postgresql/src/backend/optimizer/path/allpaths.c

1026 lines
28 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* allpaths.c
* Routines to find possible search paths for processing a query
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/optimizer/path/allpaths.c,v 1.124 2005/03/10 23:21:21 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/geqo.h"
1999-07-16 07:00:38 +02:00
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/var.h"
#include "parser/parsetree.h"
#include "parser/parse_clause.h"
#include "rewrite/rewriteManip.h"
/* These parameters are set by GUC */
bool enable_geqo = false; /* just in case GUC doesn't set it */
int geqo_threshold;
static void set_base_rel_pathlists(Query *root);
static void set_plain_rel_pathlist(Query *root, RelOptInfo *rel,
2001-03-22 05:01:46 +01:00
RangeTblEntry *rte);
static void set_inherited_rel_pathlist(Query *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte,
List *inheritlist);
static void set_subquery_pathlist(Query *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
static void set_function_pathlist(Query *root, RelOptInfo *rel,
2002-09-04 22:31:48 +02:00
RangeTblEntry *rte);
static RelOptInfo *make_one_rel_by_joins(Query *root, int levels_needed,
2001-03-22 05:01:46 +01:00
List *initial_rels);
static bool subquery_is_pushdown_safe(Query *subquery, Query *topquery,
2003-08-04 02:43:34 +02:00
bool *differentTypes);
static bool recurse_pushdown_safe(Node *setOp, Query *topquery,
2003-08-04 02:43:34 +02:00
bool *differentTypes);
static void compare_tlist_datatypes(List *tlist, List *colTypes,
2003-08-04 02:43:34 +02:00
bool *differentTypes);
static bool qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual,
2003-08-04 02:43:34 +02:00
bool *differentTypes);
static void subquery_push_qual(Query *subquery, List *rtable,
2004-08-29 07:07:03 +02:00
Index rti, Node *qual);
static void recurse_push_qual(Node *setOp, Query *topquery,
2004-08-29 07:07:03 +02:00
List *rtable, Index rti, Node *qual);
/*
* make_one_rel
* Finds all possible access paths for executing a query, returning a
* single rel that represents the join of all base rels in the query.
*/
RelOptInfo *
make_one_rel(Query *root)
{
RelOptInfo *rel;
/*
* Generate access paths for the base rels.
*/
set_base_rel_pathlists(root);
/*
* Generate access paths for the entire join tree.
*/
Assert(root->jointree != NULL && IsA(root->jointree, FromExpr));
rel = make_fromexpr_rel(root, root->jointree);
/*
* The result should join all the query's base rels.
*/
Assert(bms_num_members(rel->relids) == list_length(root->base_rel_list));
return rel;
}
/*
* set_base_rel_pathlists
* Finds all paths available for scanning each base-relation entry.
* Sequential scan and any available indices are considered.
* Each useful path is attached to its relation's 'pathlist' field.
*/
static void
set_base_rel_pathlists(Query *root)
{
2004-08-29 07:07:03 +02:00
ListCell *l;
foreach(l, root->base_rel_list)
{
RelOptInfo *rel = (RelOptInfo *) lfirst(l);
Index rti = rel->relid;
RangeTblEntry *rte;
List *inheritlist;
Assert(rti > 0); /* better be base rel */
rte = rt_fetch(rti, root->rtable);
if (rel->rtekind == RTE_SUBQUERY)
{
/* Subquery --- generate a separate plan for it */
set_subquery_pathlist(root, rel, rti, rte);
}
else if (rel->rtekind == RTE_FUNCTION)
{
/* RangeFunction --- generate a separate plan for it */
set_function_pathlist(root, rel, rte);
}
else if ((inheritlist = expand_inherited_rtentry(root, rti)) != NIL)
{
/* Relation is root of an inheritance tree, process specially */
set_inherited_rel_pathlist(root, rel, rti, rte, inheritlist);
}
else
{
/* Plain relation */
set_plain_rel_pathlist(root, rel, rte);
}
#ifdef OPTIMIZER_DEBUG
debug_print_rel(root, rel);
#endif
}
}
/*
* set_plain_rel_pathlist
* Build access paths for a plain relation (no subquery, no inheritance)
*/
static void
set_plain_rel_pathlist(Query *root, RelOptInfo *rel, RangeTblEntry *rte)
{
/* Mark rel with estimated output rows, width, etc */
set_baserel_size_estimates(root, rel);
/* Test any partial indexes of rel for applicability */
check_partial_indexes(root, rel);
/*
2004-08-29 07:07:03 +02:00
* Check to see if we can extract any restriction conditions from join
* quals that are OR-of-AND structures. If so, add them to the rel's
* restriction list, and recompute the size estimates.
