postgresql/src/backend/access/transam/xlog.c

10486 lines
315 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* xlog.c
* PostgreSQL transaction log manager
*
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
2010-09-20 22:08:53 +02:00
* src/backend/access/transam/xlog.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
#include <signal.h>
#include <time.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <unistd.h>
#include "access/clog.h"
#include "access/multixact.h"
#include "access/subtrans.h"
#include "access/transam.h"
#include "access/tuptoaster.h"
#include "access/twophase.h"
#include "access/xact.h"
#include "access/xlog_internal.h"
#include "access/xlogutils.h"
#include "catalog/catversion.h"
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
#include "catalog/pg_control.h"
#include "catalog/pg_database.h"
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
#include "libpq/pqsignal.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "postmaster/bgwriter.h"
#include "postmaster/startup.h"
#include "replication/walreceiver.h"
#include "replication/walsender.h"
#include "storage/bufmgr.h"
#include "storage/fd.h"
#include "storage/ipc.h"
#include "storage/latch.h"
#include "storage/pmsignal.h"
#include "storage/predicate.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "storage/reinit.h"
#include "storage/smgr.h"
#include "storage/spin.h"
#include "utils/builtins.h"
#include "utils/guc.h"
#include "utils/ps_status.h"
#include "utils/relmapper.h"
#include "utils/snapmgr.h"
#include "utils/timestamp.h"
#include "pg_trace.h"
/* File path names (all relative to $PGDATA) */
#define RECOVERY_COMMAND_FILE "recovery.conf"
#define RECOVERY_COMMAND_DONE "recovery.done"
2011-04-10 17:42:00 +02:00
#define PROMOTE_SIGNAL_FILE "promote"
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* User-settable parameters */
int CheckPointSegments = 3;
int wal_keep_segments = 0;
int XLOGbuffers = -1;
int XLogArchiveTimeout = 0;
bool XLogArchiveMode = false;
char *XLogArchiveCommand = NULL;
bool EnableHotStandby = false;
bool fullPageWrites = true;
bool log_checkpoints = false;
int sync_method = DEFAULT_SYNC_METHOD;
int wal_level = WAL_LEVEL_MINIMAL;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
#ifdef WAL_DEBUG
bool XLOG_DEBUG = false;
#endif
/*
* XLOGfileslop is the maximum number of preallocated future XLOG segments.
* When we are done with an old XLOG segment file, we will recycle it as a
* future XLOG segment as long as there aren't already XLOGfileslop future
* segments; else we'll delete it. This could be made a separate GUC
* variable, but at present I think it's sufficient to hardwire it as
2007-11-15 22:14:46 +01:00
* 2*CheckPointSegments+1. Under normal conditions, a checkpoint will free
* no more than 2*CheckPointSegments log segments, and we want to recycle all
* of them; the +1 allows boundary cases to happen without wasting a
* delete/create-segment cycle.
*/
#define XLOGfileslop (2*CheckPointSegments + 1)
2008-05-12 10:35:05 +02:00
/*
* GUC support
*/
const struct config_enum_entry wal_level_options[] = {
{"minimal", WAL_LEVEL_MINIMAL, false},
{"archive", WAL_LEVEL_ARCHIVE, false},
{"hot_standby", WAL_LEVEL_HOT_STANDBY, false},
{NULL, 0, false}
};
2008-05-12 10:35:05 +02:00
const struct config_enum_entry sync_method_options[] = {
{"fsync", SYNC_METHOD_FSYNC, false},
2008-05-12 10:35:05 +02:00
#ifdef HAVE_FSYNC_WRITETHROUGH
{"fsync_writethrough", SYNC_METHOD_FSYNC_WRITETHROUGH, false},
2008-05-12 10:35:05 +02:00
#endif
#ifdef HAVE_FDATASYNC
{"fdatasync", SYNC_METHOD_FDATASYNC, false},
2008-05-12 10:35:05 +02:00
#endif
#ifdef OPEN_SYNC_FLAG
{"open_sync", SYNC_METHOD_OPEN, false},
2008-05-12 10:35:05 +02:00
#endif
#ifdef OPEN_DATASYNC_FLAG
{"open_datasync", SYNC_METHOD_OPEN_DSYNC, false},
2008-05-12 10:35:05 +02:00
#endif
{NULL, 0, false}
2008-05-12 10:35:05 +02:00
};
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Statistics for current checkpoint are collected in this global struct.
* Because only the background writer or a stand-alone backend can perform
* checkpoints, this will be unused in normal backends.
*/
CheckpointStatsData CheckpointStats;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* ThisTimeLineID will be same in all backends --- it identifies current
* WAL timeline for the database system.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
TimeLineID ThisTimeLineID = 0;
2000-10-21 17:43:36 +02:00
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* Are we doing recovery from XLOG?
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*
* This is only ever true in the startup process; it should be read as meaning
* "this process is replaying WAL records", rather than "the system is in
* recovery mode". It should be examined primarily by functions that need
* to act differently when called from a WAL redo function (e.g., to skip WAL
* logging). To check whether the system is in recovery regardless of which
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
* process you're running in, use RecoveryInProgress() but only after shared
* memory startup and lock initialization.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
bool InRecovery = false;
2004-08-29 07:07:03 +02:00
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/* Are we in Hot Standby mode? Only valid in startup process, see xlog.h */
2010-02-26 03:01:40 +01:00
HotStandbyState standbyState = STANDBY_DISABLED;
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
2010-02-26 03:01:40 +01:00
static XLogRecPtr LastRec;
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
* During recovery, lastFullPageWrites keeps track of full_page_writes that
* the replayed WAL records indicate. It's initialized with full_page_writes
* that the recovery starting checkpoint record indicates, and then updated
* each time XLOG_FPW_CHANGE record is replayed.
*/
static bool lastFullPageWrites;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* Local copy of SharedRecoveryInProgress variable. True actually means "not
* known, need to check the shared state".
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
static bool LocalRecoveryInProgress = true;
2011-04-10 17:42:00 +02:00
/*
* Local copy of SharedHotStandbyActive variable. False actually means "not
* known, need to check the shared state".
*/
static bool LocalHotStandbyActive = false;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* Local state for XLogInsertAllowed():
* 1: unconditionally allowed to insert XLOG
* 0: unconditionally not allowed to insert XLOG
* -1: must check RecoveryInProgress(); disallow until it is false
* Most processes start with -1 and transition to 1 after seeing that recovery
2010-02-26 03:01:40 +01:00
* is not in progress. But we can also force the value for special cases.
* The coding in XLogInsertAllowed() depends on the first two of these states
* being numerically the same as bool true and false.
*/
static int LocalXLogInsertAllowed = -1;
/* Are we recovering using offline XLOG archives? */
static bool InArchiveRecovery = false;
/* Was the last xlog file restored from archive, or local? */
2004-08-29 07:07:03 +02:00
static bool restoredFromArchive = false;
/* options taken from recovery.conf for archive recovery */
static char *recoveryRestoreCommand = NULL;
static char *recoveryEndCommand = NULL;
static char *archiveCleanupCommand = NULL;
static RecoveryTargetType recoveryTarget = RECOVERY_TARGET_UNSET;
static bool recoveryTargetInclusive = true;
static bool recoveryPauseAtTarget = true;
2004-08-29 07:07:03 +02:00
static TransactionId recoveryTargetXid;
static TimestampTz recoveryTargetTime;
static char *recoveryTargetName;
/* options taken from recovery.conf for XLOG streaming */
static bool StandbyMode = false;
static char *PrimaryConnInfo = NULL;
static char *TriggerFile = NULL;
/* if recoveryStopsHere returns true, it saves actual stop xid/time/name here */
2004-08-29 07:07:03 +02:00
static TransactionId recoveryStopXid;
static TimestampTz recoveryStopTime;
static char recoveryStopName[MAXFNAMELEN];
2004-08-29 07:07:03 +02:00
static bool recoveryStopAfter;
/*
* During normal operation, the only timeline we care about is ThisTimeLineID.
* During recovery, however, things are more complicated. To simplify life
* for rmgr code, we keep ThisTimeLineID set to the "current" timeline as we
* scan through the WAL history (that is, it is the line that was active when
* the currently-scanned WAL record was generated). We also need these
* timeline values:
*
* recoveryTargetTLI: the desired timeline that we want to end in.
*
* recoveryTargetIsLatest: was the requested target timeline 'latest'?
*
* expectedTLIs: an integer list of recoveryTargetTLI and the TLIs of
* its known parents, newest first (so recoveryTargetTLI is always the
2004-08-29 07:07:03 +02:00
* first list member). Only these TLIs are expected to be seen in the WAL
* segments we read, and indeed only these TLIs will be considered as
* candidate WAL files to open at all.
*
* curFileTLI: the TLI appearing in the name of the current input WAL file.
* (This is not necessarily the same as ThisTimeLineID, because we could
* be scanning data that was copied from an ancestor timeline when the current
* file was created.) During a sequential scan we do not allow this value
* to decrease.
*/
2004-08-29 07:07:03 +02:00
static TimeLineID recoveryTargetTLI;
static bool recoveryTargetIsLatest = false;
2004-08-29 07:07:03 +02:00
static List *expectedTLIs;
static TimeLineID curFileTLI;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* ProcLastRecPtr points to the start of the last XLOG record inserted by the
* current backend. It is updated for all inserts. XactLastRecEnd points to
* end+1 of the last record, and is reset when we end a top-level transaction,
* or start a new one; so it can be used to tell if the current transaction has
* created any XLOG records.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
static XLogRecPtr ProcLastRecPtr = {0, 0};
XLogRecPtr XactLastRecEnd = {0, 0};
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* RedoRecPtr is this backend's local copy of the REDO record pointer
* (which is almost but not quite the same as a pointer to the most recent
2001-03-22 05:01:46 +01:00
* CHECKPOINT record). We update this from the shared-memory copy,
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* XLogCtl->Insert.RedoRecPtr, whenever we can safely do so (ie, when we
2002-09-04 22:31:48 +02:00
* hold the Insert lock). See XLogInsert for details. We are also allowed
* to update from XLogCtl->Insert.RedoRecPtr if we hold the info_lck;
* see GetRedoRecPtr. A freshly spawned backend obtains the value during
* InitXLOGAccess.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
static XLogRecPtr RedoRecPtr;
/*
* RedoStartLSN points to the checkpoint's REDO location which is specified
* in a backup label file, backup history file or control file. In standby
* mode, XLOG streaming usually starts from the position where an invalid
* record was found. But if we fail to read even the initial checkpoint
* record, we use the REDO location instead of the checkpoint location as
* the start position of XLOG streaming. Otherwise we would have to jump
* backwards to the REDO location after reading the checkpoint record,
* because the REDO record can precede the checkpoint record.
*/
static XLogRecPtr RedoStartLSN = {0, 0};
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*----------
* Shared-memory data structures for XLOG control
*
* LogwrtRqst indicates a byte position that we need to write and/or fsync
* the log up to (all records before that point must be written or fsynced).
* LogwrtResult indicates the byte positions we have already written/fsynced.
* These structs are identical but are declared separately to indicate their
* slightly different functions.
*
* We do a lot of pushups to minimize the amount of access to lockable
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* shared memory values. There are actually three shared-memory copies of
* LogwrtResult, plus one unshared copy in each backend. Here's how it works:
* XLogCtl->LogwrtResult is protected by info_lck
* XLogCtl->Write.LogwrtResult is protected by WALWriteLock
* XLogCtl->Insert.LogwrtResult is protected by WALInsertLock
* One must hold the associated lock to read or write any of these, but
* of course no lock is needed to read/write the unshared LogwrtResult.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*
* XLogCtl->LogwrtResult and XLogCtl->Write.LogwrtResult are both "always
* right", since both are updated by a write or flush operation before
* it releases WALWriteLock. The point of keeping XLogCtl->Write.LogwrtResult
* is that it can be examined/modified by code that already holds WALWriteLock
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* without needing to grab info_lck as well.
*
* XLogCtl->Insert.LogwrtResult may lag behind the reality of the other two,
2001-03-22 05:01:46 +01:00
* but is updated when convenient. Again, it exists for the convenience of
* code that is already holding WALInsertLock but not the other locks.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*
* The unshared LogwrtResult may lag behind any or all of these, and again
* is updated when convenient.
*
* The request bookkeeping is simpler: there is a shared XLogCtl->LogwrtRqst
* (protected by info_lck), but we don't need to cache any copies of it.
*
* Note that this all works because the request and result positions can only
* advance forward, never back up, and so we can easily determine which of two
* values is "more up to date".
*
* info_lck is only held long enough to read/update the protected variables,
* so it's a plain spinlock. The other locks are held longer (potentially
* over I/O operations), so we use LWLocks for them. These locks are:
*
* WALInsertLock: must be held to insert a record into the WAL buffers.
*
* WALWriteLock: must be held to write WAL buffers to disk (XLogWrite or
* XLogFlush).
*
* ControlFileLock: must be held to read/update control file or create
* new log file.
*
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
* CheckpointLock: must be held to do a checkpoint or restartpoint (ensures
* only one checkpointer at a time; currently, with all checkpoints done by
* the checkpointer, this is just pro forma).
*
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*----------
*/
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
typedef struct XLogwrtRqst
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
XLogRecPtr Write; /* last byte + 1 to write out */
XLogRecPtr Flush; /* last byte + 1 to flush */
} XLogwrtRqst;
typedef struct XLogwrtResult
{
XLogRecPtr Write; /* last byte + 1 written out */
XLogRecPtr Flush; /* last byte + 1 flushed */
} XLogwrtResult;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Shared state data for XLogInsert.
*/
typedef struct XLogCtlInsert
{
2001-03-22 05:01:46 +01:00
XLogwrtResult LogwrtResult; /* a recent value of LogwrtResult */
XLogRecPtr PrevRecord; /* start of previously-inserted record */
int curridx; /* current block index in cache */
2001-03-22 05:01:46 +01:00
XLogPageHeader currpage; /* points to header of block in cache */
char *currpos; /* current insertion point in cache */
XLogRecPtr RedoRecPtr; /* current redo point for insertions */
bool forcePageWrites; /* forcing full-page writes for PITR? */
/*
* fullPageWrites is the master copy used by all backends to determine
* whether to write full-page to WAL, instead of using process-local
* one. This is required because, when full_page_writes is changed
* by SIGHUP, we must WAL-log it before it actually affects
* WAL-logging by backends. Checkpointer sets at startup or after SIGHUP.
*/
bool fullPageWrites;
/*
* exclusiveBackup is true if a backup started with pg_start_backup() is
* in progress, and nonExclusiveBackups is a counter indicating the number
2011-04-10 17:42:00 +02:00
* of streaming base backups currently in progress. forcePageWrites is set
* to true when either of these is non-zero. lastBackupStart is the latest
* checkpoint redo location used as a starting point for an online backup.
*/
bool exclusiveBackup;
int nonExclusiveBackups;
XLogRecPtr lastBackupStart;
} XLogCtlInsert;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Shared state data for XLogWrite/XLogFlush.
*/
typedef struct XLogCtlWrite
{
2006-10-04 02:30:14 +02:00
XLogwrtResult LogwrtResult; /* current value of LogwrtResult */
int curridx; /* cache index of next block to write */
pg_time_t lastSegSwitchTime; /* time of last xlog segment switch */
} XLogCtlWrite;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Total shared-memory state for XLOG.
*/
typedef struct XLogCtlData
{
/* Protected by WALInsertLock: */
2001-03-22 05:01:46 +01:00
XLogCtlInsert Insert;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Protected by info_lck: */
2001-03-22 05:01:46 +01:00
XLogwrtRqst LogwrtRqst;
XLogwrtResult LogwrtResult;
uint32 ckptXidEpoch; /* nextXID & epoch of latest checkpoint */
TransactionId ckptXid;
2011-04-10 17:42:00 +02:00
XLogRecPtr asyncXactLSN; /* LSN of newest async commit/abort */
uint32 lastRemovedLog; /* latest removed/recycled XLOG segment */
uint32 lastRemovedSeg;
/* Protected by WALWriteLock: */
2001-03-22 05:01:46 +01:00
XLogCtlWrite Write;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* These values do not change after startup, although the pointed-to pages
* and xlblocks values certainly do. Permission to read/write the pages
* and xlblocks values depends on WALInsertLock and WALWriteLock.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
2001-03-22 05:01:46 +01:00
char *pages; /* buffers for unwritten XLOG pages */
XLogRecPtr *xlblocks; /* 1st byte ptr-s + XLOG_BLCKSZ */
int XLogCacheBlck; /* highest allocated xlog buffer index */
TimeLineID ThisTimeLineID;
TimeLineID RecoveryTargetTLI;
2010-07-06 21:19:02 +02:00
/*
* archiveCleanupCommand is read from recovery.conf but needs to be in
* shared memory so that the checkpointer process can access it.
*/
char archiveCleanupCommand[MAXPGPATH];
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* SharedRecoveryInProgress indicates if we're still in crash or archive
* recovery. Protected by info_lck.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
bool SharedRecoveryInProgress;
/*
* SharedHotStandbyActive indicates if we're still in crash or archive
* recovery. Protected by info_lck.
*/
bool SharedHotStandbyActive;
/*
2011-04-10 17:42:00 +02:00
* recoveryWakeupLatch is used to wake up the startup process to continue
* WAL replay, if it is waiting for WAL to arrive or failover trigger file
* to appear.
*/
Latch recoveryWakeupLatch;
/*
* WALWriterLatch is used to wake up the WALWriter to write some WAL.
*/
Latch WALWriterLatch;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* During recovery, we keep a copy of the latest checkpoint record here.
* Used by the background writer when it wants to create a restartpoint.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*
* Protected by info_lck.
*/
XLogRecPtr lastCheckPointRecPtr;
CheckPoint lastCheckPoint;
/* end+1 of the last record replayed (or being replayed) */
XLogRecPtr replayEndRecPtr;
/* end+1 of the last record replayed */
XLogRecPtr recoveryLastRecPtr;
/* timestamp of last COMMIT/ABORT record replayed (or being replayed) */
TimestampTz recoveryLastXTime;
/* timestamp of when we started replaying the current chunk of WAL data,
* only relevant for replication or archive recovery */
TimestampTz currentChunkStartTime;
/* end of the last record restored from the archive */
XLogRecPtr restoreLastRecPtr;
/* Are we requested to pause recovery? */
bool recoveryPause;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* lastFpwDisableRecPtr points to the start of the last replayed
* XLOG_FPW_CHANGE record that instructs full_page_writes is disabled.
*/
XLogRecPtr lastFpwDisableRecPtr;
slock_t info_lck; /* locks shared variables shown above */
} XLogCtlData;
static XLogCtlData *XLogCtl = NULL;
/*
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* We maintain an image of pg_control in shared memory.
*/
static ControlFileData *ControlFile = NULL;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Macros for managing XLogInsert state. In most cases, the calling routine
* has local copies of XLogCtl->Insert and/or XLogCtl->Insert->curridx,
* so these are passed as parameters instead of being fetched via XLogCtl.
*/
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Free space remaining in the current xlog page buffer */
#define INSERT_FREESPACE(Insert) \
(XLOG_BLCKSZ - ((Insert)->currpos - (char *) (Insert)->currpage))
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Construct XLogRecPtr value for current insertion point */
#define INSERT_RECPTR(recptr,Insert,curridx) \
( \
(recptr).xlogid = XLogCtl->xlblocks[curridx].xlogid, \
(recptr).xrecoff = \
2001-03-22 05:01:46 +01:00
XLogCtl->xlblocks[curridx].xrecoff - INSERT_FREESPACE(Insert) \
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
)
#define PrevBufIdx(idx) \
(((idx) == 0) ? XLogCtl->XLogCacheBlck : ((idx) - 1))
#define NextBufIdx(idx) \
(((idx) == XLogCtl->XLogCacheBlck) ? 0 : ((idx) + 1))
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Private, possibly out-of-date copy of shared LogwrtResult.
* See discussion above.
*/
static XLogwrtResult LogwrtResult = {{0, 0}, {0, 0}};
/*
* Codes indicating where we got a WAL file from during recovery, or where
* to attempt to get one. These are chosen so that they can be OR'd together
* in a bitmask state variable.
*/
#define XLOG_FROM_ARCHIVE (1<<0) /* Restored using restore_command */
#define XLOG_FROM_PG_XLOG (1<<1) /* Existing file in pg_xlog */
#define XLOG_FROM_STREAM (1<<2) /* Streamed from master */
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* openLogFile is -1 or a kernel FD for an open log file segment.
* When it's open, openLogOff is the current seek offset in the file.
* openLogId/openLogSeg identify the segment. These variables are only
* used to write the XLOG, and so will normally refer to the active segment.
*/
static int openLogFile = -1;
static uint32 openLogId = 0;
static uint32 openLogSeg = 0;
static uint32 openLogOff = 0;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* These variables are used similarly to the ones above, but for reading
* the XLOG. Note, however, that readOff generally represents the offset
* of the page just read, not the seek position of the FD itself, which
* will be just past that page. readLen indicates how much of the current
* page has been read into readBuf, and readSource indicates where we got
* the currently open file from.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
static int readFile = -1;
static uint32 readId = 0;
static uint32 readSeg = 0;
static uint32 readOff = 0;
static uint32 readLen = 0;
2010-07-06 21:19:02 +02:00
static int readSource = 0; /* XLOG_FROM_* code */
2010-02-26 03:01:40 +01:00
/*
* Keeps track of which sources we've tried to read the current WAL
* record from and failed.
*/
2010-07-06 21:19:02 +02:00
static int failedSources = 0; /* OR of XLOG_FROM_* codes */
/*
* These variables track when we last obtained some WAL data to process,
* and where we got it from. (XLogReceiptSource is initially the same as
* readSource, but readSource gets reset to zero when we don't have data
* to process right now.)
