introduced in 9.5, but older releases are already EOL. Backpatch-through: 11 Reviewed-by: Justin Pryzby, Matthias van de Meent, Alvaro Herrera Discussion: https://postgr.es/m/402430e4-7d9d-6cf1-09ef-464d80afff3b@enterprisedb.com
2023-05-19 00:00:22 +02:00
/*
* Check if the ranges are empty.
*
* If at least one of them is empty, we don't need to call per-key union
* functions at all. If "b" is empty, we just use "a" as the result (it
* might be empty fine, but that's fine). If "a" is empty but "b" is not,
* we use "b" as the result (but we have to copy the data into "a" first).
*
* Only when both ranges are non-empty, we actually do the per-key merge.
*/
/* If "b" is empty - ignore it and just use "a" (even if it's empty etc.). */
if (db->bt_empty_range)
{
/* skip the per-key merge */
MemoryContextDelete(cxt);
return;
}
/*
* Now we know "b" is not empty. If "a" is empty, then "b" is the result.
* But we need to copy the data from "b" to "a" first, because that's how
* we pass result out.
*
* We have to copy all the global/per-key flags etc. too.
*/
if (a->bt_empty_range)
{
for (keyno = 0; keyno < bdesc->bd_tupdesc->natts; keyno++)
{
int i;
BrinValues *col_a = &a->bt_columns[keyno];
BrinValues *col_b = &db->bt_columns[keyno];
BrinOpcInfo *opcinfo = bdesc->bd_info[keyno];
col_a->bv_allnulls = col_b->bv_allnulls;
col_a->bv_hasnulls = col_b->bv_hasnulls;
/* If "b" has no data, we're done. */
if (col_b->bv_allnulls)
continue;
for (i = 0; i < opcinfo->oi_nstored; i++)
col_a->bv_values[i] =
datumCopy(col_b->bv_values[i],
opcinfo->oi_typcache[i]->typbyval,
opcinfo->oi_typcache[i]->typlen);
}
/* "a" started empty, but "b" was not empty, so remember that */
a->bt_empty_range = false;
/* skip the per-key merge */
MemoryContextDelete(cxt);
return;
}
/* Now we know neither range is empty. */
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
for (keyno = 0; keyno < bdesc->bd_tupdesc->natts; keyno++)
{
FmgrInfo *unionFn;
BrinValues *col_a = &a->bt_columns[keyno];
BrinValues *col_b = &db->bt_columns[keyno];
BrinOpcInfo *opcinfo = bdesc->bd_info[keyno];
if (opcinfo->oi_regular_nulls)
{
/* Does the "b" summary represent any NULL values? */
bool b_has_nulls = (col_b->bv_hasnulls || col_b->bv_allnulls);
/* Adjust "hasnulls". */
if (!col_a->bv_allnulls && b_has_nulls)
col_a->bv_hasnulls = true;
/* If there are no values in B, there's nothing left to do. */
if (col_b->bv_allnulls)
continue;
/*
* Adjust "allnulls". If A doesn't have values, just copy the
* values from B into A, and we're done. We cannot run the
* operators in this case, because values in A might contain
* garbage. Note we already established that B contains values.
*
* Also adjust "hasnulls" in order not to forget the summary
* represents NULL values. This is not redundant with the earlier
* update, because that only happens when allnulls=false.
*/
if (col_a->bv_allnulls)
{
int i;
col_a->bv_allnulls = false;
col_a->bv_hasnulls = true;
for (i = 0; i < opcinfo->oi_nstored; i++)
col_a->bv_values[i] =
datumCopy(col_b->bv_values[i],
opcinfo->oi_typcache[i]->typbyval,
opcinfo->oi_typcache[i]->typlen);
continue;
}
}
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
unionFn = index_getprocinfo(bdesc->bd_index, keyno + 1,
BRIN_PROCNUM_UNION);
FunctionCall3Coll(unionFn,
bdesc->bd_index->rd_indcollation[keyno],
PointerGetDatum(bdesc),
PointerGetDatum(col_a),
PointerGetDatum(col_b));
}
MemoryContextDelete(cxt);
}
Close some holes in BRIN page assignment In some corner cases, it is possible for the BRIN index relation to be extended by brin_getinsertbuffer but the new page not be used immediately for anything by its callers; when this happens, the page is initialized and the FSM is updated (by brin_getinsertbuffer) with the info about that page, but these actions are not WAL-logged. A later index insert/update can use the page, but since the page is already initialized, the initialization itself is not WAL-logged then either. Replay of this sequence of events causes recovery to fail altogether. There is a related corner case within brin_getinsertbuffer itself, in which we extend the relation to put a new index tuple there, but later find out that we cannot do so, and do not return the buffer; the page obtained from extension is not even initialized. The resulting page is lost forever. To fix, shuffle the code so that initialization is not the responsibility of brin_getinsertbuffer anymore, in normal cases; instead, the initialization is done by its callers (brin_doinsert and brin_doupdate) once they're certain that the page is going to be used. When either those functions determine that the new page cannot be used, before bailing out they initialize the page as an empty regular page, enter it in FSM and WAL-log all this. This way, the page is usable for future index insertions, and WAL replay doesn't find trying to insert tuples in pages whose initialization didn't make it to the WAL. The same strategy is used in brin_getinsertbuffer when it cannot return the new page. Additionally, add a new step to vacuuming so that all pages of the index are scanned; whenever an uninitialized page is found, it is initialized as empty and WAL-logged. This closes the hole that the relation is extended but the system crashes before anything is WAL-logged about it. We also take this opportunity to update the FSM, in case it has gotten out of date. Thanks to Heikki Linnakangas for finding the problem that kicked some additional analysis of BRIN page assignment code. Backpatch to 9.5, where BRIN was introduced. Discussion: https://www.postgresql.org/message-id/20150723204810.GY5596@postgresql.org
2015-08-12 19:20:38 +02:00
/*
* brin_vacuum_scan
* Do a complete scan of the index during VACUUM.
*
* This routine scans the complete index looking for uncatalogued index pages,
* i.e. those that might have been lost due to a crash after index extension
* and such.