*/
if (create_or_index_quals(root, rel))
set_baserel_size_estimates(root, rel);
/*
* Generate paths and add them to the rel's pathlist.
*
2001-03-22 05:01:46 +01:00
* Note: add_path() will discard any paths that are dominated by another
* available path, keeping only those paths that are superior along at
* least one dimension of cost or sortedness.
*/
/* Consider sequential scan */
add_path(rel, create_seqscan_path(root, rel));
/* Consider TID scans */
create_tidscan_paths(root, rel);
/* Consider index paths for both simple and OR index clauses */
create_index_paths(root, rel);
create_or_index_paths(root, rel);
/* Now find the cheapest of the paths for this rel */
set_cheapest(rel);
}
/*
* set_inherited_rel_pathlist
* Build access paths for a inheritance tree rooted at rel
*
* inheritlist is a list of RT indexes of all tables in the inheritance tree,
* including a duplicate of the parent itself. Note we will not come here
* unless there's at least one child in addition to the parent.
*
* NOTE: the passed-in rel and RTE will henceforth represent the appended
* result of the whole inheritance tree. The members of inheritlist represent
* the individual tables --- in particular, the inheritlist member that is a
* duplicate of the parent RTE represents the parent table alone.
* We will generate plans to scan the individual tables that refer to
* the inheritlist RTEs, whereas Vars elsewhere in the plan tree that
* refer to the original RTE are taken to refer to the append output.
* In particular, this means we have separate RelOptInfos for the parent
* table and for the append output, which is a good thing because they're
* not the same size.
*/
static void
set_inherited_rel_pathlist(Query *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte,
List *inheritlist)
{
int parentRTindex = rti;
Oid parentOID = rte->relid;
List *subpaths = NIL;
ListCell *il;
/*
2001-03-22 05:01:46 +01:00
* XXX for now, can't handle inherited expansion of FOR UPDATE; can we
* do better?
*/
if (list_member_int(root->rowMarks, parentRTindex))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("SELECT FOR UPDATE is not supported for inheritance queries")));
/*
* Initialize to compute size estimates for whole inheritance tree
*/
rel->rows = 0;
rel->width = 0;
/*
2001-03-22 05:01:46 +01:00
* Generate access paths for each table in the tree (parent AND
* children), and pick the cheapest path for each table.
*/
foreach(il, inheritlist)
{
int childRTindex = lfirst_int(il);
RangeTblEntry *childrte;
2001-03-22 05:01:46 +01:00
Oid childOID;
RelOptInfo *childrel;
ListCell *parentvars;
ListCell *childvars;
childrte = rt_fetch(childRTindex, root->rtable);
childOID = childrte->relid;
/*
* Make a RelOptInfo for the child so we can do planning. Do NOT
* attach the RelOptInfo to the query's base_rel_list, however,
* since the child is not part of the main join tree. Instead,
* the child RelOptInfo is added to other_rel_list.
*/
childrel = build_other_rel(root, childRTindex);
/*
2001-03-22 05:01:46 +01:00
* Copy the parent's targetlist and restriction quals to the
* child, with attribute-number adjustment as needed. We don't
* bother to copy the join quals, since we can't do any joining of
* the individual tables. Also, we just zap attr_needed rather
* than trying to adjust it; it won't be looked at in the child.
*/
childrel->reltargetlist = (List *)
adjust_inherited_attrs((Node *) rel->reltargetlist,
parentRTindex,
parentOID,
childRTindex,
childOID);
childrel->attr_needed = NULL;
childrel->baserestrictinfo = (List *)
adjust_inherited_attrs((Node *) rel->baserestrictinfo,
parentRTindex,
parentOID,
childRTindex,
childOID);
/*
* Now compute child access paths, and save the cheapest.
