postgresql/doc/src/sgml/ref/create_table.sgml

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2521 lines
107 KiB
Plaintext
Raw Normal View History

<!--
2010-09-20 22:08:53 +02:00
doc/src/sgml/ref/create_table.sgml
PostgreSQL documentation
-->
<refentry id="sql-createtable">
<indexterm zone="sql-createtable">
<primary>CREATE TABLE</primary>
</indexterm>
<refmeta>
<refentrytitle>CREATE TABLE</refentrytitle>
<manvolnum>7</manvolnum>
<refmiscinfo>SQL - Language Statements</refmiscinfo>
</refmeta>
<refnamediv>
<refname>CREATE TABLE</refname>
<refpurpose>define a new table</refpurpose>
</refnamediv>
<refsynopsisdiv>
<synopsis>
CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXISTS ] <replaceable class="parameter">table_name</replaceable> ( [
{ <replaceable class="parameter">column_name</replaceable> <replaceable class="parameter">data_type</replaceable> [ STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT } ] [ COMPRESSION <replaceable>compression_method</replaceable> ] [ COLLATE <replaceable>collation</replaceable> ] [ <replaceable class="parameter">column_constraint</replaceable> [ ... ] ]
| <replaceable>table_constraint</replaceable>
| LIKE <replaceable>source_table</replaceable> [ <replaceable>like_option</replaceable> ... ] }
[, ... ]
] )
[ INHERITS ( <replaceable>parent_table</replaceable> [, ... ] ) ]
[ PARTITION BY { RANGE | LIST | HASH } ( { <replaceable class="parameter">column_name</replaceable> | ( <replaceable class="parameter">expression</replaceable> ) } [ COLLATE <replaceable class="parameter">collation</replaceable> ] [ <replaceable class="parameter">opclass</replaceable> ] [, ... ] ) ]
[ USING <replaceable class="parameter">method</replaceable> ]
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
[ WITH ( <replaceable class="parameter">storage_parameter</replaceable> [= <replaceable class="parameter">value</replaceable>] [, ... ] ) | WITHOUT OIDS ]
[ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ]
[ TABLESPACE <replaceable class="parameter">tablespace_name</replaceable> ]
CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXISTS ] <replaceable class="parameter">table_name</replaceable>
OF <replaceable class="parameter">type_name</replaceable> [ (
{ <replaceable class="parameter">column_name</replaceable> [ WITH OPTIONS ] [ <replaceable class="parameter">column_constraint</replaceable> [ ... ] ]
| <replaceable>table_constraint</replaceable> }
[, ... ]
) ]
[ PARTITION BY { RANGE | LIST | HASH } ( { <replaceable class="parameter">column_name</replaceable> | ( <replaceable class="parameter">expression</replaceable> ) } [ COLLATE <replaceable class="parameter">collation</replaceable> ] [ <replaceable class="parameter">opclass</replaceable> ] [, ... ] ) ]
[ USING <replaceable class="parameter">method</replaceable> ]
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
[ WITH ( <replaceable class="parameter">storage_parameter</replaceable> [= <replaceable class="parameter">value</replaceable>] [, ... ] ) | WITHOUT OIDS ]
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
[ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ]
[ TABLESPACE <replaceable class="parameter">tablespace_name</replaceable> ]
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
CREATE [ [ GLOBAL | LOCAL ] { TEMPORARY | TEMP } | UNLOGGED ] TABLE [ IF NOT EXISTS ] <replaceable class="parameter">table_name</replaceable>
PARTITION OF <replaceable class="parameter">parent_table</replaceable> [ (
{ <replaceable class="parameter">column_name</replaceable> [ WITH OPTIONS ] [ <replaceable class="parameter">column_constraint</replaceable> [ ... ] ]
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
| <replaceable>table_constraint</replaceable> }
[, ... ]
) ] { FOR VALUES <replaceable class="parameter">partition_bound_spec</replaceable> | DEFAULT }
[ PARTITION BY { RANGE | LIST | HASH } ( { <replaceable class="parameter">column_name</replaceable> | ( <replaceable class="parameter">expression</replaceable> ) } [ COLLATE <replaceable class="parameter">collation</replaceable> ] [ <replaceable class="parameter">opclass</replaceable> ] [, ... ] ) ]
[ USING <replaceable class="parameter">method</replaceable> ]
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
[ WITH ( <replaceable class="parameter">storage_parameter</replaceable> [= <replaceable class="parameter">value</replaceable>] [, ... ] ) | WITHOUT OIDS ]
[ ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP } ]
[ TABLESPACE <replaceable class="parameter">tablespace_name</replaceable> ]
<phrase>where <replaceable class="parameter">column_constraint</replaceable> is:</phrase>
[ CONSTRAINT <replaceable class="parameter">constraint_name</replaceable> ]
{ NOT NULL |
NULL |
CHECK ( <replaceable class="parameter">expression</replaceable> ) [ NO INHERIT ] |
DEFAULT <replaceable>default_expr</replaceable> |
GENERATED ALWAYS AS ( <replaceable>generation_expr</replaceable> ) STORED |
GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [ ( <replaceable>sequence_options</replaceable> ) ] |
UNIQUE [ NULLS [ NOT ] DISTINCT ] <replaceable class="parameter">index_parameters</replaceable> |
PRIMARY KEY <replaceable class="parameter">index_parameters</replaceable> |
REFERENCES <replaceable class="parameter">reftable</replaceable> [ ( <replaceable class="parameter">refcolumn</replaceable> ) ] [ MATCH FULL | MATCH PARTIAL | MATCH SIMPLE ]
[ ON DELETE <replaceable class="parameter">referential_action</replaceable> ] [ ON UPDATE <replaceable class="parameter">referential_action</replaceable> ] }
[ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ]
<phrase>and <replaceable class="parameter">table_constraint</replaceable> is:</phrase>
[ CONSTRAINT <replaceable class="parameter">constraint_name</replaceable> ]
{ CHECK ( <replaceable class="parameter">expression</replaceable> ) [ NO INHERIT ] |
Catalog not-null constraints We now create contype='n' pg_constraint rows for not-null constraints. We propagate these constraints to other tables during operations such as adding inheritance relationships, creating and attaching partitions and creating tables LIKE other tables. We also spawn not-null constraints for inheritance child tables when their parents have primary keys. These related constraints mostly follow the well-known rules of conislocal and coninhcount that we have for CHECK constraints, with some adaptations: for example, as opposed to CHECK constraints, we don't match not-null ones by name when descending a hierarchy to alter it, instead matching by column name that they apply to. This means we don't require the constraint names to be identical across a hierarchy. For now, we omit them for system catalogs. Maybe this is worth reconsidering. We don't support NOT VALID nor DEFERRABLE clauses either; these can be added as separate features later (this patch is already large and complicated enough.) psql shows these constraints in \d+. pg_dump requires some ad-hoc hacks, particularly when dumping a primary key. We now create one "throwaway" not-null constraint for each column in the PK together with the CREATE TABLE command, and once the PK is created, all those throwaway constraints are removed. This avoids having to check each tuple for nullness when the dump restores the primary key creation. pg_upgrading from an older release requires a somewhat brittle procedure to create a constraint state that matches what would be created if the database were being created fresh in Postgres 17. I have tested all the scenarios I could think of, and it works correctly as far as I can tell, but I could have neglected weird cases. This patch has been very long in the making. The first patch was written by Bernd Helmle in 2010 to add a new pg_constraint.contype value ('n'), which I (Álvaro) then hijacked in 2011 and 2012, until that one was killed by the realization that we ought to use contype='c' instead: manufactured CHECK constraints. However, later SQL standard development, as well as nonobvious emergent properties of that design (mostly, failure to distinguish them from "normal" CHECK constraints as well as the performance implication of having to test the CHECK expression) led us to reconsider this choice, so now the current implementation uses contype='n' again. During Postgres 16 this had already been introduced by commit e056c557aef4, but there were some problems mainly with the pg_upgrade procedure that couldn't be fixed in reasonable time, so it was reverted. In 2016 Vitaly Burovoy also worked on this feature[1] but found no consensus for his proposed approach, which was claimed to be closer to the letter of the standard, requiring an additional pg_attribute column to track the OID of the not-null constraint for that column. [1] https://postgr.es/m/CAKOSWNkN6HSyatuys8xZxzRCR-KL1OkHS5-b9qd9bf1Rad3PLA@mail.gmail.com Author: Álvaro Herrera <alvherre@alvh.no-ip.org> Author: Bernd Helmle <mailings@oopsware.de> Reviewed-by: Justin Pryzby <pryzby@telsasoft.com> Reviewed-by: Peter Eisentraut <peter.eisentraut@enterprisedb.com> Reviewed-by: Dean Rasheed <dean.a.rasheed@gmail.com>
2023-08-25 13:31:24 +02:00
NOT NULL <replaceable class="parameter">column_name</replaceable> [ NO INHERIT ] |
UNIQUE [ NULLS [ NOT ] DISTINCT ] ( <replaceable class="parameter">column_name</replaceable> [, ... ] [, <replaceable class="parameter">column_name</replaceable> WITHOUT OVERLAPS ] ) <replaceable class="parameter">index_parameters</replaceable> |
PRIMARY KEY ( <replaceable class="parameter">column_name</replaceable> [, ... ] [, <replaceable class="parameter">column_name</replaceable> WITHOUT OVERLAPS ] ) <replaceable class="parameter">index_parameters</replaceable> |
EXCLUDE [ USING <replaceable class="parameter">index_method</replaceable> ] ( <replaceable class="parameter">exclude_element</replaceable> WITH <replaceable class="parameter">operator</replaceable> [, ... ] ) <replaceable class="parameter">index_parameters</replaceable> [ WHERE ( <replaceable class="parameter">predicate</replaceable> ) ] |
FOREIGN KEY ( <replaceable class="parameter">column_name</replaceable> [, ... ] [, PERIOD <replaceable class="parameter">column_name</replaceable> ] ) REFERENCES <replaceable class="parameter">reftable</replaceable> [ ( <replaceable class="parameter">refcolumn</replaceable> [, ... ] [, PERIOD <replaceable class="parameter">column_name</replaceable> ] ) ]
[ MATCH FULL | MATCH PARTIAL | MATCH SIMPLE ] [ ON DELETE <replaceable
class="parameter">referential_action</replaceable> ] [ ON UPDATE <replaceable class="parameter">referential_action</replaceable> ] }
[ DEFERRABLE | NOT DEFERRABLE ] [ INITIALLY DEFERRED | INITIALLY IMMEDIATE ]
<phrase>and <replaceable class="parameter">like_option</replaceable> is:</phrase>
{ INCLUDING | EXCLUDING } { COMMENTS | COMPRESSION | CONSTRAINTS | DEFAULTS | GENERATED | IDENTITY | INDEXES | STATISTICS | STORAGE | ALL }
<phrase>and <replaceable class="parameter">partition_bound_spec</replaceable> is:</phrase>
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
IN ( <replaceable class="parameter">partition_bound_expr</replaceable> [, ...] ) |
FROM ( { <replaceable class="parameter">partition_bound_expr</replaceable> | MINVALUE | MAXVALUE } [, ...] )
TO ( { <replaceable class="parameter">partition_bound_expr</replaceable> | MINVALUE | MAXVALUE } [, ...] ) |
WITH ( MODULUS <replaceable class="parameter">numeric_literal</replaceable>, REMAINDER <replaceable class="parameter">numeric_literal</replaceable> )
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
<phrase><replaceable class="parameter">index_parameters</replaceable> in <literal>UNIQUE</literal>, <literal>PRIMARY KEY</literal>, and <literal>EXCLUDE</literal> constraints are:</phrase>
[ INCLUDE ( <replaceable class="parameter">column_name</replaceable> [, ... ] ) ]
[ WITH ( <replaceable class="parameter">storage_parameter</replaceable> [= <replaceable class="parameter">value</replaceable>] [, ... ] ) ]
[ USING INDEX TABLESPACE <replaceable class="parameter">tablespace_name</replaceable> ]
<phrase><replaceable class="parameter">exclude_element</replaceable> in an <literal>EXCLUDE</literal> constraint is:</phrase>
{ <replaceable class="parameter">column_name</replaceable> | ( <replaceable class="parameter">expression</replaceable> ) } [ <replaceable class="parameter">opclass</replaceable> ] [ ASC | DESC ] [ NULLS { FIRST | LAST } ]
<phrase><replaceable class="parameter">referential_action</replaceable> in a <literal>FOREIGN KEY</literal>/<literal>REFERENCES</literal> constraint is:</phrase>
{ NO ACTION | RESTRICT | CASCADE | SET NULL [ ( <replaceable class="parameter">column_name</replaceable> [, ... ] ) ] | SET DEFAULT [ ( <replaceable class="parameter">column_name</replaceable> [, ... ] ) ] }
</synopsis>
</refsynopsisdiv>
<refsect1 id="sql-createtable-description">
<title>Description</title>
<para>
<command>CREATE TABLE</command> will create a new, initially empty table
in the current database. The table will be owned by the user issuing the
command.
</para>
<para>
If a schema name is given (for example, <literal>CREATE TABLE
myschema.mytable ...</literal>) then the table is created in the specified
schema. Otherwise it is created in the current schema. Temporary
tables exist in a special schema, so a schema name cannot be given
when creating a temporary table. The name of the table must be
distinct from the name of any other relation (table, sequence, index, view,
materialized view, or foreign table) in the same schema.
</para>
<para>
<command>CREATE TABLE</command> also automatically creates a data
2003-04-22 12:08:08 +02:00
type that represents the composite type corresponding
to one row of the table. Therefore, tables cannot have the same
name as any existing data type in the same schema.
</para>
<para>
2005-01-04 01:39:53 +01:00
The optional constraint clauses specify constraints (tests) that
new or updated rows must satisfy for an insert or update operation
2003-04-22 12:08:08 +02:00
to succeed. A constraint is an SQL object that helps define the
set of valid values in the table in various ways.
</para>
<para>
There are two ways to define constraints: table constraints and
column constraints. A column constraint is defined as part of a
column definition. A table constraint definition is not tied to a
particular column, and it can encompass more than one column.
Every column constraint can also be written as a table constraint;
2005-01-04 01:39:53 +01:00
a column constraint is only a notational convenience for use when the
constraint only affects one column.
</para>
<para>
To be able to create a table, you must have <literal>USAGE</literal>
privilege on all column types or the type in the <literal>OF</literal>
clause, respectively.
</para>
</refsect1>
<refsect1>
<title>Parameters</title>
<variablelist>
<varlistentry id="sql-createtable-temporary">
<term><literal>TEMPORARY</literal> or <literal>TEMP</literal></term>
<listitem>
<para>
If specified, the table is created as a temporary table.
Temporary tables are automatically dropped at the end of a
session, or optionally at the end of the current transaction
(see <literal>ON COMMIT</literal> below). The default
search_path includes the temporary schema first and so identically
named existing permanent tables are not chosen for new plans
while the temporary table exists, unless they are referenced
with schema-qualified names. Any indexes created on a temporary
table are automatically temporary as well.
</para>
<para>
The <link linkend="autovacuum">autovacuum daemon</link> cannot
access and therefore cannot vacuum or analyze temporary tables.
For this reason, appropriate vacuum and analyze operations should be
performed via session SQL commands. For example, if a temporary
table is going to be used in complex queries, it is wise to run
<command>ANALYZE</command> on the temporary table after it is populated.