*/
static TimestampTz XLogReceiptTime = 0;
2010-07-06 21:19:02 +02:00
static int XLogReceiptSource = 0; /* XLOG_FROM_* code */
2001-03-22 05:01:46 +01:00
/* Buffer for currently read page (XLOG_BLCKSZ bytes) */
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
static char *readBuf = NULL;
2001-03-22 05:01:46 +01:00
/* Buffer for current ReadRecord result (expandable) */
static char *readRecordBuf = NULL;
static uint32 readRecordBufSize = 0;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* State information for XLOG reading */
2005-10-15 04:49:52 +02:00
static XLogRecPtr ReadRecPtr; /* start of last record read */
static XLogRecPtr EndRecPtr; /* end+1 of last record read */
static TimeLineID lastPageTLI = 0;
static XLogRecPtr minRecoveryPoint; /* local copy of
* ControlFile->minRecoveryPoint */
static bool updateMinRecoveryPoint = true;
/*
* Have we reached a consistent database state? In crash recovery, we have
* to replay all the WAL, so reachedConsistency is never set. During archive
* recovery, the database is consistent once minRecoveryPoint is reached.
*/
bool reachedConsistency = false;
2000-10-28 18:21:00 +02:00
static bool InRedo = false;
/* Have we launched bgwriter during recovery? */
static bool bgwriterLaunched = false;
/*
* Information logged when we detect a change in one of the parameters
* important for Hot Standby.
*/
typedef struct xl_parameter_change
{
int MaxConnections;
int max_prepared_xacts;
int max_locks_per_xact;
int wal_level;
} xl_parameter_change;
/* logs restore point */
typedef struct xl_restore_point
{
2011-04-10 17:42:00 +02:00
TimestampTz rp_time;
char rp_name[MAXFNAMELEN];
} xl_restore_point;
static void XLogArchiveNotify(const char *xlog);
static void XLogArchiveNotifySeg(uint32 log, uint32 seg);
static bool XLogArchiveCheckDone(const char *xlog);
static bool XLogArchiveIsBusy(const char *xlog);
static void XLogArchiveCleanup(const char *xlog);
static void readRecoveryCommandFile(void);
static void exitArchiveRecovery(TimeLineID endTLI,
2004-08-29 07:07:03 +02:00
uint32 endLogId, uint32 endLogSeg);
static bool recoveryStopsHere(XLogRecord *record, bool *includeThis);
static void recoveryPausesHere(void);
static void SetLatestXTime(TimestampTz xtime);
static void SetCurrentChunkStartTime(TimestampTz xtime);
static void CheckRequiredParameterValues(void);
static void XLogReportParameters(void);
static void LocalSetXLogInsertAllowed(void);
static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags);
static void KeepLogSeg(XLogRecPtr recptr, uint32 *logId, uint32 *logSeg);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
static bool XLogCheckBuffer(XLogRecData *rdata, bool doPageWrites,
2005-10-15 04:49:52 +02:00
XLogRecPtr *lsn, BkpBlock *bkpb);
static bool AdvanceXLInsertBuffer(bool new_segment);
static bool XLogCheckpointNeeded(uint32 logid, uint32 logseg);
static void XLogWrite(XLogwrtRqst WriteRqst, bool flexible, bool xlog_switch);
static bool InstallXLogFileSegment(uint32 *log, uint32 *seg, char *tmppath,
bool find_free, int *max_advance,
bool use_lock);
2010-02-26 03:01:40 +01:00
static int XLogFileRead(uint32 log, uint32 seg, int emode, TimeLineID tli,
int source, bool notexistOk);
2010-02-26 03:01:40 +01:00
static int XLogFileReadAnyTLI(uint32 log, uint32 seg, int emode,
int sources);
static bool XLogPageRead(XLogRecPtr *RecPtr, int emode, bool fetching_ckpt,
bool randAccess);
2010-07-06 21:19:02 +02:00
static int emode_for_corrupt_record(int emode, XLogRecPtr RecPtr);
2006-10-04 02:30:14 +02:00
static void XLogFileClose(void);
static bool RestoreArchivedFile(char *path, const char *xlogfname,
2004-08-29 07:07:03 +02:00
const char *recovername, off_t expectedSize);
static void ExecuteRecoveryCommand(char *command, char *commandName,
bool failOnerror);
static void PreallocXlogFiles(XLogRecPtr endptr);
static void RemoveOldXlogFiles(uint32 log, uint32 seg, XLogRecPtr endptr);
static void UpdateLastRemovedPtr(char *filename);
static void ValidateXLOGDirectoryStructure(void);
static void CleanupBackupHistory(void);
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force);
static XLogRecord *ReadRecord(XLogRecPtr *RecPtr, int emode, bool fetching_ckpt);
static void CheckRecoveryConsistency(void);
static bool ValidXLOGHeader(XLogPageHeader hdr, int emode);
static XLogRecord *ReadCheckpointRecord(XLogRecPtr RecPtr, int whichChkpt);
static List *readTimeLineHistory(TimeLineID targetTLI);
static bool existsTimeLineHistory(TimeLineID probeTLI);
static bool rescanLatestTimeLine(void);
static TimeLineID findNewestTimeLine(TimeLineID startTLI);
static void writeTimeLineHistory(TimeLineID newTLI, TimeLineID parentTLI,
2004-08-29 07:07:03 +02:00
TimeLineID endTLI,
uint32 endLogId, uint32 endLogSeg);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
static void WriteControlFile(void);
static void ReadControlFile(void);
static char *str_time(pg_time_t tnow);
static bool CheckForStandbyTrigger(void);
#ifdef WAL_DEBUG
static void xlog_outrec(StringInfo buf, XLogRecord *record);
#endif
static void pg_start_backup_callback(int code, Datum arg);
static bool read_backup_label(XLogRecPtr *checkPointLoc,
bool *backupEndRequired, bool *backupFromStandby);
static void rm_redo_error_callback(void *arg);
static int get_sync_bit(int method);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Insert an XLOG record having the specified RMID and info bytes,
* with the body of the record being the data chunk(s) described by
* the rdata chain (see xlog.h for notes about rdata).
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*
* Returns XLOG pointer to end of record (beginning of next record).
* This can be used as LSN for data pages affected by the logged action.
* (LSN is the XLOG point up to which the XLOG must be flushed to disk
* before the data page can be written out. This implements the basic
* WAL rule "write the log before the data".)
*
* NB: this routine feels free to scribble on the XLogRecData structs,
* though not on the data they reference. This is OK since the XLogRecData
* structs are always just temporaries in the calling code.
*/
XLogRecPtr
XLogInsert(RmgrId rmid, uint8 info, XLogRecData *rdata)
{
2001-03-22 05:01:46 +01:00
XLogCtlInsert *Insert = &XLogCtl->Insert;
XLogRecord *record;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
XLogContRecord *contrecord;
2001-03-22 05:01:46 +01:00
XLogRecPtr RecPtr;
XLogRecPtr WriteRqst;
uint32 freespace;
int curridx;
2001-03-22 05:01:46 +01:00
XLogRecData *rdt;
XLogRecData *rdt_lastnormal;
2001-03-22 05:01:46 +01:00
Buffer dtbuf[XLR_MAX_BKP_BLOCKS];
bool dtbuf_bkp[XLR_MAX_BKP_BLOCKS];
BkpBlock dtbuf_xlg[XLR_MAX_BKP_BLOCKS];
XLogRecPtr dtbuf_lsn[XLR_MAX_BKP_BLOCKS];
XLogRecData dtbuf_rdt1[XLR_MAX_BKP_BLOCKS];
XLogRecData dtbuf_rdt2[XLR_MAX_BKP_BLOCKS];
XLogRecData dtbuf_rdt3[XLR_MAX_BKP_BLOCKS];
pg_crc32 rdata_crc;
2001-03-22 05:01:46 +01:00
uint32 len,
write_len;
unsigned i;
bool updrqst;
bool doPageWrites;
bool isLogSwitch = (rmid == RM_XLOG_ID && info == XLOG_SWITCH);
uint8 info_orig = info;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/* cross-check on whether we should be here or not */
if (!XLogInsertAllowed())
elog(ERROR, "cannot make new WAL entries during recovery");
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/* info's high bits are reserved for use by me */
if (info & XLR_INFO_MASK)
elog(PANIC, "invalid xlog info mask %02X", info);
TRACE_POSTGRESQL_XLOG_INSERT(rmid, info);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* In bootstrap mode, we don't actually log anything but XLOG resources;
* return a phony record pointer.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
if (IsBootstrapProcessingMode() && rmid != RM_XLOG_ID)
{
2000-10-21 17:43:36 +02:00
RecPtr.xlogid = 0;
2005-10-15 04:49:52 +02:00
RecPtr.xrecoff = SizeOfXLogLongPHD; /* start of 1st chkpt record */
return RecPtr;
2000-10-21 17:43:36 +02:00
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Here we scan the rdata chain, to determine which buffers must be backed
* up.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*
* We may have to loop back to here if a race condition is detected below.
* We could prevent the race by doing all this work while holding the
* insert lock, but it seems better to avoid doing CRC calculations while
* holding the lock.
*
* We add entries for backup blocks to the chain, so that they don't
* need any special treatment in the critical section where the chunks are
* copied into the WAL buffers. Those entries have to be unlinked from the
* chain if we have to loop back here.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
begin:;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
{
dtbuf[i] = InvalidBuffer;
dtbuf_bkp[i] = false;
}
/*
* Decide if we need to do full-page writes in this XLOG record: true if
* full_page_writes is on or we have a PITR request for it. Since we
* don't yet have the insert lock, fullPageWrites and forcePageWrites
* could change under us, but we'll recheck them once we have the lock.
*/
doPageWrites = Insert->fullPageWrites || Insert->forcePageWrites;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
len = 0;
2001-03-22 05:01:46 +01:00
for (rdt = rdata;;)
{
if (rdt->buffer == InvalidBuffer)
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Simple data, just include it */
len += rdt->len;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
else
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Find info for buffer */
for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (rdt->buffer == dtbuf[i])
{
/* Buffer already referenced by earlier chain item */
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (dtbuf_bkp[i])
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
rdt->data = NULL;
rdt->len = 0;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
else if (rdt->data)
len += rdt->len;
break;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (dtbuf[i] == InvalidBuffer)
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* OK, put it in this slot */
dtbuf[i] = rdt->buffer;
if (XLogCheckBuffer(rdt, doPageWrites,
&(dtbuf_lsn[i]), &(dtbuf_xlg[i])))
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
dtbuf_bkp[i] = true;
rdt->data = NULL;
rdt->len = 0;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
else if (rdt->data)
len += rdt->len;
break;
}
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (i >= XLR_MAX_BKP_BLOCKS)
elog(PANIC, "can backup at most %d blocks per xlog record",
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
XLR_MAX_BKP_BLOCKS);
}
/* Break out of loop when rdt points to last chain item */
if (rdt->next == NULL)
break;
rdt = rdt->next;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* NOTE: We disallow len == 0 because it provides a useful bit of extra
* error checking in ReadRecord. This means that all callers of
2006-10-04 02:30:14 +02:00
* XLogInsert must supply at least some not-in-a-buffer data. However, we
* make an exception for XLOG SWITCH records because we don't want them to
* ever cross a segment boundary.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
if (len == 0 && !isLogSwitch)
elog(PANIC, "invalid xlog record length %u", len);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Make additional rdata chain entries for the backup blocks, so that we
* don't need to special-case them in the write loop. This modifies the
* original rdata chain, but we keep a pointer to the last regular entry,
* rdt_lastnormal, so that we can undo this if we have to loop back to the
* beginning.
*
* At the exit of this loop, write_len includes the backup block data.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*
* Also set the appropriate info bits to show which buffers were backed
* up. The i'th XLR_SET_BKP_BLOCK bit corresponds to the i'th distinct
* buffer value (ignoring InvalidBuffer) appearing in the rdata chain.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
rdt_lastnormal = rdt;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
write_len = len;
for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
{
BkpBlock *bkpb;
char *page;
if (!dtbuf_bkp[i])
continue;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
info |= XLR_SET_BKP_BLOCK(i);
bkpb = &(dtbuf_xlg[i]);
page = (char *) BufferGetBlock(dtbuf[i]);
rdt->next = &(dtbuf_rdt1[i]);
rdt = rdt->next;
rdt->data = (char *) bkpb;
rdt->len = sizeof(BkpBlock);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
write_len += sizeof(BkpBlock);
rdt->next = &(dtbuf_rdt2[i]);
rdt = rdt->next;
if (bkpb->hole_length == 0)
{
rdt->data = page;
rdt->len = BLCKSZ;
write_len += BLCKSZ;
rdt->next = NULL;
}
else
{
/* must skip the hole */
rdt->data = page;
rdt->len = bkpb->hole_offset;
write_len += bkpb->hole_offset;
rdt->next = &(dtbuf_rdt3[i]);
rdt = rdt->next;
rdt->data = page + (bkpb->hole_offset + bkpb->hole_length);
rdt->len = BLCKSZ - (bkpb->hole_offset + bkpb->hole_length);
write_len += rdt->len;
rdt->next = NULL;
}
}
/*
* Calculate CRC of the data, including all the backup blocks
*
* Note that the record header isn't added into the CRC initially since
* we don't know the prev-link yet. Thus, the CRC will represent the CRC
* of the whole record in the order: rdata, then backup blocks, then
* record header.
*/
INIT_CRC32(rdata_crc);
for (rdt = rdata; rdt != NULL; rdt = rdt->next)
COMP_CRC32(rdata_crc, rdt->data, rdt->len);
START_CRIT_SECTION();
/* Now wait to get insert lock */
LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
/*
* Check to see if my RedoRecPtr is out of date. If so, may have to go
* back and recompute everything. This can only happen just after a
* checkpoint, so it's better to be slow in this case and fast otherwise.
*
* If we aren't doing full-page writes then RedoRecPtr doesn't actually
* affect the contents of the XLOG record, so we'll update our local copy
* but not force a recomputation.
*/
if (!XLByteEQ(RedoRecPtr, Insert->RedoRecPtr))
{
Assert(XLByteLT(RedoRecPtr, Insert->RedoRecPtr));
RedoRecPtr = Insert->RedoRecPtr;
if (doPageWrites)
{
for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
{
if (dtbuf[i] == InvalidBuffer)
continue;
if (dtbuf_bkp[i] == false &&
XLByteLE(dtbuf_lsn[i], RedoRecPtr))
{
/*
* Oops, this buffer now needs to be backed up, but we
* didn't think so above. Start over.
*/
LWLockRelease(WALInsertLock);
END_CRIT_SECTION();
rdt_lastnormal->next = NULL;
info = info_orig;
goto begin;
}
}
}
}
/*
* Also check to see if fullPageWrites or forcePageWrites was just turned on;
* if we weren't already doing full-page writes then go back and recompute.
* (If it was just turned off, we could recompute the record without full pages,
* but we choose not to bother.)
*/
if ((Insert->fullPageWrites || Insert->forcePageWrites) && !doPageWrites)
{
/* Oops, must redo it with full-page data. */
LWLockRelease(WALInsertLock);
END_CRIT_SECTION();
rdt_lastnormal->next = NULL;
info = info_orig;
goto begin;
}
/*
* If there isn't enough space on the current XLOG page for a record
2005-10-15 04:49:52 +02:00
* header, advance to the next page (leaving the unused space as zeroes).
*/
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
updrqst = false;
freespace = INSERT_FREESPACE(Insert);
if (freespace < SizeOfXLogRecord)
{
updrqst = AdvanceXLInsertBuffer(false);
freespace = INSERT_FREESPACE(Insert);
}
/* Compute record's XLOG location */
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
curridx = Insert->curridx;
INSERT_RECPTR(RecPtr, Insert, curridx);
/*
2006-10-04 02:30:14 +02:00
* If the record is an XLOG_SWITCH, and we are exactly at the start of a
* segment, we need not insert it (and don't want to because we'd like
* consecutive switch requests to be no-ops). Instead, make sure
* everything is written and flushed through the end of the prior segment,
* and return the prior segment's end address.
*/
if (isLogSwitch &&
(RecPtr.xrecoff % XLogSegSize) == SizeOfXLogLongPHD)
{
/* We can release insert lock immediately */
LWLockRelease(WALInsertLock);
RecPtr.xrecoff -= SizeOfXLogLongPHD;
if (RecPtr.xrecoff == 0)
{
/* crossing a logid boundary */
RecPtr.xlogid -= 1;
RecPtr.xrecoff = XLogFileSize;
}
LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
LogwrtResult = XLogCtl->Write.LogwrtResult;
if (!XLByteLE(RecPtr, LogwrtResult.Flush))
{
XLogwrtRqst FlushRqst;
FlushRqst.Write = RecPtr;
FlushRqst.Flush = RecPtr;
XLogWrite(FlushRqst, false, false);
}
LWLockRelease(WALWriteLock);
END_CRIT_SECTION();
return RecPtr;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Insert record header */
record = (XLogRecord *) Insert->currpos;
record->xl_prev = Insert->PrevRecord;
record->xl_xid = GetCurrentTransactionIdIfAny();
record->xl_tot_len = SizeOfXLogRecord + write_len;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
record->xl_len = len; /* doesn't include backup blocks */
record->xl_info = info;
record->xl_rmid = rmid;
/* Now we can finish computing the record's CRC */
COMP_CRC32(rdata_crc, (char *) record + sizeof(pg_crc32),
SizeOfXLogRecord - sizeof(pg_crc32));
FIN_CRC32(rdata_crc);
record->xl_crc = rdata_crc;
#ifdef WAL_DEBUG
2000-10-21 17:43:36 +02:00
if (XLOG_DEBUG)
{
2006-10-04 02:30:14 +02:00
StringInfoData buf;
2000-10-21 17:43:36 +02:00
initStringInfo(&buf);
appendStringInfo(&buf, "INSERT @ %X/%X: ",
RecPtr.xlogid, RecPtr.xrecoff);
xlog_outrec(&buf, record);
if (rdata->data != NULL)
2000-10-21 17:43:36 +02:00
{
appendStringInfo(&buf, " - ");
RmgrTable[record->xl_rmid].rm_desc(&buf, record->xl_info, rdata->data);
2000-10-21 17:43:36 +02:00
}
elog(LOG, "%s", buf.data);
pfree(buf.data);
2000-10-21 17:43:36 +02:00
}
#endif
2000-10-21 17:43:36 +02:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Record begin of record in appropriate places */
ProcLastRecPtr = RecPtr;
Insert->PrevRecord = RecPtr;
Insert->currpos += SizeOfXLogRecord;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
freespace -= SizeOfXLogRecord;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Append the data, including backup blocks if any
*/
while (write_len)
{
while (rdata->data == NULL)
rdata = rdata->next;
if (freespace > 0)
{
if (rdata->len > freespace)
{
memcpy(Insert->currpos, rdata->data, freespace);
rdata->data += freespace;
rdata->len -= freespace;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
write_len -= freespace;
}
else
{
memcpy(Insert->currpos, rdata->data, rdata->len);
freespace -= rdata->len;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
write_len -= rdata->len;
Insert->currpos += rdata->len;
rdata = rdata->next;
continue;
}
}
/* Use next buffer */
updrqst = AdvanceXLInsertBuffer(false);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
curridx = Insert->curridx;
/* Insert cont-record header */
Insert->currpage->xlp_info |= XLP_FIRST_IS_CONTRECORD;
contrecord = (XLogContRecord *) Insert->currpos;
contrecord->xl_rem_len = write_len;
Insert->currpos += SizeOfXLogContRecord;
freespace = INSERT_FREESPACE(Insert);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Ensure next record will be properly aligned */
Insert->currpos = (char *) Insert->currpage +
2001-03-22 05:01:46 +01:00
MAXALIGN(Insert->currpos - (char *) Insert->currpage);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
freespace = INSERT_FREESPACE(Insert);
2000-06-02 12:20:27 +02:00
/*
2005-10-15 04:49:52 +02:00
* The recptr I return is the beginning of the *next* record. This will be
* stored as LSN for changed data pages...
2000-06-02 12:20:27 +02:00
*/
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
INSERT_RECPTR(RecPtr, Insert, curridx);
2000-06-02 12:20:27 +02:00
/*
* If the record is an XLOG_SWITCH, we must now write and flush all the
* existing data, and then forcibly advance to the start of the next
* segment. It's not good to do this I/O while holding the insert lock,
* but there seems too much risk of confusion if we try to release the
* lock sooner. Fortunately xlog switch needn't be a high-performance
* operation anyway...
*/
if (isLogSwitch)
{
XLogCtlWrite *Write = &XLogCtl->Write;
XLogwrtRqst FlushRqst;
XLogRecPtr OldSegEnd;
TRACE_POSTGRESQL_XLOG_SWITCH();
LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
/*
2006-10-04 02:30:14 +02:00
* Flush through the end of the page containing XLOG_SWITCH, and
* perform end-of-segment actions (eg, notifying archiver).