*/
set_plain_rel_pathlist(root, childrel, childrte);
subpaths = lappend(subpaths, childrel->cheapest_total_path);
/*
* Propagate size information from the child back to the parent.
* For simplicity, we use the largest widths from any child as the
* parent estimates.
*/
rel->rows += childrel->rows;
if (childrel->width > rel->width)
rel->width = childrel->width;
2003-08-04 02:43:34 +02:00
forboth(parentvars, rel->reltargetlist,
childvars, childrel->reltargetlist)
{
2003-08-04 02:43:34 +02:00
Var *parentvar = (Var *) lfirst(parentvars);
Var *childvar = (Var *) lfirst(childvars);
2004-08-29 07:07:03 +02:00
if (IsA(parentvar, Var) &&IsA(childvar, Var))
{
int pndx = parentvar->varattno - rel->min_attr;
int cndx = childvar->varattno - childrel->min_attr;
if (childrel->attr_widths[cndx] > rel->attr_widths[pndx])
rel->attr_widths[pndx] = childrel->attr_widths[cndx];
}
}
}
/*
2001-03-22 05:01:46 +01:00
* Finally, build Append path and install it as the only access path
* for the parent rel.
*/
add_path(rel, (Path *) create_append_path(rel, subpaths));
/* Select cheapest path (pretty easy in this case...) */
set_cheapest(rel);
}
/*
* set_subquery_pathlist
* Build the (single) access path for a subquery RTE
*/
static void
set_subquery_pathlist(Query *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
Query *subquery = rte->subquery;
bool *differentTypes;
List *pathkeys;
/* We need a workspace for keeping track of set-op type coercions */
differentTypes = (bool *)
palloc0((list_length(subquery->targetList) + 1) * sizeof(bool));
/*
* If there are any restriction clauses that have been attached to the
* subquery relation, consider pushing them down to become WHERE or
* HAVING quals of the subquery itself. This transformation is useful
* because it may allow us to generate a better plan for the subquery
* than evaluating all the subquery output rows and then filtering them.
*
* There are several cases where we cannot push down clauses.
* Restrictions involving the subquery are checked by
2003-08-04 02:43:34 +02:00
* subquery_is_pushdown_safe(). Restrictions on individual clauses
* are checked by qual_is_pushdown_safe().
*
* Non-pushed-down clauses will get evaluated as qpquals of the
* SubqueryScan node.
*
* XXX Are there any cases where we want to make a policy decision not to
* push down a pushable qual, because it'd result in a worse plan?
*/
if (rel->baserestrictinfo != NIL &&
subquery_is_pushdown_safe(subquery, subquery, differentTypes))
{
/* OK to consider pushing down individual quals */
List *upperrestrictlist = NIL;
ListCell *l;
foreach(l, rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
Node *clause = (Node *) rinfo->clause;
if (qual_is_pushdown_safe(subquery, rti, clause, differentTypes))
{
/* Push it down */
subquery_push_qual(subquery, root->rtable, rti, clause);
}
else
{
/* Keep it in the upper query */
upperrestrictlist = lappend(upperrestrictlist, rinfo);
}
}
rel->baserestrictinfo = upperrestrictlist;
}
pfree(differentTypes);
/* Generate the plan for the subquery */
rel->subplan = subquery_planner(subquery, 0.0 /* default case */ );
/* Copy number of output rows from subplan */
rel->tuples = rel->subplan->plan_rows;
/* Mark rel with estimated output rows, width, etc */
set_baserel_size_estimates(root, rel);
/* Convert subquery pathkeys to outer representation */
pathkeys = build_subquery_pathkeys(root, rel, subquery);
/* Generate appropriate path */
add_path(rel, create_subqueryscan_path(rel, pathkeys));
/* Select cheapest path (pretty easy in this case...) */
set_cheapest(rel);
}
/*
* set_function_pathlist
* Build the (single) access path for a function RTE
*/
static void
set_function_pathlist(Query *root, RelOptInfo *rel, RangeTblEntry *rte)
{
/* Mark rel with estimated output rows, width, etc */
set_function_size_estimates(root, rel);
/* Generate appropriate path */
add_path(rel, create_functionscan_path(root, rel));
/* Select cheapest path (pretty easy in this case...) */
set_cheapest(rel);
}
/*
* make_fromexpr_rel
* Build access paths for a FromExpr jointree node.