*/
static void
brin_vacuum_scan(Relation idxrel, BufferAccessStrategy strategy)
{
Improve FSM management for BRIN indexes. BRIN indexes like to propagate additions of free space into the upper pages of their free space maps as soon as the new space is known, even when it's just on one individual index page. Previously this required calling FreeSpaceMapVacuum, which is quite an expensive thing if the map is large. Use the FreeSpaceMapVacuumRange function recently added by commit c79f6df75 to reduce the amount of work done for this purpose. Fix a couple of places that neglected to do the upper-page vacuuming at all after recording new free space. If the policy is to be that BRIN should do that, it should do it everywhere. Do RecordPageWithFreeSpace unconditionally in brin_page_cleanup, and do FreeSpaceMapVacuum unconditionally in brin_vacuum_scan. Because of the FSM's imprecise storage of free space, the old complications here seldom bought anything, they just slowed things down. This approach also provides a predictable path for FSM corruption to be repaired. Remove premature RecordPageWithFreeSpace call in brin_getinsertbuffer where it's about to return an extended page to the caller. The caller should do that, instead, after it's inserted its new tuple. Fix the one caller that forgot to do so. Simplify logic in brin_doupdate's same-page-update case by postponing brin_initialize_empty_new_buffer to after the critical section; I see little point in doing it before. Avoid repeat calls of RelationGetNumberOfBlocks in brin_vacuum_scan. Avoid duplicate BufferGetBlockNumber and BufferGetPage calls in a couple of places where we already had the right values. Move a BRIN_elog debug logging call out of a critical section; that's pretty unsafe and I don't think it buys us anything to not wait till after the critical section. Move the "*extended = false" step in brin_getinsertbuffer into the routine's main loop. There's no actual bug there, since the loop can't iterate with *extended still true, but it doesn't seem very future-proof as coded; and it's certainly not documented as a loop invariant. This is all from follow-on investigation inspired by commit c79f6df75. Discussion: https://postgr.es/m/5801.1522429460@sss.pgh.pa.us
2018-04-04 20:26:04 +02:00
BlockNumber nblocks;
Close some holes in BRIN page assignment In some corner cases, it is possible for the BRIN index relation to be extended by brin_getinsertbuffer but the new page not be used immediately for anything by its callers; when this happens, the page is initialized and the FSM is updated (by brin_getinsertbuffer) with the info about that page, but these actions are not WAL-logged. A later index insert/update can use the page, but since the page is already initialized, the initialization itself is not WAL-logged then either. Replay of this sequence of events causes recovery to fail altogether. There is a related corner case within brin_getinsertbuffer itself, in which we extend the relation to put a new index tuple there, but later find out that we cannot do so, and do not return the buffer; the page obtained from extension is not even initialized. The resulting page is lost forever. To fix, shuffle the code so that initialization is not the responsibility of brin_getinsertbuffer anymore, in normal cases; instead, the initialization is done by its callers (brin_doinsert and brin_doupdate) once they're certain that the page is going to be used. When either those functions determine that the new page cannot be used, before bailing out they initialize the page as an empty regular page, enter it in FSM and WAL-log all this. This way, the page is usable for future index insertions, and WAL replay doesn't find trying to insert tuples in pages whose initialization didn't make it to the WAL. The same strategy is used in brin_getinsertbuffer when it cannot return the new page. Additionally, add a new step to vacuuming so that all pages of the index are scanned; whenever an uninitialized page is found, it is initialized as empty and WAL-logged. This closes the hole that the relation is extended but the system crashes before anything is WAL-logged about it. We also take this opportunity to update the FSM, in case it has gotten out of date. Thanks to Heikki Linnakangas for finding the problem that kicked some additional analysis of BRIN page assignment code. Backpatch to 9.5, where BRIN was introduced. Discussion: https://www.postgresql.org/message-id/20150723204810.GY5596@postgresql.org
2015-08-12 19:20:38 +02:00
BlockNumber blkno;
/*
* Scan the index in physical order, and clean up any possible mess in
* each page.
*/
Improve FSM management for BRIN indexes. BRIN indexes like to propagate additions of free space into the upper pages of their free space maps as soon as the new space is known, even when it's just on one individual index page. Previously this required calling FreeSpaceMapVacuum, which is quite an expensive thing if the map is large. Use the FreeSpaceMapVacuumRange function recently added by commit c79f6df75 to reduce the amount of work done for this purpose. Fix a couple of places that neglected to do the upper-page vacuuming at all after recording new free space. If the policy is to be that BRIN should do that, it should do it everywhere. Do RecordPageWithFreeSpace unconditionally in brin_page_cleanup, and do FreeSpaceMapVacuum unconditionally in brin_vacuum_scan. Because of the FSM's imprecise storage of free space, the old complications here seldom bought anything, they just slowed things down. This approach also provides a predictable path for FSM corruption to be repaired. Remove premature RecordPageWithFreeSpace call in brin_getinsertbuffer where it's about to return an extended page to the caller. The caller should do that, instead, after it's inserted its new tuple. Fix the one caller that forgot to do so. Simplify logic in brin_doupdate's same-page-update case by postponing brin_initialize_empty_new_buffer to after the critical section; I see little point in doing it before. Avoid repeat calls of RelationGetNumberOfBlocks in brin_vacuum_scan. Avoid duplicate BufferGetBlockNumber and BufferGetPage calls in a couple of places where we already had the right values. Move a BRIN_elog debug logging call out of a critical section; that's pretty unsafe and I don't think it buys us anything to not wait till after the critical section. Move the "*extended = false" step in brin_getinsertbuffer into the routine's main loop. There's no actual bug there, since the loop can't iterate with *extended still true, but it doesn't seem very future-proof as coded; and it's certainly not documented as a loop invariant. This is all from follow-on investigation inspired by commit c79f6df75. Discussion: https://postgr.es/m/5801.1522429460@sss.pgh.pa.us
2018-04-04 20:26:04 +02:00
nblocks = RelationGetNumberOfBlocks(idxrel);
for (blkno = 0; blkno < nblocks; blkno++)
Close some holes in BRIN page assignment In some corner cases, it is possible for the BRIN index relation to be extended by brin_getinsertbuffer but the new page not be used immediately for anything by its callers; when this happens, the page is initialized and the FSM is updated (by brin_getinsertbuffer) with the info about that page, but these actions are not WAL-logged. A later index insert/update can use the page, but since the page is already initialized, the initialization itself is not WAL-logged then either. Replay of this sequence of events causes recovery to fail altogether. There is a related corner case within brin_getinsertbuffer itself, in which we extend the relation to put a new index tuple there, but later find out that we cannot do so, and do not return the buffer; the page obtained from extension is not even initialized. The resulting page is lost forever. To fix, shuffle the code so that initialization is not the responsibility of brin_getinsertbuffer anymore, in normal cases; instead, the initialization is done by its callers (brin_doinsert and brin_doupdate) once they're certain that the page is going to be used. When either those functions determine that the new page cannot be used, before bailing out they initialize the page as an empty regular page, enter it in FSM and WAL-log all this. This way, the page is usable for future index insertions, and WAL replay doesn't find trying to insert tuples in pages whose initialization didn't make it to the WAL. The same strategy is used in brin_getinsertbuffer when it cannot return the new page. Additionally, add a new step to vacuuming so that all pages of the index are scanned; whenever an uninitialized page is found, it is initialized as empty and WAL-logged. This closes the hole that the relation is extended but the system crashes before anything is WAL-logged about it. We also take this opportunity to update the FSM, in case it has gotten out of date. Thanks to Heikki Linnakangas for finding the problem that kicked some additional analysis of BRIN page assignment code. Backpatch to 9.5, where BRIN was introduced. Discussion: https://www.postgresql.org/message-id/20150723204810.GY5596@postgresql.org