</para>
<para>
Optionally, <literal>GLOBAL</literal> or <literal>LOCAL</literal>
can be written before <literal>TEMPORARY</literal> or <literal>TEMP</literal>.
This presently makes no difference in <productname>PostgreSQL</productname>
and is deprecated; see
2020-05-11 20:15:49 +02:00
<xref linkend="sql-createtable-compatibility"/> below.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-unlogged">
<term><literal>UNLOGGED</literal></term>
<listitem>
<para>
If specified, the table is created as an unlogged table. Data written
to unlogged tables is not written to the write-ahead log (see <xref
linkend="wal"/>), which makes them considerably faster than ordinary
tables. However, they are not crash-safe: an unlogged table is
automatically truncated after a crash or unclean shutdown. The contents
of an unlogged table are also not replicated to standby servers.
Any indexes created on an unlogged table are automatically unlogged as
well.
</para>
<para>
If this is specified, any sequences created together with the unlogged
table (for identity or serial columns) are also created as unlogged.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-if-not-exists">
<term><literal>IF NOT EXISTS</literal></term>
<listitem>
<para>
Do not throw an error if a relation with the same name already exists.
2010-07-26 03:43:52 +02:00
A notice is issued in this case. Note that there is no guarantee that
the existing relation is anything like the one that would have been
created.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-table-name">
<term><replaceable class="parameter">table_name</replaceable></term>
<listitem>
<para>
The name (optionally schema-qualified) of the table to be created.
</para>
</listitem>
</varlistentry>
1998-09-22 17:48:03 +02:00
<varlistentry id="sql-createtable-parms-type-name">
<term><literal>OF <replaceable class="parameter">type_name</replaceable></literal></term>
<listitem>
<para>
Creates a <firstterm>typed table</firstterm>, which takes its
structure from the specified composite type (name optionally
schema-qualified). A typed table is tied to its type; for
example the table will be dropped if the type is dropped
(with <literal>DROP TYPE ... CASCADE</literal>).
</para>
<para>
When a typed table is created, then the data types of the
columns are determined by the underlying composite type and are
not specified by the <literal>CREATE TABLE</literal> command.
But the <literal>CREATE TABLE</literal> command can add defaults
and constraints to the table and can specify storage parameters.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-column-name">
<term><replaceable class="parameter">column_name</replaceable></term>
<listitem>
<para>
The name of a column to be created in the new table.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-data-type">
<term><replaceable class="parameter">data_type</replaceable></term>
<listitem>
<para>
The data type of the column. This can include array
specifiers. For more information on the data types supported by
<productname>PostgreSQL</productname>, refer to <xref
linkend="datatype"/>.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-collate">
<term><literal>COLLATE <replaceable>collation</replaceable></literal></term>
<listitem>
<para>
The <literal>COLLATE</literal> clause assigns a collation to
the column (which must be of a collatable data type).
If not specified, the column data type's default collation is used.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-storage">
<term>
<literal>STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN | DEFAULT }</literal>
<indexterm>
<primary>TOAST</primary>
<secondary>per-column storage settings</secondary>
</indexterm>
</term>
<listitem>
<para>
This form sets the storage mode for the column. This controls whether this
column is held inline or in a secondary <acronym>TOAST</acronym> table,
and whether the data should be compressed or not. <literal>PLAIN</literal>
must be used for fixed-length values such as <type>integer</type> and is
inline, uncompressed. <literal>MAIN</literal> is for inline, compressible
data. <literal>EXTERNAL</literal> is for external, uncompressed data, and
<literal>EXTENDED</literal> is for external, compressed data.
Writing <literal>DEFAULT</literal> sets the storage mode to the default
mode for the column's data type. <literal>EXTENDED</literal> is the
default for most data types that support non-<literal>PLAIN</literal>
storage.
Use of <literal>EXTERNAL</literal> will make substring operations on
very large <type>text</type> and <type>bytea</type> values run faster,
at the penalty of increased storage space.
See <xref linkend="storage-toast"/> for more information.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-compression">
Allow configurable LZ4 TOAST compression. There is now a per-column COMPRESSION option which can be set to pglz (the default, and the only option in up until now) or lz4. Or, if you like, you can set the new default_toast_compression GUC to lz4, and then that will be the default for new table columns for which no value is specified. We don't have lz4 support in the PostgreSQL code, so to use lz4 compression, PostgreSQL must be built --with-lz4. In general, TOAST compression means compression of individual column values, not the whole tuple, and those values can either be compressed inline within the tuple or compressed and then stored externally in the TOAST table, so those properties also apply to this feature. Prior to this commit, a TOAST pointer has two unused bits as part of the va_extsize field, and a compessed datum has two unused bits as part of the va_rawsize field. These bits are unused because the length of a varlena is limited to 1GB; we now use them to indicate the compression type that was used. This means we only have bit space for 2 more built-in compresison types, but we could work around that problem, if necessary, by introducing a new vartag_external value for any further types we end up wanting to add. Hopefully, it won't be too important to offer a wide selection of algorithms here, since each one we add not only takes more coding but also adds a build dependency for every packager. Nevertheless, it seems worth doing at least this much, because LZ4 gets better compression than PGLZ with less CPU usage. It's possible for LZ4-compressed datums to leak into composite type values stored on disk, just as it is for PGLZ. It's also possible for LZ4-compressed attributes to be copied into a different table via SQL commands such as CREATE TABLE AS or INSERT .. SELECT. It would be expensive to force such values to be decompressed, so PostgreSQL has never done so. For the same reasons, we also don't force recompression of already-compressed values even if the target table prefers a different compression method than was used for the source data. These architectural decisions are perhaps arguable but revisiting them is well beyond the scope of what seemed possible to do as part of this project. However, it's relatively cheap to recompress as part of VACUUM FULL or CLUSTER, so this commit adjusts those commands to do so, if the configured compression method of the table happens not to match what was used for some column value stored therein. Dilip Kumar. The original patches on which this work was based were written by Ildus Kurbangaliev, and those were patches were based on even earlier work by Nikita Glukhov, but the design has since changed very substantially, since allow a potentially large number of compression methods that could be added and dropped on a running system proved too problematic given some of the architectural issues mentioned above; the choice of which specific compression method to add first is now different; and a lot of the code has been heavily refactored. More recently, Justin Przyby helped quite a bit with testing and reviewing and this version also includes some code contributions from him. Other design input and review from Tomas Vondra, Álvaro Herrera, Andres Freund, Oleg Bartunov, Alexander Korotkov, and me. Discussion: http://postgr.es/m/20170907194236.4cefce96%40wp.localdomain Discussion: http://postgr.es/m/CAFiTN-uUpX3ck%3DK0mLEk-G_kUQY%3DSNOTeqdaNRR9FMdQrHKebw%40mail.gmail.com
2021-03-19 20:10:38 +01:00
<term><literal>COMPRESSION <replaceable class="parameter">compression_method</replaceable></literal></term>
<listitem>
<para>
The <literal>COMPRESSION</literal> clause sets the compression method
for the column. Compression is supported only for variable-width data
types, and is used only when the column's storage mode
is <literal>main</literal> or <literal>extended</literal>.
(See <xref linkend="sql-altertable"/> for information on
column storage modes.) Setting this property for a partitioned table
Allow configurable LZ4 TOAST compression. There is now a per-column COMPRESSION option which can be set to pglz (the default, and the only option in up until now) or lz4. Or, if you like, you can set the new default_toast_compression GUC to lz4, and then that will be the default for new table columns for which no value is specified. We don't have lz4 support in the PostgreSQL code, so to use lz4 compression, PostgreSQL must be built --with-lz4. In general, TOAST compression means compression of individual column values, not the whole tuple, and those values can either be compressed inline within the tuple or compressed and then stored externally in the TOAST table, so those properties also apply to this feature. Prior to this commit, a TOAST pointer has two unused bits as part of the va_extsize field, and a compessed datum has two unused bits as part of the va_rawsize field. These bits are unused because the length of a varlena is limited to 1GB; we now use them to indicate the compression type that was used. This means we only have bit space for 2 more built-in compresison types, but we could work around that problem, if necessary, by introducing a new vartag_external value for any further types we end up wanting to add. Hopefully, it won't be too important to offer a wide selection of algorithms here, since each one we add not only takes more coding but also adds a build dependency for every packager. Nevertheless, it seems worth doing at least this much, because LZ4 gets better compression than PGLZ with less CPU usage. It's possible for LZ4-compressed datums to leak into composite type values stored on disk, just as it is for PGLZ. It's also possible for LZ4-compressed attributes to be copied into a different table via SQL commands such as CREATE TABLE AS or INSERT .. SELECT. It would be expensive to force such values to be decompressed, so PostgreSQL has never done so. For the same reasons, we also don't force recompression of already-compressed values even if the target table prefers a different compression method than was used for the source data. These architectural decisions are perhaps arguable but revisiting them is well beyond the scope of what seemed possible to do as part of this project. However, it's relatively cheap to recompress as part of VACUUM FULL or CLUSTER, so this commit adjusts those commands to do so, if the configured compression method of the table happens not to match what was used for some column value stored therein. Dilip Kumar. The original patches on which this work was based were written by Ildus Kurbangaliev, and those were patches were based on even earlier work by Nikita Glukhov, but the design has since changed very substantially, since allow a potentially large number of compression methods that could be added and dropped on a running system proved too problematic given some of the architectural issues mentioned above; the choice of which specific compression method to add first is now different; and a lot of the code has been heavily refactored. More recently, Justin Przyby helped quite a bit with testing and reviewing and this version also includes some code contributions from him. Other design input and review from Tomas Vondra, Álvaro Herrera, Andres Freund, Oleg Bartunov, Alexander Korotkov, and me. Discussion: http://postgr.es/m/20170907194236.4cefce96%40wp.localdomain Discussion: http://postgr.es/m/CAFiTN-uUpX3ck%3DK0mLEk-G_kUQY%3DSNOTeqdaNRR9FMdQrHKebw%40mail.gmail.com
2021-03-19 20:10:38 +01:00
has no direct effect, because such tables have no storage of their own,
but the configured value will be inherited by newly-created partitions.
Allow configurable LZ4 TOAST compression. There is now a per-column COMPRESSION option which can be set to pglz (the default, and the only option in up until now) or lz4. Or, if you like, you can set the new default_toast_compression GUC to lz4, and then that will be the default for new table columns for which no value is specified. We don't have lz4 support in the PostgreSQL code, so to use lz4 compression, PostgreSQL must be built --with-lz4. In general, TOAST compression means compression of individual column values, not the whole tuple, and those values can either be compressed inline within the tuple or compressed and then stored externally in the TOAST table, so those properties also apply to this feature. Prior to this commit, a TOAST pointer has two unused bits as part of the va_extsize field, and a compessed datum has two unused bits as part of the va_rawsize field. These bits are unused because the length of a varlena is limited to 1GB; we now use them to indicate the compression type that was used. This means we only have bit space for 2 more built-in compresison types, but we could work around that problem, if necessary, by introducing a new vartag_external value for any further types we end up wanting to add. Hopefully, it won't be too important to offer a wide selection of algorithms here, since each one we add not only takes more coding but also adds a build dependency for every packager. Nevertheless, it seems worth doing at least this much, because LZ4 gets better compression than PGLZ with less CPU usage. It's possible for LZ4-compressed datums to leak into composite type values stored on disk, just as it is for PGLZ. It's also possible for LZ4-compressed attributes to be copied into a different table via SQL commands such as CREATE TABLE AS or INSERT .. SELECT. It would be expensive to force such values to be decompressed, so PostgreSQL has never done so. For the same reasons, we also don't force recompression of already-compressed values even if the target table prefers a different compression method than was used for the source data. These architectural decisions are perhaps arguable but revisiting them is well beyond the scope of what seemed possible to do as part of this project. However, it's relatively cheap to recompress as part of VACUUM FULL or CLUSTER, so this commit adjusts those commands to do so, if the configured compression method of the table happens not to match what was used for some column value stored therein. Dilip Kumar. The original patches on which this work was based were written by Ildus Kurbangaliev, and those were patches were based on even earlier work by Nikita Glukhov, but the design has since changed very substantially, since allow a potentially large number of compression methods that could be added and dropped on a running system proved too problematic given some of the architectural issues mentioned above; the choice of which specific compression method to add first is now different; and a lot of the code has been heavily refactored. More recently, Justin Przyby helped quite a bit with testing and reviewing and this version also includes some code contributions from him. Other design input and review from Tomas Vondra, Álvaro Herrera, Andres Freund, Oleg Bartunov, Alexander Korotkov, and me. Discussion: http://postgr.es/m/20170907194236.4cefce96%40wp.localdomain Discussion: http://postgr.es/m/CAFiTN-uUpX3ck%3DK0mLEk-G_kUQY%3DSNOTeqdaNRR9FMdQrHKebw%40mail.gmail.com
2021-03-19 20:10:38 +01:00
The supported compression methods are <literal>pglz</literal> and
<literal>lz4</literal>. (<literal>lz4</literal> is available only if
<option>--with-lz4</option> was used when building
<productname>PostgreSQL</productname>.) In addition,
<replaceable class="parameter">compression_method</replaceable>
can be <literal>default</literal> to explicitly specify the default
behavior, which is to consult the
<xref linkend="guc-default-toast-compression"/> setting at the time of
data insertion to determine the method to use.
Allow configurable LZ4 TOAST compression. There is now a per-column COMPRESSION option which can be set to pglz (the default, and the only option in up until now) or lz4. Or, if you like, you can set the new default_toast_compression GUC to lz4, and then that will be the default for new table columns for which no value is specified. We don't have lz4 support in the PostgreSQL code, so to use lz4 compression, PostgreSQL must be built --with-lz4. In general, TOAST compression means compression of individual column values, not the whole tuple, and those values can either be compressed inline within the tuple or compressed and then stored externally in the TOAST table, so those properties also apply to this feature. Prior to this commit, a TOAST pointer has two unused bits as part of the va_extsize field, and a compessed datum has two unused bits as part of the va_rawsize field. These bits are unused because the length of a varlena is limited to 1GB; we now use them to indicate the compression type that was used. This means we only have bit space for 2 more built-in compresison types, but we could work around that problem, if necessary, by introducing a new vartag_external value for any further types we end up wanting to add. Hopefully, it won't be too important to offer a wide selection of algorithms here, since each one we add not only takes more coding but also adds a build dependency for every packager. Nevertheless, it seems worth doing at least this much, because LZ4 gets better compression than PGLZ with less CPU usage. It's possible for LZ4-compressed datums to leak into composite type values stored on disk, just as it is for PGLZ. It's also possible for LZ4-compressed attributes to be copied into a different table via SQL commands such as CREATE TABLE AS or INSERT .. SELECT. It would be expensive to force such values to be decompressed, so PostgreSQL has never done so. For the same reasons, we also don't force recompression of already-compressed values even if the target table prefers a different compression method than was used for the source data. These architectural decisions are perhaps arguable but revisiting them is well beyond the scope of what seemed possible to do as part of this project. However, it's relatively cheap to recompress as part of VACUUM FULL or CLUSTER, so this commit adjusts those commands to do so, if the configured compression method of the table happens not to match what was used for some column value stored therein. Dilip Kumar. The original patches on which this work was based were written by Ildus Kurbangaliev, and those were patches were based on even earlier work by Nikita Glukhov, but the design has since changed very substantially, since allow a potentially large number of compression methods that could be added and dropped on a running system proved too problematic given some of the architectural issues mentioned above; the choice of which specific compression method to add first is now different; and a lot of the code has been heavily refactored. More recently, Justin Przyby helped quite a bit with testing and reviewing and this version also includes some code contributions from him. Other design input and review from Tomas Vondra, Álvaro Herrera, Andres Freund, Oleg Bartunov, Alexander Korotkov, and me. Discussion: http://postgr.es/m/20170907194236.4cefce96%40wp.localdomain Discussion: http://postgr.es/m/CAFiTN-uUpX3ck%3DK0mLEk-G_kUQY%3DSNOTeqdaNRR9FMdQrHKebw%40mail.gmail.com
2021-03-19 20:10:38 +01:00
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-inherits">
<term><literal>INHERITS ( <replaceable>parent_table</replaceable> [, ... ] )</literal></term>
<listitem>
<para>
The optional <literal>INHERITS</literal> clause specifies a list of
tables from which the new table automatically inherits all
columns. Parent tables can be plain tables or foreign tables.