*/
RelOptInfo *
make_fromexpr_rel(Query *root, FromExpr *from)
{
int levels_needed;
List *initial_rels = NIL;
ListCell *jt;
/*
2001-03-22 05:01:46 +01:00
* Count the number of child jointree nodes. This is the depth of the
* dynamic-programming algorithm we must employ to consider all ways
* of joining the child nodes.
*/
levels_needed = list_length(from->fromlist);
if (levels_needed <= 0)
return NULL; /* nothing to do? */
/*
* Construct a list of rels corresponding to the child jointree nodes.
* This may contain both base rels and rels constructed according to
* explicit JOIN directives.
*/
foreach(jt, from->fromlist)
{
Node *jtnode = (Node *) lfirst(jt);
initial_rels = lappend(initial_rels,
make_jointree_rel(root, jtnode));
}
if (levels_needed == 1)
{
/*
* Single jointree node, so we're done.
*/
return (RelOptInfo *) linitial(initial_rels);
}
else
{
/*
* Consider the different orders in which we could join the rels,
* using either GEQO or regular optimizer.
*/
if (enable_geqo && levels_needed >= geqo_threshold)
return geqo(root, levels_needed, initial_rels);
else
return make_one_rel_by_joins(root, levels_needed, initial_rels);
}
}
/*
* make_one_rel_by_joins
* Find all possible joinpaths for a query by successively finding ways
* to join component relations into join relations.
*
* 'levels_needed' is the number of iterations needed, ie, the number of
* independent jointree items in the query. This is > 1.
*
* 'initial_rels' is a list of RelOptInfo nodes for each independent
2001-03-22 05:01:46 +01:00
* jointree item. These are the components to be joined together.
*
* Returns the final level of join relations, i.e., the relation that is
* the result of joining all the original relations together.
*/
static RelOptInfo *
make_one_rel_by_joins(Query *root, int levels_needed, List *initial_rels)
{
List **joinitems;
int lev;
1998-08-07 07:02:32 +02:00
RelOptInfo *rel;
/*
* We employ a simple "dynamic programming" algorithm: we first find
* all ways to build joins of two jointree items, then all ways to
* build joins of three items (from two-item joins and single items),
* then four-item joins, and so on until we have considered all ways
* to join all the items into one rel.
*
* joinitems[j] is a list of all the j-item rels. Initially we set
* joinitems[1] to represent all the single-jointree-item relations.
*/
joinitems = (List **) palloc0((levels_needed + 1) * sizeof(List *));
joinitems[1] = initial_rels;
for (lev = 2; lev <= levels_needed; lev++)
{
ListCell *x;
1999-05-25 18:15:34 +02:00
/*
* Determine all possible pairs of relations to be joined at this
* level, and build paths for making each one from every available
* pair of lower-level relations.
*/
joinitems[lev] = make_rels_by_joins(root, lev, joinitems);
/*
* Do cleanup work on each just-processed rel.
*/
foreach(x, joinitems[lev])
{
rel = (RelOptInfo *) lfirst(x);
1999-02-18 01:49:48 +01:00
/* Find and save the cheapest paths for this rel */
set_cheapest(rel);
1999-02-14 05:57:02 +01:00
#ifdef OPTIMIZER_DEBUG
debug_print_rel(root, rel);
#endif
}
}
/*
* We should have a single rel at the final level.
*/
if (joinitems[levels_needed] == NIL)
elog(ERROR, "failed to build any %d-way joins", levels_needed);
Assert(list_length(joinitems[levels_needed]) == 1);
rel = (RelOptInfo *) linitial(joinitems[levels_needed]);
return rel;
}
/*****************************************************************************
* PUSHING QUALS DOWN INTO SUBQUERIES
*****************************************************************************/
/*
* subquery_is_pushdown_safe - is a subquery safe for pushing down quals?