*/
WriteRqst = XLogCtl->xlblocks[curridx];
FlushRqst.Write = WriteRqst;
FlushRqst.Flush = WriteRqst;
XLogWrite(FlushRqst, false, true);
/* Set up the next buffer as first page of next segment */
/* Note: AdvanceXLInsertBuffer cannot need to do I/O here */
(void) AdvanceXLInsertBuffer(true);
/* There should be no unwritten data */
curridx = Insert->curridx;
Assert(curridx == Write->curridx);
/* Compute end address of old segment */
OldSegEnd = XLogCtl->xlblocks[curridx];
OldSegEnd.xrecoff -= XLOG_BLCKSZ;
if (OldSegEnd.xrecoff == 0)
{
/* crossing a logid boundary */
OldSegEnd.xlogid -= 1;
OldSegEnd.xrecoff = XLogFileSize;
}
/* Make it look like we've written and synced all of old segment */
LogwrtResult.Write = OldSegEnd;
LogwrtResult.Flush = OldSegEnd;
/*
* Update shared-memory status --- this code should match XLogWrite
*/
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->LogwrtResult = LogwrtResult;
if (XLByteLT(xlogctl->LogwrtRqst.Write, LogwrtResult.Write))
xlogctl->LogwrtRqst.Write = LogwrtResult.Write;
if (XLByteLT(xlogctl->LogwrtRqst.Flush, LogwrtResult.Flush))
xlogctl->LogwrtRqst.Flush = LogwrtResult.Flush;
SpinLockRelease(&xlogctl->info_lck);
}
Write->LogwrtResult = LogwrtResult;
LWLockRelease(WALWriteLock);
updrqst = false; /* done already */
}
else
{
/* normal case, ie not xlog switch */
/* Need to update shared LogwrtRqst if some block was filled up */
if (freespace < SizeOfXLogRecord)
{
/* curridx is filled and available for writing out */
updrqst = true;
}
else
{
/* if updrqst already set, write through end of previous buf */
curridx = PrevBufIdx(curridx);
}
WriteRqst = XLogCtl->xlblocks[curridx];
}
LWLockRelease(WALInsertLock);
if (updrqst)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* advance global request to include new block(s) */
if (XLByteLT(xlogctl->LogwrtRqst.Write, WriteRqst))
xlogctl->LogwrtRqst.Write = WriteRqst;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* update local result copy while I have the chance */
LogwrtResult = xlogctl->LogwrtResult;
SpinLockRelease(&xlogctl->info_lck);
}
XactLastRecEnd = RecPtr;
END_CRIT_SECTION();
return RecPtr;
}
/*
* Determine whether the buffer referenced by an XLogRecData item has to
* be backed up, and if so fill a BkpBlock struct for it. In any case
* save the buffer's LSN at *lsn.
*/
static bool
XLogCheckBuffer(XLogRecData *rdata, bool doPageWrites,
XLogRecPtr *lsn, BkpBlock *bkpb)
{
Page page;
page = BufferGetPage(rdata->buffer);
/*
2005-10-15 04:49:52 +02:00
* XXX We assume page LSN is first data on *every* page that can be passed
* to XLogInsert, whether it otherwise has the standard page layout or
* not.
*/
*lsn = PageGetLSN(page);
if (doPageWrites &&
XLByteLE(PageGetLSN(page), RedoRecPtr))
{
/*
* The page needs to be backed up, so set up *bkpb
*/
BufferGetTag(rdata->buffer, &bkpb->node, &bkpb->fork, &bkpb->block);
if (rdata->buffer_std)
{
/* Assume we can omit data between pd_lower and pd_upper */
uint16 lower = ((PageHeader) page)->pd_lower;
uint16 upper = ((PageHeader) page)->pd_upper;
if (lower >= SizeOfPageHeaderData &&
upper > lower &&
upper <= BLCKSZ)
{
bkpb->hole_offset = lower;
bkpb->hole_length = upper - lower;
}
else
{
/* No "hole" to compress out */
bkpb->hole_offset = 0;
bkpb->hole_length = 0;
}
}
else
{
/* Not a standard page header, don't try to eliminate "hole" */
bkpb->hole_offset = 0;
bkpb->hole_length = 0;
}
return true; /* buffer requires backup */
}
return false; /* buffer does not need to be backed up */
}
/*
* XLogArchiveNotify
*
* Create an archive notification file
*
* The name of the notification file is the message that will be picked up
* by the archiver, e.g. we write 0000000100000001000000C6.ready
* and the archiver then knows to archive XLOGDIR/0000000100000001000000C6,
* then when complete, rename it to 0000000100000001000000C6.done
*/
static void
XLogArchiveNotify(const char *xlog)
{
char archiveStatusPath[MAXPGPATH];
2004-08-29 07:07:03 +02:00
FILE *fd;
/* insert an otherwise empty file called <XLOG>.ready */
StatusFilePath(archiveStatusPath, xlog, ".ready");
fd = AllocateFile(archiveStatusPath, "w");
2004-08-29 07:07:03 +02:00
if (fd == NULL)
{
ereport(LOG,
(errcode_for_file_access(),
errmsg("could not create archive status file \"%s\": %m",
archiveStatusPath)));
return;
}
2004-08-29 07:07:03 +02:00
if (FreeFile(fd))
{
ereport(LOG,
(errcode_for_file_access(),
errmsg("could not write archive status file \"%s\": %m",
archiveStatusPath)));
return;
}
/* Notify archiver that it's got something to do */
if (IsUnderPostmaster)
SendPostmasterSignal(PMSIGNAL_WAKEN_ARCHIVER);
}
/*
* Convenience routine to notify using log/seg representation of filename
*/
static void
XLogArchiveNotifySeg(uint32 log, uint32 seg)
{
char xlog[MAXFNAMELEN];
XLogFileName(xlog, ThisTimeLineID, log, seg);
XLogArchiveNotify(xlog);
}
/*
* XLogArchiveCheckDone
*
* This is called when we are ready to delete or recycle an old XLOG segment
* file or backup history file. If it is okay to delete it then return true.
* If it is not time to delete it, make sure a .ready file exists, and return
* false.
*
* If <XLOG>.done exists, then return true; else if <XLOG>.ready exists,
* then return false; else create <XLOG>.ready and return false.
*
* The reason we do things this way is so that if the original attempt to
* create <XLOG>.ready fails, we'll retry during subsequent checkpoints.
*/
static bool
XLogArchiveCheckDone(const char *xlog)
{
char archiveStatusPath[MAXPGPATH];
struct stat stat_buf;
/* Always deletable if archiving is off */
if (!XLogArchivingActive())
return true;
/* First check for .done --- this means archiver is done with it */
StatusFilePath(archiveStatusPath, xlog, ".done");
if (stat(archiveStatusPath, &stat_buf) == 0)
return true;
/* check for .ready --- this means archiver is still busy with it */
StatusFilePath(archiveStatusPath, xlog, ".ready");
if (stat(archiveStatusPath, &stat_buf) == 0)
2004-08-29 07:07:03 +02:00
return false;
/* Race condition --- maybe archiver just finished, so recheck */
StatusFilePath(archiveStatusPath, xlog, ".done");
if (stat(archiveStatusPath, &stat_buf) == 0)
return true;
/* Retry creation of the .ready file */
XLogArchiveNotify(xlog);
return false;
}
/*
* XLogArchiveIsBusy
*
* Check to see if an XLOG segment file is still unarchived.
* This is almost but not quite the inverse of XLogArchiveCheckDone: in
* the first place we aren't chartered to recreate the .ready file, and
* in the second place we should consider that if the file is already gone
* then it's not busy. (This check is needed to handle the race condition
* that a checkpoint already deleted the no-longer-needed file.)
*/
static bool
XLogArchiveIsBusy(const char *xlog)
{
char archiveStatusPath[MAXPGPATH];
struct stat stat_buf;
/* First check for .done --- this means archiver is done with it */
StatusFilePath(archiveStatusPath, xlog, ".done");
if (stat(archiveStatusPath, &stat_buf) == 0)
return false;
/* check for .ready --- this means archiver is still busy with it */
StatusFilePath(archiveStatusPath, xlog, ".ready");
if (stat(archiveStatusPath, &stat_buf) == 0)
return true;
/* Race condition --- maybe archiver just finished, so recheck */
StatusFilePath(archiveStatusPath, xlog, ".done");
if (stat(archiveStatusPath, &stat_buf) == 0)
return false;
/*
* Check to see if the WAL file has been removed by checkpoint, which
* implies it has already been archived, and explains why we can't see a
* status file for it.
*/
snprintf(archiveStatusPath, MAXPGPATH, XLOGDIR "/%s", xlog);
if (stat(archiveStatusPath, &stat_buf) != 0 &&
errno == ENOENT)
return false;
return true;
}
/*
* XLogArchiveCleanup
*
* Cleanup archive notification file(s) for a particular xlog segment
*/
static void
XLogArchiveCleanup(const char *xlog)
{
2004-08-29 07:07:03 +02:00
char archiveStatusPath[MAXPGPATH];
/* Remove the .done file */
StatusFilePath(archiveStatusPath, xlog, ".done");
unlink(archiveStatusPath);
/* should we complain about failure? */
/* Remove the .ready file if present --- normally it shouldn't be */
StatusFilePath(archiveStatusPath, xlog, ".ready");
unlink(archiveStatusPath);
/* should we complain about failure? */
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Advance the Insert state to the next buffer page, writing out the next
* buffer if it still contains unwritten data.
*
* If new_segment is TRUE then we set up the next buffer page as the first
* page of the next xlog segment file, possibly but not usually the next
* consecutive file page.
*
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* The global LogwrtRqst.Write pointer needs to be advanced to include the
* just-filled page. If we can do this for free (without an extra lock),
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* we do so here. Otherwise the caller must do it. We return TRUE if the
* request update still needs to be done, FALSE if we did it internally.
*
* Must be called with WALInsertLock held.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
static bool
AdvanceXLInsertBuffer(bool new_segment)
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
XLogCtlInsert *Insert = &XLogCtl->Insert;
XLogCtlWrite *Write = &XLogCtl->Write;
int nextidx = NextBufIdx(Insert->curridx);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
bool update_needed = true;
XLogRecPtr OldPageRqstPtr;
XLogwrtRqst WriteRqst;
XLogRecPtr NewPageEndPtr;
XLogPageHeader NewPage;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Use Insert->LogwrtResult copy if it's more fresh */
if (XLByteLT(LogwrtResult.Write, Insert->LogwrtResult.Write))
LogwrtResult = Insert->LogwrtResult;
2000-10-28 18:21:00 +02:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Get ending-offset of the buffer page we need to replace (this may be
* zero if the buffer hasn't been used yet). Fall through if it's already
* written out.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
OldPageRqstPtr = XLogCtl->xlblocks[nextidx];
if (!XLByteLE(OldPageRqstPtr, LogwrtResult.Write))
{
/* nope, got work to do... */
XLogRecPtr FinishedPageRqstPtr;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
FinishedPageRqstPtr = XLogCtl->xlblocks[Insert->curridx];
/* Before waiting, get info_lck and update LogwrtResult */
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
if (XLByteLT(xlogctl->LogwrtRqst.Write, FinishedPageRqstPtr))
xlogctl->LogwrtRqst.Write = FinishedPageRqstPtr;
LogwrtResult = xlogctl->LogwrtResult;
SpinLockRelease(&xlogctl->info_lck);
}
update_needed = false; /* Did the shared-request update */
if (XLByteLE(OldPageRqstPtr, LogwrtResult.Write))
{
/* OK, someone wrote it already */
Insert->LogwrtResult = LogwrtResult;
}
else
{
/* Must acquire write lock */
LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
LogwrtResult = Write->LogwrtResult;
if (XLByteLE(OldPageRqstPtr, LogwrtResult.Write))
{
/* OK, someone wrote it already */
LWLockRelease(WALWriteLock);
Insert->LogwrtResult = LogwrtResult;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
else
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
/*
2005-10-15 04:49:52 +02:00
* Have to write buffers while holding insert lock. This is
* not good, so only write as much as we absolutely must.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_START();
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
WriteRqst.Write = OldPageRqstPtr;
WriteRqst.Flush.xlogid = 0;
WriteRqst.Flush.xrecoff = 0;
XLogWrite(WriteRqst, false, false);
LWLockRelease(WALWriteLock);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
Insert->LogwrtResult = LogwrtResult;
TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_DONE();
}
}
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Now the next buffer slot is free and we can set it up to be the next
* output page.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
NewPageEndPtr = XLogCtl->xlblocks[Insert->curridx];
if (new_segment)
{
/* force it to a segment start point */
NewPageEndPtr.xrecoff += XLogSegSize - 1;
NewPageEndPtr.xrecoff -= NewPageEndPtr.xrecoff % XLogSegSize;
}
if (NewPageEndPtr.xrecoff >= XLogFileSize)
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* crossing a logid boundary */
NewPageEndPtr.xlogid += 1;
NewPageEndPtr.xrecoff = XLOG_BLCKSZ;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
else
NewPageEndPtr.xrecoff += XLOG_BLCKSZ;
XLogCtl->xlblocks[nextidx] = NewPageEndPtr;
NewPage = (XLogPageHeader) (XLogCtl->pages + nextidx * (Size) XLOG_BLCKSZ);
2005-10-15 04:49:52 +02:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
Insert->curridx = nextidx;
Insert->currpage = NewPage;
2005-10-15 04:49:52 +02:00
Insert->currpos = ((char *) NewPage) +SizeOfXLogShortPHD;
2001-03-22 05:01:46 +01:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Be sure to re-zero the buffer so that bytes beyond what we've written
* will look like zeroes and not valid XLOG records...
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
MemSet((char *) NewPage, 0, XLOG_BLCKSZ);
/*
* Fill the new page's header
*/
2005-10-15 04:49:52 +02:00
NewPage ->xlp_magic = XLOG_PAGE_MAGIC;
/* NewPage->xlp_info = 0; */ /* done by memset */
2005-10-15 04:49:52 +02:00
NewPage ->xlp_tli = ThisTimeLineID;
NewPage ->xlp_pageaddr.xlogid = NewPageEndPtr.xlogid;
NewPage ->xlp_pageaddr.xrecoff = NewPageEndPtr.xrecoff - XLOG_BLCKSZ;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* If online backup is not in progress, mark the header to indicate that
* WAL records beginning in this page have removable backup blocks. This
* allows the WAL archiver to know whether it is safe to compress archived
* WAL data by transforming full-block records into the non-full-block
* format. It is sufficient to record this at the page level because we
* force a page switch (in fact a segment switch) when starting a backup,
* so the flag will be off before any records can be written during the
* backup. At the end of a backup, the last page will be marked as all
* unsafe when perhaps only part is unsafe, but at worst the archiver
* would miss the opportunity to compress a few records.
*/
if (!Insert->forcePageWrites)
NewPage->xlp_info |= XLP_BKP_REMOVABLE;
/*
* If first page of an XLOG segment file, make it a long header.
*/
if ((NewPage->xlp_pageaddr.xrecoff % XLogSegSize) == 0)
{
XLogLongPageHeader NewLongPage = (XLogLongPageHeader) NewPage;
NewLongPage->xlp_sysid = ControlFile->system_identifier;
NewLongPage->xlp_seg_size = XLogSegSize;
NewLongPage->xlp_xlog_blcksz = XLOG_BLCKSZ;
2005-10-15 04:49:52 +02:00
NewPage ->xlp_info |= XLP_LONG_HEADER;
Insert->currpos = ((char *) NewPage) +SizeOfXLogLongPHD;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
return update_needed;
}
/*
* Check whether we've consumed enough xlog space that a checkpoint is needed.
*
* logid/logseg indicate a log file that has just been filled up (or read
* during recovery). We measure the distance from RedoRecPtr to logid/logseg
* and see if that exceeds CheckPointSegments.
*
* Note: it is caller's responsibility that RedoRecPtr is up-to-date.
*/
static bool
XLogCheckpointNeeded(uint32 logid, uint32 logseg)
{
/*
* A straight computation of segment number could overflow 32 bits. Rather
* than assuming we have working 64-bit arithmetic, we compare the
2007-11-15 22:14:46 +01:00
* highest-order bits separately, and force a checkpoint immediately when
* they change.
*/
uint32 old_segno,
new_segno;
uint32 old_highbits,
new_highbits;
old_segno = (RedoRecPtr.xlogid % XLogSegSize) * XLogSegsPerFile +
(RedoRecPtr.xrecoff / XLogSegSize);
old_highbits = RedoRecPtr.xlogid / XLogSegSize;
new_segno = (logid % XLogSegSize) * XLogSegsPerFile + logseg;
new_highbits = logid / XLogSegSize;
if (new_highbits != old_highbits ||
2007-11-15 22:14:46 +01:00
new_segno >= old_segno + (uint32) (CheckPointSegments - 1))
return true;
return false;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Write and/or fsync the log at least as far as WriteRqst indicates.
*
* If flexible == TRUE, we don't have to write as far as WriteRqst, but
* may stop at any convenient boundary (such as a cache or logfile boundary).
* This option allows us to avoid uselessly issuing multiple writes when a
* single one would do.
*
* If xlog_switch == TRUE, we are intending an xlog segment switch, so
* perform end-of-segment actions after writing the last page, even if
* it's not physically the end of its segment. (NB: this will work properly
* only if caller specifies WriteRqst == page-end and flexible == false,
* and there is some data to write.)
*
* Must be called with WALWriteLock held.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
static void
XLogWrite(XLogwrtRqst WriteRqst, bool flexible, bool xlog_switch)
{
XLogCtlWrite *Write = &XLogCtl->Write;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
bool ispartialpage;
bool last_iteration;
bool finishing_seg;
bool use_existent;
int curridx;
int npages;
int startidx;
uint32 startoffset;
/* We should always be inside a critical section here */
Assert(CritSectionCount > 0);
2001-03-22 05:01:46 +01:00
/*
2005-10-15 04:49:52 +02:00
* Update local LogwrtResult (caller probably did this already, but...)
2001-03-22 05:01:46 +01:00
*/
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
LogwrtResult = Write->LogwrtResult;
/*
* Since successive pages in the xlog cache are consecutively allocated,
* we can usually gather multiple pages together and issue just one
2005-10-15 04:49:52 +02:00
* write() call. npages is the number of pages we have determined can be
* written together; startidx is the cache block index of the first one,
* and startoffset is the file offset at which it should go. The latter
* two variables are only valid when npages > 0, but we must initialize
* all of them to keep the compiler quiet.
*/
npages = 0;
startidx = 0;
startoffset = 0;
/*
* Within the loop, curridx is the cache block index of the page to
* consider writing. We advance Write->curridx only after successfully
* writing pages. (Right now, this refinement is useless since we are
2005-10-15 04:49:52 +02:00
* going to PANIC if any error occurs anyway; but someday it may come in
* useful.)
*/
curridx = Write->curridx;
Use O_DIRECT if available when using O_SYNC for wal_sync_method. Also, write multiple WAL buffers out in one write() operation. ITAGAKI Takahiro --------------------------------------------------------------------------- > If we disable writeback-cache and use open_sync, the per-page writing > behavior in WAL module will show up as bad result. O_DIRECT is similar > to O_DSYNC (at least on linux), so that the benefit of it will disappear > behind the slow disk revolution. > > In the current source, WAL is written as: > for (i = 0; i < N; i++) { write(&buffers[i], BLCKSZ); } > Is this intentional? Can we rewrite it as follows? > write(&buffers[0], N * BLCKSZ); > > In order to achieve it, I wrote a 'gather-write' patch (xlog.gw.diff). > Aside from this, I'll also send the fixed direct io patch (xlog.dio.diff). > These two patches are independent, so they can be applied either or both. > > > I tested them on my machine and the results as follows. It shows that > direct-io and gather-write is the best choice when writeback-cache is off. > Are these two patches worth trying if they are used together? > > > | writeback | fsync= | fdata | open_ | fsync_ | open_ > patch | cache | false | sync | sync | direct | direct > ------------+-----------+--------+-------+-------+--------+--------- > direct io | off | 124.2 | 105.7 | 48.3 | 48.3 | 48.2 > direct io | on | 129.1 | 112.3 | 114.1 | 142.9 | 144.5 > gather-write| off | 124.3 | 108.7 | 105.4 | (N/A) | (N/A) > both | off | 131.5 | 115.5 | 114.4 | 145.4 | 145.2 > > - 20runs * pgbench -s 100 -c 50 -t 200 > - with tuning (wal_buffers=64, commit_delay=500, checkpoint_segments=8) > - using 2 ATA disks: > - hda(reiserfs) includes system and wal. > - hdc(jfs) includes database files. writeback-cache is always on. > > --- > ITAGAKI Takahiro
2005-07-29 05:22:33 +02:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
while (XLByteLT(LogwrtResult.Write, WriteRqst.Write))
{
/*
2005-10-15 04:49:52 +02:00
* Make sure we're not ahead of the insert process. This could happen
* if we're passed a bogus WriteRqst.Write that is past the end of the
* last page that's been initialized by AdvanceXLInsertBuffer.
*/
if (!XLByteLT(LogwrtResult.Write, XLogCtl->xlblocks[curridx]))
elog(PANIC, "xlog write request %X/%X is past end of log %X/%X",
LogwrtResult.Write.xlogid, LogwrtResult.Write.xrecoff,
XLogCtl->xlblocks[curridx].xlogid,
XLogCtl->xlblocks[curridx].xrecoff);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Advance LogwrtResult.Write to end of current buffer page */
LogwrtResult.Write = XLogCtl->xlblocks[curridx];
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
ispartialpage = XLByteLT(WriteRqst.Write, LogwrtResult.Write);
if (!XLByteInPrevSeg(LogwrtResult.Write, openLogId, openLogSeg))
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Switch to new logfile segment. We cannot have any pending
* pages here (since we dump what we have at segment end).