</para>
<para>
Use of <literal>INHERITS</literal> creates a persistent relationship
between the new child table and its parent table(s). Schema
modifications to the parent(s) normally propagate to children
as well, and by default the data of the child table is included in
scans of the parent(s).
</para>
<para>
If the same column name exists in more than one parent
table, an error is reported unless the data types of the columns
match in each of the parent tables. If there is no conflict,
then the duplicate columns are merged to form a single column in
the new table. If the column name list of the new table
contains a column name that is also inherited, the data type must
likewise match the inherited column(s), and the column
definitions are merged into one. If the
new table explicitly specifies a default value for the column,
this default overrides any defaults from inherited declarations
of the column. Otherwise, any parents that specify default
values for the column must all specify the same default, or an
error will be reported.
</para>
<para>
<literal>CHECK</literal> constraints are merged in essentially the same way as
columns: if multiple parent tables and/or the new table definition
contain identically-named <literal>CHECK</literal> constraints, these
constraints must all have the same check expression, or an error will be
reported. Constraints having the same name and expression will
be merged into one copy. A constraint marked <literal>NO INHERIT</literal> in a
parent will not be considered. Notice that an unnamed <literal>CHECK</literal>
constraint in the new table will never be merged, since a unique name
will always be chosen for it.
</para>
<para>
Column <literal>STORAGE</literal> settings are also copied from parent tables.
</para>
<para>
If a column in the parent table is an identity column, that property is
not inherited. A column in the child table can be declared identity
column if desired.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-partition-by">
<term><literal>PARTITION BY { RANGE | LIST | HASH } ( { <replaceable class="parameter">column_name</replaceable> | ( <replaceable class="parameter">expression</replaceable> ) } [ <replaceable class="parameter">opclass</replaceable> ] [, ...] ) </literal></term>
<listitem>
<para>
The optional <literal>PARTITION BY</literal> clause specifies a strategy
of partitioning the table. The table thus created is called a
<firstterm>partitioned</firstterm> table. The parenthesized list of
columns or expressions forms the <firstterm>partition key</firstterm>
for the table. When using range or hash partitioning, the partition key
can include multiple columns or expressions (up to 32, but this limit can
be altered when building <productname>PostgreSQL</productname>), but for
list partitioning, the partition key must consist of a single column or
expression.
</para>
<para>
Range and list partitioning require a btree operator class, while hash
partitioning requires a hash operator class. If no operator class is
specified explicitly, the default operator class of the appropriate
type will be used; if no default operator class exists, an error will
be raised. When hash partitioning is used, the operator class used
must implement support function 2 (see <xref linkend="xindex-support"/>
for details).
</para>
<para>
A partitioned table is divided into sub-tables (called partitions),
which are created using separate <literal>CREATE TABLE</literal> commands.
The partitioned table is itself empty. A data row inserted into the
table is routed to a partition based on the value of columns or
expressions in the partition key. If no existing partition matches
the values in the new row, an error will be reported.
</para>
<para>
Partitioned tables do not support <literal>EXCLUDE</literal> constraints;
however, you can define these constraints on individual partitions.
</para>
<para>
See <xref linkend="ddl-partitioning"/> for more discussion on table
partitioning.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-partition">
<term><literal>PARTITION OF <replaceable class="parameter">parent_table</replaceable> { FOR VALUES <replaceable class="parameter">partition_bound_spec</replaceable> | DEFAULT }</literal></term>
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
<listitem>
<para>
Creates the table as a <firstterm>partition</firstterm> of the specified
parent table. The table can be created either as a partition for specific
values using <literal>FOR VALUES</literal> or as a default partition
using <literal>DEFAULT</literal>. Any indexes, constraints and
user-defined row-level triggers that exist in the parent table are cloned
on the new partition.
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
</para>
<para>
The <replaceable class="parameter">partition_bound_spec</replaceable>
must correspond to the partitioning method and partition key of the
parent table, and must not overlap with any existing partition of that
parent. The form with <literal>IN</literal> is used for list partitioning,
the form with <literal>FROM</literal> and <literal>TO</literal> is used
for range partitioning, and the form with <literal>WITH</literal> is used
for hash partitioning.
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
</para>
<para>
<replaceable class="parameter">partition_bound_expr</replaceable> is
any variable-free expression (subqueries, window functions, aggregate
functions, and set-returning functions are not allowed). Its data type
must match the data type of the corresponding partition key column.
The expression is evaluated once at table creation time, so it can
even contain volatile expressions such as
<literal><function>CURRENT_TIMESTAMP</function></literal>.
</para>
<para>
When creating a list partition, <literal>NULL</literal> can be
specified to signify that the partition allows the partition key
column to be null. However, there cannot be more than one such
list partition for a given parent table. <literal>NULL</literal>
cannot be specified for range partitions.
</para>
<para>
When creating a range partition, the lower bound specified with
<literal>FROM</literal> is an inclusive bound, whereas the upper
bound specified with <literal>TO</literal> is an exclusive bound.
That is, the values specified in the <literal>FROM</literal> list
are valid values of the corresponding partition key columns for this
partition, whereas those in the <literal>TO</literal> list are
not. Note that this statement must be understood according to the
rules of row-wise comparison (<xref linkend="row-wise-comparison"/>).
For example, given <literal>PARTITION BY RANGE (x,y)</literal>, a partition
bound <literal>FROM (1, 2) TO (3, 4)</literal>
allows <literal>x=1</literal> with any <literal>y&gt;=2</literal>,
<literal>x=2</literal> with any non-null <literal>y</literal>,
and <literal>x=3</literal> with any <literal>y&lt;4</literal>.
</para>
<para>
The special values <literal>MINVALUE</literal> and <literal>MAXVALUE</literal>
may be used when creating a range partition to indicate that there
is no lower or upper bound on the column's value. For example, a
partition defined using <literal>FROM (MINVALUE) TO (10)</literal> allows
any values less than 10, and a partition defined using
<literal>FROM (10) TO (MAXVALUE)</literal> allows any values greater than
or equal to 10.
</para>
<para>
When creating a range partition involving more than one column, it
can also make sense to use <literal>MAXVALUE</literal> as part of the lower
bound, and <literal>MINVALUE</literal> as part of the upper bound. For
example, a partition defined using
<literal>FROM (0, MAXVALUE) TO (10, MAXVALUE)</literal> allows any rows
where the first partition key column is greater than 0 and less than
or equal to 10. Similarly, a partition defined using
<literal>FROM ('a', MINVALUE) TO ('b', MINVALUE)</literal> allows any rows
where the first partition key column starts with "a".
</para>
<para>
Note that if <literal>MINVALUE</literal> or <literal>MAXVALUE</literal> is used for
one column of a partitioning bound, the same value must be used for all
subsequent columns. For example, <literal>(10, MINVALUE, 0)</literal> is not
a valid bound; you should write <literal>(10, MINVALUE, MINVALUE)</literal>.
</para>
<para>
Also note that some element types, such as <literal>timestamp</literal>,
have a notion of "infinity", which is just another value that can
be stored. This is different from <literal>MINVALUE</literal> and
<literal>MAXVALUE</literal>, which are not real values that can be stored,
but rather they are ways of saying that the value is unbounded.
<literal>MAXVALUE</literal> can be thought of as being greater than any
other value, including "infinity" and <literal>MINVALUE</literal> as being
less than any other value, including "minus infinity". Thus the range
<literal>FROM ('infinity') TO (MAXVALUE)</literal> is not an empty range; it
allows precisely one value to be stored &mdash; "infinity".
</para>
<para>
If <literal>DEFAULT</literal> is specified, the table will be
created as the default partition of the parent table. This option
is not available for hash-partitioned tables. A partition key value
not fitting into any other partition of the given parent will be
routed to the default partition.
</para>
<para>
When a table has an existing <literal>DEFAULT</literal> partition and
a new partition is added to it, the default partition must
be scanned to verify that it does not contain any rows which properly
belong in the new partition. If the default partition contains a
large number of rows, this may be slow. The scan will be skipped if
the default partition is a foreign table or if it has a constraint which
proves that it cannot contain rows which should be placed in the new
partition.
</para>
<para>
When creating a hash partition, a modulus and remainder must be specified.
The modulus must be a positive integer, and the remainder must be a
non-negative integer less than the modulus. Typically, when initially
setting up a hash-partitioned table, you should choose a modulus equal to
the number of partitions and assign every table the same modulus and a
different remainder (see examples, below). However, it is not required
that every partition have the same modulus, only that every modulus which
occurs among the partitions of a hash-partitioned table is a factor of the
next larger modulus. This allows the number of partitions to be increased
incrementally without needing to move all the data at once. For example,
suppose you have a hash-partitioned table with 8 partitions, each of which
has modulus 8, but find it necessary to increase the number of partitions
to 16. You can detach one of the modulus-8 partitions, create two new
modulus-16 partitions covering the same portion of the key space (one with
a remainder equal to the remainder of the detached partition, and the
other with a remainder equal to that value plus 8), and repopulate them
with data. You can then repeat this -- perhaps at a later time -- for
each modulus-8 partition until none remain. While this may still involve
a large amount of data movement at each step, it is still better than
having to create a whole new table and move all the data at once.
</para>
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
<para>
A partition must have the same column names and types as the partitioned
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
table to which it belongs. Modifications to the column names or types of
a partitioned table will automatically propagate to all partitions.
<literal>CHECK</literal> constraints will be inherited automatically by
every partition, but an individual partition may specify additional
<literal>CHECK</literal> constraints; additional constraints with the
same name and condition as in the parent will be merged with the parent
constraint. Defaults may be specified separately for each partition.
But note that a partition's default value is not applied when inserting
a tuple through a partitioned table.
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
</para>
<para>
Rows inserted into a partitioned table will be automatically routed to
the correct partition. If no suitable partition exists, an error will
occur.
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
</para>
<para>
Operations such as <command>TRUNCATE</command>
which normally affect a table and all of its
inheritance children will cascade to all partitions, but may also be
performed on an individual partition.
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
</para>
<para>
Note that creating a partition using <literal>PARTITION OF</literal>
requires taking an <literal>ACCESS EXCLUSIVE</literal> lock on the
parent partitioned table. Likewise, dropping a partition
with <command>DROP TABLE</command> requires taking
an <literal>ACCESS EXCLUSIVE</literal> lock on the parent table.
It is possible to use <link linkend="sql-altertable"><command>ALTER
TABLE ATTACH/DETACH PARTITION</command></link> to perform these
operations with a weaker lock, thus reducing interference with
concurrent operations on the partitioned table.
</para>
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-like">
<term><literal>LIKE <replaceable>source_table</replaceable> [ <replaceable>like_option</replaceable> ... ]</literal></term>
2005-01-04 01:39:53 +01:00
<listitem>
<para>
The <literal>LIKE</literal> clause specifies a table from which
the new table automatically copies all column names, their data types,
and their not-null constraints.
</para>
<para>
Unlike <literal>INHERITS</literal>, the new table and original table
are completely decoupled after creation is complete. Changes to the
original table will not be applied to the new table, and it is not
possible to include data of the new table in scans of the original
table.
</para>
<para>
Also unlike <literal>INHERITS</literal>, columns and
constraints copied by <literal>LIKE</literal> are not merged with similarly
named columns and constraints.
If the same name is specified explicitly or in another
<literal>LIKE</literal> clause, an error is signaled.
</para>
<para>
The optional <replaceable>like_option</replaceable> clauses specify
which additional properties of the original table to copy. Specifying
<literal>INCLUDING</literal> copies the property, specifying
<literal>EXCLUDING</literal> omits the property.
<literal>EXCLUDING</literal> is the default. If multiple specifications
are made for the same kind of object, the last one is used. The
available options are:
<variablelist>
<varlistentry id="sql-createtable-parms-like-opt-comments">
<term><literal>INCLUDING COMMENTS</literal></term>
<listitem>
<para>
Comments for the copied columns, constraints, and indexes will be
copied. The default behavior is to exclude comments, resulting in
the copied columns and constraints in the new table having no
comments.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-like-opt-compression">
Allow configurable LZ4 TOAST compression. There is now a per-column COMPRESSION option which can be set to pglz (the default, and the only option in up until now) or lz4. Or, if you like, you can set the new default_toast_compression GUC to lz4, and then that will be the default for new table columns for which no value is specified. We don't have lz4 support in the PostgreSQL code, so to use lz4 compression, PostgreSQL must be built --with-lz4. In general, TOAST compression means compression of individual column values, not the whole tuple, and those values can either be compressed inline within the tuple or compressed and then stored externally in the TOAST table, so those properties also apply to this feature. Prior to this commit, a TOAST pointer has two unused bits as part of the va_extsize field, and a compessed datum has two unused bits as part of the va_rawsize field. These bits are unused because the length of a varlena is limited to 1GB; we now use them to indicate the compression type that was used. This means we only have bit space for 2 more built-in compresison types, but we could work around that problem, if necessary, by introducing a new vartag_external value for any further types we end up wanting to add. Hopefully, it won't be too important to offer a wide selection of algorithms here, since each one we add not only takes more coding but also adds a build dependency for every packager. Nevertheless, it seems worth doing at least this much, because LZ4 gets better compression than PGLZ with less CPU usage. It's possible for LZ4-compressed datums to leak into composite type values stored on disk, just as it is for PGLZ. It's also possible for LZ4-compressed attributes to be copied into a different table via SQL commands such as CREATE TABLE AS or INSERT .. SELECT. It would be expensive to force such values to be decompressed, so PostgreSQL has never done so. For the same reasons, we also don't force recompression of already-compressed values even if the target table prefers a different compression method than was used for the source data. These architectural decisions are perhaps arguable but revisiting them is well beyond the scope of what seemed possible to do as part of this project. However, it's relatively cheap to recompress as part of VACUUM FULL or CLUSTER, so this commit adjusts those commands to do so, if the configured compression method of the table happens not to match what was used for some column value stored therein. Dilip Kumar. The original patches on which this work was based were written by Ildus Kurbangaliev, and those were patches were based on even earlier work by Nikita Glukhov, but the design has since changed very substantially, since allow a potentially large number of compression methods that could be added and dropped on a running system proved too problematic given some of the architectural issues mentioned above; the choice of which specific compression method to add first is now different; and a lot of the code has been heavily refactored. More recently, Justin Przyby helped quite a bit with testing and reviewing and this version also includes some code contributions from him. Other design input and review from Tomas Vondra, Álvaro Herrera, Andres Freund, Oleg Bartunov, Alexander Korotkov, and me. Discussion: http://postgr.es/m/20170907194236.4cefce96%40wp.localdomain Discussion: http://postgr.es/m/CAFiTN-uUpX3ck%3DK0mLEk-G_kUQY%3DSNOTeqdaNRR9FMdQrHKebw%40mail.gmail.com
2021-03-19 20:10:38 +01:00
<term><literal>INCLUDING COMPRESSION</literal></term>
<listitem>
<para>
Compression method of the columns will be copied. The default
behavior is to exclude compression methods, resulting in columns
having the default compression method.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-like-opt-constraints">
<term><literal>INCLUDING CONSTRAINTS</literal></term>
<listitem>
<para>
<literal>CHECK</literal> constraints will be copied. No distinction
is made between column constraints and table constraints. Not-null
constraints are always copied to the new table.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-like-opt-defaults">
<term><literal>INCLUDING DEFAULTS</literal></term>
<listitem>
<para>
Default expressions for the copied column definitions will be
copied. Otherwise, default expressions are not copied, resulting in
the copied columns in the new table having null defaults. Note that
copying defaults that call database-modification functions, such as
<function>nextval</function>, may create a functional linkage
between the original and new tables.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-like-opt-generated">
<term><literal>INCLUDING GENERATED</literal></term>
<listitem>
<para>
Any generation expressions of copied column definitions will be
copied. By default, new columns will be regular base columns.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-like-opt-identity">
<term><literal>INCLUDING IDENTITY</literal></term>
<listitem>
<para>
Any identity specifications of copied column definitions will be
copied. A new sequence is created for each identity column of the
new table, separate from the sequences associated with the old
table.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-like-opt-indexes">
<term><literal>INCLUDING INDEXES</literal></term>
<listitem>
<para>
Indexes, <literal>PRIMARY KEY</literal>, <literal>UNIQUE</literal>,
and <literal>EXCLUDE</literal> constraints on the original table
will be created on the new table. Names for the new indexes and
constraints are chosen according to the default rules, regardless of
how the originals were named. (This behavior avoids possible
duplicate-name failures for the new indexes.)