2015-08-12 19:20:38 +02:00
{
Buffer buf;
CHECK_FOR_INTERRUPTS();
buf = ReadBufferExtended(idxrel, MAIN_FORKNUM, blkno,
RBM_NORMAL, strategy);
Improve FSM management for BRIN indexes. BRIN indexes like to propagate additions of free space into the upper pages of their free space maps as soon as the new space is known, even when it's just on one individual index page. Previously this required calling FreeSpaceMapVacuum, which is quite an expensive thing if the map is large. Use the FreeSpaceMapVacuumRange function recently added by commit c79f6df75 to reduce the amount of work done for this purpose. Fix a couple of places that neglected to do the upper-page vacuuming at all after recording new free space. If the policy is to be that BRIN should do that, it should do it everywhere. Do RecordPageWithFreeSpace unconditionally in brin_page_cleanup, and do FreeSpaceMapVacuum unconditionally in brin_vacuum_scan. Because of the FSM's imprecise storage of free space, the old complications here seldom bought anything, they just slowed things down. This approach also provides a predictable path for FSM corruption to be repaired. Remove premature RecordPageWithFreeSpace call in brin_getinsertbuffer where it's about to return an extended page to the caller. The caller should do that, instead, after it's inserted its new tuple. Fix the one caller that forgot to do so. Simplify logic in brin_doupdate's same-page-update case by postponing brin_initialize_empty_new_buffer to after the critical section; I see little point in doing it before. Avoid repeat calls of RelationGetNumberOfBlocks in brin_vacuum_scan. Avoid duplicate BufferGetBlockNumber and BufferGetPage calls in a couple of places where we already had the right values. Move a BRIN_elog debug logging call out of a critical section; that's pretty unsafe and I don't think it buys us anything to not wait till after the critical section. Move the "*extended = false" step in brin_getinsertbuffer into the routine's main loop. There's no actual bug there, since the loop can't iterate with *extended still true, but it doesn't seem very future-proof as coded; and it's certainly not documented as a loop invariant. This is all from follow-on investigation inspired by commit c79f6df75. Discussion: https://postgr.es/m/5801.1522429460@sss.pgh.pa.us
2018-04-04 20:26:04 +02:00
brin_page_cleanup(idxrel, buf);
Close some holes in BRIN page assignment In some corner cases, it is possible for the BRIN index relation to be extended by brin_getinsertbuffer but the new page not be used immediately for anything by its callers; when this happens, the page is initialized and the FSM is updated (by brin_getinsertbuffer) with the info about that page, but these actions are not WAL-logged. A later index insert/update can use the page, but since the page is already initialized, the initialization itself is not WAL-logged then either. Replay of this sequence of events causes recovery to fail altogether. There is a related corner case within brin_getinsertbuffer itself, in which we extend the relation to put a new index tuple there, but later find out that we cannot do so, and do not return the buffer; the page obtained from extension is not even initialized. The resulting page is lost forever. To fix, shuffle the code so that initialization is not the responsibility of brin_getinsertbuffer anymore, in normal cases; instead, the initialization is done by its callers (brin_doinsert and brin_doupdate) once they're certain that the page is going to be used. When either those functions determine that the new page cannot be used, before bailing out they initialize the page as an empty regular page, enter it in FSM and WAL-log all this. This way, the page is usable for future index insertions, and WAL replay doesn't find trying to insert tuples in pages whose initialization didn't make it to the WAL. The same strategy is used in brin_getinsertbuffer when it cannot return the new page. Additionally, add a new step to vacuuming so that all pages of the index are scanned; whenever an uninitialized page is found, it is initialized as empty and WAL-logged. This closes the hole that the relation is extended but the system crashes before anything is WAL-logged about it. We also take this opportunity to update the FSM, in case it has gotten out of date. Thanks to Heikki Linnakangas for finding the problem that kicked some additional analysis of BRIN page assignment code. Backpatch to 9.5, where BRIN was introduced. Discussion: https://www.postgresql.org/message-id/20150723204810.GY5596@postgresql.org
2015-08-12 19:20:38 +02:00
ReleaseBuffer(buf);
}
/*
Improve FSM management for BRIN indexes. BRIN indexes like to propagate additions of free space into the upper pages of their free space maps as soon as the new space is known, even when it's just on one individual index page. Previously this required calling FreeSpaceMapVacuum, which is quite an expensive thing if the map is large. Use the FreeSpaceMapVacuumRange function recently added by commit c79f6df75 to reduce the amount of work done for this purpose. Fix a couple of places that neglected to do the upper-page vacuuming at all after recording new free space. If the policy is to be that BRIN should do that, it should do it everywhere. Do RecordPageWithFreeSpace unconditionally in brin_page_cleanup, and do FreeSpaceMapVacuum unconditionally in brin_vacuum_scan. Because of the FSM's imprecise storage of free space, the old complications here seldom bought anything, they just slowed things down. This approach also provides a predictable path for FSM corruption to be repaired. Remove premature RecordPageWithFreeSpace call in brin_getinsertbuffer where it's about to return an extended page to the caller. The caller should do that, instead, after it's inserted its new tuple. Fix the one caller that forgot to do so. Simplify logic in brin_doupdate's same-page-update case by postponing brin_initialize_empty_new_buffer to after the critical section; I see little point in doing it before. Avoid repeat calls of RelationGetNumberOfBlocks in brin_vacuum_scan. Avoid duplicate BufferGetBlockNumber and BufferGetPage calls in a couple of places where we already had the right values. Move a BRIN_elog debug logging call out of a critical section; that's pretty unsafe and I don't think it buys us anything to not wait till after the critical section. Move the "*extended = false" step in brin_getinsertbuffer into the routine's main loop. There's no actual bug there, since the loop can't iterate with *extended still true, but it doesn't seem very future-proof as coded; and it's certainly not documented as a loop invariant. This is all from follow-on investigation inspired by commit c79f6df75. Discussion: https://postgr.es/m/5801.1522429460@sss.pgh.pa.us
2018-04-04 20:26:04 +02:00
* Update all upper pages in the index's FSM, as well. This ensures not
* only that we propagate leaf-page FSM updates made by brin_page_cleanup,
* but also that any pre-existing damage or out-of-dateness is repaired.