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
Assert(npages == 0);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (openLogFile >= 0)
XLogFileClose();
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg);
/* create/use new log file */
use_existent = true;
openLogFile = XLogFileInit(openLogId, openLogSeg,
&use_existent, true);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
openLogOff = 0;
}
/* Make sure we have the current logfile open */
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (openLogFile < 0)
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg);
openLogFile = XLogFileOpen(openLogId, openLogSeg);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
openLogOff = 0;
}
/* Add current page to the set of pending pages-to-dump */
if (npages == 0)
{
/* first of group */
startidx = curridx;
startoffset = (LogwrtResult.Write.xrecoff - XLOG_BLCKSZ) % XLogSegSize;
}
npages++;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Dump the set if this will be the last loop iteration, or if we are
* at the last page of the cache area (since the next page won't be
* contiguous in memory), or if we are at the end of the logfile
* segment.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
last_iteration = !XLByteLT(LogwrtResult.Write, WriteRqst.Write);
finishing_seg = !ispartialpage &&
(startoffset + npages * XLOG_BLCKSZ) >= XLogSegSize;
if (last_iteration ||
curridx == XLogCtl->XLogCacheBlck ||
finishing_seg)
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
char *from;
Size nbytes;
/* Need to seek in the file? */
if (openLogOff != startoffset)
{
if (lseek(openLogFile, (off_t) startoffset, SEEK_SET) < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not seek in log file %u, "
"segment %u to offset %u: %m",
openLogId, openLogSeg, startoffset)));
openLogOff = startoffset;
}
/* OK to write the page(s) */
from = XLogCtl->pages + startidx * (Size) XLOG_BLCKSZ;
nbytes = npages * (Size) XLOG_BLCKSZ;
errno = 0;
if (write(openLogFile, from, nbytes) != nbytes)
{
/* if write didn't set errno, assume no disk space */
if (errno == 0)
errno = ENOSPC;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not write to log file %u, segment %u "
2005-10-29 02:31:52 +02:00
"at offset %u, length %lu: %m",
openLogId, openLogSeg,
openLogOff, (unsigned long) nbytes)));
}
/* Update state for write */
openLogOff += nbytes;
Write->curridx = ispartialpage ? curridx : NextBufIdx(curridx);
npages = 0;
/*
* If we just wrote the whole last page of a logfile segment,
* fsync the segment immediately. This avoids having to go back
* and re-open prior segments when an fsync request comes along
* later. Doing it here ensures that one and only one backend will
* perform this fsync.
*
* We also do this if this is the last page written for an xlog
* switch.
*
* This is also the right place to notify the Archiver that the
2006-10-04 02:30:14 +02:00
* segment is ready to copy to archival storage, and to update the
* timer for archive_timeout, and to signal for a checkpoint if
* too many logfile segments have been used since the last
* checkpoint.
*/
if (finishing_seg || (xlog_switch && last_iteration))
{
issue_xlog_fsync(openLogFile, openLogId, openLogSeg);
2005-10-15 04:49:52 +02:00
LogwrtResult.Flush = LogwrtResult.Write; /* end of page */
if (XLogArchivingActive())
XLogArchiveNotifySeg(openLogId, openLogSeg);
Write->lastSegSwitchTime = (pg_time_t) time(NULL);
/*
* Request a checkpoint if we've consumed too
* much xlog since the last one. For speed, we first check
2007-11-15 22:14:46 +01:00
* using the local copy of RedoRecPtr, which might be out of
* date; if it looks like a checkpoint is needed, forcibly
* update RedoRecPtr and recheck.
*/
if (IsUnderPostmaster &&
XLogCheckpointNeeded(openLogId, openLogSeg))
{
(void) GetRedoRecPtr();
if (XLogCheckpointNeeded(openLogId, openLogSeg))
RequestCheckpoint(CHECKPOINT_CAUSE_XLOG);
}
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (ispartialpage)
{
/* Only asked to write a partial page */
LogwrtResult.Write = WriteRqst.Write;
break;
}
curridx = NextBufIdx(curridx);
/* If flexible, break out of loop as soon as we wrote something */
if (flexible && npages == 0)
break;
}
Assert(npages == 0);
Assert(curridx == Write->curridx);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* If asked to flush, do so
*/
if (XLByteLT(LogwrtResult.Flush, WriteRqst.Flush) &&
XLByteLT(LogwrtResult.Flush, LogwrtResult.Write))
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Could get here without iterating above loop, in which case we might
* have no open file or the wrong one. However, we do not need to
* fsync more than one file.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
if (sync_method != SYNC_METHOD_OPEN &&
sync_method != SYNC_METHOD_OPEN_DSYNC)
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
if (openLogFile >= 0 &&
2005-10-15 04:49:52 +02:00
!XLByteInPrevSeg(LogwrtResult.Write, openLogId, openLogSeg))
XLogFileClose();
if (openLogFile < 0)
{
XLByteToPrevSeg(LogwrtResult.Write, openLogId, openLogSeg);
openLogFile = XLogFileOpen(openLogId, openLogSeg);
openLogOff = 0;
}
issue_xlog_fsync(openLogFile, openLogId, openLogSeg);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
LogwrtResult.Flush = LogwrtResult.Write;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Update shared-memory status
*
2001-03-22 05:01:46 +01:00
* We make sure that the shared 'request' values do not fall behind the
2005-10-15 04:49:52 +02:00
* 'result' values. This is not absolutely essential, but it saves some
* code in a couple of places.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->LogwrtResult = LogwrtResult;
if (XLByteLT(xlogctl->LogwrtRqst.Write, LogwrtResult.Write))
xlogctl->LogwrtRqst.Write = LogwrtResult.Write;
if (XLByteLT(xlogctl->LogwrtRqst.Flush, LogwrtResult.Flush))
xlogctl->LogwrtRqst.Flush = LogwrtResult.Flush;
SpinLockRelease(&xlogctl->info_lck);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
Write->LogwrtResult = LogwrtResult;
}
/*
* Record the LSN for an asynchronous transaction commit/abort
* and nudge the WALWriter if there is a complete page to write.
* (This should not be called for for synchronous commits.)
*/
void
XLogSetAsyncXactLSN(XLogRecPtr asyncXactLSN)
{
XLogRecPtr WriteRqstPtr = asyncXactLSN;
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
LogwrtResult = xlogctl->LogwrtResult;
if (XLByteLT(xlogctl->asyncXactLSN, asyncXactLSN))
xlogctl->asyncXactLSN = asyncXactLSN;
SpinLockRelease(&xlogctl->info_lck);
/* back off to last completed page boundary */
WriteRqstPtr.xrecoff -= WriteRqstPtr.xrecoff % XLOG_BLCKSZ;
/* if we have already flushed that far, we're done */
if (XLByteLE(WriteRqstPtr, LogwrtResult.Flush))
return;
/*
* Nudge the WALWriter if we have a full page of WAL to write.
*/
SetLatch(&XLogCtl->WALWriterLatch);
}
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* Advance minRecoveryPoint in control file.
*
* If we crash during recovery, we must reach this point again before the
* database is consistent.
*
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
* If 'force' is true, 'lsn' argument is ignored. Otherwise, minRecoveryPoint
* is only updated if it's not already greater than or equal to 'lsn'.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
static void
UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force)
{
/* Quick check using our local copy of the variable */
if (!updateMinRecoveryPoint || (!force && XLByteLE(lsn, minRecoveryPoint)))
return;
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
/* update local copy */
minRecoveryPoint = ControlFile->minRecoveryPoint;
/*
* An invalid minRecoveryPoint means that we need to recover all the WAL,
* i.e., we're doing crash recovery. We never modify the control file's
* value in that case, so we can short-circuit future checks here too.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
if (minRecoveryPoint.xlogid == 0 && minRecoveryPoint.xrecoff == 0)
updateMinRecoveryPoint = false;
else if (force || XLByteLT(minRecoveryPoint, lsn))
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
XLogRecPtr newMinRecoveryPoint;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* To avoid having to update the control file too often, we update it
* all the way to the last record being replayed, even though 'lsn'
* would suffice for correctness. This also allows the 'force' case
* to not need a valid 'lsn' value.
*
* Another important reason for doing it this way is that the passed
2010-02-26 03:01:40 +01:00
* 'lsn' value could be bogus, i.e., past the end of available WAL, if
* the caller got it from a corrupted heap page. Accepting such a
* value as the min recovery point would prevent us from coming up at
* all. Instead, we just log a warning and continue with recovery.
* (See also the comments about corrupt LSNs in XLogFlush.)
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
SpinLockAcquire(&xlogctl->info_lck);
newMinRecoveryPoint = xlogctl->replayEndRecPtr;
SpinLockRelease(&xlogctl->info_lck);
if (!force && XLByteLT(newMinRecoveryPoint, lsn))
elog(WARNING,
2010-02-26 03:01:40 +01:00
"xlog min recovery request %X/%X is past current point %X/%X",
lsn.xlogid, lsn.xrecoff,
newMinRecoveryPoint.xlogid, newMinRecoveryPoint.xrecoff);
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/* update control file */
if (XLByteLT(ControlFile->minRecoveryPoint, newMinRecoveryPoint))
{
ControlFile->minRecoveryPoint = newMinRecoveryPoint;
UpdateControlFile();
minRecoveryPoint = newMinRecoveryPoint;
ereport(DEBUG2,
(errmsg("updated min recovery point to %X/%X",
minRecoveryPoint.xlogid, minRecoveryPoint.xrecoff)));
}
}
LWLockRelease(ControlFileLock);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Ensure that all XLOG data through the given position is flushed to disk.
*
* NOTE: this differs from XLogWrite mainly in that the WALWriteLock is not
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* already held, and we try to avoid acquiring it if possible.
*/
void
XLogFlush(XLogRecPtr record)
{
XLogRecPtr WriteRqstPtr;
XLogwrtRqst WriteRqst;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* During REDO, we are reading not writing WAL. Therefore, instead of
2010-02-26 03:01:40 +01:00
* trying to flush the WAL, we should update minRecoveryPoint instead. We
* test XLogInsertAllowed(), not InRecovery, because we need checkpointer
* to act this way too, and because when it tries to write the
2010-02-26 03:01:40 +01:00
* end-of-recovery checkpoint, it should indeed flush.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
if (!XLogInsertAllowed())
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
{
UpdateMinRecoveryPoint(record, false);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
return;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Quick exit if already known flushed */
if (XLByteLE(record, LogwrtResult.Flush))
return;
#ifdef WAL_DEBUG
if (XLOG_DEBUG)
elog(LOG, "xlog flush request %X/%X; write %X/%X; flush %X/%X",
record.xlogid, record.xrecoff,
LogwrtResult.Write.xlogid, LogwrtResult.Write.xrecoff,
LogwrtResult.Flush.xlogid, LogwrtResult.Flush.xrecoff);
#endif
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
START_CRIT_SECTION();
/*
* Since fsync is usually a horribly expensive operation, we try to
2005-10-15 04:49:52 +02:00
* piggyback as much data as we can on each fsync: if we see any more data
* entered into the xlog buffer, we'll write and fsync that too, so that
* the final value of LogwrtResult.Flush is as large as possible. This
* gives us some chance of avoiding another fsync immediately after.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
/* initialize to given target; may increase below */
WriteRqstPtr = record;
/*
* Now wait until we get the write lock, or someone else does the
* flush for us.
*/
for (;;)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
/* read LogwrtResult and update local state */
SpinLockAcquire(&xlogctl->info_lck);
if (XLByteLT(WriteRqstPtr, xlogctl->LogwrtRqst.Write))
WriteRqstPtr = xlogctl->LogwrtRqst.Write;
LogwrtResult = xlogctl->LogwrtResult;
SpinLockRelease(&xlogctl->info_lck);
/* done already? */
if (XLByteLE(record, LogwrtResult.Flush))
break;
/*
* Try to get the write lock. If we can't get it immediately, wait
* until it's released, and recheck if we still need to do the flush
* or if the backend that held the lock did it for us already. This
* helps to maintain a good rate of group committing when the system
* is bottlenecked by the speed of fsyncing.
*/
if (!LWLockAcquireOrWait(WALWriteLock, LW_EXCLUSIVE))
{
/*
* The lock is now free, but we didn't acquire it yet. Before we
* do, loop back to check if someone else flushed the record for
* us already.
*/
continue;
}
/* Got the lock */
LogwrtResult = XLogCtl->Write.LogwrtResult;
if (!XLByteLE(record, LogwrtResult.Flush))
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
/* try to write/flush later additions to XLOG as well */
if (LWLockConditionalAcquire(WALInsertLock, LW_EXCLUSIVE))
{
XLogCtlInsert *Insert = &XLogCtl->Insert;
uint32 freespace = INSERT_FREESPACE(Insert);
2003-08-04 02:43:34 +02:00
if (freespace < SizeOfXLogRecord) /* buffer is full */
WriteRqstPtr = XLogCtl->xlblocks[Insert->curridx];
else
{
WriteRqstPtr = XLogCtl->xlblocks[Insert->curridx];
WriteRqstPtr.xrecoff -= freespace;
}
LWLockRelease(WALInsertLock);
WriteRqst.Write = WriteRqstPtr;
WriteRqst.Flush = WriteRqstPtr;
}
else
{
WriteRqst.Write = WriteRqstPtr;
WriteRqst.Flush = record;
}
XLogWrite(WriteRqst, false, false);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
LWLockRelease(WALWriteLock);
/* done */
break;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
END_CRIT_SECTION();
/*
* If we still haven't flushed to the request point then we have a
2005-10-15 04:49:52 +02:00
* problem; most likely, the requested flush point is past end of XLOG.
* This has been seen to occur when a disk page has a corrupted LSN.
*
* Formerly we treated this as a PANIC condition, but that hurts the
* system's robustness rather than helping it: we do not want to take down
* the whole system due to corruption on one data page. In particular, if
* the bad page is encountered again during recovery then we would be
* unable to restart the database at all! (This scenario actually
2010-02-26 03:01:40 +01:00
* happened in the field several times with 7.1 releases.) As of 8.4, bad
* LSNs encountered during recovery are UpdateMinRecoveryPoint's problem;
* the only time we can reach here during recovery is while flushing the
* end-of-recovery checkpoint record, and we don't expect that to have a
* bad LSN.
*
2010-02-26 03:01:40 +01:00
* Note that for calls from xact.c, the ERROR will be promoted to PANIC
* since xact.c calls this routine inside a critical section. However,
* calls from bufmgr.c are not within critical sections and so we will not
* force a restart for a bad LSN on a data page.
*/
if (XLByteLT(LogwrtResult.Flush, record))
elog(ERROR,
2005-10-15 04:49:52 +02:00
"xlog flush request %X/%X is not satisfied --- flushed only to %X/%X",
record.xlogid, record.xrecoff,
LogwrtResult.Flush.xlogid, LogwrtResult.Flush.xrecoff);
}
/*
* Flush xlog, but without specifying exactly where to flush to.
*
* We normally flush only completed blocks; but if there is nothing to do on
* that basis, we check for unflushed async commits in the current incomplete
* block, and flush through the latest one of those. Thus, if async commits
2007-11-15 22:14:46 +01:00
* are not being used, we will flush complete blocks only. We can guarantee
* that async commits reach disk after at most three cycles; normally only
2007-11-15 22:14:46 +01:00
* one or two. (We allow XLogWrite to write "flexibly", meaning it can stop
* at the end of the buffer ring; this makes a difference only with very high
* load or long wal_writer_delay, but imposes one extra cycle for the worst
* case for async commits.)
*
* This routine is invoked periodically by the background walwriter process.
*/
void
XLogBackgroundFlush(void)
{
XLogRecPtr WriteRqstPtr;
bool flexible = true;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/* XLOG doesn't need flushing during recovery */
if (RecoveryInProgress())
return;
/* read LogwrtResult and update local state */
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
LogwrtResult = xlogctl->LogwrtResult;
WriteRqstPtr = xlogctl->LogwrtRqst.Write;
SpinLockRelease(&xlogctl->info_lck);
}
/* back off to last completed page boundary */
WriteRqstPtr.xrecoff -= WriteRqstPtr.xrecoff % XLOG_BLCKSZ;
/* if we have already flushed that far, consider async commit records */
if (XLByteLE(WriteRqstPtr, LogwrtResult.Flush))
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
WriteRqstPtr = xlogctl->asyncXactLSN;
SpinLockRelease(&xlogctl->info_lck);
flexible = false; /* ensure it all gets written */
}
/*
2010-07-06 21:19:02 +02:00
* If already known flushed, we're done. Just need to check if we are
* holding an open file handle to a logfile that's no longer in use,
* preventing the file from being deleted.
*/
if (XLByteLE(WriteRqstPtr, LogwrtResult.Flush))
{
2010-07-06 21:19:02 +02:00
if (openLogFile >= 0)
{
if (!XLByteInPrevSeg(LogwrtResult.Write, openLogId, openLogSeg))
{
XLogFileClose();
}
}
return;
}
#ifdef WAL_DEBUG
if (XLOG_DEBUG)
elog(LOG, "xlog bg flush request %X/%X; write %X/%X; flush %X/%X",
WriteRqstPtr.xlogid, WriteRqstPtr.xrecoff,
LogwrtResult.Write.xlogid, LogwrtResult.Write.xrecoff,
LogwrtResult.Flush.xlogid, LogwrtResult.Flush.xrecoff);
#endif
START_CRIT_SECTION();
/* now wait for the write lock */
LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
LogwrtResult = XLogCtl->Write.LogwrtResult;
if (!XLByteLE(WriteRqstPtr, LogwrtResult.Flush))
{
XLogwrtRqst WriteRqst;
WriteRqst.Write = WriteRqstPtr;
WriteRqst.Flush = WriteRqstPtr;
XLogWrite(WriteRqst, flexible, false);
}
LWLockRelease(WALWriteLock);
END_CRIT_SECTION();
}
/*
* Test whether XLOG data has been flushed up to (at least) the given position.
*
* Returns true if a flush is still needed. (It may be that someone else
* is already in process of flushing that far, however.)
*/
bool
XLogNeedsFlush(XLogRecPtr record)
{
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
* During recovery, we don't flush WAL but update minRecoveryPoint
* instead. So "needs flush" is taken to mean whether minRecoveryPoint
* would need to be updated.
*/
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
if (RecoveryInProgress())
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
{
/* Quick exit if already known updated */
if (XLByteLE(record, minRecoveryPoint) || !updateMinRecoveryPoint)
return false;
/*
* Update local copy of minRecoveryPoint. But if the lock is busy,
* just return a conservative guess.
*/
if (!LWLockConditionalAcquire(ControlFileLock, LW_SHARED))
return true;
minRecoveryPoint = ControlFile->minRecoveryPoint;
LWLockRelease(ControlFileLock);
/*
2010-02-26 03:01:40 +01:00
* An invalid minRecoveryPoint means that we need to recover all the
* WAL, i.e., we're doing crash recovery. We never modify the control
* file's value in that case, so we can short-circuit future checks
* here too.
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
*/
if (minRecoveryPoint.xlogid == 0 && minRecoveryPoint.xrecoff == 0)
updateMinRecoveryPoint = false;
/* check again */
if (XLByteLE(record, minRecoveryPoint) || !updateMinRecoveryPoint)
return false;
else
return true;
}
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/* Quick exit if already known flushed */
if (XLByteLE(record, LogwrtResult.Flush))
return false;
/* read LogwrtResult and update local state */
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
LogwrtResult = xlogctl->LogwrtResult;
SpinLockRelease(&xlogctl->info_lck);
}
/* check again */
if (XLByteLE(record, LogwrtResult.Flush))
return false;
return true;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Create a new XLOG file segment, or open a pre-existing one.
*
* log, seg: identify segment to be created/opened.
*
* *use_existent: if TRUE, OK to use a pre-existing file (else, any
2001-03-22 05:01:46 +01:00
* pre-existing file will be deleted). On return, TRUE if a pre-existing
* file was used.
*
* use_lock: if TRUE, acquire ControlFileLock while moving file into
* place. This should be TRUE except during bootstrap log creation. The
* caller must *not* hold the lock at call.
*
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* Returns FD of opened file.
*
* Note: errors here are ERROR not PANIC because we might or might not be
* inside a critical section (eg, during checkpoint there is no reason to
* take down the system on failure). They will promote to PANIC if we are
* in a critical section.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
int
XLogFileInit(uint32 log, uint32 seg,
bool *use_existent, bool use_lock)
{
char path[MAXPGPATH];
char tmppath[MAXPGPATH];
char *zbuffer;
uint32 installed_log;
uint32 installed_seg;
int max_advance;
int fd;
int nbytes;
XLogFilePath(path, ThisTimeLineID, log, seg);
/*
2005-10-15 04:49:52 +02:00
* Try to use existent file (checkpoint maker may have created it already)
*/
if (*use_existent)
{
fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method),
S_IRUSR | S_IWUSR);
if (fd < 0)
{
if (errno != ENOENT)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not open file \"%s\" (log file %u, segment %u): %m",
path, log, seg)));
}
else
return fd;
}
/*
2005-10-15 04:49:52 +02:00
* Initialize an empty (all zeroes) segment. NOTE: it is possible that
* another process is doing the same thing. If so, we will end up
* pre-creating an extra log segment. That seems OK, and better than
* holding the lock throughout this lengthy process.
*/
elog(DEBUG2, "creating and filling new WAL file");
snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
unlink(tmppath);
/* do not use get_sync_bit() here --- want to fsync only at end of fill */
fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY,
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
S_IRUSR | S_IWUSR);
if (fd < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not create file \"%s\": %m", tmppath)));
/*
2005-10-15 04:49:52 +02:00
* Zero-fill the file. We have to do this the hard way to ensure that all
* the file space has really been allocated --- on platforms that allow
* "holes" in files, just seeking to the end doesn't allocate intermediate
* space. This way, we know that we have all the space and (after the
* fsync below) that all the indirect blocks are down on disk. Therefore,
* fdatasync(2) or O_DSYNC will be sufficient to sync future writes to the
* log file.
*
* Note: palloc zbuffer, instead of just using a local char array, to
* ensure it is reasonably well-aligned; this may save a few cycles
* transferring data to the kernel.
*/
zbuffer = (char *) palloc0(XLOG_BLCKSZ);
for (nbytes = 0; nbytes < XLogSegSize; nbytes += XLOG_BLCKSZ)
{
errno = 0;
if ((int) write(fd, zbuffer, XLOG_BLCKSZ) != (int) XLOG_BLCKSZ)
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
2001-03-22 05:01:46 +01:00
int save_errno = errno;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
2001-03-22 05:01:46 +01:00
/*
2005-10-15 04:49:52 +02:00
* If we fail to make the file, delete it to release disk space
2001-03-22 05:01:46 +01:00
*/
unlink(tmppath);
/* if write didn't set errno, assume problem is no disk space */
errno = save_errno ? save_errno : ENOSPC;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
ereport(ERROR,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not write to file \"%s\": %m", tmppath)));
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
}
pfree(zbuffer);
if (pg_fsync(fd) != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m", tmppath)));
if (close(fd))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m", tmppath)));
2000-11-27 06:36:12 +01:00
/*
* Now move the segment into place with its final name.