*
* subquery is the particular component query being checked. topquery
* is the top component of a set-operations tree (the same Query if no
* set-op is involved).
*
* Conditions checked here:
*
* 1. If the subquery has a LIMIT clause, we must not push down any quals,
* since that could change the set of rows returned.
*
* 2. If the subquery contains EXCEPT or EXCEPT ALL set ops we cannot push
* quals into it, because that would change the results.
*
* 3. For subqueries using UNION/UNION ALL/INTERSECT/INTERSECT ALL, we can
* push quals into each component query, but the quals can only reference
* subquery columns that suffer no type coercions in the set operation.
* Otherwise there are possible semantic gotchas. So, we check the
* component queries to see if any of them have different output types;
* differentTypes[k] is set true if column k has different type in any
* component.
*/
static bool
subquery_is_pushdown_safe(Query *subquery, Query *topquery,
bool *differentTypes)
{
SetOperationStmt *topop;
/* Check point 1 */
if (subquery->limitOffset != NULL || subquery->limitCount != NULL)
return false;
/* Are we at top level, or looking at a setop component? */
if (subquery == topquery)
{
/* Top level, so check any component queries */
if (subquery->setOperations != NULL)
if (!recurse_pushdown_safe(subquery->setOperations, topquery,
differentTypes))
return false;
}
else
{
/* Setop component must not have more components (too weird) */
if (subquery->setOperations != NULL)
return false;
/* Check whether setop component output types match top level */
topop = (SetOperationStmt *) topquery->setOperations;
Assert(topop && IsA(topop, SetOperationStmt));
compare_tlist_datatypes(subquery->targetList,
topop->colTypes,
differentTypes);
}
return true;
}
/*
* Helper routine to recurse through setOperations tree
*/
static bool
recurse_pushdown_safe(Node *setOp, Query *topquery,
bool *differentTypes)
{
if (IsA(setOp, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) setOp;
RangeTblEntry *rte = rt_fetch(rtr->rtindex, topquery->rtable);
Query *subquery = rte->subquery;
Assert(subquery != NULL);
return subquery_is_pushdown_safe(subquery, topquery, differentTypes);
}
else if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
/* EXCEPT is no good */
if (op->op == SETOP_EXCEPT)
return false;
/* Else recurse */
if (!recurse_pushdown_safe(op->larg, topquery, differentTypes))
return false;
if (!recurse_pushdown_safe(op->rarg, topquery, differentTypes))
return false;
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(setOp));
}
return true;
}
/*
* Compare tlist's datatypes against the list of set-operation result types.
* For any items that are different, mark the appropriate element of
* differentTypes[] to show that this column will have type conversions.
*/
static void
compare_tlist_datatypes(List *tlist, List *colTypes,
bool *differentTypes)
{
ListCell *l;
ListCell *colType = list_head(colTypes);
foreach(l, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(l);
if (tle->resdom->resjunk)
continue; /* ignore resjunk columns */
if (colType == NULL)
elog(ERROR, "wrong number of tlist entries");
if (tle->resdom->restype != lfirst_oid(colType))
differentTypes[tle->resdom->resno] = true;
colType = lnext(colType);
}
if (colType != NULL)
elog(ERROR, "wrong number of tlist entries");
}
/*
* qual_is_pushdown_safe - is a particular qual safe to push down?
*
* qual is a restriction clause applying to the given subquery (whose RTE
* has index rti in the parent query).
*
* Conditions checked here:
*
* 1. The qual must not contain any subselects (mainly because I'm not sure
* it will work correctly: sublinks will already have been transformed into
* subplans in the qual, but not in the subquery).
*
* 2. The qual must not refer to any subquery output columns that were
* found to have inconsistent types across a set operation tree by
* subquery_is_pushdown_safe().
*
* 3. If the subquery uses DISTINCT ON, we must not push down any quals that
* refer to non-DISTINCT output columns, because that could change the set
* of rows returned. This condition is vacuous for DISTINCT, because then
* there are no non-DISTINCT output columns, but unfortunately it's fairly
* expensive to tell the difference between DISTINCT and DISTINCT ON in the
* parsetree representation. It's cheaper to just make sure all the Vars
* in the qual refer to DISTINCT columns.