Close some holes in BRIN page assignment In some corner cases, it is possible for the BRIN index relation to be extended by brin_getinsertbuffer but the new page not be used immediately for anything by its callers; when this happens, the page is initialized and the FSM is updated (by brin_getinsertbuffer) with the info about that page, but these actions are not WAL-logged. A later index insert/update can use the page, but since the page is already initialized, the initialization itself is not WAL-logged then either. Replay of this sequence of events causes recovery to fail altogether. There is a related corner case within brin_getinsertbuffer itself, in which we extend the relation to put a new index tuple there, but later find out that we cannot do so, and do not return the buffer; the page obtained from extension is not even initialized. The resulting page is lost forever. To fix, shuffle the code so that initialization is not the responsibility of brin_getinsertbuffer anymore, in normal cases; instead, the initialization is done by its callers (brin_doinsert and brin_doupdate) once they're certain that the page is going to be used. When either those functions determine that the new page cannot be used, before bailing out they initialize the page as an empty regular page, enter it in FSM and WAL-log all this. This way, the page is usable for future index insertions, and WAL replay doesn't find trying to insert tuples in pages whose initialization didn't make it to the WAL. The same strategy is used in brin_getinsertbuffer when it cannot return the new page. Additionally, add a new step to vacuuming so that all pages of the index are scanned; whenever an uninitialized page is found, it is initialized as empty and WAL-logged. This closes the hole that the relation is extended but the system crashes before anything is WAL-logged about it. We also take this opportunity to update the FSM, in case it has gotten out of date. Thanks to Heikki Linnakangas for finding the problem that kicked some additional analysis of BRIN page assignment code. Backpatch to 9.5, where BRIN was introduced. Discussion: https://www.postgresql.org/message-id/20150723204810.GY5596@postgresql.org
2015-08-12 19:20:38 +02:00
*/
Improve FSM management for BRIN indexes. BRIN indexes like to propagate additions of free space into the upper pages of their free space maps as soon as the new space is known, even when it's just on one individual index page. Previously this required calling FreeSpaceMapVacuum, which is quite an expensive thing if the map is large. Use the FreeSpaceMapVacuumRange function recently added by commit c79f6df75 to reduce the amount of work done for this purpose. Fix a couple of places that neglected to do the upper-page vacuuming at all after recording new free space. If the policy is to be that BRIN should do that, it should do it everywhere. Do RecordPageWithFreeSpace unconditionally in brin_page_cleanup, and do FreeSpaceMapVacuum unconditionally in brin_vacuum_scan. Because of the FSM's imprecise storage of free space, the old complications here seldom bought anything, they just slowed things down. This approach also provides a predictable path for FSM corruption to be repaired. Remove premature RecordPageWithFreeSpace call in brin_getinsertbuffer where it's about to return an extended page to the caller. The caller should do that, instead, after it's inserted its new tuple. Fix the one caller that forgot to do so. Simplify logic in brin_doupdate's same-page-update case by postponing brin_initialize_empty_new_buffer to after the critical section; I see little point in doing it before. Avoid repeat calls of RelationGetNumberOfBlocks in brin_vacuum_scan. Avoid duplicate BufferGetBlockNumber and BufferGetPage calls in a couple of places where we already had the right values. Move a BRIN_elog debug logging call out of a critical section; that's pretty unsafe and I don't think it buys us anything to not wait till after the critical section. Move the "*extended = false" step in brin_getinsertbuffer into the routine's main loop. There's no actual bug there, since the loop can't iterate with *extended still true, but it doesn't seem very future-proof as coded; and it's certainly not documented as a loop invariant. This is all from follow-on investigation inspired by commit c79f6df75. Discussion: https://postgr.es/m/5801.1522429460@sss.pgh.pa.us
2018-04-04 20:26:04 +02:00
FreeSpaceMapVacuum(idxrel);
Close some holes in BRIN page assignment In some corner cases, it is possible for the BRIN index relation to be extended by brin_getinsertbuffer but the new page not be used immediately for anything by its callers; when this happens, the page is initialized and the FSM is updated (by brin_getinsertbuffer) with the info about that page, but these actions are not WAL-logged. A later index insert/update can use the page, but since the page is already initialized, the initialization itself is not WAL-logged then either. Replay of this sequence of events causes recovery to fail altogether. There is a related corner case within brin_getinsertbuffer itself, in which we extend the relation to put a new index tuple there, but later find out that we cannot do so, and do not return the buffer; the page obtained from extension is not even initialized. The resulting page is lost forever. To fix, shuffle the code so that initialization is not the responsibility of brin_getinsertbuffer anymore, in normal cases; instead, the initialization is done by its callers (brin_doinsert and brin_doupdate) once they're certain that the page is going to be used. When either those functions determine that the new page cannot be used, before bailing out they initialize the page as an empty regular page, enter it in FSM and WAL-log all this. This way, the page is usable for future index insertions, and WAL replay doesn't find trying to insert tuples in pages whose initialization didn't make it to the WAL. The same strategy is used in brin_getinsertbuffer when it cannot return the new page. Additionally, add a new step to vacuuming so that all pages of the index are scanned; whenever an uninitialized page is found, it is initialized as empty and WAL-logged. This closes the hole that the relation is extended but the system crashes before anything is WAL-logged about it. We also take this opportunity to update the FSM, in case it has gotten out of date. Thanks to Heikki Linnakangas for finding the problem that kicked some additional analysis of BRIN page assignment code. Backpatch to 9.5, where BRIN was introduced. Discussion: https://www.postgresql.org/message-id/20150723204810.GY5596@postgresql.org