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-like-opt-statistics">
<term><literal>INCLUDING STATISTICS</literal></term>
<listitem>
<para>
Extended statistics are copied to the new table.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-like-opt-storage">
<term><literal>INCLUDING STORAGE</literal></term>
<listitem>
<para>
<literal>STORAGE</literal> settings for the copied column
definitions will be copied. The default behavior is to exclude
<literal>STORAGE</literal> settings, resulting in the copied columns
in the new table having type-specific default settings. For more on
<literal>STORAGE</literal> settings, see <xref
linkend="storage-toast"/>.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-like-opt-all">
<term><literal>INCLUDING ALL</literal></term>
<listitem>
<para>
<literal>INCLUDING ALL</literal> is an abbreviated form selecting
all the available individual options. (It could be useful to write
individual <literal>EXCLUDING</literal> clauses after
<literal>INCLUDING ALL</literal> to select all but some specific
options.)
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
<para>
The <literal>LIKE</literal> clause can also be used to copy column
definitions from views, foreign tables, or composite types.
Inapplicable options (e.g., <literal>INCLUDING INDEXES</literal> from
a view) are ignored.
</para>
2005-01-04 01:39:53 +01:00
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-constraint">
<term><literal>CONSTRAINT <replaceable class="parameter">constraint_name</replaceable></literal></term>
<listitem>
<para>
An optional name for a column or table constraint. If the
constraint is violated, the constraint name is present in error messages,
so constraint names like <literal>col must be positive</literal> can be used
to communicate helpful constraint information to client applications.
2006-01-16 21:48:49 +01:00
(Double-quotes are needed to specify constraint names that contain spaces.)
If a constraint name is not specified, the system generates a name.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-not-null">
<term><literal>NOT NULL</literal></term>
<listitem>
<para>
2003-04-22 12:08:08 +02:00
The column is not allowed to contain null values.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-null">
<term><literal>NULL</literal></term>
<listitem>
<para>
2003-04-22 12:08:08 +02:00
The column is allowed to contain null values. This is the default.
</para>
<para>
2005-01-04 01:39:53 +01:00
This clause is only provided for compatibility with
non-standard SQL databases. Its use is discouraged in new
applications.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-check">
<term><literal>CHECK ( <replaceable class="parameter">expression</replaceable> ) [ NO INHERIT ] </literal></term>
<listitem>
<para>
The <literal>CHECK</literal> clause specifies an expression producing a
Boolean result which new or updated rows must satisfy for an
insert or update operation to succeed. Expressions evaluating
to TRUE or UNKNOWN succeed. Should any row of an insert or
update operation produce a FALSE result, an error exception is
raised and the insert or update does not alter the database. A
check constraint specified as a column constraint should
reference that column's value only, while an expression
appearing in a table constraint can reference multiple columns.
</para>
<para>
Currently, <literal>CHECK</literal> expressions cannot contain
subqueries nor refer to variables other than columns of the
current row (see <xref linkend="ddl-constraints-check-constraints"/>).
The system column <literal>tableoid</literal>
may be referenced, but not any other system column.
</para>
<para>
A constraint marked with <literal>NO INHERIT</literal> will not propagate to
child tables.
</para>
<para>
When a table has multiple <literal>CHECK</literal> constraints,
they will be tested for each row in alphabetical order by name,
after checking <literal>NOT NULL</literal> constraints.
(<productname>PostgreSQL</productname> versions before 9.5 did not honor any
particular firing order for <literal>CHECK</literal> constraints.)
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-default">
<term><literal>DEFAULT
<replaceable>default_expr</replaceable></literal></term>
<listitem>
<para>
The <literal>DEFAULT</literal> clause assigns a default data value for
the column whose column definition it appears within. The value
is any variable-free expression (in particular, cross-references
to other columns in the current table are not allowed). Subqueries
are not allowed either. The data type of the default expression must
match the data type of the column.
</para>
<para>
The default expression will be used in any insert operation that
does not specify a value for the column. If there is no default
for a column, then the default is null.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-generated-stored">
<term><literal>GENERATED ALWAYS AS ( <replaceable>generation_expr</replaceable> ) STORED</literal><indexterm><primary>generated column</primary></indexterm></term>
<listitem>
<para>
This clause creates the column as a <firstterm>generated
column</firstterm>. The column cannot be written to, and when read the
result of the specified expression will be returned.
</para>
<para>
The keyword <literal>STORED</literal> is required to signify that the
column will be computed on write and will be stored on disk.
</para>
<para>
The generation expression can refer to other columns in the table, but
not other generated columns. Any functions and operators used must be
immutable. References to other tables are not allowed.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-generated-identity">
<term><literal>GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [ ( <replaceable>sequence_options</replaceable> ) ]</literal></term>
<listitem>
<para>
This clause creates the column as an <firstterm>identity
column</firstterm>. It will have an implicit sequence attached to it
and the column in new rows will automatically have values from the
sequence assigned to it.
Such a column is implicitly <literal>NOT NULL</literal>.
</para>
<para>
The clauses <literal>ALWAYS</literal> and <literal>BY DEFAULT</literal>
determine how explicitly user-specified values are handled in
<command>INSERT</command> and <command>UPDATE</command> commands.
</para>
<para>
In an <command>INSERT</command> command, if <literal>ALWAYS</literal> is
selected, a user-specified value is only accepted if the
<command>INSERT</command> statement specifies <literal>OVERRIDING SYSTEM
VALUE</literal>. If <literal>BY DEFAULT</literal> is selected, then the
user-specified value takes precedence. See <xref linkend="sql-insert"/>
for details. (In the <command>COPY</command> command, user-specified
values are always used regardless of this setting.)
</para>
<para>
In an <command>UPDATE</command> command, if <literal>ALWAYS</literal> is
selected, any update of the column to any value other than
<literal>DEFAULT</literal> will be rejected. If <literal>BY
DEFAULT</literal> is selected, the column can be updated normally.
(There is no <literal>OVERRIDING</literal> clause for the
<command>UPDATE</command> command.)
</para>
<para>
The optional <replaceable>sequence_options</replaceable> clause can be
used to override the options of the sequence.
See <xref linkend="sql-createsequence"/> for details.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-unique">
<term><literal>UNIQUE [ NULLS [ NOT ] DISTINCT ]</literal> (column constraint)</term>
<term><literal>UNIQUE [ NULLS [ NOT ] DISTINCT ] ( <replaceable class="parameter">column_name</replaceable> [, ... ] [, <replaceable class="parameter">column_name</replaceable> WITHOUT OVERLAPS ] )</literal>
<optional> <literal>INCLUDE ( <replaceable class="parameter">column_name</replaceable> [, ...])</literal> </optional> (table constraint)</term>
<listitem>
<para>
2003-04-22 12:08:08 +02:00
The <literal>UNIQUE</literal> constraint specifies that a
group of one or more columns of a table can contain
only unique values. The behavior of a unique table constraint
is the same as that of a unique column constraint, with the
additional capability to span multiple columns. The constraint
therefore enforces that any two rows must differ in at least one
of these columns.
</para>
<para>
If the <literal>WITHOUT OVERLAPS</literal> option is specified for the
last column, then that column is checked for overlaps instead of
equality. In that case, the other columns of the constraint will allow
duplicates so long as the duplicates don't overlap in the
<literal>WITHOUT OVERLAPS</literal> column. (This is sometimes called a
temporal key, if the column is a range of dates or timestamps, but
PostgreSQL allows ranges over any base type.) In effect, such a
constraint is enforced with an <literal>EXCLUDE</literal> constraint
rather than a <literal>UNIQUE</literal> constraint. So for example
<literal>UNIQUE (id, valid_at WITHOUT OVERLAPS)</literal> behaves like
<literal>EXCLUDE USING GIST (id WITH =, valid_at WITH
&amp;&amp;)</literal>. The <literal>WITHOUT OVERLAPS</literal> column
must have a range or multirange type. (Technically, any type is allowed
whose default GiST opclass includes an overlaps operator. See the
<literal>stratnum</literal> support function under <xref
linkend="gist-extensibility"/> for details.) The non-<literal>WITHOUT
OVERLAPS</literal> columns of the constraint can be any type that can be
compared for equality in a GiST index. By default, only range types are
supported, but you can use other types by adding the <xref
linkend="btree-gist"/> extension (which is the expected way to use this
feature).
</para>
<para>
2003-04-22 12:08:08 +02:00
For the purpose of a unique constraint, null values are not
considered equal, unless <literal>NULLS NOT DISTINCT</literal> is
specified.
</para>
1998-09-22 17:48:03 +02:00
<para>
Each unique constraint should name a set of columns that is
different from the set of columns named by any other unique or
primary key constraint defined for the table. (Otherwise, redundant
unique constraints will be discarded.)
</para>
<para>
When establishing a unique constraint for a multi-level partition
hierarchy, all the columns in the partition key of the target
partitioned table, as well as those of all its descendant partitioned
tables, must be included in the constraint definition.
</para>
<para>
Adding a unique constraint will automatically create a unique B-tree
index on the column or group of columns used in the constraint. But if
the constraint includes a <literal>WITHOUT OVERLAPS</literal> clause, it
will use a GiST index. The created index has the same name as the unique
constraint.
</para>
<para>
The optional <literal>INCLUDE</literal> clause adds to that index
one or more columns that are simply <quote>payload</quote>: uniqueness
is not enforced on them, and the index cannot be searched on the basis
of those columns. However they can be retrieved by an index-only scan.
Note that although the constraint is not enforced on included columns,
it still depends on them. Consequently, some operations on such columns
(e.g., <literal>DROP COLUMN</literal>) can cause cascaded constraint and
index deletion.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-primary-key">
<term><literal>PRIMARY KEY</literal> (column constraint)</term>
<term><literal>PRIMARY KEY ( <replaceable class="parameter">column_name</replaceable> [, ... ] [, <replaceable class="parameter">column_name</replaceable> WITHOUT OVERLAPS ] )</literal>
<optional> <literal>INCLUDE ( <replaceable class="parameter">column_name</replaceable> [, ...])</literal> </optional> (table constraint)</term>
<listitem>
<para>
The <literal>PRIMARY KEY</literal> constraint specifies that a column or
columns of a table can contain only unique (non-duplicate), nonnull
values. Only one primary key can be specified for a table, whether as a
column constraint or a table constraint.
</para>
<para>
The primary key constraint should name a set of columns that is
different from the set of columns named by any unique
constraint defined for the same table. (Otherwise, the unique
constraint is redundant and will be discarded.)
</para>
1998-09-22 17:48:03 +02:00
<para>
<literal>PRIMARY KEY</literal> enforces the same data constraints as
a combination of <literal>UNIQUE</literal> and <literal>NOT
NULL</literal>. However,
identifying a set of columns as the primary key also provides metadata
about the design of the schema, since a primary key implies that other
tables can rely on this set of columns as a unique identifier for rows.
</para>
<para>
When placed on a partitioned table, <literal>PRIMARY KEY</literal>
constraints share the restrictions previously described
for <literal>UNIQUE</literal> constraints.
</para>
<para>
As with a <literal>UNIQUE</literal> constraint, adding a
<literal>PRIMARY KEY</literal> constraint will automatically create a
unique B-tree index, or GiST if <literal>WITHOUT OVERLAPS</literal> was
specified, on the column or group of columns used in the constraint.
That index has the same name as the primary key constraint.
</para>
<para>
The optional <literal>INCLUDE</literal> clause adds to that index
one or more columns that are simply <quote>payload</quote>: uniqueness
is not enforced on them, and the index cannot be searched on the basis
of those columns. However they can be retrieved by an index-only scan.
Note that although the constraint is not enforced on included columns,
it still depends on them. Consequently, some operations on such columns
(e.g., <literal>DROP COLUMN</literal>) can cause cascaded constraint and
index deletion.
</para>
</listitem>
</varlistentry>
1998-09-22 17:48:03 +02:00
<varlistentry id="sql-createtable-exclude">
<term><literal>EXCLUDE [ USING <replaceable class="parameter">index_method</replaceable> ] ( <replaceable class="parameter">exclude_element</replaceable> WITH <replaceable class="parameter">operator</replaceable> [, ... ] ) <replaceable class="parameter">index_parameters</replaceable> [ WHERE ( <replaceable class="parameter">predicate</replaceable> ) ]</literal></term>
<listitem>
<para>
The <literal>EXCLUDE</literal> clause defines an exclusion
constraint, which guarantees that if
any two rows are compared on the specified column(s) or
expression(s) using the specified operator(s), not all of these
comparisons will return <literal>TRUE</literal>. If all of the
specified operators test for equality, this is equivalent to a
<literal>UNIQUE</literal> constraint, although an ordinary unique constraint
will be faster. However, exclusion constraints can specify
constraints that are more general than simple equality.
For example, you can specify a constraint that
no two rows in the table contain overlapping circles
(see <xref linkend="datatype-geometric"/>) by using the
<literal>&amp;&amp;</literal> operator.
</para>
1998-09-22 17:48:03 +02:00
<para>
Exclusion constraints are implemented using
an index that has the same name as the constraint, so each specified
operator must be associated with an appropriate operator class
(see <xref linkend="indexes-opclass"/>) for the index access
method <replaceable>index_method</replaceable>.
The operators are required to be commutative.
Each <replaceable class="parameter">exclude_element</replaceable>
can optionally specify an operator class and/or ordering options;
these are described fully under
<xref linkend="sql-createindex"/>.