*
* If caller didn't want to use a pre-existing file, get rid of any
2005-10-15 04:49:52 +02:00
* pre-existing file. Otherwise, cope with possibility that someone else
* has created the file while we were filling ours: if so, use ours to
* pre-create a future log segment.
*/
installed_log = log;
installed_seg = seg;
max_advance = XLOGfileslop;
if (!InstallXLogFileSegment(&installed_log, &installed_seg, tmppath,
*use_existent, &max_advance,
use_lock))
{
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
/*
* No need for any more future segments, or InstallXLogFileSegment()
* failed to rename the file into place. If the rename failed, opening
* the file below will fail.
*/
unlink(tmppath);
}
/* Set flag to tell caller there was no existent file */
*use_existent = false;
/* Now open original target segment (might not be file I just made) */
fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method),
S_IRUSR | S_IWUSR);
if (fd < 0)
ereport(ERROR,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not open file \"%s\" (log file %u, segment %u): %m",
path, log, seg)));
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
elog(DEBUG2, "done creating and filling new WAL file");
return fd;
}
/*
* Create a new XLOG file segment by copying a pre-existing one.
*
* log, seg: identify segment to be created.
*
* srcTLI, srclog, srcseg: identify segment to be copied (could be from
* a different timeline)
*
* Currently this is only used during recovery, and so there are no locking
2004-08-29 07:07:03 +02:00
* considerations. But we should be just as tense as XLogFileInit to avoid
* emplacing a bogus file.
*/
static void
XLogFileCopy(uint32 log, uint32 seg,
TimeLineID srcTLI, uint32 srclog, uint32 srcseg)
{
char path[MAXPGPATH];
char tmppath[MAXPGPATH];
char buffer[XLOG_BLCKSZ];
int srcfd;
int fd;
int nbytes;
/*
* Open the source file
*/
XLogFilePath(path, srcTLI, srclog, srcseg);
srcfd = BasicOpenFile(path, O_RDONLY | PG_BINARY, 0);
if (srcfd < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not open file \"%s\": %m", path)));
/*
* Copy into a temp file name.
*/
snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
unlink(tmppath);
/* do not use get_sync_bit() here --- want to fsync only at end of fill */
fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY,
S_IRUSR | S_IWUSR);
if (fd < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not create file \"%s\": %m", tmppath)));
/*
* Do the data copying.
*/
for (nbytes = 0; nbytes < XLogSegSize; nbytes += sizeof(buffer))
{
errno = 0;
if ((int) read(srcfd, buffer, sizeof(buffer)) != (int) sizeof(buffer))
{
if (errno != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not read file \"%s\": %m", path)));
else
ereport(ERROR,
2005-10-15 04:49:52 +02:00
(errmsg("not enough data in file \"%s\"", path)));
}
errno = 0;
if ((int) write(fd, buffer, sizeof(buffer)) != (int) sizeof(buffer))
{
int save_errno = errno;
/*
2005-10-15 04:49:52 +02:00
* If we fail to make the file, delete it to release disk space
*/
unlink(tmppath);
/* if write didn't set errno, assume problem is no disk space */
errno = save_errno ? save_errno : ENOSPC;
ereport(ERROR,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not write to file \"%s\": %m", tmppath)));
}
}
if (pg_fsync(fd) != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m", tmppath)));
if (close(fd))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m", tmppath)));
close(srcfd);
/*
* Now move the segment into place with its final name.
*/
if (!InstallXLogFileSegment(&log, &seg, tmppath, false, NULL, false))
elog(ERROR, "InstallXLogFileSegment should not have failed");
}
/*
* Install a new XLOG segment file as a current or future log segment.
*
* This is used both to install a newly-created segment (which has a temp
* filename while it's being created) and to recycle an old segment.
*
* *log, *seg: identify segment to install as (or first possible target).
* When find_free is TRUE, these are modified on return to indicate the
* actual installation location or last segment searched.
*
* tmppath: initial name of file to install. It will be renamed into place.
*
* find_free: if TRUE, install the new segment at the first empty log/seg
* number at or after the passed numbers. If FALSE, install the new segment
* exactly where specified, deleting any existing segment file there.
*
* *max_advance: maximum number of log/seg slots to advance past the starting
* point. Fail if no free slot is found in this range. On return, reduced
* by the number of slots skipped over. (Irrelevant, and may be NULL,
* when find_free is FALSE.)
*
* use_lock: if TRUE, acquire ControlFileLock while moving file into
* place. This should be TRUE except during bootstrap log creation. The
* caller must *not* hold the lock at call.
*
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
* Returns TRUE if the file was installed successfully. FALSE indicates that
* max_advance limit was exceeded, or an error occurred while renaming the
* file into place.
*/
static bool
InstallXLogFileSegment(uint32 *log, uint32 *seg, char *tmppath,
bool find_free, int *max_advance,
bool use_lock)
{
char path[MAXPGPATH];
struct stat stat_buf;
XLogFilePath(path, ThisTimeLineID, *log, *seg);
/*
* We want to be sure that only one process does this at a time.
*/
if (use_lock)
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
if (!find_free)
{
/* Force installation: get rid of any pre-existing segment file */
unlink(path);
}
else
{
/* Find a free slot to put it in */
while (stat(path, &stat_buf) == 0)
{
if (*max_advance <= 0)
{
/* Failed to find a free slot within specified range */
if (use_lock)
LWLockRelease(ControlFileLock);
return false;
}
NextLogSeg(*log, *seg);
(*max_advance)--;
XLogFilePath(path, ThisTimeLineID, *log, *seg);
}
}
/*
* Prefer link() to rename() here just to be really sure that we don't
* overwrite an existing logfile. However, there shouldn't be one, so
* rename() is an acceptable substitute except for the truly paranoid.
*/
#if HAVE_WORKING_LINK
if (link(tmppath, path) < 0)
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
{
if (use_lock)
LWLockRelease(ControlFileLock);
ereport(LOG,
(errcode_for_file_access(),
errmsg("could not link file \"%s\" to \"%s\" (initialization of log file %u, segment %u): %m",
tmppath, path, *log, *seg)));
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
return false;
}
unlink(tmppath);
#else
if (rename(tmppath, path) < 0)
{
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
if (use_lock)
LWLockRelease(ControlFileLock);
ereport(LOG,
(errcode_for_file_access(),
errmsg("could not rename file \"%s\" to \"%s\" (initialization of log file %u, segment %u): %m",
tmppath, path, *log, *seg)));
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
return false;
}
#endif
if (use_lock)
LWLockRelease(ControlFileLock);
return true;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Open a pre-existing logfile segment for writing.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
int
XLogFileOpen(uint32 log, uint32 seg)
{
char path[MAXPGPATH];
int fd;
XLogFilePath(path, ThisTimeLineID, log, seg);
fd = BasicOpenFile(path, O_RDWR | PG_BINARY | get_sync_bit(sync_method),
S_IRUSR | S_IWUSR);
if (fd < 0)
ereport(PANIC,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not open file \"%s\" (log file %u, segment %u): %m",
path, log, seg)));
return fd;
}
/*
* Open a logfile segment for reading (during recovery).
*
* If source = XLOG_FROM_ARCHIVE, the segment is retrieved from archive.
* Otherwise, it's assumed to be already available in pg_xlog.
*/
static int
XLogFileRead(uint32 log, uint32 seg, int emode, TimeLineID tli,
int source, bool notfoundOk)
{
char xlogfname[MAXFNAMELEN];
char activitymsg[MAXFNAMELEN + 16];
char path[MAXPGPATH];
int fd;
2010-02-26 03:01:40 +01:00
XLogFileName(xlogfname, tli, log, seg);
switch (source)
2010-02-26 03:01:40 +01:00
{
case XLOG_FROM_ARCHIVE:
/* Report recovery progress in PS display */
snprintf(activitymsg, sizeof(activitymsg), "waiting for %s",
xlogfname);
set_ps_display(activitymsg, false);
restoredFromArchive = RestoreArchivedFile(path, xlogfname,
"RECOVERYXLOG",
XLogSegSize);
if (!restoredFromArchive)
return -1;
break;
case XLOG_FROM_PG_XLOG:
case XLOG_FROM_STREAM:
XLogFilePath(path, tli, log, seg);
restoredFromArchive = false;
break;
default:
elog(ERROR, "invalid XLogFileRead source %d", source);
2010-02-26 03:01:40 +01:00
}
/*
* If the segment was fetched from archival storage, replace
* the existing xlog segment (if any) with the archival version.
*/
if (source == XLOG_FROM_ARCHIVE)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
XLogRecPtr endptr;
char xlogfpath[MAXPGPATH];
bool reload = false;
struct stat statbuf;
XLogFilePath(xlogfpath, tli, log, seg);
if (stat(xlogfpath, &statbuf) == 0)
{
if (unlink(xlogfpath) != 0)
ereport(FATAL,
(errcode_for_file_access(),
errmsg("could not remove file \"%s\": %m",
xlogfpath)));
reload = true;
}
if (rename(path, xlogfpath) < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not rename file \"%s\" to \"%s\": %m",
path, xlogfpath)));
/*
* If the existing segment was replaced, since walsenders might have
* it open, request them to reload a currently-open segment.
*/
if (reload)
WalSndRqstFileReload();
/*
* Calculate the end location of the restored WAL file and save it in
* shmem. It's used as current standby flush position, and cascading
* walsenders try to send WAL records up to this location.
*/
endptr.xlogid = log;
endptr.xrecoff = seg * XLogSegSize;
XLByteAdvance(endptr, XLogSegSize);
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->restoreLastRecPtr = endptr;
SpinLockRelease(&xlogctl->info_lck);
/* Signal walsender that new WAL has arrived */
if (AllowCascadeReplication())
WalSndWakeup();
}
2010-02-26 03:01:40 +01:00
fd = BasicOpenFile(path, O_RDONLY | PG_BINARY, 0);
if (fd >= 0)
{
/* Success! */
curFileTLI = tli;
2010-02-26 03:01:40 +01:00
/* Report recovery progress in PS display */
snprintf(activitymsg, sizeof(activitymsg), "recovering %s",
xlogfname);
set_ps_display(activitymsg, false);
/* Track source of data in assorted state variables */
readSource = source;
XLogReceiptSource = source;
/* In FROM_STREAM case, caller tracks receipt time, not me */
if (source != XLOG_FROM_STREAM)
XLogReceiptTime = GetCurrentTimestamp();
2010-02-26 03:01:40 +01:00
return fd;
}
if (errno != ENOENT || !notfoundOk) /* unexpected failure? */
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not open file \"%s\" (log file %u, segment %u): %m",
path, log, seg)));
return -1;
}
/*
* Open a logfile segment for reading (during recovery).
*
* This version searches for the segment with any TLI listed in expectedTLIs.
*/
static int
XLogFileReadAnyTLI(uint32 log, uint32 seg, int emode, int sources)
{
char path[MAXPGPATH];
ListCell *cell;
int fd;
/*
* Loop looking for a suitable timeline ID: we might need to read any of
* the timelines listed in expectedTLIs.
*
* We expect curFileTLI on entry to be the TLI of the preceding file in
* sequence, or 0 if there was no predecessor. We do not allow curFileTLI
* to go backwards; this prevents us from picking up the wrong file when a
* parent timeline extends to higher segment numbers than the child we
* want to read.
*/
foreach(cell, expectedTLIs)
{
TimeLineID tli = (TimeLineID) lfirst_int(cell);
if (tli < curFileTLI)
break; /* don't bother looking at too-old TLIs */
if (sources & XLOG_FROM_ARCHIVE)
{
fd = XLogFileRead(log, seg, emode, tli, XLOG_FROM_ARCHIVE, true);
if (fd != -1)
{
elog(DEBUG1, "got WAL segment from archive");
return fd;
}
}
if (sources & XLOG_FROM_PG_XLOG)
{
fd = XLogFileRead(log, seg, emode, tli, XLOG_FROM_PG_XLOG, true);
if (fd != -1)
return fd;
}
}
/* Couldn't find it. For simplicity, complain about front timeline */
XLogFilePath(path, recoveryTargetTLI, log, seg);
errno = ENOENT;
ereport(emode,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not open file \"%s\" (log file %u, segment %u): %m",
path, log, seg)));
return -1;
}
/*
* Close the current logfile segment for writing.
*/
static void
XLogFileClose(void)
{
Assert(openLogFile >= 0);
/*
* WAL segment files will not be re-read in normal operation, so we advise
* the OS to release any cached pages. But do not do so if WAL archiving
2010-02-26 03:01:40 +01:00
* or streaming is active, because archiver and walsender process could
* use the cache to read the WAL segment.
*/
#if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED)
if (!XLogIsNeeded())
(void) posix_fadvise(openLogFile, 0, 0, POSIX_FADV_DONTNEED);
#endif
if (close(openLogFile))
ereport(PANIC,
2006-10-04 02:30:14 +02:00
(errcode_for_file_access(),
errmsg("could not close log file %u, segment %u: %m",
openLogId, openLogSeg)));
openLogFile = -1;
}
/*
* Attempt to retrieve the specified file from off-line archival storage.
* If successful, fill "path" with its complete path (note that this will be
* a temp file name that doesn't follow the normal naming convention), and
* return TRUE.
*
* If not successful, fill "path" with the name of the normal on-line file
* (which may or may not actually exist, but we'll try to use it), and return
* FALSE.
*
* For fixed-size files, the caller may pass the expected size as an
* additional crosscheck on successful recovery. If the file size is not
* known, set expectedSize = 0.
*/
static bool
RestoreArchivedFile(char *path, const char *xlogfname,
const char *recovername, off_t expectedSize)
{
2004-08-29 07:07:03 +02:00
char xlogpath[MAXPGPATH];
char xlogRestoreCmd[MAXPGPATH];
char lastRestartPointFname[MAXPGPATH];
2004-08-29 07:07:03 +02:00
char *dp;
char *endp;
const char *sp;
2004-08-29 07:07:03 +02:00
int rc;
bool signaled;
struct stat stat_buf;
2007-11-15 22:14:46 +01:00
uint32 restartLog;
uint32 restartSeg;
/* In standby mode, restore_command might not be supplied */
if (recoveryRestoreCommand == NULL)
goto not_available;
/*
2005-10-15 04:49:52 +02:00
* When doing archive recovery, we always prefer an archived log file even
* if a file of the same name exists in XLOGDIR. The reason is that the
* file in XLOGDIR could be an old, un-filled or partly-filled version
* that was copied and restored as part of backing up $PGDATA.
*
2004-08-29 07:07:03 +02:00
* We could try to optimize this slightly by checking the local copy
2005-10-15 04:49:52 +02:00
* lastchange timestamp against the archived copy, but we have no API to
* do this, nor can we guarantee that the lastchange timestamp was
* preserved correctly when we copied to archive. Our aim is robustness,
* so we elect not to do this.
*
* If we cannot obtain the log file from the archive, however, we will try
* to use the XLOGDIR file if it exists. This is so that we can make use
* of log segments that weren't yet transferred to the archive.
*
* Notice that we don't actually overwrite any files when we copy back
* from archive because the recoveryRestoreCommand may inadvertently
* restore inappropriate xlogs, or they may be corrupt, so we may wish to
* fallback to the segments remaining in current XLOGDIR later. The
2005-10-15 04:49:52 +02:00
* copy-from-archive filename is always the same, ensuring that we don't
* run out of disk space on long recoveries.
*/
snprintf(xlogpath, MAXPGPATH, XLOGDIR "/%s", recovername);
/*
* Make sure there is no existing file named recovername.
*/
if (stat(xlogpath, &stat_buf) != 0)
{
if (errno != ENOENT)
ereport(FATAL,
(errcode_for_file_access(),
2004-10-12 23:54:45 +02:00
errmsg("could not stat file \"%s\": %m",
xlogpath)));
}
else
{
if (unlink(xlogpath) != 0)
ereport(FATAL,
(errcode_for_file_access(),
errmsg("could not remove file \"%s\": %m",
xlogpath)));
}
/*
* Calculate the archive file cutoff point for use during log shipping
* replication. All files earlier than this point can be deleted from the
* archive, though there is no requirement to do so.
*
* We initialise this with the filename of an InvalidXLogRecPtr, which
* will prevent the deletion of any WAL files from the archive because of
* the alphabetic sorting property of WAL filenames.
*
* Once we have successfully located the redo pointer of the checkpoint
* from which we start recovery we never request a file prior to the redo
* pointer of the last restartpoint. When redo begins we know that we have
* successfully located it, so there is no need for additional status
* flags to signify the point when we can begin deleting WAL files from
* the archive.
*/
if (InRedo)
{
XLByteToSeg(ControlFile->checkPointCopy.redo,
restartLog, restartSeg);
XLogFileName(lastRestartPointFname,
ControlFile->checkPointCopy.ThisTimeLineID,
restartLog, restartSeg);
/* we shouldn't need anything earlier than last restart point */
Assert(strcmp(lastRestartPointFname, xlogfname) <= 0);
}
else
XLogFileName(lastRestartPointFname, 0, 0, 0);
/*
* construct the command to be executed
*/
dp = xlogRestoreCmd;
endp = xlogRestoreCmd + MAXPGPATH - 1;
*endp = '\0';
for (sp = recoveryRestoreCommand; *sp; sp++)
{
if (*sp == '%')
{
switch (sp[1])
{
case 'p':
/* %p: relative path of target file */
sp++;
2004-08-29 07:07:03 +02:00
StrNCpy(dp, xlogpath, endp - dp);
make_native_path(dp);
dp += strlen(dp);
break;
case 'f':
/* %f: filename of desired file */
sp++;
2004-08-29 07:07:03 +02:00
StrNCpy(dp, xlogfname, endp - dp);
dp += strlen(dp);
break;
case 'r':
/* %r: filename of last restartpoint */
sp++;
StrNCpy(dp, lastRestartPointFname, endp - dp);
dp += strlen(dp);
break;
case '%':
/* convert %% to a single % */
sp++;
if (dp < endp)
*dp++ = *sp;
break;
default:
/* otherwise treat the % as not special */
if (dp < endp)
*dp++ = *sp;
break;
}
}
else
{
if (dp < endp)
*dp++ = *sp;
}
}
*dp = '\0';
ereport(DEBUG3,
2004-08-29 07:07:03 +02:00
(errmsg_internal("executing restore command \"%s\"",
xlogRestoreCmd)));
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* Check signals before restore command and reset afterwards.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
PreRestoreCommand();
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* Copy xlog from archival storage to XLOGDIR
*/
rc = system(xlogRestoreCmd);
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
PostRestoreCommand();
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
if (rc == 0)
{
/*
* command apparently succeeded, but let's make sure the file is
* really there now and has the correct size.
*/
if (stat(xlogpath, &stat_buf) == 0)
{
if (expectedSize > 0 && stat_buf.st_size != expectedSize)
{
2010-02-26 03:01:40 +01:00
int elevel;
/*
* If we find a partial file in standby mode, we assume it's
* because it's just being copied to the archive, and keep
* trying.
*
* Otherwise treat a wrong-sized file as FATAL to ensure the
2010-02-26 03:01:40 +01:00
* DBA would notice it, but is that too strong? We could try
* to plow ahead with a local copy of the file ... but the
* problem is that there probably isn't one, and we'd
2010-02-26 03:01:40 +01:00
* incorrectly conclude we've reached the end of WAL and we're
* done recovering ...
*/
if (StandbyMode && stat_buf.st_size < expectedSize)
elevel = DEBUG1;
else
elevel = FATAL;
ereport(elevel,
(errmsg("archive file \"%s\" has wrong size: %lu instead of %lu",
xlogfname,
(unsigned long) stat_buf.st_size,
(unsigned long) expectedSize)));
return false;
}
else
{
ereport(LOG,
(errmsg("restored log file \"%s\" from archive",
xlogfname)));
strcpy(path, xlogpath);
return true;
}
}
else
{
/* stat failed */
if (errno != ENOENT)
ereport(FATAL,
(errcode_for_file_access(),
2004-10-12 23:54:45 +02:00
errmsg("could not stat file \"%s\": %m",
xlogpath)));
}
}
/*
* Remember, we rollforward UNTIL the restore fails so failure here is
2004-08-29 07:07:03 +02:00
* just part of the process... that makes it difficult to determine
2005-10-15 04:49:52 +02:00
* whether the restore failed because there isn't an archive to restore,
* or because the administrator has specified the restore program
* incorrectly. We have to assume the former.
*
* However, if the failure was due to any sort of signal, it's best to
2007-11-15 22:14:46 +01:00
* punt and abort recovery. (If we "return false" here, upper levels will
* assume that recovery is complete and start up the database!) It's
* essential to abort on child SIGINT and SIGQUIT, because per spec
* system() ignores SIGINT and SIGQUIT while waiting; if we see one of
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
* those it's a good bet we should have gotten it too.
*
* On SIGTERM, assume we have received a fast shutdown request, and exit
* cleanly. It's pure chance whether we receive the SIGTERM first, or the
* child process. If we receive it first, the signal handler will call
* proc_exit, otherwise we do it here. If we or the child process received
* SIGTERM for any other reason than a fast shutdown request, postmaster
* will perform an immediate shutdown when it sees us exiting
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
* unexpectedly.
*
2007-11-15 22:14:46 +01:00
* Per the Single Unix Spec, shells report exit status > 128 when a called
* command died on a signal. Also, 126 and 127 are used to report
* problems such as an unfindable command; treat those as fatal errors
* too.
*/
if (WIFSIGNALED(rc) && WTERMSIG(rc) == SIGTERM)
proc_exit(1);
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
signaled = WIFSIGNALED(rc) || WEXITSTATUS(rc) > 125;
ereport(signaled ? FATAL : DEBUG2,
2005-10-15 04:49:52 +02:00
(errmsg("could not restore file \"%s\" from archive: return code %d",
xlogfname, rc)));
not_available:
2010-02-26 03:01:40 +01:00
/*
2005-10-15 04:49:52 +02:00
* if an archived file is not available, there might still be a version of
* this file in XLOGDIR, so return that as the filename to open.