2015-08-12 19:20:38 +02:00
}
static bool
add_values_to_range(Relation idxRel, BrinDesc *bdesc, BrinMemTuple *dtup,
Datum *values, bool *nulls)
{
int keyno;
Fix handling of empty ranges and NULLs in BRIN BRIN indexes did not properly distinguish between summaries for empty (no rows) and all-NULL ranges, treating them as essentially the same thing. Summaries were initialized with allnulls=true, and opclasses simply reset allnulls to false when processing the first non-NULL value. This however produces incorrect results if the range starts with a NULL value (or a sequence of NULL values), in which case we forget the range contains NULL values when adding the first non-NULL value. This happens because the allnulls flag is used for two separate purposes - to mark empty ranges (not representing any rows yet) and ranges containing only NULL values. Opclasses don't know which of these cases it is, and so don't know whether to set hasnulls=true. Setting the flag in both cases would make it correct, but it would also make BRIN indexes useless for queries with IS NULL clauses. All ranges start empty (and thus allnulls=true), so all ranges would end up with either allnulls=true or hasnulls=true. The severity of the issue is somewhat reduced by the fact that it only happens when adding values to an existing summary with allnulls=true. This can happen e.g. for small tables (because a summary for the first range exists for all BRIN indexes), or for tables with large fraction of NULL values in the indexed columns. Bulk summarization (e.g. during CREATE INDEX or automatic summarization) that processes all values at once is not affected by this issue. In this case the flags were updated in a slightly different way, not forgetting the NULL values. To identify empty ranges we use a new flag, stored in an unused bit in the BRIN tuple header so the on-disk format remains the same. A matching flag is added to BrinMemTuple, into a 3B gap after bt_placeholder. That means there's no risk of ABI breakage, although we don't actually pass the BrinMemTuple to any public API. We could also skip storing index tuples for empty summaries, but then we'd have to always process such ranges - even if there are no rows in large parts of the table (e.g. after a bulk DELETE), it would still require reading the pages etc. So we store them, but ignore them when building the bitmap. Backpatch to 11. The issue exists since BRIN indexes were introduced in 9.5, but older releases are already EOL. Backpatch-through: 11 Reviewed-by: Justin Pryzby, Matthias van de Meent, Alvaro Herrera Discussion: https://postgr.es/m/402430e4-7d9d-6cf1-09ef-464d80afff3b@enterprisedb.com
2023-05-19 00:00:22 +02:00
/* If the range starts empty, we're certainly going to modify it. */
bool modified = dtup->bt_empty_range;
/*
* Compare the key values of the new tuple to the stored index values; our
* deformed tuple will get updated if the new tuple doesn't fit the
* original range (note this means we can't break out of the loop early).
* Make a note of whether this happens, so that we know to insert the
* modified tuple later.
*/
for (keyno = 0; keyno < bdesc->bd_tupdesc->natts; keyno++)
{
Datum result;
BrinValues *bval;
FmgrInfo *addValue;
Fix handling of empty ranges and NULLs in BRIN BRIN indexes did not properly distinguish between summaries for empty (no rows) and all-NULL ranges, treating them as essentially the same thing. Summaries were initialized with allnulls=true, and opclasses simply reset allnulls to false when processing the first non-NULL value. This however produces incorrect results if the range starts with a NULL value (or a sequence of NULL values), in which case we forget the range contains NULL values when adding the first non-NULL value. This happens because the allnulls flag is used for two separate purposes - to mark empty ranges (not representing any rows yet) and ranges containing only NULL values. Opclasses don't know which of these cases it is, and so don't know whether to set hasnulls=true. Setting the flag in both cases would make it correct, but it would also make BRIN indexes useless for queries with IS NULL clauses. All ranges start empty (and thus allnulls=true), so all ranges would end up with either allnulls=true or hasnulls=true. The severity of the issue is somewhat reduced by the fact that it only happens when adding values to an existing summary with allnulls=true. This can happen e.g. for small tables (because a summary for the first range exists for all BRIN indexes), or for tables with large fraction of NULL values in the indexed columns. Bulk summarization (e.g. during CREATE INDEX or automatic summarization) that processes all values at once is not affected by this issue. In this case the flags were updated in a slightly different way, not forgetting the NULL values. To identify empty ranges we use a new flag, stored in an unused bit in the BRIN tuple header so the on-disk format remains the same. A matching flag is added to BrinMemTuple, into a 3B gap after bt_placeholder. That means there's no risk of ABI breakage, although we don't actually pass the BrinMemTuple to any public API. We could also skip storing index tuples for empty summaries, but then we'd have to always process such ranges - even if there are no rows in large parts of the table (e.g. after a bulk DELETE), it would still require reading the pages etc. So we store them, but ignore them when building the bitmap. Backpatch to 11. The issue exists since BRIN indexes were introduced in 9.5, but older releases are already EOL. Backpatch-through: 11 Reviewed-by: Justin Pryzby, Matthias van de Meent, Alvaro Herrera Discussion: https://postgr.es/m/402430e4-7d9d-6cf1-09ef-464d80afff3b@enterprisedb.com