*
* 4. We must not push down any quals that refer to subselect outputs that
* return sets, else we'd introduce functions-returning-sets into the
* subquery's WHERE/HAVING quals.
*/
static bool
qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual,
bool *differentTypes)
{
bool safe = true;
List *vars;
ListCell *vl;
Bitmapset *tested = NULL;
/* Refuse subselects (point 1) */
if (contain_subplans(qual))
return false;
/*
* Examine all Vars used in clause; since it's a restriction clause,
* all such Vars must refer to subselect output columns.
*/
vars = pull_var_clause(qual, false);
foreach(vl, vars)
{
2003-08-04 02:43:34 +02:00
Var *var = (Var *) lfirst(vl);
TargetEntry *tle;
Assert(var->varno == rti);
2003-08-04 02:43:34 +02:00
/*
* We use a bitmapset to avoid testing the same attno more than
2003-08-04 02:43:34 +02:00
* once. (NB: this only works because subquery outputs can't have
* negative attnos.)
*/
if (bms_is_member(var->varattno, tested))
continue;
tested = bms_add_member(tested, var->varattno);
/* Check point 2 */
if (differentTypes[var->varattno])
{
safe = false;
break;
}
/* Must find the tlist element referenced by the Var */
tle = get_tle_by_resno(subquery->targetList, var->varattno);
Assert(tle != NULL);
Assert(!tle->resdom->resjunk);
/* If subquery uses DISTINCT or DISTINCT ON, check point 3 */
if (subquery->distinctClause != NIL &&
!targetIsInSortList(tle, subquery->distinctClause))
{
/* non-DISTINCT column, so fail */
safe = false;
break;
}
/* Refuse functions returning sets (point 4) */
if (expression_returns_set((Node *) tle->expr))
{
safe = false;
break;
}
}
list_free(vars);
bms_free(tested);
return safe;
}
/*
* subquery_push_qual - push down a qual that we have determined is safe
*/
static void
subquery_push_qual(Query *subquery, List *rtable, Index rti, Node *qual)
{
if (subquery->setOperations != NULL)
{
/* Recurse to push it separately to each component query */
recurse_push_qual(subquery->setOperations, subquery,
rtable, rti, qual);
}
else
{
/*
2002-09-04 22:31:48 +02:00
* We need to replace Vars in the qual (which must refer to
* outputs of the subquery) with copies of the subquery's
* targetlist expressions. Note that at this point, any uplevel
* Vars in the qual should have been replaced with Params, so they
* need no work.
*
2002-09-04 22:31:48 +02:00
* This step also ensures that when we are pushing into a setop tree,
* each component query gets its own copy of the qual.
*/
qual = ResolveNew(qual, rti, 0, rtable,
subquery->targetList,
CMD_SELECT, 0);
/*
* Now attach the qual to the proper place: normally WHERE, but
* if the subquery uses grouping or aggregation, put it in HAVING
* (since the qual really refers to the group-result rows).
*/
if (subquery->hasAggs || subquery->groupClause || subquery->havingQual)
subquery->havingQual = make_and_qual(subquery->havingQual, qual);
else
subquery->jointree->quals =
make_and_qual(subquery->jointree->quals, qual);
/*
2002-09-04 22:31:48 +02:00
* We need not change the subquery's hasAggs or hasSublinks flags,
* since we can't be pushing down any aggregates that weren't
* there before, and we don't push down subselects at all.