</para>
<para>
The access method must support <literal>amgettuple</literal> (see <xref
linkend="indexam"/>); at present this means <acronym>GIN</acronym>
cannot be used. Although it's allowed, there is little point in using
2010-08-17 06:37:21 +02:00
B-tree or hash indexes with an exclusion constraint, because this
does nothing that an ordinary unique constraint doesn't do better.
So in practice the access method will always be <acronym>GiST</acronym> or
<acronym>SP-GiST</acronym>.
</para>
<para>
The <replaceable class="parameter">predicate</replaceable> allows you to specify an
exclusion constraint on a subset of the table; internally this creates a
partial index. Note that parentheses are required around the predicate.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-references">
<term><literal>REFERENCES <replaceable class="parameter">reftable</replaceable> [ ( <replaceable class="parameter">refcolumn</replaceable> ) ] [ MATCH <replaceable class="parameter">matchtype</replaceable> ] [ ON DELETE <replaceable class="parameter">referential_action</replaceable> ] [ ON UPDATE <replaceable class="parameter">referential_action</replaceable> ]</literal> (column constraint)</term>
<term><literal>FOREIGN KEY ( <replaceable class="parameter">column_name</replaceable> [, ... ] [, PERIOD <replaceable class="parameter">column_name</replaceable> ] )
REFERENCES <replaceable class="parameter">reftable</replaceable> [ ( <replaceable class="parameter">refcolumn</replaceable> [, ... ] [, PERIOD <replaceable class="parameter">column_name</replaceable> ] ) ]
[ MATCH <replaceable class="parameter">matchtype</replaceable> ]
[ ON DELETE <replaceable class="parameter">referential_action</replaceable> ]
[ ON UPDATE <replaceable class="parameter">referential_action</replaceable> ]</literal>
(table constraint)</term>
<listitem>
<para>
These clauses specify a foreign key constraint, which requires
that a group of one or more columns of the new table must only
contain values that match values in the referenced
column(s) of some row of the referenced table. If the <replaceable
class="parameter">refcolumn</replaceable> list is omitted, the
primary key of the <replaceable class="parameter">reftable</replaceable>
is used. Otherwise, the <replaceable class="parameter">refcolumn</replaceable>
list must refer to the columns of a non-deferrable unique or primary key
constraint or be the columns of a non-partial unique index.
</para>
<para>
If the last column is marked with <literal>PERIOD</literal>, it is
treated in a special way. While the non-<literal>PERIOD</literal>
columns are compared for equality (and there must be at least one of
them), the <literal>PERIOD</literal> column is not. Instead, the
constraint is considered satisfied if the referenced table has matching
records (based on the non-<literal>PERIOD</literal> parts of the key)
whose combined <literal>PERIOD</literal> values completely cover the
referencing record's. In other words, the reference must have a
referent for its entire duration. This column must be a range or
multirange type. In addition, the referenced table must have a primary
key or unique constraint declared with <literal>WITHOUT
OVERLAPS</literal>. Finally, if one side of the foreign key uses
<literal>PERIOD</literal>, the other side must too. If the <replaceable
class="parameter">refcolumn</replaceable> list is omitted, the
<literal>WITHOUT OVERLAPS</literal> part of the primary key is treated
as if marked with <literal>PERIOD</literal>.
</para>
<para>
The user
must have <literal>REFERENCES</literal> permission on the referenced
table (either the whole table, or the specific referenced columns). The
addition of a foreign key constraint requires a
<literal>SHARE ROW EXCLUSIVE</literal> lock on the referenced table.
Note that foreign key constraints cannot be defined between temporary
tables and permanent tables.
</para>
<para>
A value inserted into the referencing column(s) is matched against the
2003-04-22 12:08:08 +02:00
values of the referenced table and referenced columns using the
given match type. There are three match types: <literal>MATCH
FULL</literal>, <literal>MATCH PARTIAL</literal>, and <literal>MATCH
SIMPLE</literal> (which is the default). <literal>MATCH
FULL</literal> will not allow one column of a multicolumn foreign key
to be null unless all foreign key columns are null; if they are all
null, the row is not required to have a match in the referenced table.
<literal>MATCH SIMPLE</literal> allows any of the foreign key columns
to be null; if any of them are null, the row is not required to have a
match in the referenced table.
<literal>MATCH PARTIAL</literal> is not yet implemented.
(Of course, <literal>NOT NULL</literal> constraints can be applied to the
referencing column(s) to prevent these cases from arising.)
</para>
<para>
In addition, when the data in the referenced columns is changed,
certain actions are performed on the data in this table's
columns. The <literal>ON DELETE</literal> clause specifies the
2003-04-22 12:08:08 +02:00
action to perform when a referenced row in the referenced table is
being deleted. Likewise, the <literal>ON UPDATE</literal>
clause specifies the action to perform when a referenced column
in the referenced table is being updated to a new value. If the
row is updated, but the referenced column is not actually
2005-01-04 01:39:53 +01:00
changed, no action is done. Referential actions other than the
<literal>NO ACTION</literal> check cannot be deferred, even if
the constraint is declared deferrable. There are the following possible
actions for each clause:
<variablelist>
<varlistentry id="sql-createtable-parms-references-refact-no-action">
<term><literal>NO ACTION</literal></term>
<listitem>
<para>
Produce an error indicating that the deletion or update
would create a foreign key constraint violation.
If the constraint is deferred, this
error will be produced at constraint check time if there still
exist any referencing rows. This is the default action.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-references-refact-restrict">
<term><literal>RESTRICT</literal></term>
<listitem>
<para>
Produce an error indicating that the deletion or update
would create a foreign key constraint violation.
This is the same as <literal>NO ACTION</literal> except that
2005-01-04 01:39:53 +01:00
the check is not deferrable.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-references-refact-cascade">
<term><literal>CASCADE</literal></term>
<listitem>
<para>
Delete any rows referencing the deleted row, or update the
values of the referencing column(s) to the new values of the
referenced columns, respectively.
</para>
<para>
In a temporal foreign key, this option is not supported.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-references-refact-set-null">
<term><literal>SET NULL [ ( <replaceable>column_name</replaceable> [, ... ] ) ]</literal></term>
<listitem>
<para>
Set all of the referencing columns, or a specified subset of the
referencing columns, to null. A subset of columns can only be
specified for <literal>ON DELETE</literal> actions.
</para>
<para>
In a temporal foreign key, this option is not supported.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-references-refact-set-default">
<term><literal>SET DEFAULT [ ( <replaceable>column_name</replaceable> [, ... ] ) ]</literal></term>
<listitem>
<para>
Set all of the referencing columns, or a specified subset of the
referencing columns, to their default values. A subset of columns
can only be specified for <literal>ON DELETE</literal> actions.
(There must be a row in the referenced table matching the default
values, if they are not null, or the operation will fail.)
</para>
<para>
In a temporal foreign key, this option is not supported.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
2003-04-22 12:08:08 +02:00
<para>
If the referenced column(s) are changed frequently, it might be wise to
add an index to the referencing column(s) so that referential actions
associated with the foreign key constraint can be performed more
efficiently.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-deferrable">
2003-04-22 12:08:08 +02:00
<term><literal>DEFERRABLE</literal></term>
<term><literal>NOT DEFERRABLE</literal></term>
<listitem>
<para>
This controls whether the constraint can be deferred. A
constraint that is not deferrable will be checked immediately
after every command. Checking of constraints that are
deferrable can be postponed until the end of the transaction
Improve <xref> vs. <command> formatting in the documentation SQL commands are generally marked up as <command>, except when a link to a reference page is used using <xref>. But the latter doesn't create monospace markup, so this looks strange especially when a paragraph contains a mix of links and non-links. We considered putting <command> in the <refentrytitle> on the target side, but that creates some formatting side effects elsewhere. Generally, it seems safer to solve this on the link source side. We can't put the <xref> inside the <command>; the DTD doesn't allow this. DocBook 5 would allow the <command> to have the linkend attribute itself, but we are not there yet. So to solve this for now, convert the <xref>s to <link> plus <command>. This gives the correct look and also gives some more flexibility what we can put into the link text (e.g., subcommands or other clauses). In the future, these could then be converted to DocBook 5 style. I haven't converted absolutely all xrefs to SQL command reference pages, only those where we care about the appearance of the link text or where it was otherwise appropriate to make the appearance match a bit better. Also in some cases, the links where repetitive, so in those cases the links where just removed and replaced by a plain <command>. In cases where we just want the link and don't specifically care about the generated link text (typically phrased "for further information see <xref ...>") the xref is kept. Reported-by: Dagfinn Ilmari Mannsåker <ilmari@ilmari.org> Discussion: https://www.postgresql.org/message-id/flat/87o8pco34z.fsf@wibble.ilmari.org
2020-10-03 16:16:51 +02:00
(using the <link linkend="sql-set-constraints"><command>SET CONSTRAINTS</command></link> command).
<literal>NOT DEFERRABLE</literal> is the default.
Currently, only <literal>UNIQUE</literal>, <literal>PRIMARY KEY</literal>,
<literal>EXCLUDE</literal>, and
<literal>REFERENCES</literal> (foreign key) constraints accept this
clause. <literal>NOT NULL</literal> and <literal>CHECK</literal> constraints are not
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
deferrable. Note that deferrable constraints cannot be used as
conflict arbitrators in an <command>INSERT</command> statement that
includes an <literal>ON CONFLICT DO UPDATE</literal> clause.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-initially">
2003-04-22 12:08:08 +02:00
<term><literal>INITIALLY IMMEDIATE</literal></term>
<term><literal>INITIALLY DEFERRED</literal></term>
<listitem>
<para>
If a constraint is deferrable, this clause specifies the default
time to check the constraint. If the constraint is
<literal>INITIALLY IMMEDIATE</literal>, it is checked after each
statement. This is the default. If the constraint is
<literal>INITIALLY DEFERRED</literal>, it is checked only at the
end of the transaction. The constraint check time can be
Improve <xref> vs. <command> formatting in the documentation SQL commands are generally marked up as <command>, except when a link to a reference page is used using <xref>. But the latter doesn't create monospace markup, so this looks strange especially when a paragraph contains a mix of links and non-links. We considered putting <command> in the <refentrytitle> on the target side, but that creates some formatting side effects elsewhere. Generally, it seems safer to solve this on the link source side. We can't put the <xref> inside the <command>; the DTD doesn't allow this. DocBook 5 would allow the <command> to have the linkend attribute itself, but we are not there yet. So to solve this for now, convert the <xref>s to <link> plus <command>. This gives the correct look and also gives some more flexibility what we can put into the link text (e.g., subcommands or other clauses). In the future, these could then be converted to DocBook 5 style. I haven't converted absolutely all xrefs to SQL command reference pages, only those where we care about the appearance of the link text or where it was otherwise appropriate to make the appearance match a bit better. Also in some cases, the links where repetitive, so in those cases the links where just removed and replaced by a plain <command>. In cases where we just want the link and don't specifically care about the generated link text (typically phrased "for further information see <xref ...>") the xref is kept. Reported-by: Dagfinn Ilmari Mannsåker <ilmari@ilmari.org> Discussion: https://www.postgresql.org/message-id/flat/87o8pco34z.fsf@wibble.ilmari.org
2020-10-03 16:16:51 +02:00
altered with the <link linkend="sql-set-constraints"><command>SET CONSTRAINTS</command></link> command.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-method">
<term><literal>USING <replaceable class="parameter">method</replaceable></literal></term>
<listitem>
<para>
This optional clause specifies the table access method to use to store
the contents for the new table; the method needs be an access method of
type <literal>TABLE</literal>. See <xref linkend="tableam"/> for more
information. If this option is not specified, the default table access
method is chosen for the new table. See <xref
linkend="guc-default-table-access-method"/> for more information.
</para>
<para>
When creating a partition, the table access method is the access method
of its partitioned table, if set.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-with">
<term><literal>WITH ( <replaceable class="parameter">storage_parameter</replaceable> [= <replaceable class="parameter">value</replaceable>] [, ... ] )</literal></term>
<listitem>
<para>
This clause specifies optional storage parameters for a table or index;
2020-05-11 20:15:49 +02:00
see <xref linkend="sql-createtable-storage-parameters"/> below for more
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
information. For backward-compatibility the <literal>WITH</literal>
clause for a table can also include <literal>OIDS=FALSE</literal> to
specify that rows of the new table should not contain OIDs (object
identifiers), <literal>OIDS=TRUE</literal> is not supported anymore.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-without-oids">
<term><literal>WITHOUT OIDS</literal></term>
<listitem>
<para>
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
This is backward-compatible syntax for declaring a table
<literal>WITHOUT OIDS</literal>, creating a table <literal>WITH
OIDS</literal> is not supported anymore.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-on-commit">
<term><literal>ON COMMIT</literal></term>
<listitem>
<para>
The behavior of temporary tables at the end of a transaction
block can be controlled using <literal>ON COMMIT</literal>.
The three options are:
<variablelist>
<varlistentry id="sql-createtable-parms-on-commit-preserve-rows">
<term><literal>PRESERVE ROWS</literal></term>
<listitem>
<para>
No special action is taken at the ends of transactions.