2023-05-19 00:00:22 +02:00
bool has_nulls;
bval = &dtup->bt_columns[keyno];
Fix handling of empty ranges and NULLs in BRIN BRIN indexes did not properly distinguish between summaries for empty (no rows) and all-NULL ranges, treating them as essentially the same thing. Summaries were initialized with allnulls=true, and opclasses simply reset allnulls to false when processing the first non-NULL value. This however produces incorrect results if the range starts with a NULL value (or a sequence of NULL values), in which case we forget the range contains NULL values when adding the first non-NULL value. This happens because the allnulls flag is used for two separate purposes - to mark empty ranges (not representing any rows yet) and ranges containing only NULL values. Opclasses don't know which of these cases it is, and so don't know whether to set hasnulls=true. Setting the flag in both cases would make it correct, but it would also make BRIN indexes useless for queries with IS NULL clauses. All ranges start empty (and thus allnulls=true), so all ranges would end up with either allnulls=true or hasnulls=true. The severity of the issue is somewhat reduced by the fact that it only happens when adding values to an existing summary with allnulls=true. This can happen e.g. for small tables (because a summary for the first range exists for all BRIN indexes), or for tables with large fraction of NULL values in the indexed columns. Bulk summarization (e.g. during CREATE INDEX or automatic summarization) that processes all values at once is not affected by this issue. In this case the flags were updated in a slightly different way, not forgetting the NULL values. To identify empty ranges we use a new flag, stored in an unused bit in the BRIN tuple header so the on-disk format remains the same. A matching flag is added to BrinMemTuple, into a 3B gap after bt_placeholder. That means there's no risk of ABI breakage, although we don't actually pass the BrinMemTuple to any public API. We could also skip storing index tuples for empty summaries, but then we'd have to always process such ranges - even if there are no rows in large parts of the table (e.g. after a bulk DELETE), it would still require reading the pages etc. So we store them, but ignore them when building the bitmap. Backpatch to 11. The issue exists since BRIN indexes were introduced in 9.5, but older releases are already EOL. Backpatch-through: 11 Reviewed-by: Justin Pryzby, Matthias van de Meent, Alvaro Herrera Discussion: https://postgr.es/m/402430e4-7d9d-6cf1-09ef-464d80afff3b@enterprisedb.com
2023-05-19 00:00:22 +02:00
/*
* Does the range have actual NULL values? Either of the flags can be
* set, but we ignore the state before adding first row.
Fix handling of empty ranges and NULLs in BRIN BRIN indexes did not properly distinguish between summaries for empty (no rows) and all-NULL ranges, treating them as essentially the same thing. Summaries were initialized with allnulls=true, and opclasses simply reset allnulls to false when processing the first non-NULL value. This however produces incorrect results if the range starts with a NULL value (or a sequence of NULL values), in which case we forget the range contains NULL values when adding the first non-NULL value. This happens because the allnulls flag is used for two separate purposes - to mark empty ranges (not representing any rows yet) and ranges containing only NULL values. Opclasses don't know which of these cases it is, and so don't know whether to set hasnulls=true. Setting the flag in both cases would make it correct, but it would also make BRIN indexes useless for queries with IS NULL clauses. All ranges start empty (and thus allnulls=true), so all ranges would end up with either allnulls=true or hasnulls=true. The severity of the issue is somewhat reduced by the fact that it only happens when adding values to an existing summary with allnulls=true. This can happen e.g. for small tables (because a summary for the first range exists for all BRIN indexes), or for tables with large fraction of NULL values in the indexed columns. Bulk summarization (e.g. during CREATE INDEX or automatic summarization) that processes all values at once is not affected by this issue. In this case the flags were updated in a slightly different way, not forgetting the NULL values. To identify empty ranges we use a new flag, stored in an unused bit in the BRIN tuple header so the on-disk format remains the same. A matching flag is added to BrinMemTuple, into a 3B gap after bt_placeholder. That means there's no risk of ABI breakage, although we don't actually pass the BrinMemTuple to any public API. We could also skip storing index tuples for empty summaries, but then we'd have to always process such ranges - even if there are no rows in large parts of the table (e.g. after a bulk DELETE), it would still require reading the pages etc. So we store them, but ignore them when building the bitmap. Backpatch to 11. The issue exists since BRIN indexes were introduced in 9.5, but older releases are already EOL. Backpatch-through: 11 Reviewed-by: Justin Pryzby, Matthias van de Meent, Alvaro Herrera Discussion: https://postgr.es/m/402430e4-7d9d-6cf1-09ef-464d80afff3b@enterprisedb.com
2023-05-19 00:00:22 +02:00
*
* We have to remember this, because we'll modify the flags and we
* need to know if the range started as empty.
*/
has_nulls = ((!dtup->bt_empty_range) &&
(bval->bv_hasnulls || bval->bv_allnulls));
/*
* If the value we're adding is NULL, handle it locally. Otherwise
* call the BRIN_PROCNUM_ADDVALUE procedure.
*/
if (bdesc->bd_info[keyno]->oi_regular_nulls && nulls[keyno])
{
/*
* If the new value is null, we record that we saw it if it's the
* first one; otherwise, there's nothing to do.