*
2004-08-29 07:07:03 +02:00
* In many recovery scenarios we expect this to fail also, but if so that
* just means we've reached the end of WAL.
*/
snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlogfname);
return false;
}
/*
* Attempt to execute an external shell command during recovery.
*
* 'command' is the shell command to be executed, 'commandName' is a
* human-readable name describing the command emitted in the logs. If
2010-12-06 12:36:26 +01:00
* 'failOnSignal' is true and the command is killed by a signal, a FATAL
* error is thrown. Otherwise a WARNING is emitted.
*
2010-12-06 12:36:26 +01:00
* This is currently used for recovery_end_command and archive_cleanup_command.
*/
static void
ExecuteRecoveryCommand(char *command, char *commandName, bool failOnSignal)
{
char xlogRecoveryCmd[MAXPGPATH];
char lastRestartPointFname[MAXPGPATH];
char *dp;
char *endp;
const char *sp;
int rc;
bool signaled;
uint32 restartLog;
uint32 restartSeg;
Assert(command && commandName);
/*
* Calculate the archive file cutoff point for use during log shipping
* replication. All files earlier than this point can be deleted from the
* archive, though there is no requirement to do so.
*/
LWLockAcquire(ControlFileLock, LW_SHARED);
XLByteToSeg(ControlFile->checkPointCopy.redo,
restartLog, restartSeg);
XLogFileName(lastRestartPointFname,
ControlFile->checkPointCopy.ThisTimeLineID,
restartLog, restartSeg);
LWLockRelease(ControlFileLock);
/*
* construct the command to be executed
*/
dp = xlogRecoveryCmd;
endp = xlogRecoveryCmd + MAXPGPATH - 1;
*endp = '\0';
for (sp = command; *sp; sp++)
{
if (*sp == '%')
{
switch (sp[1])
{
case 'r':
/* %r: filename of last restartpoint */
sp++;
StrNCpy(dp, lastRestartPointFname, endp - dp);
dp += strlen(dp);
break;
case '%':
/* convert %% to a single % */
sp++;
if (dp < endp)
*dp++ = *sp;
break;
default:
/* otherwise treat the % as not special */
if (dp < endp)
*dp++ = *sp;
break;
}
}
else
{
if (dp < endp)
*dp++ = *sp;
}
}
*dp = '\0';
ereport(DEBUG3,
(errmsg_internal("executing %s \"%s\"", commandName, command)));
/*
2009-05-14 23:28:35 +02:00
* execute the constructed command
*/
rc = system(xlogRecoveryCmd);
if (rc != 0)
{
/*
* If the failure was due to any sort of signal, it's best to punt and
* abort recovery. See also detailed comments on signals in
* RestoreArchivedFile().
*/
signaled = WIFSIGNALED(rc) || WEXITSTATUS(rc) > 125;
ereport((signaled && failOnSignal) ? FATAL : WARNING,
/*------
translator: First %s represents a recovery.conf parameter name like
"recovery_end_command", and the 2nd is the value of that parameter. */
(errmsg("%s \"%s\": return code %d", commandName,
command, rc)));
}
}
/*
* Preallocate log files beyond the specified log endpoint.
*
* XXX this is currently extremely conservative, since it forces only one
* future log segment to exist, and even that only if we are 75% done with
* the current one. This is only appropriate for very low-WAL-volume systems.
* High-volume systems will be OK once they've built up a sufficient set of
* recycled log segments, but the startup transient is likely to include
* a lot of segment creations by foreground processes, which is not so good.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
static void
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
PreallocXlogFiles(XLogRecPtr endptr)
{
uint32 _logId;
uint32 _logSeg;
int lf;
bool use_existent;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
XLByteToPrevSeg(endptr, _logId, _logSeg);
if ((endptr.xrecoff - 1) % XLogSegSize >=
2002-09-04 22:31:48 +02:00
(uint32) (0.75 * XLogSegSize))
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
NextLogSeg(_logId, _logSeg);
use_existent = true;
lf = XLogFileInit(_logId, _logSeg, &use_existent, true);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
close(lf);
if (!use_existent)
CheckpointStats.ckpt_segs_added++;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
}
/*
* Get the log/seg of the latest removed or recycled WAL segment.
* Returns 0/0 if no WAL segments have been removed since startup.
*/
void
XLogGetLastRemoved(uint32 *log, uint32 *seg)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
*log = xlogctl->lastRemovedLog;
*seg = xlogctl->lastRemovedSeg;
SpinLockRelease(&xlogctl->info_lck);
}
/*
* Update the last removed log/seg pointer in shared memory, to reflect
* that the given XLOG file has been removed.
*/
static void
UpdateLastRemovedPtr(char *filename)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
uint32 tli,
log,
seg;
XLogFromFileName(filename, &tli, &log, &seg);
SpinLockAcquire(&xlogctl->info_lck);
if (log > xlogctl->lastRemovedLog ||
(log == xlogctl->lastRemovedLog && seg > xlogctl->lastRemovedSeg))
{
xlogctl->lastRemovedLog = log;
xlogctl->lastRemovedSeg = seg;
}
SpinLockRelease(&xlogctl->info_lck);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Recycle or remove all log files older or equal to passed log/seg#
*
* endptr is current (or recent) end of xlog; this is used to determine
* whether we want to recycle rather than delete no-longer-wanted log files.
*/
static void
RemoveOldXlogFiles(uint32 log, uint32 seg, XLogRecPtr endptr)
{
uint32 endlogId;
uint32 endlogSeg;
int max_advance;
2001-03-22 05:01:46 +01:00
DIR *xldir;
struct dirent *xlde;
char lastoff[MAXFNAMELEN];
2001-03-22 05:01:46 +01:00
char path[MAXPGPATH];
2010-02-26 03:01:40 +01:00
#ifdef WIN32
char newpath[MAXPGPATH];
#endif
struct stat statbuf;
/*
* Initialize info about where to try to recycle to. We allow recycling
* segments up to XLOGfileslop segments beyond the current XLOG location.
*/
XLByteToPrevSeg(endptr, endlogId, endlogSeg);
max_advance = XLOGfileslop;
xldir = AllocateDir(XLOGDIR);
if (xldir == NULL)
ereport(ERROR,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not open transaction log directory \"%s\": %m",
XLOGDIR)));
XLogFileName(lastoff, ThisTimeLineID, log, seg);
elog(DEBUG2, "attempting to remove WAL segments older than log file %s",
lastoff);
while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
{
/*
* We ignore the timeline part of the XLOG segment identifiers in
2005-10-15 04:49:52 +02:00
* deciding whether a segment is still needed. This ensures that we
* won't prematurely remove a segment from a parent timeline. We could
* probably be a little more proactive about removing segments of
* non-parent timelines, but that would be a whole lot more
* complicated.
*
2005-10-15 04:49:52 +02:00
* We use the alphanumeric sorting property of the filenames to decide
* which ones are earlier than the lastoff segment.
*/
if (strlen(xlde->d_name) == 24 &&
strspn(xlde->d_name, "0123456789ABCDEF") == 24 &&
strcmp(xlde->d_name + 8, lastoff + 8) <= 0)
{
if (RecoveryInProgress() || XLogArchiveCheckDone(xlde->d_name))
{
snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlde->d_name);
/* Update the last removed location in shared memory first */
UpdateLastRemovedPtr(xlde->d_name);
/*
2005-10-15 04:49:52 +02:00
* Before deleting the file, see if it can be recycled as a
* future log segment. Only recycle normal files, pg_standby
* for example can create symbolic links pointing to a
* separate archive directory.
*/
if (lstat(path, &statbuf) == 0 && S_ISREG(statbuf.st_mode) &&
InstallXLogFileSegment(&endlogId, &endlogSeg, path,
true, &max_advance, true))
{
ereport(DEBUG2,
2005-10-15 04:49:52 +02:00
(errmsg("recycled transaction log file \"%s\"",
xlde->d_name)));
CheckpointStats.ckpt_segs_recycled++;
/* Needn't recheck that slot on future iterations */
if (max_advance > 0)
{
NextLogSeg(endlogId, endlogSeg);
max_advance--;
}
}
else
{
/* No need for any more future segments... */
2010-02-26 03:01:40 +01:00
int rc;
ereport(DEBUG2,
2005-10-15 04:49:52 +02:00
(errmsg("removing transaction log file \"%s\"",
xlde->d_name)));
#ifdef WIN32
2010-02-26 03:01:40 +01:00
/*
* On Windows, if another process (e.g another backend)
* holds the file open in FILE_SHARE_DELETE mode, unlink
* will succeed, but the file will still show up in
2010-02-26 03:01:40 +01:00
* directory listing until the last handle is closed. To
* avoid confusing the lingering deleted file for a live
* WAL file that needs to be archived, rename it before
* deleting it.
*
* If another process holds the file open without
* FILE_SHARE_DELETE flag, rename will fail. We'll try
* again at the next checkpoint.
*/
snprintf(newpath, MAXPGPATH, "%s.deleted", path);
if (rename(path, newpath) != 0)
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
{
ereport(LOG,
(errcode_for_file_access(),
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
errmsg("could not rename old transaction log file \"%s\": %m",
path)));
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
continue;
}
rc = unlink(newpath);
#else
rc = unlink(path);
#endif
if (rc != 0)
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
{
ereport(LOG,
(errcode_for_file_access(),
errmsg("could not remove old transaction log file \"%s\": %m",
path)));
Don't error out if recycling or removing an old WAL segment fails at the end of checkpoint. Although the checkpoint has been written to WAL at that point already, so that all data is safe, and we'll retry removing the WAL segment at the next checkpoint, if such a failure persists we won't be able to remove any other old WAL segments either and will eventually run out of disk space. It's better to treat the failure as non-fatal, and move on to clean any other WAL segment and continue with any other end-of-checkpoint cleanup. We don't normally expect any such failures, but on Windows it can happen with some anti-virus or backup software that lock files without FILE_SHARE_DELETE flag. Also, the loop in pgrename() to retry when the file is locked was broken. If a file is locked on Windows, you get ERROR_SHARE_VIOLATION, not ERROR_ACCESS_DENIED, at least on modern versions. Fix that, although I left the check for ERROR_ACCESS_DENIED in there as well (presumably it was correct in some environment), and added ERROR_LOCK_VIOLATION to be consistent with similar checks in pgwin32_open(). Reduce the timeout on the loop from 30s to 10s, on the grounds that since it's been broken, we've effectively had a timeout of 0s and no-one has complained, so a smaller timeout is actually closer to the old behavior. A longer timeout would mean that if recycling a WAL file fails because it's locked for some reason, InstallXLogFileSegment() will hold ControlFileLock for longer, potentially blocking other backends, so a long timeout isn't totally harmless. While we're at it, set errno correctly in pgrename(). Backpatch to 8.2, which is the oldest version supported on Windows. The xlog.c changes would make sense on other platforms and thus on older versions as well, but since there's no such locking issues on other platforms, it's not worth it.
2009-09-13 20:32:08 +02:00
continue;
}
CheckpointStats.ckpt_segs_removed++;
}
XLogArchiveCleanup(xlde->d_name);
}
}
}
2004-08-29 07:07:03 +02:00
FreeDir(xldir);
}
/*
* Verify whether pg_xlog and pg_xlog/archive_status exist.
* If the latter does not exist, recreate it.
*
* It is not the goal of this function to verify the contents of these
* directories, but to help in cases where someone has performed a cluster
* copy for PITR purposes but omitted pg_xlog from the copy.
*
* We could also recreate pg_xlog if it doesn't exist, but a deliberate
* policy decision was made not to. It is fairly common for pg_xlog to be
* a symlink, and if that was the DBA's intent then automatically making a
* plain directory would result in degraded performance with no notice.
*/
static void
ValidateXLOGDirectoryStructure(void)
{
char path[MAXPGPATH];
struct stat stat_buf;
/* Check for pg_xlog; if it doesn't exist, error out */
if (stat(XLOGDIR, &stat_buf) != 0 ||
!S_ISDIR(stat_buf.st_mode))
ereport(FATAL,
(errmsg("required WAL directory \"%s\" does not exist",
XLOGDIR)));
/* Check for archive_status */
snprintf(path, MAXPGPATH, XLOGDIR "/archive_status");
if (stat(path, &stat_buf) == 0)
{
/* Check for weird cases where it exists but isn't a directory */
if (!S_ISDIR(stat_buf.st_mode))
ereport(FATAL,
(errmsg("required WAL directory \"%s\" does not exist",
path)));
}
else
{
ereport(LOG,
(errmsg("creating missing WAL directory \"%s\"", path)));
if (mkdir(path, S_IRWXU) < 0)
ereport(FATAL,
(errmsg("could not create missing directory \"%s\": %m",
path)));
}
}
/*
* Remove previous backup history files. This also retries creation of
* .ready files for any backup history files for which XLogArchiveNotify
* failed earlier.
*/
static void
CleanupBackupHistory(void)
{
DIR *xldir;
struct dirent *xlde;
char path[MAXPGPATH];
xldir = AllocateDir(XLOGDIR);
if (xldir == NULL)
ereport(ERROR,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not open transaction log directory \"%s\": %m",
XLOGDIR)));
while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
{
if (strlen(xlde->d_name) > 24 &&
strspn(xlde->d_name, "0123456789ABCDEF") == 24 &&
strcmp(xlde->d_name + strlen(xlde->d_name) - strlen(".backup"),
".backup") == 0)
{
if (XLogArchiveCheckDone(xlde->d_name))
{
ereport(DEBUG2,
2005-10-15 04:49:52 +02:00
(errmsg("removing transaction log backup history file \"%s\"",
xlde->d_name)));
snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlde->d_name);
unlink(path);
XLogArchiveCleanup(xlde->d_name);
}
}
}
FreeDir(xldir);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Restore the backup blocks present in an XLOG record, if any.
*
* We assume all of the record has been read into memory at *record.
*
* Note: when a backup block is available in XLOG, we restore it
* unconditionally, even if the page in the database appears newer.
* This is to protect ourselves against database pages that were partially
* or incorrectly written during a crash. We assume that the XLOG data
* must be good because it has passed a CRC check, while the database
* page might not be. This will force us to replay all subsequent
* modifications of the page that appear in XLOG, rather than possibly
* ignoring them as already applied, but that's not a huge drawback.
*
* If 'cleanup' is true, a cleanup lock is used when restoring blocks.
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
* Otherwise, a normal exclusive lock is used. During crash recovery, that's
* just pro forma because there can't be any regular backends in the system,
* but in hot standby mode the distinction is important. The 'cleanup'
* argument applies to all backup blocks in the WAL record, that suffices for
* now.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
void
RestoreBkpBlocks(XLogRecPtr lsn, XLogRecord *record, bool cleanup)
{
Buffer buffer;
Page page;
BkpBlock bkpb;
char *blk;
int i;
if (!(record->xl_info & XLR_BKP_BLOCK_MASK))
return;
2001-03-22 05:01:46 +01:00
blk = (char *) XLogRecGetData(record) + record->xl_len;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (!(record->xl_info & XLR_SET_BKP_BLOCK(i)))
continue;
memcpy(&bkpb, blk, sizeof(BkpBlock));
blk += sizeof(BkpBlock);
buffer = XLogReadBufferExtended(bkpb.node, bkpb.fork, bkpb.block,
RBM_ZERO);
Assert(BufferIsValid(buffer));
if (cleanup)
LockBufferForCleanup(buffer);
else
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
page = (Page) BufferGetPage(buffer);
if (bkpb.hole_length == 0)
{
memcpy((char *) page, blk, BLCKSZ);
}
else
{
memcpy((char *) page, blk, bkpb.hole_offset);
/* must zero-fill the hole */
MemSet((char *) page + bkpb.hole_offset, 0, bkpb.hole_length);
memcpy((char *) page + (bkpb.hole_offset + bkpb.hole_length),
blk + bkpb.hole_offset,
BLCKSZ - (bkpb.hole_offset + bkpb.hole_length));
}
PageSetLSN(page, lsn);
PageSetTLI(page, ThisTimeLineID);
MarkBufferDirty(buffer);
UnlockReleaseBuffer(buffer);
blk += BLCKSZ - bkpb.hole_length;
}
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* CRC-check an XLOG record. We do not believe the contents of an XLOG
* record (other than to the minimal extent of computing the amount of
* data to read in) until we've checked the CRCs.
*
* We assume all of the record has been read into memory at *record.
*/
static bool
RecordIsValid(XLogRecord *record, XLogRecPtr recptr, int emode)
{
pg_crc32 crc;
int i;
uint32 len = record->xl_len;
BkpBlock bkpb;
char *blk;
/* First the rmgr data */
INIT_CRC32(crc);
COMP_CRC32(crc, XLogRecGetData(record), len);
/* Add in the backup blocks, if any */
2001-03-22 05:01:46 +01:00
blk = (char *) XLogRecGetData(record) + len;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
{
2005-10-15 04:49:52 +02:00
uint32 blen;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (!(record->xl_info & XLR_SET_BKP_BLOCK(i)))
continue;
memcpy(&bkpb, blk, sizeof(BkpBlock));
if (bkpb.hole_offset + bkpb.hole_length > BLCKSZ)
{
ereport(emode_for_corrupt_record(emode, recptr),
(errmsg("incorrect hole size in record at %X/%X",
recptr.xlogid, recptr.xrecoff)));
return false;
}
blen = sizeof(BkpBlock) + BLCKSZ - bkpb.hole_length;
COMP_CRC32(crc, blk, blen);
blk += blen;
}
/* Check that xl_tot_len agrees with our calculation */
if (blk != (char *) record + record->xl_tot_len)
{
ereport(emode_for_corrupt_record(emode, recptr),
(errmsg("incorrect total length in record at %X/%X",
recptr.xlogid, recptr.xrecoff)));
return false;
}
/* Finally include the record header */
COMP_CRC32(crc, (char *) record + sizeof(pg_crc32),
SizeOfXLogRecord - sizeof(pg_crc32));
FIN_CRC32(crc);
if (!EQ_CRC32(record->xl_crc, crc))
{
ereport(emode_for_corrupt_record(emode, recptr),
2005-10-15 04:49:52 +02:00
(errmsg("incorrect resource manager data checksum in record at %X/%X",
recptr.xlogid, recptr.xrecoff)));
return false;
}
return true;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Attempt to read an XLOG record.
*
* If RecPtr is not NULL, try to read a record at that position. Otherwise
* try to read a record just after the last one previously read.
*
* If no valid record is available, returns NULL, or fails if emode is PANIC.
* (emode must be either PANIC, LOG)
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*
* The record is copied into readRecordBuf, so that on successful return,
* the returned record pointer always points there.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
static XLogRecord *
ReadRecord(XLogRecPtr *RecPtr, int emode, bool fetching_ckpt)
{
XLogRecord *record;
char *buffer;
XLogRecPtr tmpRecPtr = EndRecPtr;
bool randAccess = false;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
uint32 len,
total_len;
uint32 targetRecOff;
uint32 pageHeaderSize;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (readBuf == NULL)
{
/*
2005-10-15 04:49:52 +02:00
* First time through, permanently allocate readBuf. We do it this
* way, rather than just making a static array, for two reasons: (1)
* no need to waste the storage in most instantiations of the backend;
* (2) a static char array isn't guaranteed to have any particular
* alignment, whereas malloc() will provide MAXALIGN'd storage.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
readBuf = (char *) malloc(XLOG_BLCKSZ);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
Assert(readBuf != NULL);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (RecPtr == NULL)
{
RecPtr = &tmpRecPtr;
/*
* RecPtr is pointing to end+1 of the previous WAL record. We must
* advance it if necessary to where the next record starts. First,
* align to next page if no more records can fit on the current page.
*/
if (XLOG_BLCKSZ - (RecPtr->xrecoff % XLOG_BLCKSZ) < SizeOfXLogRecord)
NextLogPage(*RecPtr);
/* Check for crossing of xlog segment boundary */
if (RecPtr->xrecoff >= XLogFileSize)
{
(RecPtr->xlogid)++;
RecPtr->xrecoff = 0;
}
/*
* If at page start, we must skip over the page header. But we can't
* do that until we've read in the page, since the header size is
* variable.
*/
}
else
{
/*
* In this case, the passed-in record pointer should already be
* pointing to a valid record starting position.
*/
if (!XRecOffIsValid(RecPtr->xrecoff))
ereport(PANIC,
(errmsg("invalid record offset at %X/%X",
RecPtr->xlogid, RecPtr->xrecoff)));
2004-08-29 07:07:03 +02:00
/*
2005-10-15 04:49:52 +02:00
* Since we are going to a random position in WAL, forget any prior
* state about what timeline we were in, and allow it to be any
* timeline in expectedTLIs. We also set a flag to allow curFileTLI
* to go backwards (but we can't reset that variable right here, since
* we might not change files at all).
*/
lastPageTLI = 0; /* see comment in ValidXLOGHeader */
randAccess = true; /* allow curFileTLI to go backwards too */
}
/* This is the first try to read this page. */
failedSources = 0;
retry:
/* Read the page containing the record */
if (!XLogPageRead(RecPtr, emode, fetching_ckpt, randAccess))
return NULL;
pageHeaderSize = XLogPageHeaderSize((XLogPageHeader) readBuf);
targetRecOff = RecPtr->xrecoff % XLOG_BLCKSZ;
if (targetRecOff == 0)
{
/*
* At page start, so skip over page header. The Assert checks that
* we're not scribbling on caller's record pointer; it's OK because we
* can only get here in the continuing-from-prev-record case, since
* XRecOffIsValid rejected the zero-page-offset case otherwise.