This is the default behavior.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-on-commit-delete-rows">
<term><literal>DELETE ROWS</literal></term>
<listitem>
<para>
All rows in the temporary table will be deleted at the end
Improve <xref> vs. <command> formatting in the documentation SQL commands are generally marked up as <command>, except when a link to a reference page is used using <xref>. But the latter doesn't create monospace markup, so this looks strange especially when a paragraph contains a mix of links and non-links. We considered putting <command> in the <refentrytitle> on the target side, but that creates some formatting side effects elsewhere. Generally, it seems safer to solve this on the link source side. We can't put the <xref> inside the <command>; the DTD doesn't allow this. DocBook 5 would allow the <command> to have the linkend attribute itself, but we are not there yet. So to solve this for now, convert the <xref>s to <link> plus <command>. This gives the correct look and also gives some more flexibility what we can put into the link text (e.g., subcommands or other clauses). In the future, these could then be converted to DocBook 5 style. I haven't converted absolutely all xrefs to SQL command reference pages, only those where we care about the appearance of the link text or where it was otherwise appropriate to make the appearance match a bit better. Also in some cases, the links where repetitive, so in those cases the links where just removed and replaced by a plain <command>. In cases where we just want the link and don't specifically care about the generated link text (typically phrased "for further information see <xref ...>") the xref is kept. Reported-by: Dagfinn Ilmari Mannsåker <ilmari@ilmari.org> Discussion: https://www.postgresql.org/message-id/flat/87o8pco34z.fsf@wibble.ilmari.org
2020-10-03 16:16:51 +02:00
of each transaction block. Essentially, an automatic <link
linkend="sql-truncate"><command>TRUNCATE</command></link> is done
Fix dependency handling of partitions and inheritance for ON COMMIT This commit fixes a set of issues with ON COMMIT actions when used on partitioned tables and tables with inheritance children: - Applying ON COMMIT DROP on a partitioned table with partitions or on a table with inheritance children caused a failure at commit time, with complains about the children being already dropped as all relations are dropped one at the same time. - Applying ON COMMIT DELETE on a partition relying on a partitioned table which uses ON COMMIT DROP would cause the partition truncation to fail as the parent is removed first. The solution to the first problem is to handle the removal of all the dependencies in one go instead of dropping relations one-by-one, based on a suggestion from Álvaro Herrera. So instead all the relation OIDs to remove are gathered and then processed in one round of multiple deletions. The solution to the second problem is to reorder the actions, with truncation happening first and relation drop done after. Even if it means that a partition could be first truncated, then immediately dropped if its partitioned table is dropped, this has the merit to keep the code simple as there is no need to do existence checks on the relations to drop. Contrary to a manual TRUNCATE on a partitioned table, ON COMMIT DELETE does not cascade to its partitions. The ON COMMIT action defined on each partition gets the priority. Author: Michael Paquier Reviewed-by: Amit Langote, Álvaro Herrera, Robert Haas Discussion: https://postgr.es/m/68f17907-ec98-1192-f99f-8011400517f5@lab.ntt.co.jp Backpatch-through: 10
2018-11-09 02:03:22 +01:00
at each commit. When used on a partitioned table, this
is not cascaded to its partitions.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-on-commit-drop">
<term><literal>DROP</literal></term>
<listitem>
<para>
The temporary table will be dropped at the end of the current
Fix dependency handling of partitions and inheritance for ON COMMIT This commit fixes a set of issues with ON COMMIT actions when used on partitioned tables and tables with inheritance children: - Applying ON COMMIT DROP on a partitioned table with partitions or on a table with inheritance children caused a failure at commit time, with complains about the children being already dropped as all relations are dropped one at the same time. - Applying ON COMMIT DELETE on a partition relying on a partitioned table which uses ON COMMIT DROP would cause the partition truncation to fail as the parent is removed first. The solution to the first problem is to handle the removal of all the dependencies in one go instead of dropping relations one-by-one, based on a suggestion from Álvaro Herrera. So instead all the relation OIDs to remove are gathered and then processed in one round of multiple deletions. The solution to the second problem is to reorder the actions, with truncation happening first and relation drop done after. Even if it means that a partition could be first truncated, then immediately dropped if its partitioned table is dropped, this has the merit to keep the code simple as there is no need to do existence checks on the relations to drop. Contrary to a manual TRUNCATE on a partitioned table, ON COMMIT DELETE does not cascade to its partitions. The ON COMMIT action defined on each partition gets the priority. Author: Michael Paquier Reviewed-by: Amit Langote, Álvaro Herrera, Robert Haas Discussion: https://postgr.es/m/68f17907-ec98-1192-f99f-8011400517f5@lab.ntt.co.jp Backpatch-through: 10
2018-11-09 02:03:22 +01:00
transaction block. When used on a partitioned table, this action
drops its partitions and when used on tables with inheritance
children, it drops the dependent children.
</para>
</listitem>
</varlistentry>
</variablelist></para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-tablespace">
<term><literal>TABLESPACE <replaceable class="parameter">tablespace_name</replaceable></literal></term>
<listitem>
<para>
The <replaceable class="parameter">tablespace_name</replaceable> is the name
of the tablespace in which the new table is to be created.
If not specified,
<xref linkend="guc-default-tablespace"/> is consulted, or
<xref linkend="guc-temp-tablespaces"/> if the table is temporary. For
partitioned tables, since no storage is required for the table itself,
the tablespace specified overrides <literal>default_tablespace</literal>
as the default tablespace to use for any newly created partitions when no
other tablespace is explicitly specified.
</para>
</listitem>
</varlistentry>
<varlistentry id="sql-createtable-parms-using-index-tablespace">
<term><literal>USING INDEX TABLESPACE <replaceable class="parameter">tablespace_name</replaceable></literal></term>
<listitem>
<para>
This clause allows selection of the tablespace in which the index
associated with a <literal>UNIQUE</literal>, <literal>PRIMARY
KEY</literal>, or <literal>EXCLUDE</literal> constraint will be created.
If not specified,
<xref linkend="guc-default-tablespace"/> is consulted, or
<xref linkend="guc-temp-tablespaces"/> if the table is temporary.
</para>
</listitem>
</varlistentry>
</variablelist>
2020-05-11 20:15:49 +02:00
<refsect2 id="sql-createtable-storage-parameters" xreflabel="Storage Parameters">
<title>Storage Parameters</title>
<indexterm zone="sql-createtable-storage-parameters">
<primary>storage parameters</primary>
</indexterm>
<para>
The <literal>WITH</literal> clause can specify <firstterm>storage parameters</firstterm>
for tables, and for indexes associated with a <literal>UNIQUE</literal>,
<literal>PRIMARY KEY</literal>, or <literal>EXCLUDE</literal> constraint.
Storage parameters for
indexes are documented in <xref linkend="sql-createindex"/>.
The storage parameters currently
available for tables are listed below. For many of these parameters, as
shown, there is an additional parameter with the same name prefixed with
<literal>toast.</literal>, which controls the behavior of the
table's secondary <acronym>TOAST</acronym> table, if any
(see <xref linkend="storage-toast"/> for more information about TOAST).
If a table parameter value is set and the
equivalent <literal>toast.</literal> parameter is not, the TOAST table
will use the table's parameter value.
Revert analyze support for partitioned tables This reverts the following commits: 1b5617eb844cd2470a334c1d2eec66cf9b39c41a Describe (auto-)analyze behavior for partitioned tables 0e69f705cc1a3df273b38c9883fb5765991e04fe Set pg_class.reltuples for partitioned tables 41badeaba8beee7648ebe7923a41c04f1f3cb302 Document ANALYZE storage parameters for partitioned tables 0827e8af70f4653ba17ed773f123a60eadd9f9c9 autovacuum: handle analyze for partitioned tables There are efficiency issues in this code when handling databases with large numbers of partitions, and it doesn't look like there isn't any trivial way to handle those. There are some other issues as well. It's now too late in the cycle for nontrivial fixes, so we'll have to let Postgres 14 users continue to manually deal with ANALYZE their partitioned tables, and hopefully we can fix the issues for Postgres 15. I kept [most of] be280cdad298 ("Don't reset relhasindex for partitioned tables on ANALYZE") because while we added it due to 0827e8af70f4, it is a good bugfix in its own right, since it affects manual analyze as well as autovacuum-induced analyze, and there's no reason to revert it. I retained the addition of relkind 'p' to tables included by pg_stat_user_tables, because reverting that would require a catversion bump. Also, in pg14 only, I keep a struct member that was added to PgStat_TabStatEntry to avoid breaking compatibility with existing stat files. Backpatch to 14. Discussion: https://postgr.es/m/20210722205458.f2bug3z6qzxzpx2s@alap3.anarazel.de
2021-08-16 23:27:52 +02:00
Specifying these parameters for partitioned tables is not supported,
but you may specify them for individual leaf partitions.
</para>
<variablelist>
<varlistentry id="reloption-fillfactor" xreflabel="fillfactor">
<term><varname>fillfactor</varname> (<type>integer</type>)
<indexterm>
<primary><varname>fillfactor</varname> storage parameter</primary>
</indexterm>
</term>
<listitem>
<para>
The fillfactor for a table is a percentage between 10 and 100.
100 (complete packing) is the default. When a smaller fillfactor
is specified, <command>INSERT</command> operations pack table pages only
to the indicated percentage; the remaining space on each page is
reserved for updating rows on that page. This gives <command>UPDATE</command>
a chance to place the updated copy of a row on the same page as the
original, which is more efficient than placing it on a different
page, and makes <link linkend="storage-hot">heap-only tuple
updates</link> more likely.
For a table whose entries are never updated, complete packing is the
best choice, but in heavily updated tables smaller fillfactors are
appropriate. This parameter cannot be set for TOAST tables.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-toast-tuple-target" xreflabel="toast_tuple_target">
<term><literal>toast_tuple_target</literal> (<type>integer</type>)
<indexterm>
<primary><varname>toast_tuple_target</varname> storage parameter</primary>
</indexterm>
</term>
<listitem>
<para>
The toast_tuple_target specifies the minimum tuple length required before
we try to compress and/or move long column values into TOAST tables, and
is also the target length we try to reduce the length below once toasting
begins. This affects columns marked as External (for move),
Main (for compression), or Extended (for both) and applies only to new
tuples. There is no effect on existing rows.
By default this parameter is set to allow at least 4 tuples per block,
2020-07-05 15:37:57 +02:00
which with the default block size will be 2040 bytes. Valid values are
between 128 bytes and the (block size - header), by default 8160 bytes.
Changing this value may not be useful for very short or very long rows.
Note that the default setting is often close to optimal, and
it is possible that setting this parameter could have negative
effects in some cases.
This parameter cannot be set for TOAST tables.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-parallel-workers" xreflabel="parallel_workers">
<term><literal>parallel_workers</literal> (<type>integer</type>)
<indexterm>
<primary><varname>parallel_workers</varname> storage parameter</primary>
</indexterm>
</term>
<listitem>
<para>
This sets the number of workers that should be used to assist a parallel
scan of this table. If not set, the system will determine a value based
on the relation size. The actual number of workers chosen by the planner
or by utility statements that use parallel scans may be less, for example
due to the setting of <xref linkend="guc-max-worker-processes"/>.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-enabled" xreflabel="autovacuum_enabled">
<term><literal>autovacuum_enabled</literal>, <literal>toast.autovacuum_enabled</literal> (<type>boolean</type>)
<indexterm>
<primary><varname>autovacuum_enabled</varname> storage parameter</primary>
</indexterm>
</term>
<listitem>
<para>
Enables or disables the autovacuum daemon for a particular table.
If true, the autovacuum daemon will perform automatic <command>VACUUM</command>
and/or <command>ANALYZE</command> operations on this table following the rules
discussed in <xref linkend="autovacuum"/>.
If false, this table will not be autovacuumed, except to prevent
transaction ID wraparound. See <xref linkend="vacuum-for-wraparound"/> for
more about wraparound prevention.
Note that the autovacuum daemon does not run at all (except to prevent
transaction ID wraparound) if the <xref linkend="guc-autovacuum"/>
parameter is false; setting individual tables' storage parameters does
not override that. Therefore there is seldom much point in explicitly
setting this storage parameter to <literal>true</literal>, only
to <literal>false</literal>.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-vacuum-index-cleanup" xreflabel="vacuum_index_cleanup">
<term><literal>vacuum_index_cleanup</literal>, <literal>toast.vacuum_index_cleanup</literal> (<type>enum</type>)
<indexterm>
<primary><varname>vacuum_index_cleanup</varname> storage parameter</primary>
</indexterm>
</term>
<listitem>
<para>
Forces or disables index cleanup when <command>VACUUM</command>
is run on this table. The default value is
<literal>AUTO</literal>. With <literal>OFF</literal>, index
cleanup is disabled, with <literal>ON</literal> it is enabled,
and with <literal>AUTO</literal> a decision is made dynamically,
each time <command>VACUUM</command> runs. The dynamic behavior
allows <command>VACUUM</command> to avoid needlessly scanning
indexes to remove very few dead tuples. Forcibly disabling all
index cleanup can speed up <command>VACUUM</command> very
significantly, but may also lead to severely bloated indexes if
table modifications are frequent. The
<literal>INDEX_CLEANUP</literal> parameter of <link
linkend="sql-vacuum"><command>VACUUM</command></link>, if
specified, overrides the value of this option.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-vacuum-truncate" xreflabel="vacuum_truncate">
<term><literal>vacuum_truncate</literal>, <literal>toast.vacuum_truncate</literal> (<type>boolean</type>)
<indexterm>
<primary><varname>vacuum_truncate</varname> storage parameter</primary>
</indexterm>
</term>
<listitem>
<para>
Enables or disables vacuum to try to truncate off any empty pages
at the end of this table. The default value is <literal>true</literal>.
If <literal>true</literal>, <command>VACUUM</command> and
autovacuum do the truncation and the disk space for
the truncated pages is returned to the operating system.
Note that the truncation requires <literal>ACCESS EXCLUSIVE</literal>
lock on the table. The <literal>TRUNCATE</literal> parameter
Improve <xref> vs. <command> formatting in the documentation SQL commands are generally marked up as <command>, except when a link to a reference page is used using <xref>. But the latter doesn't create monospace markup, so this looks strange especially when a paragraph contains a mix of links and non-links. We considered putting <command> in the <refentrytitle> on the target side, but that creates some formatting side effects elsewhere. Generally, it seems safer to solve this on the link source side. We can't put the <xref> inside the <command>; the DTD doesn't allow this. DocBook 5 would allow the <command> to have the linkend attribute itself, but we are not there yet. So to solve this for now, convert the <xref>s to <link> plus <command>. This gives the correct look and also gives some more flexibility what we can put into the link text (e.g., subcommands or other clauses). In the future, these could then be converted to DocBook 5 style. I haven't converted absolutely all xrefs to SQL command reference pages, only those where we care about the appearance of the link text or where it was otherwise appropriate to make the appearance match a bit better. Also in some cases, the links where repetitive, so in those cases the links where just removed and replaced by a plain <command>. In cases where we just want the link and don't specifically care about the generated link text (typically phrased "for further information see <xref ...>") the xref is kept. Reported-by: Dagfinn Ilmari Mannsåker <ilmari@ilmari.org> Discussion: https://www.postgresql.org/message-id/flat/87o8pco34z.fsf@wibble.ilmari.org
2020-10-03 16:16:51 +02:00
of <link linkend="sql-vacuum"><command>VACUUM</command></link>, if specified, overrides the value
of this option.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-vacuum-threshold" xreflabel="autovacuum_vacuum_threshold">
<term><literal>autovacuum_vacuum_threshold</literal>, <literal>toast.autovacuum_vacuum_threshold</literal> (<type>integer</type>)
<indexterm>
<primary><varname>autovacuum_vacuum_threshold</varname></primary>
<secondary>storage parameter</secondary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-autovacuum-vacuum-threshold"/>
parameter.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-vacuum-scale-factor" xreflabel="autovacuum_vacuum_scale_factor">
<term><literal>autovacuum_vacuum_scale_factor</literal>, <literal>toast.autovacuum_vacuum_scale_factor</literal> (<type>floating point</type>)
<indexterm>
<primary><varname>autovacuum_vacuum_scale_factor</varname> </primary>
<secondary>storage parameter</secondary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-autovacuum-vacuum-scale-factor"/>
parameter.