*/
if (!bval->bv_hasnulls)
{
bval->bv_hasnulls = true;
modified = true;
}
continue;
}
addValue = index_getprocinfo(idxRel, keyno + 1,
BRIN_PROCNUM_ADDVALUE);
result = FunctionCall4Coll(addValue,
idxRel->rd_indcollation[keyno],
PointerGetDatum(bdesc),
PointerGetDatum(bval),
values[keyno],
nulls[keyno]);
/* if that returned true, we need to insert the updated tuple */
modified |= DatumGetBool(result);
Fix handling of empty ranges and NULLs in BRIN BRIN indexes did not properly distinguish between summaries for empty (no rows) and all-NULL ranges, treating them as essentially the same thing. Summaries were initialized with allnulls=true, and opclasses simply reset allnulls to false when processing the first non-NULL value. This however produces incorrect results if the range starts with a NULL value (or a sequence of NULL values), in which case we forget the range contains NULL values when adding the first non-NULL value. This happens because the allnulls flag is used for two separate purposes - to mark empty ranges (not representing any rows yet) and ranges containing only NULL values. Opclasses don't know which of these cases it is, and so don't know whether to set hasnulls=true. Setting the flag in both cases would make it correct, but it would also make BRIN indexes useless for queries with IS NULL clauses. All ranges start empty (and thus allnulls=true), so all ranges would end up with either allnulls=true or hasnulls=true. The severity of the issue is somewhat reduced by the fact that it only happens when adding values to an existing summary with allnulls=true. This can happen e.g. for small tables (because a summary for the first range exists for all BRIN indexes), or for tables with large fraction of NULL values in the indexed columns. Bulk summarization (e.g. during CREATE INDEX or automatic summarization) that processes all values at once is not affected by this issue. In this case the flags were updated in a slightly different way, not forgetting the NULL values. To identify empty ranges we use a new flag, stored in an unused bit in the BRIN tuple header so the on-disk format remains the same. A matching flag is added to BrinMemTuple, into a 3B gap after bt_placeholder. That means there's no risk of ABI breakage, although we don't actually pass the BrinMemTuple to any public API. We could also skip storing index tuples for empty summaries, but then we'd have to always process such ranges - even if there are no rows in large parts of the table (e.g. after a bulk DELETE), it would still require reading the pages etc. So we store them, but ignore them when building the bitmap. Backpatch to 11. The issue exists since BRIN indexes were introduced in 9.5, but older releases are already EOL. Backpatch-through: 11 Reviewed-by: Justin Pryzby, Matthias van de Meent, Alvaro Herrera Discussion: https://postgr.es/m/402430e4-7d9d-6cf1-09ef-464d80afff3b@enterprisedb.com
2023-05-19 00:00:22 +02:00
/*
* If the range was had actual NULL values (i.e. did not start empty),
* make sure we don't forget about the NULL values. Either the
* allnulls flag is still set to true, or (if the opclass cleared it)
* we need to set hasnulls=true.
Fix handling of empty ranges and NULLs in BRIN BRIN indexes did not properly distinguish between summaries for empty (no rows) and all-NULL ranges, treating them as essentially the same thing. Summaries were initialized with allnulls=true, and opclasses simply reset allnulls to false when processing the first non-NULL value. This however produces incorrect results if the range starts with a NULL value (or a sequence of NULL values), in which case we forget the range contains NULL values when adding the first non-NULL value. This happens because the allnulls flag is used for two separate purposes - to mark empty ranges (not representing any rows yet) and ranges containing only NULL values. Opclasses don't know which of these cases it is, and so don't know whether to set hasnulls=true. Setting the flag in both cases would make it correct, but it would also make BRIN indexes useless for queries with IS NULL clauses. All ranges start empty (and thus allnulls=true), so all ranges would end up with either allnulls=true or hasnulls=true. The severity of the issue is somewhat reduced by the fact that it only happens when adding values to an existing summary with allnulls=true. This can happen e.g. for small tables (because a summary for the first range exists for all BRIN indexes), or for tables with large fraction of NULL values in the indexed columns. Bulk summarization (e.g. during CREATE INDEX or automatic summarization) that processes all values at once is not affected by this issue. In this case the flags were updated in a slightly different way, not forgetting the NULL values. To identify empty ranges we use a new flag, stored in an unused bit in the BRIN tuple header so the on-disk format remains the same. A matching flag is added to BrinMemTuple, into a 3B gap after bt_placeholder. That means there's no risk of ABI breakage, although we don't actually pass the BrinMemTuple to any public API. We could also skip storing index tuples for empty summaries, but then we'd have to always process such ranges - even if there are no rows in large parts of the table (e.g. after a bulk DELETE), it would still require reading the pages etc. So we store them, but ignore them when building the bitmap. Backpatch to 11. The issue exists since BRIN indexes were introduced in 9.5, but older releases are already EOL. Backpatch-through: 11 Reviewed-by: Justin Pryzby, Matthias van de Meent, Alvaro Herrera Discussion: https://postgr.es/m/402430e4-7d9d-6cf1-09ef-464d80afff3b@enterprisedb.com
2023-05-19 00:00:22 +02:00
*
* XXX This can only happen when the opclass modified the tuple, so
* the modified flag should be set.
Fix handling of empty ranges and NULLs in BRIN BRIN indexes did not properly distinguish between summaries for empty (no rows) and all-NULL ranges, treating them as essentially the same thing. Summaries were initialized with allnulls=true, and opclasses simply reset allnulls to false when processing the first non-NULL value. This however produces incorrect results if the range starts with a NULL value (or a sequence of NULL values), in which case we forget the range contains NULL values when adding the first non-NULL value. This happens because the allnulls flag is used for two separate purposes - to mark empty ranges (not representing any rows yet) and ranges containing only NULL values. Opclasses don't know which of these cases it is, and so don't know whether to set hasnulls=true. Setting the flag in both cases would make it correct, but it would also make BRIN indexes useless for queries with IS NULL clauses. All ranges start empty (and thus allnulls=true), so all ranges would end up with either allnulls=true or hasnulls=true. The severity of the issue is somewhat reduced by the fact that it only happens when adding values to an existing summary with allnulls=true. This can happen e.g. for small tables (because a summary for the first range exists for all BRIN indexes), or for tables with large fraction of NULL values in the indexed columns. Bulk summarization (e.g. during CREATE INDEX or automatic summarization) that processes all values at once is not affected by this issue. In this case the flags were updated in a slightly different way, not forgetting the NULL values. To identify empty ranges we use a new flag, stored in an unused bit in the BRIN tuple header so the on-disk format remains the same. A matching flag is added to BrinMemTuple, into a 3B gap after bt_placeholder. That means there's no risk of ABI breakage, although we don't actually pass the BrinMemTuple to any public API. We could also skip storing index tuples for empty summaries, but then we'd have to always process such ranges - even if there are no rows in large parts of the table (e.g. after a bulk DELETE), it would still require reading the pages etc. So we store them, but ignore them when building the bitmap. Backpatch to 11. The issue exists since BRIN indexes were introduced in 9.5, but older releases are already EOL. Backpatch-through: 11 Reviewed-by: Justin Pryzby, Matthias van de Meent, Alvaro Herrera Discussion: https://postgr.es/m/402430e4-7d9d-6cf1-09ef-464d80afff3b@enterprisedb.com