*/
Assert(RecPtr == &tmpRecPtr);
RecPtr->xrecoff += pageHeaderSize;
targetRecOff = pageHeaderSize;
}
else if (targetRecOff < pageHeaderSize)
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errmsg("invalid record offset at %X/%X",
RecPtr->xlogid, RecPtr->xrecoff)));
goto next_record_is_invalid;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if ((((XLogPageHeader) readBuf)->xlp_info & XLP_FIRST_IS_CONTRECORD) &&
targetRecOff == pageHeaderSize)
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errmsg("contrecord is requested by %X/%X",
RecPtr->xlogid, RecPtr->xrecoff)));
goto next_record_is_invalid;
}
record = (XLogRecord *) ((char *) readBuf + RecPtr->xrecoff % XLOG_BLCKSZ);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2006-10-04 02:30:14 +02:00
* xl_len == 0 is bad data for everything except XLOG SWITCH, where it is
* required.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
if (record->xl_rmid == RM_XLOG_ID && record->xl_info == XLOG_SWITCH)
{
if (record->xl_len != 0)
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errmsg("invalid xlog switch record at %X/%X",
RecPtr->xlogid, RecPtr->xrecoff)));
goto next_record_is_invalid;
}
}
else if (record->xl_len == 0)
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errmsg("record with zero length at %X/%X",
RecPtr->xlogid, RecPtr->xrecoff)));
goto next_record_is_invalid;
}
if (record->xl_tot_len < SizeOfXLogRecord + record->xl_len ||
record->xl_tot_len > SizeOfXLogRecord + record->xl_len +
XLR_MAX_BKP_BLOCKS * (sizeof(BkpBlock) + BLCKSZ))
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errmsg("invalid record length at %X/%X",
RecPtr->xlogid, RecPtr->xrecoff)));
goto next_record_is_invalid;
}
if (record->xl_rmid > RM_MAX_ID)
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errmsg("invalid resource manager ID %u at %X/%X",
2005-10-15 04:49:52 +02:00
record->xl_rmid, RecPtr->xlogid, RecPtr->xrecoff)));
goto next_record_is_invalid;
}
if (randAccess)
{
/*
2005-10-15 04:49:52 +02:00
* We can't exactly verify the prev-link, but surely it should be less
* than the record's own address.
*/
if (!XLByteLT(record->xl_prev, *RecPtr))
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errmsg("record with incorrect prev-link %X/%X at %X/%X",
record->xl_prev.xlogid, record->xl_prev.xrecoff,
RecPtr->xlogid, RecPtr->xrecoff)));
goto next_record_is_invalid;
}
}
else
{
/*
2005-10-15 04:49:52 +02:00
* Record's prev-link should exactly match our previous location. This
* check guards against torn WAL pages where a stale but valid-looking
* WAL record starts on a sector boundary.
*/
if (!XLByteEQ(record->xl_prev, ReadRecPtr))
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errmsg("record with incorrect prev-link %X/%X at %X/%X",
record->xl_prev.xlogid, record->xl_prev.xrecoff,
RecPtr->xlogid, RecPtr->xrecoff)));
goto next_record_is_invalid;
}
}
2001-03-22 05:01:46 +01:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Allocate or enlarge readRecordBuf as needed. To avoid useless small
* increases, round its size to a multiple of XLOG_BLCKSZ, and make sure
* it's at least 4*Max(BLCKSZ, XLOG_BLCKSZ) to start with. (That is
* enough for all "normal" records, but very large commit or abort records
* might need more space.)
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
total_len = record->xl_tot_len;
if (total_len > readRecordBufSize)
{
uint32 newSize = total_len;
newSize += XLOG_BLCKSZ - (newSize % XLOG_BLCKSZ);
newSize = Max(newSize, 4 * Max(BLCKSZ, XLOG_BLCKSZ));
if (readRecordBuf)
free(readRecordBuf);
readRecordBuf = (char *) malloc(newSize);
if (!readRecordBuf)
{
readRecordBufSize = 0;
/* We treat this as a "bogus data" condition */
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errmsg("record length %u at %X/%X too long",
total_len, RecPtr->xlogid, RecPtr->xrecoff)));
goto next_record_is_invalid;
}
readRecordBufSize = newSize;
}
buffer = readRecordBuf;
len = XLOG_BLCKSZ - RecPtr->xrecoff % XLOG_BLCKSZ;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (total_len > len)
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Need to reassemble record */
XLogContRecord *contrecord;
XLogRecPtr pagelsn;
2001-03-22 05:01:46 +01:00
uint32 gotlen = len;
/* Initialize pagelsn to the beginning of the page this record is on */
pagelsn = *RecPtr;
pagelsn.xrecoff = (pagelsn.xrecoff / XLOG_BLCKSZ) * XLOG_BLCKSZ;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
memcpy(buffer, record, len);
record = (XLogRecord *) buffer;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
buffer += len;
for (;;)
{
/* Calculate pointer to beginning of next page */
pagelsn.xrecoff += XLOG_BLCKSZ;
if (pagelsn.xrecoff >= XLogFileSize)
{
(pagelsn.xlogid)++;
pagelsn.xrecoff = 0;
}
/* Wait for the next page to become available */
if (!XLogPageRead(&pagelsn, emode, false, false))
return NULL;
/* Check that the continuation record looks valid */
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (!(((XLogPageHeader) readBuf)->xlp_info & XLP_FIRST_IS_CONTRECORD))
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errmsg("there is no contrecord flag in log file %u, segment %u, offset %u",
readId, readSeg, readOff)));
goto next_record_is_invalid;
}
pageHeaderSize = XLogPageHeaderSize((XLogPageHeader) readBuf);
contrecord = (XLogContRecord *) ((char *) readBuf + pageHeaderSize);
2001-03-22 05:01:46 +01:00
if (contrecord->xl_rem_len == 0 ||
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
total_len != (contrecord->xl_rem_len + gotlen))
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errmsg("invalid contrecord length %u in log file %u, segment %u, offset %u",
contrecord->xl_rem_len,
readId, readSeg, readOff)));
goto next_record_is_invalid;
}
len = XLOG_BLCKSZ - pageHeaderSize - SizeOfXLogContRecord;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (contrecord->xl_rem_len > len)
{
2001-03-22 05:01:46 +01:00
memcpy(buffer, (char *) contrecord + SizeOfXLogContRecord, len);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
gotlen += len;
buffer += len;
continue;
}
memcpy(buffer, (char *) contrecord + SizeOfXLogContRecord,
contrecord->xl_rem_len);
break;
}
if (!RecordIsValid(record, *RecPtr, emode))
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
goto next_record_is_invalid;
pageHeaderSize = XLogPageHeaderSize((XLogPageHeader) readBuf);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
EndRecPtr.xlogid = readId;
EndRecPtr.xrecoff = readSeg * XLogSegSize + readOff +
pageHeaderSize +
MAXALIGN(SizeOfXLogContRecord + contrecord->xl_rem_len);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
ReadRecPtr = *RecPtr;
/* needn't worry about XLOG SWITCH, it can't cross page boundaries */
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
return record;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Record does not cross a page boundary */
if (!RecordIsValid(record, *RecPtr, emode))
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
goto next_record_is_invalid;
EndRecPtr.xlogid = RecPtr->xlogid;
EndRecPtr.xrecoff = RecPtr->xrecoff + MAXALIGN(total_len);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
ReadRecPtr = *RecPtr;
memcpy(buffer, record, total_len);
2006-10-04 02:30:14 +02:00
/*
* Special processing if it's an XLOG SWITCH record
*/
if (record->xl_rmid == RM_XLOG_ID && record->xl_info == XLOG_SWITCH)
{
/* Pretend it extends to end of segment */
EndRecPtr.xrecoff += XLogSegSize - 1;
EndRecPtr.xrecoff -= EndRecPtr.xrecoff % XLogSegSize;
2006-10-04 02:30:14 +02:00
/*
2006-10-04 02:30:14 +02:00
* Pretend that readBuf contains the last page of the segment. This is
* just to avoid Assert failure in StartupXLOG if XLOG ends with this
* segment.
*/
readOff = XLogSegSize - XLOG_BLCKSZ;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
return (XLogRecord *) buffer;
next_record_is_invalid:
failedSources |= readSource;
if (readFile >= 0)
{
close(readFile);
readFile = -1;
}
/* In standby-mode, keep trying */
if (StandbyMode)
goto retry;
else
return NULL;
}
/*
* Check whether the xlog header of a page just read in looks valid.
*
* This is just a convenience subroutine to avoid duplicated code in
2001-03-22 05:01:46 +01:00
* ReadRecord. It's not intended for use from anywhere else.
*/
static bool
ValidXLOGHeader(XLogPageHeader hdr, int emode)
{
XLogRecPtr recaddr;
recaddr.xlogid = readId;
recaddr.xrecoff = readSeg * XLogSegSize + readOff;
if (hdr->xlp_magic != XLOG_PAGE_MAGIC)
{
ereport(emode_for_corrupt_record(emode, recaddr),
(errmsg("invalid magic number %04X in log file %u, segment %u, offset %u",
hdr->xlp_magic, readId, readSeg, readOff)));
return false;
}
if ((hdr->xlp_info & ~XLP_ALL_FLAGS) != 0)
{
ereport(emode_for_corrupt_record(emode, recaddr),
(errmsg("invalid info bits %04X in log file %u, segment %u, offset %u",
hdr->xlp_info, readId, readSeg, readOff)));
return false;
}
if (hdr->xlp_info & XLP_LONG_HEADER)
{
XLogLongPageHeader longhdr = (XLogLongPageHeader) hdr;
2001-03-22 05:01:46 +01:00
if (longhdr->xlp_sysid != ControlFile->system_identifier)
{
char fhdrident_str[32];
char sysident_str[32];
/*
2005-10-15 04:49:52 +02:00
* Format sysids separately to keep platform-dependent format code
* out of the translatable message string.
*/
snprintf(fhdrident_str, sizeof(fhdrident_str), UINT64_FORMAT,
longhdr->xlp_sysid);
snprintf(sysident_str, sizeof(sysident_str), UINT64_FORMAT,
ControlFile->system_identifier);
ereport(emode_for_corrupt_record(emode, recaddr),
2010-03-21 01:17:59 +01:00
(errmsg("WAL file is from different database system"),
errdetail("WAL file database system identifier is %s, pg_control database system identifier is %s.",
2005-10-15 04:49:52 +02:00
fhdrident_str, sysident_str)));
return false;
}
if (longhdr->xlp_seg_size != XLogSegSize)
{
ereport(emode_for_corrupt_record(emode, recaddr),
2010-03-21 01:17:59 +01:00
(errmsg("WAL file is from different database system"),
2005-10-15 04:49:52 +02:00
errdetail("Incorrect XLOG_SEG_SIZE in page header.")));
return false;
}
if (longhdr->xlp_xlog_blcksz != XLOG_BLCKSZ)
{
ereport(emode_for_corrupt_record(emode, recaddr),
2010-03-21 01:17:59 +01:00
(errmsg("WAL file is from different database system"),
errdetail("Incorrect XLOG_BLCKSZ in page header.")));
return false;
}
}
else if (readOff == 0)
{
/* hmm, first page of file doesn't have a long header? */
ereport(emode_for_corrupt_record(emode, recaddr),
(errmsg("invalid info bits %04X in log file %u, segment %u, offset %u",
hdr->xlp_info, readId, readSeg, readOff)));
return false;
}
if (!XLByteEQ(hdr->xlp_pageaddr, recaddr))
{
ereport(emode_for_corrupt_record(emode, recaddr),
(errmsg("unexpected pageaddr %X/%X in log file %u, segment %u, offset %u",
2005-10-15 04:49:52 +02:00
hdr->xlp_pageaddr.xlogid, hdr->xlp_pageaddr.xrecoff,
readId, readSeg, readOff)));
return false;
}
/*
* Check page TLI is one of the expected values.
*/
if (!list_member_int(expectedTLIs, (int) hdr->xlp_tli))
{
ereport(emode_for_corrupt_record(emode, recaddr),
(errmsg("unexpected timeline ID %u in log file %u, segment %u, offset %u",
hdr->xlp_tli,
readId, readSeg, readOff)));
return false;
}
/*
* Since child timelines are always assigned a TLI greater than their
* immediate parent's TLI, we should never see TLI go backwards across
* successive pages of a consistent WAL sequence.
*
2005-10-15 04:49:52 +02:00
* Of course this check should only be applied when advancing sequentially
* across pages; therefore ReadRecord resets lastPageTLI to zero when
* going to a random page.
*/
if (hdr->xlp_tli < lastPageTLI)
{
ereport(emode_for_corrupt_record(emode, recaddr),
(errmsg("out-of-sequence timeline ID %u (after %u) in log file %u, segment %u, offset %u",
hdr->xlp_tli, lastPageTLI,
readId, readSeg, readOff)));
return false;
}
lastPageTLI = hdr->xlp_tli;
return true;
}
/*
* Try to read a timeline's history file.
*
* If successful, return the list of component TLIs (the given TLI followed by
2004-08-29 07:07:03 +02:00
* its ancestor TLIs). If we can't find the history file, assume that the
* timeline has no parents, and return a list of just the specified timeline
* ID.
*/
static List *
readTimeLineHistory(TimeLineID targetTLI)
{
List *result;
char path[MAXPGPATH];
char histfname[MAXFNAMELEN];
char fline[MAXPGPATH];
2004-08-29 07:07:03 +02:00
FILE *fd;
/* Timeline 1 does not have a history file, so no need to check */
if (targetTLI == 1)
return list_make1_int((int) targetTLI);
if (InArchiveRecovery)
{
TLHistoryFileName(histfname, targetTLI);
RestoreArchivedFile(path, histfname, "RECOVERYHISTORY", 0);
}
else
TLHistoryFilePath(path, targetTLI);
2004-08-29 07:07:03 +02:00
fd = AllocateFile(path, "r");
if (fd == NULL)
{
if (errno != ENOENT)
ereport(FATAL,
(errcode_for_file_access(),
2004-10-12 23:54:45 +02:00
errmsg("could not open file \"%s\": %m", path)));
/* Not there, so assume no parents */
return list_make1_int((int) targetTLI);
}
result = NIL;
2004-08-29 07:07:03 +02:00
/*
* Parse the file...
*/
while (fgets(fline, sizeof(fline), fd) != NULL)
{
/* skip leading whitespace and check for # comment */
2004-08-29 07:07:03 +02:00
char *ptr;
char *endptr;
TimeLineID tli;
for (ptr = fline; *ptr; ptr++)
{
if (!isspace((unsigned char) *ptr))
break;
}
if (*ptr == '\0' || *ptr == '#')
continue;
/* expect a numeric timeline ID as first field of line */
tli = (TimeLineID) strtoul(ptr, &endptr, 0);
if (endptr == ptr)
ereport(FATAL,
(errmsg("syntax error in history file: %s", fline),
errhint("Expected a numeric timeline ID.")));
if (result &&
tli <= (TimeLineID) linitial_int(result))
ereport(FATAL,
(errmsg("invalid data in history file: %s", fline),
2005-10-15 04:49:52 +02:00
errhint("Timeline IDs must be in increasing sequence.")));
/* Build list with newest item first */
result = lcons_int((int) tli, result);
/* we ignore the remainder of each line */
}
FreeFile(fd);
if (result &&
targetTLI <= (TimeLineID) linitial_int(result))
ereport(FATAL,
(errmsg("invalid data in history file \"%s\"", path),
2005-10-15 04:49:52 +02:00
errhint("Timeline IDs must be less than child timeline's ID.")));
result = lcons_int((int) targetTLI, result);
ereport(DEBUG3,
(errmsg_internal("history of timeline %u is %s",
targetTLI, nodeToString(result))));
return result;
}
/*
* Probe whether a timeline history file exists for the given timeline ID
*/
static bool
existsTimeLineHistory(TimeLineID probeTLI)
{
char path[MAXPGPATH];
char histfname[MAXFNAMELEN];
2004-08-29 07:07:03 +02:00
FILE *fd;
/* Timeline 1 does not have a history file, so no need to check */
if (probeTLI == 1)
return false;
if (InArchiveRecovery)
{
TLHistoryFileName(histfname, probeTLI);
RestoreArchivedFile(path, histfname, "RECOVERYHISTORY", 0);
}
else
TLHistoryFilePath(path, probeTLI);
fd = AllocateFile(path, "r");
if (fd != NULL)
{
FreeFile(fd);
return true;
}
else
{
if (errno != ENOENT)
ereport(FATAL,
(errcode_for_file_access(),
2004-10-12 23:54:45 +02:00
errmsg("could not open file \"%s\": %m", path)));
return false;
}
}
/*
* Scan for new timelines that might have appeared in the archive since we
* started recovery.
*
* If there are any, the function changes recovery target TLI to the latest
* one and returns 'true'.
*/
static bool
rescanLatestTimeLine(void)
{
2011-04-10 17:42:00 +02:00
TimeLineID newtarget;
newtarget = findNewestTimeLine(recoveryTargetTLI);
if (newtarget != recoveryTargetTLI)
{
/*
* Determine the list of expected TLIs for the new TLI
*/
2011-04-10 17:42:00 +02:00
List *newExpectedTLIs;
newExpectedTLIs = readTimeLineHistory(newtarget);
/*
2011-04-10 17:42:00 +02:00
* If the current timeline is not part of the history of the new
* timeline, we cannot proceed to it.
*
* XXX This isn't foolproof: The new timeline might have forked from
* the current one, but before the current recovery location. In that
* case we will still switch to the new timeline and proceed replaying
* from it even though the history doesn't match what we already
* replayed. That's not good. We will likely notice at the next online
2011-04-10 17:42:00 +02:00
* checkpoint, as the TLI won't match what we expected, but it's not
* guaranteed. The admin needs to make sure that doesn't happen.
*/
if (!list_member_int(newExpectedTLIs,
(int) recoveryTargetTLI))
ereport(LOG,
(errmsg("new timeline %u is not a child of database system timeline %u",
newtarget,
ThisTimeLineID)));
else
{
/* Switch target */
recoveryTargetTLI = newtarget;
list_free(expectedTLIs);
expectedTLIs = newExpectedTLIs;
XLogCtl->RecoveryTargetTLI = recoveryTargetTLI;
ereport(LOG,
(errmsg("new target timeline is %u",
recoveryTargetTLI)));
return true;
}
}
return false;
}
/*
* Find the newest existing timeline, assuming that startTLI exists.
*
* Note: while this is somewhat heuristic, it does positively guarantee
* that (result + 1) is not a known timeline, and therefore it should
* be safe to assign that ID to a new timeline.
*/
static TimeLineID
findNewestTimeLine(TimeLineID startTLI)
{
TimeLineID newestTLI;
TimeLineID probeTLI;
/*
2005-10-15 04:49:52 +02:00
* The algorithm is just to probe for the existence of timeline history
* files. XXX is it useful to allow gaps in the sequence?
*/
newestTLI = startTLI;
2004-08-29 07:07:03 +02:00
for (probeTLI = startTLI + 1;; probeTLI++)
{
if (existsTimeLineHistory(probeTLI))
{
newestTLI = probeTLI; /* probeTLI exists */
}
else
{
/* doesn't exist, assume we're done */
break;
}
}
return newestTLI;
}
/*
* Create a new timeline history file.
*
* newTLI: ID of the new timeline
* parentTLI: ID of its immediate parent
* endTLI et al: ID of the last used WAL file, for annotation purposes
*
* Currently this is only used during recovery, and so there are no locking
2004-08-29 07:07:03 +02:00
* considerations. But we should be just as tense as XLogFileInit to avoid
* emplacing a bogus file.
*/
static void
writeTimeLineHistory(TimeLineID newTLI, TimeLineID parentTLI,
TimeLineID endTLI, uint32 endLogId, uint32 endLogSeg)
{
char path[MAXPGPATH];
char tmppath[MAXPGPATH];
char histfname[MAXFNAMELEN];
char xlogfname[MAXFNAMELEN];
char buffer[BLCKSZ];
int srcfd;
int fd;
int nbytes;
2004-08-29 07:07:03 +02:00
Assert(newTLI > parentTLI); /* else bad selection of newTLI */
/*
* Write into a temp file name.
*/
snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
unlink(tmppath);
/* do not use get_sync_bit() here --- want to fsync only at end of fill */
fd = BasicOpenFile(tmppath, O_RDWR | O_CREAT | O_EXCL,
S_IRUSR | S_IWUSR);
if (fd < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not create file \"%s\": %m", tmppath)));
/*
* If a history file exists for the parent, copy it verbatim
*/
if (InArchiveRecovery)
{
TLHistoryFileName(histfname, parentTLI);
RestoreArchivedFile(path, histfname, "RECOVERYHISTORY", 0);
}
else
TLHistoryFilePath(path, parentTLI);
srcfd = BasicOpenFile(path, O_RDONLY, 0);
if (srcfd < 0)
{
if (errno != ENOENT)
ereport(ERROR,
(errcode_for_file_access(),
2004-10-12 23:54:45 +02:00
errmsg("could not open file \"%s\": %m", path)));
/* Not there, so assume parent has no parents */
}
else
{
for (;;)
{
errno = 0;
nbytes = (int) read(srcfd, buffer, sizeof(buffer));
if (nbytes < 0 || errno != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not read file \"%s\": %m", path)));
if (nbytes == 0)
break;
errno = 0;
if ((int) write(fd, buffer, nbytes) != nbytes)
{
int save_errno = errno;
/*
* If we fail to make the file, delete it to release disk
* space
*/
unlink(tmppath);
2004-08-29 07:07:03 +02:00
/*
2005-10-15 04:49:52 +02:00
* if write didn't set errno, assume problem is no disk space
2004-08-29 07:07:03 +02:00
*/
errno = save_errno ? save_errno : ENOSPC;
ereport(ERROR,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not write to file \"%s\": %m", tmppath)));
}
}
close(srcfd);
}
/*
* Append one line with the details of this timeline split.
*
2004-08-29 07:07:03 +02:00
* If we did have a parent file, insert an extra newline just in case the
* parent file failed to end with one.