</para>
</listitem>
</varlistentry>
Trigger autovacuum based on number of INSERTs Traditionally autovacuum has only ever invoked a worker based on the estimated number of dead tuples in a table and for anti-wraparound purposes. For the latter, with certain classes of tables such as insert-only tables, anti-wraparound vacuums could be the first vacuum that the table ever receives. This could often lead to autovacuum workers being busy for extended periods of time due to having to potentially freeze every page in the table. This could be particularly bad for very large tables. New clusters, or recently pg_restored clusters could suffer even more as many large tables may have the same relfrozenxid, which could result in large numbers of tables requiring an anti-wraparound vacuum all at once. Here we aim to reduce the work required by anti-wraparound and aggressive vacuums in general, by triggering autovacuum when the table has received enough INSERTs. This is controlled by adding two new GUCs and reloptions; autovacuum_vacuum_insert_threshold and autovacuum_vacuum_insert_scale_factor. These work exactly the same as the existing scale factor and threshold controls, only base themselves off the number of inserts since the last vacuum, rather than the number of dead tuples. New controls were added rather than reusing the existing controls, to allow these new vacuums to be tuned independently and perhaps even completely disabled altogether, which can be done by setting autovacuum_vacuum_insert_threshold to -1. We make no attempt to skip index cleanup operations on these vacuums as they may trigger for an insert-mostly table which continually doesn't have enough dead tuples to trigger an autovacuum for the purpose of removing those dead tuples. If we were to skip cleaning the indexes in this case, then it is possible for the index(es) to become bloated over time. There are additional benefits to triggering autovacuums based on inserts, as tables which never contain enough dead tuples to trigger an autovacuum are now more likely to receive a vacuum, which can mark more of the table as "allvisible" and encourage the query planner to make use of Index Only Scans. Currently, we still obey vacuum_freeze_min_age when triggering these new autovacuums based on INSERTs. For large insert-only tables, it may be beneficial to lower the table's autovacuum_freeze_min_age so that tuples are eligible to be frozen sooner. Here we've opted not to zero that for these types of vacuums, since the table may just be insert-mostly and we may otherwise freeze tuples that are still destined to be updated or removed in the near future. There was some debate to what exactly the new scale factor and threshold should default to. For now, these are set to 0.2 and 1000, respectively. There may be some motivation to adjust these before the release. Author: Laurenz Albe, Darafei Praliaskouski Reviewed-by: Alvaro Herrera, Masahiko Sawada, Chris Travers, Andres Freund, Justin Pryzby Discussion: https://postgr.es/m/CAC8Q8t%2Bj36G_bLF%3D%2B0iMo6jGNWnLnWb1tujXuJr-%2Bx8ZCCTqoQ%40mail.gmail.com
2020-03-28 07:20:12 +01:00
<varlistentry id="reloption-autovacuum-vacuum-insert-threshold" xreflabel="autovacuum_vacuum_insert_threshold">
<term><literal>autovacuum_vacuum_insert_threshold</literal>, <literal>toast.autovacuum_vacuum_insert_threshold</literal> (<type>integer</type>)
<indexterm>
<primary><varname>autovacuum_vacuum_insert_threshold</varname></primary>
<secondary>storage parameter</secondary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-autovacuum-vacuum-insert-threshold"/>
parameter. The special value of -1 may be used to disable insert vacuums on the table.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-vacuum-insert-scale-factor" xreflabel="autovacuum_vacuum_insert_scale_factor">
<term><literal>autovacuum_vacuum_insert_scale_factor</literal>, <literal>toast.autovacuum_vacuum_insert_scale_factor</literal> (<type>floating point</type>)
Trigger autovacuum based on number of INSERTs Traditionally autovacuum has only ever invoked a worker based on the estimated number of dead tuples in a table and for anti-wraparound purposes. For the latter, with certain classes of tables such as insert-only tables, anti-wraparound vacuums could be the first vacuum that the table ever receives. This could often lead to autovacuum workers being busy for extended periods of time due to having to potentially freeze every page in the table. This could be particularly bad for very large tables. New clusters, or recently pg_restored clusters could suffer even more as many large tables may have the same relfrozenxid, which could result in large numbers of tables requiring an anti-wraparound vacuum all at once. Here we aim to reduce the work required by anti-wraparound and aggressive vacuums in general, by triggering autovacuum when the table has received enough INSERTs. This is controlled by adding two new GUCs and reloptions; autovacuum_vacuum_insert_threshold and autovacuum_vacuum_insert_scale_factor. These work exactly the same as the existing scale factor and threshold controls, only base themselves off the number of inserts since the last vacuum, rather than the number of dead tuples. New controls were added rather than reusing the existing controls, to allow these new vacuums to be tuned independently and perhaps even completely disabled altogether, which can be done by setting autovacuum_vacuum_insert_threshold to -1. We make no attempt to skip index cleanup operations on these vacuums as they may trigger for an insert-mostly table which continually doesn't have enough dead tuples to trigger an autovacuum for the purpose of removing those dead tuples. If we were to skip cleaning the indexes in this case, then it is possible for the index(es) to become bloated over time. There are additional benefits to triggering autovacuums based on inserts, as tables which never contain enough dead tuples to trigger an autovacuum are now more likely to receive a vacuum, which can mark more of the table as "allvisible" and encourage the query planner to make use of Index Only Scans. Currently, we still obey vacuum_freeze_min_age when triggering these new autovacuums based on INSERTs. For large insert-only tables, it may be beneficial to lower the table's autovacuum_freeze_min_age so that tuples are eligible to be frozen sooner. Here we've opted not to zero that for these types of vacuums, since the table may just be insert-mostly and we may otherwise freeze tuples that are still destined to be updated or removed in the near future. There was some debate to what exactly the new scale factor and threshold should default to. For now, these are set to 0.2 and 1000, respectively. There may be some motivation to adjust these before the release. Author: Laurenz Albe, Darafei Praliaskouski Reviewed-by: Alvaro Herrera, Masahiko Sawada, Chris Travers, Andres Freund, Justin Pryzby Discussion: https://postgr.es/m/CAC8Q8t%2Bj36G_bLF%3D%2B0iMo6jGNWnLnWb1tujXuJr-%2Bx8ZCCTqoQ%40mail.gmail.com
2020-03-28 07:20:12 +01:00
<indexterm>
<primary><varname>autovacuum_vacuum_insert_scale_factor</varname> </primary>
<secondary>storage parameter</secondary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-autovacuum-vacuum-insert-scale-factor"/>
parameter.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-analyze-threshold" xreflabel="autovacuum_analyze_threshold">
<term><literal>autovacuum_analyze_threshold</literal> (<type>integer</type>)
<indexterm>
<primary><varname>autovacuum_analyze_threshold</varname></primary>
<secondary>storage parameter</secondary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-autovacuum-analyze-threshold"/>
parameter.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-analyze-scale-factor" xreflabel="autovacuum_analyze_scale_factor">
<term><literal>autovacuum_analyze_scale_factor</literal> (<type>floating point</type>)
<indexterm>
<primary><varname>autovacuum_analyze_scale_factor</varname></primary>
<secondary>storage parameter</secondary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-autovacuum-analyze-scale-factor"/>
parameter.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-vacuum-cost-delay" xreflabel="autovacuum_vacuum_cost_delay">
<term><literal>autovacuum_vacuum_cost_delay</literal>, <literal>toast.autovacuum_vacuum_cost_delay</literal> (<type>floating point</type>)
<indexterm>
<primary><varname>autovacuum_vacuum_cost_delay</varname></primary>
<secondary>storage parameter</secondary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-autovacuum-vacuum-cost-delay"/>
parameter.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-vacuum-cost-limit" xreflabel="autovacuum_vacuum_cost_limit">
<term><literal>autovacuum_vacuum_cost_limit</literal>, <literal>toast.autovacuum_vacuum_cost_limit</literal> (<type>integer</type>)
<indexterm>
<primary><varname>autovacuum_vacuum_cost_limit</varname></primary>
<secondary>storage parameter</secondary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-autovacuum-vacuum-cost-limit"/>
parameter.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-freeze-min-age" xreflabel="autovacuum_freeze_min_age">
<term><literal>autovacuum_freeze_min_age</literal>, <literal>toast.autovacuum_freeze_min_age</literal> (<type>integer</type>)
<indexterm>
<primary><varname>autovacuum_freeze_min_age</varname> storage parameter</primary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-vacuum-freeze-min-age"/>
parameter. Note that autovacuum will ignore
per-table <literal>autovacuum_freeze_min_age</literal> parameters that are
larger than half the
system-wide <xref linkend="guc-autovacuum-freeze-max-age"/> setting.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-freeze-max-age" xreflabel="autovacuum_freeze_max_age">
<term><literal>autovacuum_freeze_max_age</literal>, <literal>toast.autovacuum_freeze_max_age</literal> (<type>integer</type>)
<indexterm>
<primary><varname>autovacuum_freeze_max_age</varname></primary>
<secondary>storage parameter</secondary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-autovacuum-freeze-max-age"/>
parameter. Note that autovacuum will ignore
per-table <literal>autovacuum_freeze_max_age</literal> parameters that are
larger than the system-wide setting (it can only be set smaller).
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-freeze-table-age" xreflabel="autovacuum_freeze_table_age">
<term><literal>autovacuum_freeze_table_age</literal>, <literal>toast.autovacuum_freeze_table_age</literal> (<type>integer</type>)
<indexterm>
<primary><varname>autovacuum_freeze_table_age</varname> storage parameter</primary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-vacuum-freeze-table-age"/>
parameter.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-multixact-freeze-min-age" xreflabel="autovacuum_multixact_freeze_min_age">
<term><literal>autovacuum_multixact_freeze_min_age</literal>, <literal>toast.autovacuum_multixact_freeze_min_age</literal> (<type>integer</type>)
<indexterm>
<primary><varname>autovacuum_multixact_freeze_min_age</varname> storage parameter</primary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-vacuum-multixact-freeze-min-age"/>
parameter. Note that autovacuum will ignore
per-table <literal>autovacuum_multixact_freeze_min_age</literal> parameters
that are larger than half the
system-wide <xref linkend="guc-autovacuum-multixact-freeze-max-age"/>
setting.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-multixact-freeze-max-age" xreflabel="autovacuum_multixact_freeze_max_age">
<term><literal>autovacuum_multixact_freeze_max_age</literal>, <literal>toast.autovacuum_multixact_freeze_max_age</literal> (<type>integer</type>)
<indexterm>
<primary><varname>autovacuum_multixact_freeze_max_age</varname></primary>
<secondary>storage parameter</secondary>
</indexterm>
</term>
<listitem>
<para>
Per-table value
for <xref linkend="guc-autovacuum-multixact-freeze-max-age"/> parameter.
Note that autovacuum will ignore
per-table <literal>autovacuum_multixact_freeze_max_age</literal> parameters
that are larger than the system-wide setting (it can only be set
smaller).
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-autovacuum-multixact-freeze-table-age" xreflabel="autovacuum_multixact_freeze_table_age">
<term><literal>autovacuum_multixact_freeze_table_age</literal>, <literal>toast.autovacuum_multixact_freeze_table_age</literal> (<type>integer</type>)
<indexterm>
<primary><varname>autovacuum_multixact_freeze_table_age</varname> storage parameter</primary>
</indexterm>
</term>
<listitem>
<para>
Per-table value
for <xref linkend="guc-vacuum-multixact-freeze-table-age"/> parameter.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-log-autovacuum-min-duration" xreflabel="log_autovacuum_min_duration">
<term><literal>log_autovacuum_min_duration</literal>, <literal>toast.log_autovacuum_min_duration</literal> (<type>integer</type>)
<indexterm>
<primary><varname>log_autovacuum_min_duration</varname></primary>
<secondary>storage parameter</secondary>
</indexterm>
</term>
<listitem>
<para>
Per-table value for <xref linkend="guc-log-autovacuum-min-duration"/>
parameter.
</para>
</listitem>
</varlistentry>
<varlistentry id="reloption-user-catalog-table" xreflabel="user_catalog_table">
<term><literal>user_catalog_table</literal> (<type>boolean</type>)
<indexterm>
<primary><varname>user_catalog_table</varname> storage parameter</primary>
</indexterm>
</term>
<listitem>
<para>
Declare the table as an additional catalog table for purposes of
logical replication. See
<xref linkend="logicaldecoding-capabilities"/> for details.
This parameter cannot be set for TOAST tables.
</para>
</listitem>
</varlistentry>
</variablelist>
</refsect2>
</refsect1>
<refsect1 id="sql-createtable-notes">
<title>Notes</title>
<para>
<productname>PostgreSQL</productname> automatically creates an
index for each unique constraint and primary key constraint to
2005-01-04 01:39:53 +01:00
enforce uniqueness. Thus, it is not necessary to create an
index explicitly for primary key columns. (See <xref
linkend="sql-createindex"/> for more information.)
</para>
<para>
Unique constraints and primary keys are not inherited in the
current implementation. This makes the combination of
2002-01-20 23:19:57 +01:00
inheritance and unique constraints rather dysfunctional.
</para>
2005-01-04 01:39:53 +01:00
<para>
A table cannot have more than 1600 columns. (In practice, the
effective limit is usually lower because of tuple-length constraints.)