2023-05-19 00:00:22 +02:00
*/
if (has_nulls && !(bval->bv_hasnulls || bval->bv_allnulls))
{
Assert(modified);
bval->bv_hasnulls = true;
}
}
Fix handling of empty ranges and NULLs in BRIN BRIN indexes did not properly distinguish between summaries for empty (no rows) and all-NULL ranges, treating them as essentially the same thing. Summaries were initialized with allnulls=true, and opclasses simply reset allnulls to false when processing the first non-NULL value. This however produces incorrect results if the range starts with a NULL value (or a sequence of NULL values), in which case we forget the range contains NULL values when adding the first non-NULL value. This happens because the allnulls flag is used for two separate purposes - to mark empty ranges (not representing any rows yet) and ranges containing only NULL values. Opclasses don't know which of these cases it is, and so don't know whether to set hasnulls=true. Setting the flag in both cases would make it correct, but it would also make BRIN indexes useless for queries with IS NULL clauses. All ranges start empty (and thus allnulls=true), so all ranges would end up with either allnulls=true or hasnulls=true. The severity of the issue is somewhat reduced by the fact that it only happens when adding values to an existing summary with allnulls=true. This can happen e.g. for small tables (because a summary for the first range exists for all BRIN indexes), or for tables with large fraction of NULL values in the indexed columns. Bulk summarization (e.g. during CREATE INDEX or automatic summarization) that processes all values at once is not affected by this issue. In this case the flags were updated in a slightly different way, not forgetting the NULL values. To identify empty ranges we use a new flag, stored in an unused bit in the BRIN tuple header so the on-disk format remains the same. A matching flag is added to BrinMemTuple, into a 3B gap after bt_placeholder. That means there's no risk of ABI breakage, although we don't actually pass the BrinMemTuple to any public API. We could also skip storing index tuples for empty summaries, but then we'd have to always process such ranges - even if there are no rows in large parts of the table (e.g. after a bulk DELETE), it would still require reading the pages etc. So we store them, but ignore them when building the bitmap. Backpatch to 11. The issue exists since BRIN indexes were introduced in 9.5, but older releases are already EOL. Backpatch-through: 11 Reviewed-by: Justin Pryzby, Matthias van de Meent, Alvaro Herrera Discussion: https://postgr.es/m/402430e4-7d9d-6cf1-09ef-464d80afff3b@enterprisedb.com
2023-05-19 00:00:22 +02:00
/*
* After updating summaries for all the keys, mark it as not empty.
*
* If we're actually changing the flag value (i.e. tuple started as
* empty), we should have modified the tuple. So we should not see empty
* range that was not modified.
Fix handling of empty ranges and NULLs in BRIN BRIN indexes did not properly distinguish between summaries for empty (no rows) and all-NULL ranges, treating them as essentially the same thing. Summaries were initialized with allnulls=true, and opclasses simply reset allnulls to false when processing the first non-NULL value. This however produces incorrect results if the range starts with a NULL value (or a sequence of NULL values), in which case we forget the range contains NULL values when adding the first non-NULL value. This happens because the allnulls flag is used for two separate purposes - to mark empty ranges (not representing any rows yet) and ranges containing only NULL values. Opclasses don't know which of these cases it is, and so don't know whether to set hasnulls=true. Setting the flag in both cases would make it correct, but it would also make BRIN indexes useless for queries with IS NULL clauses. All ranges start empty (and thus allnulls=true), so all ranges would end up with either allnulls=true or hasnulls=true. The severity of the issue is somewhat reduced by the fact that it only happens when adding values to an existing summary with allnulls=true. This can happen e.g. for small tables (because a summary for the first range exists for all BRIN indexes), or for tables with large fraction of NULL values in the indexed columns. Bulk summarization (e.g. during CREATE INDEX or automatic summarization) that processes all values at once is not affected by this issue. In this case the flags were updated in a slightly different way, not forgetting the NULL values. To identify empty ranges we use a new flag, stored in an unused bit in the BRIN tuple header so the on-disk format remains the same. A matching flag is added to BrinMemTuple, into a 3B gap after bt_placeholder. That means there's no risk of ABI breakage, although we don't actually pass the BrinMemTuple to any public API. We could also skip storing index tuples for empty summaries, but then we'd have to always process such ranges - even if there are no rows in large parts of the table (e.g. after a bulk DELETE), it would still require reading the pages etc. So we store them, but ignore them when building the bitmap. Backpatch to 11. The issue exists since BRIN indexes were introduced in 9.5, but older releases are already EOL. Backpatch-through: 11 Reviewed-by: Justin Pryzby, Matthias van de Meent, Alvaro Herrera Discussion: https://postgr.es/m/402430e4-7d9d-6cf1-09ef-464d80afff3b@enterprisedb.com
2023-05-19 00:00:22 +02:00
*/
Assert(!dtup->bt_empty_range || modified);
dtup->bt_empty_range = false;
return modified;
}
static bool
check_null_keys(BrinValues *bval, ScanKey *nullkeys, int nnullkeys)
{
int keyno;
/*
* First check if there are any IS [NOT] NULL scan keys, and if we're
* violating them.
*/
for (keyno = 0; keyno < nnullkeys; keyno++)
{
ScanKey key = nullkeys[keyno];
Assert(key->sk_attno == bval->bv_attno);
/* Handle only IS NULL/IS NOT NULL tests */
if (!(key->sk_flags & SK_ISNULL))
continue;
if (key->sk_flags & SK_SEARCHNULL)
{
/* IS NULL scan key, but range has no NULLs */
if (!bval->bv_allnulls && !bval->bv_hasnulls)
return false;
}
else if (key->sk_flags & SK_SEARCHNOTNULL)
{
/*
* For IS NOT NULL, we can only skip ranges that are known to have
* only nulls.
*/
if (bval->bv_allnulls)
return false;
}
else
{
/*
* Neither IS NULL nor IS NOT NULL was used; assume all indexable
* operators are strict and thus return false with NULL value in
* the scan key.
*/
return false;
}
}
return true;
}