*/
}
}
/*
* Helper routine to recurse through setOperations tree
*/
static void
recurse_push_qual(Node *setOp, Query *topquery,
List *rtable, Index rti, Node *qual)
{
if (IsA(setOp, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) setOp;
RangeTblEntry *subrte = rt_fetch(rtr->rtindex, topquery->rtable);
Query *subquery = subrte->subquery;
Assert(subquery != NULL);
subquery_push_qual(subquery, rtable, rti, qual);
}
else if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
recurse_push_qual(op->larg, topquery, rtable, rti, qual);
recurse_push_qual(op->rarg, topquery, rtable, rti, qual);
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(setOp));
}
}
/*****************************************************************************
* DEBUG SUPPORT
*****************************************************************************/
#ifdef OPTIMIZER_DEBUG
static void
print_relids(Relids relids)
{
Relids tmprelids;
int x;
bool first = true;
tmprelids = bms_copy(relids);
while ((x = bms_first_member(tmprelids)) >= 0)
{
if (!first)
printf(" ");
printf("%d", x);
first = false;
}
bms_free(tmprelids);
}
static void
print_restrictclauses(Query *root, List *clauses)
{
ListCell *l;
foreach(l, clauses)
{
RestrictInfo *c = lfirst(l);
print_expr((Node *) c->clause, root->rtable);
if (lnext(l))
printf(", ");
}
}
static void
print_path(Query *root, Path *path, int indent)
{
const char *ptype;
bool join = false;
Path *subpath = NULL;
int i;
switch (nodeTag(path))
{
case T_Path:
ptype = "SeqScan";
break;
case T_IndexPath:
ptype = "IdxScan";
break;
case T_TidPath:
ptype = "TidScan";
break;
case T_AppendPath:
ptype = "Append";
break;
case T_ResultPath:
ptype = "Result";
subpath = ((ResultPath *) path)->subpath;
break;
case T_MaterialPath:
ptype = "Material";
subpath = ((MaterialPath *) path)->subpath;
break;
case T_UniquePath:
ptype = "Unique";
subpath = ((UniquePath *) path)->subpath;
break;
1999-02-12 07:43:53 +01:00
case T_NestPath:
ptype = "NestLoop";
join = true;
break;
case T_MergePath:
ptype = "MergeJoin";
join = true;
break;
case T_HashPath:
ptype = "HashJoin";
join = true;
break;
default:
ptype = "???Path";
break;
}
for (i = 0; i < indent; i++)
printf("\t");
printf("%s", ptype);
if (path->parent)
{
printf("(");
print_relids(path->parent->relids);
printf(") rows=%.0f", path->parent->rows);
}
printf(" cost=%.2f..%.2f\n", path->startup_cost, path->total_cost);
if (path->pathkeys)
{
for (i = 0; i < indent; i++)
printf("\t");
printf(" pathkeys: ");
print_pathkeys(path->pathkeys, root->rtable);
}
if (join)
{
JoinPath *jp = (JoinPath *) path;
for (i = 0; i < indent; i++)
printf("\t");
printf(" clauses: ");
print_restrictclauses(root, jp->joinrestrictinfo);
printf("\n");
if (IsA(path, MergePath))
{
MergePath *mp = (MergePath *) path;
if (mp->outersortkeys || mp->innersortkeys)
{
for (i = 0; i < indent; i++)
printf("\t");
printf(" sortouter=%d sortinner=%d\n",
((mp->outersortkeys) ? 1 : 0),
((mp->innersortkeys) ? 1 : 0));
}
}
print_path(root, jp->outerjoinpath, indent + 1);
print_path(root, jp->innerjoinpath, indent + 1);
}
if (subpath)
print_path(root, subpath, indent + 1);
}
void
1999-05-26 00:43:53 +02:00
debug_print_rel(Query *root, RelOptInfo *rel)
{
ListCell *l;
printf("RELOPTINFO (");
print_relids(rel->relids);
printf("): rows=%.0f width=%d\n", rel->rows, rel->width);
if (rel->baserestrictinfo)
{
printf("\tbaserestrictinfo: ");
print_restrictclauses(root, rel->baserestrictinfo);
printf("\n");
}
foreach(l, rel->joininfo)
{
JoinInfo *j = (JoinInfo *) lfirst(l);
printf("\tjoininfo (");
print_relids(j->unjoined_relids);
printf("): ");
print_restrictclauses(root, j->jinfo_restrictinfo);
printf("\n");
}
printf("\tpath list:\n");
foreach(l, rel->pathlist)
print_path(root, lfirst(l), 1);
printf("\n\tcheapest startup path:\n");
print_path(root, rel->cheapest_startup_path, 1);
printf("\n\tcheapest total path:\n");
print_path(root, rel->cheapest_total_path, 1);
printf("\n");
fflush(stdout);
}
#endif /* OPTIMIZER_DEBUG */