</para>
2005-01-04 01:39:53 +01:00
</refsect1>
<refsect1 id="sql-createtable-examples">
<title>Examples</title>
<para>
Create table <structname>films</structname> and table
<structname>distributors</structname>:
<programlisting>
CREATE TABLE films (
2003-04-22 12:08:08 +02:00
code char(5) CONSTRAINT firstkey PRIMARY KEY,
title varchar(40) NOT NULL,
did integer NOT NULL,
date_prod date,
kind varchar(10),
len interval hour to minute
);
CREATE TABLE distributors (
did integer PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
2003-04-22 12:08:08 +02:00
name varchar(40) NOT NULL CHECK (name &lt;&gt; '')
);
</programlisting>
</para>
<para>
Create a table with a 2-dimensional array:
<programlisting>
CREATE TABLE array_int (
2003-04-22 12:08:08 +02:00
vector int[][]
);
</programlisting>
</para>
<para>
2003-04-22 12:08:08 +02:00
Define a unique table constraint for the table
<literal>films</literal>. Unique table constraints can be defined
on one or more columns of the table:
<programlisting>
CREATE TABLE films (
2003-04-22 12:08:08 +02:00
code char(5),
title varchar(40),
did integer,
date_prod date,
kind varchar(10),
len interval hour to minute,
CONSTRAINT production UNIQUE(date_prod)
);
</programlisting>
</para>
<para>
Define a check column constraint:
<programlisting>
CREATE TABLE distributors (
did integer CHECK (did &gt; 100),
2003-04-22 12:08:08 +02:00
name varchar(40)
);
</programlisting>
</para>
<para>
Define a check table constraint:
<programlisting>
CREATE TABLE distributors (
2003-04-22 12:08:08 +02:00
did integer,
name varchar(40),
CONSTRAINT con1 CHECK (did &gt; 100 AND name &lt;&gt; '')
);
</programlisting>
</para>
<para>
Define a primary key table constraint for the table
<structname>films</structname>:
<programlisting>
CREATE TABLE films (
2003-04-22 12:08:08 +02:00
code char(5),
title varchar(40),
did integer,
date_prod date,
kind varchar(10),
len interval hour to minute,
CONSTRAINT code_title PRIMARY KEY(code,title)
);
</programlisting>
</para>
<para>
Define a primary key constraint for table
<structname>distributors</structname>. The following two examples are
equivalent, the first using the table constraint syntax, the second
the column constraint syntax:
<programlisting>
CREATE TABLE distributors (
2003-04-22 12:08:08 +02:00
did integer,
name varchar(40),
PRIMARY KEY(did)
);
CREATE TABLE distributors (
2003-04-22 12:08:08 +02:00
did integer PRIMARY KEY,
name varchar(40)
);
</programlisting>
</para>
<para>
Assign a literal constant default value for the column
<literal>name</literal>, arrange for the default value of column
2003-04-22 12:08:08 +02:00
<literal>did</literal> to be generated by selecting the next value
of a sequence object, and make the default value of
2003-04-22 12:08:08 +02:00
<literal>modtime</literal> be the time at which the row is
inserted:
<programlisting>
CREATE TABLE distributors (
2003-04-22 12:08:08 +02:00
name varchar(40) DEFAULT 'Luso Films',
did integer DEFAULT nextval('distributors_serial'),
modtime timestamp DEFAULT current_timestamp
);
</programlisting>
</para>
<para>
Define two <literal>NOT NULL</literal> column constraints on the table
<classname>distributors</classname>, one of which is explicitly
given a name:
<programlisting>
CREATE TABLE distributors (
2003-04-22 12:08:08 +02:00
did integer CONSTRAINT no_null NOT NULL,
name varchar(40) NOT NULL
);
</programlisting>
</para>
<para>
Define a unique constraint for the <literal>name</literal> column:
<programlisting>
CREATE TABLE distributors (
2003-04-22 12:08:08 +02:00
did integer,
name varchar(40) UNIQUE
);
</programlisting>
The same, specified as a table constraint:
<programlisting>
CREATE TABLE distributors (
2003-04-22 12:08:08 +02:00
did integer,
name varchar(40),
UNIQUE(name)
);
</programlisting>
</para>
<para>
Create the same table, specifying 70% fill factor for both the table
and its unique index:
<programlisting>
CREATE TABLE distributors (
did integer,
name varchar(40),
UNIQUE(name) WITH (fillfactor=70)
)
WITH (fillfactor=70);
</programlisting>
</para>
<para>
Create table <structname>circles</structname> with an exclusion
constraint that prevents any two circles from overlapping:
<programlisting>
CREATE TABLE circles (
c circle,
EXCLUDE USING gist (c WITH &amp;&amp;)
);
</programlisting>
</para>
<para>
Create table <structname>cinemas</structname> in tablespace <structname>diskvol1</structname>:
<programlisting>
CREATE TABLE cinemas (
id serial,
name text,
location text
) TABLESPACE diskvol1;
</programlisting>
</para>
<para>
Create a composite type and a typed table:
<programlisting>
CREATE TYPE employee_type AS (name text, salary numeric);
CREATE TABLE employees OF employee_type (
PRIMARY KEY (name),
salary WITH OPTIONS DEFAULT 1000
);
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
</programlisting></para>
<para>
Create a range partitioned table:
<programlisting>
CREATE TABLE measurement (
logdate date not null,
peaktemp int,
unitsales int
) PARTITION BY RANGE (logdate);
</programlisting></para>
<para>
Create a range partitioned table with multiple columns in the partition key:
<programlisting>
CREATE TABLE measurement_year_month (
logdate date not null,
peaktemp int,
unitsales int
) PARTITION BY RANGE (EXTRACT(YEAR FROM logdate), EXTRACT(MONTH FROM logdate));
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
</programlisting></para>
<para>
Create a list partitioned table:
<programlisting>
CREATE TABLE cities (
city_id bigserial not null,
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
name text not null,
population bigint
) PARTITION BY LIST (left(lower(name), 1));
</programlisting></para>
<para>
Create a hash partitioned table:
<programlisting>
CREATE TABLE orders (
order_id bigint not null,
cust_id bigint not null,
status text
) PARTITION BY HASH (order_id);
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
</programlisting></para>
<para>
Create partition of a range partitioned table:
<programlisting>
CREATE TABLE measurement_y2016m07
PARTITION OF measurement (
unitsales DEFAULT 0
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
) FOR VALUES FROM ('2016-07-01') TO ('2016-08-01');
</programlisting></para>
<para>
Create a few partitions of a range partitioned table with multiple
columns in the partition key:
<programlisting>
CREATE TABLE measurement_ym_older
PARTITION OF measurement_year_month
FOR VALUES FROM (MINVALUE, MINVALUE) TO (2016, 11);
CREATE TABLE measurement_ym_y2016m11
PARTITION OF measurement_year_month
FOR VALUES FROM (2016, 11) TO (2016, 12);
CREATE TABLE measurement_ym_y2016m12
PARTITION OF measurement_year_month
FOR VALUES FROM (2016, 12) TO (2017, 01);
CREATE TABLE measurement_ym_y2017m01
PARTITION OF measurement_year_month
FOR VALUES FROM (2017, 01) TO (2017, 02);
</programlisting></para>
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
<para>
Create partition of a list partitioned table:
<programlisting>
CREATE TABLE cities_ab
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
PARTITION OF cities (
CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b');
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
</programlisting></para>
<para>
Create partition of a list partitioned table that is itself further
partitioned and then add a partition to it:
<programlisting>
CREATE TABLE cities_ab
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
PARTITION OF cities (
CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b') PARTITION BY RANGE (population);
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
CREATE TABLE cities_ab_10000_to_100000
PARTITION OF cities_ab FOR VALUES FROM (10000) TO (100000);
</programlisting></para>
<para>
Create partitions of a hash partitioned table:
<programlisting>
CREATE TABLE orders_p1 PARTITION OF orders
FOR VALUES WITH (MODULUS 4, REMAINDER 0);
CREATE TABLE orders_p2 PARTITION OF orders
FOR VALUES WITH (MODULUS 4, REMAINDER 1);
CREATE TABLE orders_p3 PARTITION OF orders
FOR VALUES WITH (MODULUS 4, REMAINDER 2);
CREATE TABLE orders_p4 PARTITION OF orders
FOR VALUES WITH (MODULUS 4, REMAINDER 3);
</programlisting></para>
<para>
Create a default partition:
<programlisting>
CREATE TABLE cities_partdef
PARTITION OF cities DEFAULT;
</programlisting></para>
</refsect1>
2020-05-11 20:15:49 +02:00
<refsect1 id="sql-createtable-compatibility" xreflabel="Compatibility">
<title>Compatibility</title>
<para>
The <command>CREATE TABLE</command> command conforms to the
<acronym>SQL</acronym> standard, with exceptions listed below.
</para>
<refsect2>
<title>Temporary Tables</title>
<para>
Although the syntax of <literal>CREATE TEMPORARY TABLE</literal>
resembles that of the SQL standard, the effect is not the same. In the
standard,
temporary tables are defined just once and automatically exist (starting
with empty contents) in every session that needs them.
<productname>PostgreSQL</productname> instead
requires each session to issue its own <literal>CREATE TEMPORARY
TABLE</literal> command for each temporary table to be used. This allows
different sessions to use the same temporary table name for different
2003-04-22 12:08:08 +02:00
purposes, whereas the standard's approach constrains all instances of a
given temporary table name to have the same table structure.
</para>
2003-04-22 12:08:08 +02:00
<para>
The standard's definition of the behavior of temporary tables is
2003-04-22 12:08:08 +02:00
widely ignored. <productname>PostgreSQL</productname>'s behavior
on this point is similar to that of several other SQL databases.
</para>
<para>
The SQL standard also distinguishes between global and local temporary
tables, where a local temporary table has a separate set of contents for
each SQL module within each session, though its definition is still shared
across sessions. Since <productname>PostgreSQL</productname> does not
support SQL modules, this distinction is not relevant in
<productname>PostgreSQL</productname>.
</para>
<para>
For compatibility's sake, <productname>PostgreSQL</productname> will
accept the <literal>GLOBAL</literal> and <literal>LOCAL</literal> keywords
in a temporary table declaration, but they currently have no effect.
Use of these keywords is discouraged, since future versions of
<productname>PostgreSQL</productname> might adopt a more
standard-compliant interpretation of their meaning.
</para>
<para>
2003-04-14 17:40:02 +02:00
The <literal>ON COMMIT</literal> clause for temporary tables
2003-04-22 12:08:08 +02:00
also resembles the SQL standard, but has some differences.
If the <literal>ON COMMIT</literal> clause is omitted, SQL specifies that the
default behavior is <literal>ON COMMIT DELETE ROWS</literal>. However, the
default behavior in <productname>PostgreSQL</productname> is
<literal>ON COMMIT PRESERVE ROWS</literal>. The <literal>ON COMMIT
2003-04-22 12:08:08 +02:00
DROP</literal> option does not exist in SQL.
</para>
</refsect2>
<refsect2>
<title>Non-Deferred Uniqueness Constraints</title>
<para>
When a <literal>UNIQUE</literal> or <literal>PRIMARY KEY</literal> constraint is
not deferrable, <productname>PostgreSQL</productname> checks for
uniqueness immediately whenever a row is inserted or modified.
The SQL standard says that uniqueness should be enforced only at
the end of the statement; this makes a difference when, for example,
a single command updates multiple key values. To obtain
standard-compliant behavior, declare the constraint as
<literal>DEFERRABLE</literal> but not deferred (i.e., <literal>INITIALLY
IMMEDIATE</literal>). Be aware that this can be significantly slower than
immediate uniqueness checking.
</para>
</refsect2>
<refsect2>
2003-04-22 12:08:08 +02:00
<title>Column Check Constraints</title>
<para>
The SQL standard says that <literal>CHECK</literal> column constraints
can only refer to the column they apply to; only <literal>CHECK</literal>
table constraints can refer to multiple columns.
2003-04-22 12:08:08 +02:00
<productname>PostgreSQL</productname> does not enforce this
restriction; it treats column and table check constraints alike.
</para>
</refsect2>
<refsect2>
<title><literal>EXCLUDE</literal> Constraint</title>
<para>
The <literal>EXCLUDE</literal> constraint type is a
<productname>PostgreSQL</productname> extension.
</para>
</refsect2>
<refsect2>
<title>Foreign Key Constraints</title>
<para>
The ability to specify column lists in the foreign key actions
<literal>SET DEFAULT</literal> and <literal>SET NULL</literal> is a
<productname>PostgreSQL</productname> extension.
</para>
<para>
It is a <productname>PostgreSQL</productname> extension that a
foreign key constraint may reference columns of a unique index instead of
columns of a primary key or unique constraint.
</para>
</refsect2>
2003-04-22 12:08:08 +02:00
<refsect2>
<title><literal>NULL</literal> <quote>Constraint</quote></title>
<para>
The <literal>NULL</literal> <quote>constraint</quote> (actually a
2003-04-22 12:08:08 +02:00
non-constraint) is a <productname>PostgreSQL</productname>
extension to the SQL standard that is included for compatibility with some
other database systems (and for symmetry with the <literal>NOT
NULL</literal> constraint). Since it is the default for any
column, its presence is simply noise.
</para>
</refsect2>
Fully enforce uniqueness of constraint names. It's been true for a long time that we expect names of table and domain constraints to be unique among the constraints of that table or domain. However, the enforcement of that has been pretty haphazard, and it missed some corner cases such as creating a CHECK constraint and then an index constraint of the same name (as per recent report from André Hänsel). Also, due to the lack of an actual unique index enforcing this, duplicates could be created through race conditions. Moreover, the code that searches pg_constraint has been quite inconsistent about how to handle duplicate names if one did occur: some places checked and threw errors if there was more than one match, while others just processed the first match they came to. To fix, create a unique index on (conrelid, contypid, conname). Since either conrelid or contypid is zero, this will separately enforce uniqueness of constraint names among constraints of any one table and any one domain. (If we ever implement SQL assertions, and put them into this catalog, more thought might be needed. But it'd be at least as reasonable to put them into a new catalog; having overloaded this one catalog with two kinds of constraints was a mistake already IMO.) This index can replace the existing non-unique index on conrelid, though we need to keep the one on contypid for query performance reasons. Having done that, we can simplify the logic in various places that either coped with duplicates or neglected to, as well as potentially improve lookup performance when searching for a constraint by name. Also, as per our usual practice, install a preliminary check so that you get something more friendly than a unique-index violation report in the case complained of by André. And teach ChooseIndexName to avoid choosing autogenerated names that would draw such a failure. While it's not possible to make such a change in the back branches, it doesn't seem quite too late to put this into v11, so do so. Discussion: https://postgr.es/m/0c1001d4428f$0942b430$1bc81c90$@webkr.de
2018-09-04 19:45:35 +02:00
<refsect2>
<title>Constraint Naming</title>
<para>
The SQL standard says that table and domain constraints must have names
that are unique across the schema containing the table or domain.
<productname>PostgreSQL</productname> is laxer: it only requires
constraint names to be unique across the constraints attached to a
particular table or domain. However, this extra freedom does not exist
for index-based constraints (<literal>UNIQUE</literal>,
<literal>PRIMARY KEY</literal>, and <literal>EXCLUDE</literal>
constraints), because the associated index is named the same as the
constraint, and index names must be unique across all relations within
the same schema.
</para>
</refsect2>
<refsect2>
<title>Inheritance</title>
<para>
Multiple inheritance via the <literal>INHERITS</literal> clause is
a <productname>PostgreSQL</productname> language extension.
SQL:1999 and later define single inheritance using a
different syntax and different semantics. SQL:1999-style
inheritance is not yet supported by
<productname>PostgreSQL</productname>.
</para>
</refsect2>
<refsect2>
<title>Zero-Column Tables</title>
<para>
<productname>PostgreSQL</productname> allows a table of no columns
to be created (for example, <literal>CREATE TABLE foo();</literal>). This
is an extension from the SQL standard, which does not allow zero-column
tables. Zero-column tables are not in themselves very useful, but
disallowing them creates odd special cases for <command>ALTER TABLE
DROP COLUMN</command>, so it seems cleaner to ignore this spec restriction.
</para>
</refsect2>
<refsect2>
<title>Multiple Identity Columns</title>
<para>
<productname>PostgreSQL</productname> allows a table to have more than one
identity column. The standard specifies that a table can have at most one
identity column. This is relaxed mainly to give more flexibility for
doing schema changes or migrations. Note that
the <command>INSERT</command> command supports only one override clause
that applies to the entire statement, so having multiple identity columns
with different behaviors is not well supported.
</para>
</refsect2>
<refsect2>
<title>Generated Columns</title>
<para>
The option <literal>STORED</literal> is not standard but is also used by
other SQL implementations. The SQL standard does not specify the storage
of generated columns.
</para>
</refsect2>
<refsect2>
<title><literal>LIKE</literal> Clause</title>
<para>
While a <literal>LIKE</literal> clause exists in the SQL standard, many of the
options that <productname>PostgreSQL</productname> accepts for it are not
in the standard, and some of the standard's options are not implemented
by <productname>PostgreSQL</productname>.
</para>
</refsect2>
<refsect2>
<title><literal>WITH</literal> Clause</title>
<para>
The <literal>WITH</literal> clause is a <productname>PostgreSQL</productname>
Remove WITH OIDS support, change oid catalog column visibility. Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-21 00:36:57 +01:00
extension; storage parameters are not in the standard.
</para>
</refsect2>
<refsect2>
2004-12-13 19:05:10 +01:00
<title>Tablespaces</title>
<para>
The <productname>PostgreSQL</productname> concept of tablespaces is not
2004-12-13 19:05:10 +01:00
part of the standard. Hence, the clauses <literal>TABLESPACE</literal>
and <literal>USING INDEX TABLESPACE</literal> are extensions.
</para>
</refsect2>
<refsect2>
<title>Typed Tables</title>
<para>
Typed tables implement a subset of the SQL standard. According to
the standard, a typed table has columns corresponding to the
underlying composite type as well as one other column that is
the <quote>self-referencing column</quote>.
<productname>PostgreSQL</productname> does not support self-referencing
columns explicitly.
</para>
</refsect2>
<refsect2>
<title><literal>PARTITION BY</literal> Clause</title>
<para>
The <literal>PARTITION BY</literal> clause is a
<productname>PostgreSQL</productname> extension.
</para>
</refsect2>
<refsect2>
<title><literal>PARTITION OF</literal> Clause</title>
<para>
The <literal>PARTITION OF</literal> clause is a
<productname>PostgreSQL</productname> extension.
</para>
</refsect2>
</refsect1>
<refsect1>
<title>See Also</title>
<simplelist type="inline">
<member><xref linkend="sql-altertable"/></member>
<member><xref linkend="sql-droptable"/></member>
<member><xref linkend="sql-createtableas"/></member>
<member><xref linkend="sql-createtablespace"/></member>
<member><xref linkend="sql-createtype"/></member>
</simplelist>
</refsect1>
</refentry>