*/
XLogFileName(xlogfname, endTLI, endLogId, endLogSeg);
/*
2010-07-06 21:19:02 +02:00
* Write comment to history file to explain why and where timeline
* changed. Comment varies according to the recovery target used.
*/
if (recoveryTarget == RECOVERY_TARGET_XID)
snprintf(buffer, sizeof(buffer),
"%s%u\t%s\t%s transaction %u\n",
(srcfd < 0) ? "" : "\n",
parentTLI,
xlogfname,
recoveryStopAfter ? "after" : "before",
recoveryStopXid);
else if (recoveryTarget == RECOVERY_TARGET_TIME)
snprintf(buffer, sizeof(buffer),
"%s%u\t%s\t%s %s\n",
(srcfd < 0) ? "" : "\n",
parentTLI,
xlogfname,
recoveryStopAfter ? "after" : "before",
timestamptz_to_str(recoveryStopTime));
else if (recoveryTarget == RECOVERY_TARGET_NAME)
snprintf(buffer, sizeof(buffer),
2011-04-10 17:42:00 +02:00
"%s%u\t%s\tat restore point \"%s\"\n",
(srcfd < 0) ? "" : "\n",
parentTLI,
xlogfname,
recoveryStopName);
else
snprintf(buffer, sizeof(buffer),
"%s%u\t%s\tno recovery target specified\n",
(srcfd < 0) ? "" : "\n",
parentTLI,
xlogfname);
nbytes = strlen(buffer);
errno = 0;
if ((int) write(fd, buffer, nbytes) != nbytes)
{
int save_errno = errno;
/*
2004-08-29 07:07:03 +02:00
* If we fail to make the file, delete it to release disk space
*/
unlink(tmppath);
/* if write didn't set errno, assume problem is no disk space */
errno = save_errno ? save_errno : ENOSPC;
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not write to file \"%s\": %m", tmppath)));
}
if (pg_fsync(fd) != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m", tmppath)));
if (close(fd))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m", tmppath)));
/*
* Now move the completed history file into place with its final name.
*/
TLHistoryFilePath(path, newTLI);
/*
* Prefer link() to rename() here just to be really sure that we don't
* overwrite an existing logfile. However, there shouldn't be one, so
* rename() is an acceptable substitute except for the truly paranoid.
*/
#if HAVE_WORKING_LINK
if (link(tmppath, path) < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not link file \"%s\" to \"%s\": %m",
tmppath, path)));
unlink(tmppath);
#else
if (rename(tmppath, path) < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not rename file \"%s\" to \"%s\": %m",
tmppath, path)));
#endif
/* The history file can be archived immediately. */
TLHistoryFileName(histfname, newTLI);
XLogArchiveNotify(histfname);
}
/*
* I/O routines for pg_control
*
* *ControlFile is a buffer in shared memory that holds an image of the
2001-03-22 05:01:46 +01:00
* contents of pg_control. WriteControlFile() initializes pg_control
* given a preloaded buffer, ReadControlFile() loads the buffer from
* the pg_control file (during postmaster or standalone-backend startup),
* and UpdateControlFile() rewrites pg_control after we modify xlog state.
*
* For simplicity, WriteControlFile() initializes the fields of pg_control
* that are related to checking backend/database compatibility, and
* ReadControlFile() verifies they are correct. We could split out the
* I/O and compatibility-check functions, but there seems no need currently.
*/
static void
WriteControlFile(void)
{
int fd;
2006-10-04 02:30:14 +02:00
char buffer[PG_CONTROL_SIZE]; /* need not be aligned */
/*
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* Initialize version and compatibility-check fields
*/
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
ControlFile->pg_control_version = PG_CONTROL_VERSION;
ControlFile->catalog_version_no = CATALOG_VERSION_NO;
ControlFile->maxAlign = MAXIMUM_ALIGNOF;
ControlFile->floatFormat = FLOATFORMAT_VALUE;
ControlFile->blcksz = BLCKSZ;
ControlFile->relseg_size = RELSEG_SIZE;
ControlFile->xlog_blcksz = XLOG_BLCKSZ;
ControlFile->xlog_seg_size = XLOG_SEG_SIZE;
ControlFile->nameDataLen = NAMEDATALEN;
ControlFile->indexMaxKeys = INDEX_MAX_KEYS;
ControlFile->toast_max_chunk_size = TOAST_MAX_CHUNK_SIZE;
#ifdef HAVE_INT64_TIMESTAMP
ControlFile->enableIntTimes = true;
#else
ControlFile->enableIntTimes = false;
#endif
ControlFile->float4ByVal = FLOAT4PASSBYVAL;
ControlFile->float8ByVal = FLOAT8PASSBYVAL;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Contents are protected with a CRC */
INIT_CRC32(ControlFile->crc);
COMP_CRC32(ControlFile->crc,
(char *) ControlFile,
offsetof(ControlFileData, crc));
FIN_CRC32(ControlFile->crc);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* We write out PG_CONTROL_SIZE bytes into pg_control, zero-padding the
* excess over sizeof(ControlFileData). This reduces the odds of
* premature-EOF errors when reading pg_control. We'll still fail when we
* check the contents of the file, but hopefully with a more specific
* error than "couldn't read pg_control".
*/
if (sizeof(ControlFileData) > PG_CONTROL_SIZE)
elog(PANIC, "sizeof(ControlFileData) is larger than PG_CONTROL_SIZE; fix either one");
memset(buffer, 0, PG_CONTROL_SIZE);
memcpy(buffer, ControlFile, sizeof(ControlFileData));
fd = BasicOpenFile(XLOG_CONTROL_FILE,
O_RDWR | O_CREAT | O_EXCL | PG_BINARY,
S_IRUSR | S_IWUSR);
if (fd < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not create control file \"%s\": %m",
XLOG_CONTROL_FILE)));
errno = 0;
if (write(fd, buffer, PG_CONTROL_SIZE) != PG_CONTROL_SIZE)
{
/* if write didn't set errno, assume problem is no disk space */
if (errno == 0)
errno = ENOSPC;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not write to control file: %m")));
}
if (pg_fsync(fd) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not fsync control file: %m")));
if (close(fd))
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not close control file: %m")));
}
static void
ReadControlFile(void)
{
pg_crc32 crc;
int fd;
/*
* Read data...
*/
fd = BasicOpenFile(XLOG_CONTROL_FILE,
O_RDWR | PG_BINARY,
S_IRUSR | S_IWUSR);
if (fd < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not open control file \"%s\": %m",
XLOG_CONTROL_FILE)));
if (read(fd, ControlFile, sizeof(ControlFileData)) != sizeof(ControlFileData))
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not read from control file: %m")));
close(fd);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Check for expected pg_control format version. If this is wrong, the
* CRC check will likely fail because we'll be checking the wrong number
* of bytes. Complaining about wrong version will probably be more
* enlightening than complaining about wrong CRC.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
if (ControlFile->pg_control_version != PG_CONTROL_VERSION && ControlFile->pg_control_version % 65536 == 0 && ControlFile->pg_control_version / 65536 != 0)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d (0x%08x),"
" but the server was compiled with PG_CONTROL_VERSION %d (0x%08x).",
ControlFile->pg_control_version, ControlFile->pg_control_version,
PG_CONTROL_VERSION, PG_CONTROL_VERSION),
errhint("This could be a problem of mismatched byte ordering. It looks like you need to initdb.")));
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (ControlFile->pg_control_version != PG_CONTROL_VERSION)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d,"
2005-10-15 04:49:52 +02:00
" but the server was compiled with PG_CONTROL_VERSION %d.",
ControlFile->pg_control_version, PG_CONTROL_VERSION),
errhint("It looks like you need to initdb.")));
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Now check the CRC. */
INIT_CRC32(crc);
COMP_CRC32(crc,
(char *) ControlFile,
offsetof(ControlFileData, crc));
FIN_CRC32(crc);
if (!EQ_CRC32(crc, ControlFile->crc))
ereport(FATAL,
(errmsg("incorrect checksum in control file")));
/*
2009-02-07 11:49:36 +01:00
* Do compatibility checking immediately. If the database isn't
* compatible with the backend executable, we want to abort before we can
* possibly do any damage.
*/
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (ControlFile->catalog_version_no != CATALOG_VERSION_NO)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with CATALOG_VERSION_NO %d,"
2005-10-15 04:49:52 +02:00
" but the server was compiled with CATALOG_VERSION_NO %d.",
ControlFile->catalog_version_no, CATALOG_VERSION_NO),
errhint("It looks like you need to initdb.")));
if (ControlFile->maxAlign != MAXIMUM_ALIGNOF)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
2005-10-15 04:49:52 +02:00
errdetail("The database cluster was initialized with MAXALIGN %d,"
" but the server was compiled with MAXALIGN %d.",
ControlFile->maxAlign, MAXIMUM_ALIGNOF),
errhint("It looks like you need to initdb.")));
if (ControlFile->floatFormat != FLOATFORMAT_VALUE)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
2005-10-29 02:31:52 +02:00
errdetail("The database cluster appears to use a different floating-point number format than the server executable."),
errhint("It looks like you need to initdb.")));
if (ControlFile->blcksz != BLCKSZ)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
2005-10-15 04:49:52 +02:00
errdetail("The database cluster was initialized with BLCKSZ %d,"
" but the server was compiled with BLCKSZ %d.",
ControlFile->blcksz, BLCKSZ),
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->relseg_size != RELSEG_SIZE)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
2005-10-15 04:49:52 +02:00
errdetail("The database cluster was initialized with RELSEG_SIZE %d,"
" but the server was compiled with RELSEG_SIZE %d.",
ControlFile->relseg_size, RELSEG_SIZE),
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->xlog_blcksz != XLOG_BLCKSZ)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
2006-10-04 02:30:14 +02:00
errdetail("The database cluster was initialized with XLOG_BLCKSZ %d,"
" but the server was compiled with XLOG_BLCKSZ %d.",
ControlFile->xlog_blcksz, XLOG_BLCKSZ),
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->xlog_seg_size != XLOG_SEG_SIZE)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with XLOG_SEG_SIZE %d,"
2005-10-15 04:49:52 +02:00
" but the server was compiled with XLOG_SEG_SIZE %d.",
ControlFile->xlog_seg_size, XLOG_SEG_SIZE),
2005-10-15 04:49:52 +02:00
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->nameDataLen != NAMEDATALEN)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
2005-10-15 04:49:52 +02:00
errdetail("The database cluster was initialized with NAMEDATALEN %d,"
" but the server was compiled with NAMEDATALEN %d.",
ControlFile->nameDataLen, NAMEDATALEN),
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->indexMaxKeys != INDEX_MAX_KEYS)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with INDEX_MAX_KEYS %d,"
2005-10-15 04:49:52 +02:00
" but the server was compiled with INDEX_MAX_KEYS %d.",
ControlFile->indexMaxKeys, INDEX_MAX_KEYS),
2005-10-15 04:49:52 +02:00
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->toast_max_chunk_size != TOAST_MAX_CHUNK_SIZE)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with TOAST_MAX_CHUNK_SIZE %d,"
2007-11-15 22:14:46 +01:00
" but the server was compiled with TOAST_MAX_CHUNK_SIZE %d.",
ControlFile->toast_max_chunk_size, (int) TOAST_MAX_CHUNK_SIZE),
errhint("It looks like you need to recompile or initdb.")));
#ifdef HAVE_INT64_TIMESTAMP
if (ControlFile->enableIntTimes != true)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized without HAVE_INT64_TIMESTAMP"
2005-10-15 04:49:52 +02:00
" but the server was compiled with HAVE_INT64_TIMESTAMP."),
errhint("It looks like you need to recompile or initdb.")));
#else
if (ControlFile->enableIntTimes != false)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with HAVE_INT64_TIMESTAMP"
2005-10-15 04:49:52 +02:00
" but the server was compiled without HAVE_INT64_TIMESTAMP."),
errhint("It looks like you need to recompile or initdb.")));
#endif
#ifdef USE_FLOAT4_BYVAL
if (ControlFile->float4ByVal != true)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized without USE_FLOAT4_BYVAL"
" but the server was compiled with USE_FLOAT4_BYVAL."),
errhint("It looks like you need to recompile or initdb.")));
#else
if (ControlFile->float4ByVal != false)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with USE_FLOAT4_BYVAL"
" but the server was compiled without USE_FLOAT4_BYVAL."),
errhint("It looks like you need to recompile or initdb.")));
#endif
#ifdef USE_FLOAT8_BYVAL
if (ControlFile->float8ByVal != true)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized without USE_FLOAT8_BYVAL"
" but the server was compiled with USE_FLOAT8_BYVAL."),
errhint("It looks like you need to recompile or initdb.")));
#else
if (ControlFile->float8ByVal != false)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with USE_FLOAT8_BYVAL"
" but the server was compiled without USE_FLOAT8_BYVAL."),
errhint("It looks like you need to recompile or initdb.")));
#endif
}
void
UpdateControlFile(void)
{
int fd;
INIT_CRC32(ControlFile->crc);
COMP_CRC32(ControlFile->crc,
(char *) ControlFile,
offsetof(ControlFileData, crc));
FIN_CRC32(ControlFile->crc);
fd = BasicOpenFile(XLOG_CONTROL_FILE,
O_RDWR | PG_BINARY,
S_IRUSR | S_IWUSR);
if (fd < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not open control file \"%s\": %m",
XLOG_CONTROL_FILE)));
errno = 0;
if (write(fd, ControlFile, sizeof(ControlFileData)) != sizeof(ControlFileData))
{
/* if write didn't set errno, assume problem is no disk space */
if (errno == 0)
errno = ENOSPC;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not write to control file: %m")));
}
if (pg_fsync(fd) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not fsync control file: %m")));
if (close(fd))
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not close control file: %m")));
}
/*
* Returns the unique system identifier from control file.
*/
uint64
GetSystemIdentifier(void)
{
Assert(ControlFile != NULL);
return ControlFile->system_identifier;
}
/*
* Auto-tune the number of XLOG buffers.
*
* The preferred setting for wal_buffers is about 3% of shared_buffers, with
* a maximum of one XLOG segment (there is little reason to think that more
* is helpful, at least so long as we force an fsync when switching log files)
* and a minimum of 8 blocks (which was the default value prior to PostgreSQL
* 9.1, when auto-tuning was added).
*
* This should not be called until NBuffers has received its final value.
*/
static int
XLOGChooseNumBuffers(void)
{
int xbuffers;
xbuffers = NBuffers / 32;
if (xbuffers > XLOG_SEG_SIZE / XLOG_BLCKSZ)
xbuffers = XLOG_SEG_SIZE / XLOG_BLCKSZ;
if (xbuffers < 8)
xbuffers = 8;
return xbuffers;
}
/*
* GUC check_hook for wal_buffers
*/
bool
check_wal_buffers(int *newval, void **extra, GucSource source)
{
/*
* -1 indicates a request for auto-tune.
*/
if (*newval == -1)
{
/*
* If we haven't yet changed the boot_val default of -1, just let it
2011-04-10 17:42:00 +02:00
* be. We'll fix it when XLOGShmemSize is called.
*/
if (XLOGbuffers == -1)
return true;
/* Otherwise, substitute the auto-tune value */
*newval = XLOGChooseNumBuffers();
}
/*
* We clamp manually-set values to at least 4 blocks. Prior to PostgreSQL
* 9.1, a minimum of 4 was enforced by guc.c, but since that is no longer
* the case, we just silently treat such values as a request for the
* minimum. (We could throw an error instead, but that doesn't seem very
* helpful.)
*/
if (*newval < 4)
*newval = 4;
return true;
}
/*
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* Initialization of shared memory for XLOG
*/
Size
XLOGShmemSize(void)
{
Size size;
/*
* If the value of wal_buffers is -1, use the preferred auto-tune value.
* This isn't an amazingly clean place to do this, but we must wait till
2011-04-10 17:42:00 +02:00
* NBuffers has received its final value, and must do it before using the
* value of XLOGbuffers to do anything important.
*/
if (XLOGbuffers == -1)
{
char buf[32];
snprintf(buf, sizeof(buf), "%d", XLOGChooseNumBuffers());
SetConfigOption("wal_buffers", buf, PGC_POSTMASTER, PGC_S_OVERRIDE);
}
Assert(XLOGbuffers > 0);
/* XLogCtl */
size = sizeof(XLogCtlData);
/* xlblocks array */
size = add_size(size, mul_size(sizeof(XLogRecPtr), XLOGbuffers));
/* extra alignment padding for XLOG I/O buffers */
size = add_size(size, ALIGNOF_XLOG_BUFFER);
/* and the buffers themselves */
size = add_size(size, mul_size(XLOG_BLCKSZ, XLOGbuffers));
/*
2005-10-15 04:49:52 +02:00
* Note: we don't count ControlFileData, it comes out of the "slop factor"
* added by CreateSharedMemoryAndSemaphores. This lets us use this
* routine again below to compute the actual allocation size.
*/
return size;
}
void
XLOGShmemInit(void)
{
bool foundCFile,
foundXLog;
char *allocptr;
ControlFile = (ControlFileData *)
ShmemInitStruct("Control File", sizeof(ControlFileData), &foundCFile);
XLogCtl = (XLogCtlData *)
ShmemInitStruct("XLOG Ctl", XLOGShmemSize(), &foundXLog);
if (foundCFile || foundXLog)
{
/* both should be present or neither */
Assert(foundCFile && foundXLog);
return;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
memset(XLogCtl, 0, sizeof(XLogCtlData));
2001-03-22 05:01:46 +01:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Since XLogCtlData contains XLogRecPtr fields, its sizeof should be a
* multiple of the alignment for same, so no extra alignment padding is
* needed here.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
allocptr = ((char *) XLogCtl) + sizeof(XLogCtlData);
XLogCtl->xlblocks = (XLogRecPtr *) allocptr;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
memset(XLogCtl->xlblocks, 0, sizeof(XLogRecPtr) * XLOGbuffers);
allocptr += sizeof(XLogRecPtr) * XLOGbuffers;
2001-03-22 05:01:46 +01:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Align the start of the page buffers to an ALIGNOF_XLOG_BUFFER boundary.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
allocptr = (char *) TYPEALIGN(ALIGNOF_XLOG_BUFFER, allocptr);
XLogCtl->pages = allocptr;
memset(XLogCtl->pages, 0, (Size) XLOG_BLCKSZ * XLOGbuffers);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Do basic initialization of XLogCtl shared data. (StartupXLOG will fill
* in additional info.)
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
XLogCtl->XLogCacheBlck = XLOGbuffers - 1;
XLogCtl->SharedRecoveryInProgress = true;
XLogCtl->SharedHotStandbyActive = false;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
XLogCtl->Insert.currpage = (XLogPageHeader) (XLogCtl->pages);
SpinLockInit(&XLogCtl->info_lck);
InitSharedLatch(&XLogCtl->recoveryWakeupLatch);
InitSharedLatch(&XLogCtl->WALWriterLatch);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* If we are not in bootstrap mode, pg_control should already exist. Read
* and validate it immediately (see comments in ReadControlFile() for the
* reasons why).
*/
if (!IsBootstrapProcessingMode())
ReadControlFile();
}
/*
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* This func must be called ONCE on system install. It creates pg_control
* and the initial XLOG segment.
*/
void
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
BootStrapXLOG(void)
{
CheckPoint checkPoint;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
char *buffer;
XLogPageHeader page;
XLogLongPageHeader longpage;
XLogRecord *record;
2001-03-22 05:01:46 +01:00
bool use_existent;
uint64 sysidentifier;
struct timeval tv;
pg_crc32 crc;
/*
2005-10-15 04:49:52 +02:00
* Select a hopefully-unique system identifier code for this installation.
* We use the result of gettimeofday(), including the fractional seconds
* field, as being about as unique as we can easily get. (Think not to
* use random(), since it hasn't been seeded and there's no portable way
* to seed it other than the system clock value...) The upper half of the
* uint64 value is just the tv_sec part, while the lower half is the XOR
* of tv_sec and tv_usec. This is to ensure that we don't lose uniqueness
* unnecessarily if "uint64" is really only 32 bits wide. A person
* knowing this encoding can determine the initialization time of the
* installation, which could perhaps be useful sometimes.
*/
gettimeofday(&tv, NULL);
sysidentifier = ((uint64) tv.tv_sec) << 32;
sysidentifier |= (uint32) (tv.tv_sec | tv.tv_usec);
/* First timeline ID is always 1 */
ThisTimeLineID = 1;
/* page buffer must be aligned suitably for O_DIRECT */
buffer = (char *) palloc(XLOG_BLCKSZ + ALIGNOF_XLOG_BUFFER);
page = (XLogPageHeader) TYPEALIGN(ALIGNOF_XLOG_BUFFER, buffer);
memset(page, 0, XLOG_BLCKSZ);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Set up information for the initial checkpoint record
*
2011-04-10 17:42:00 +02:00
* The initial checkpoint record is written to the beginning of the WAL
* segment with logid=0 logseg=1. The very first WAL segment, 0/0, is not
* used, so that we can use 0/0 to mean "before any valid WAL segment".
*/
checkPoint.redo.xlogid = 0;
checkPoint.redo.xrecoff = XLogSegSize + SizeOfXLogLongPHD;
checkPoint.ThisTimeLineID = ThisTimeLineID;
checkPoint.fullPageWrites = fullPageWrites;
checkPoint.nextXidEpoch = 0;
checkPoint.nextXid = FirstNormalTransactionId;
checkPoint.nextOid = FirstBootstrapObjectId;
checkPoint.nextMulti = FirstMultiXactId;
checkPoint.nextMultiOffset = 0;
checkPoint.oldestXid = FirstNormalTransactionId;
checkPoint.oldestXidDB = TemplateDbOid;
checkPoint.time = (pg_time_t) time(NULL);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
checkPoint.oldestActiveXid = InvalidTransactionId;
ShmemVariableCache->nextXid = checkPoint.nextXid;
ShmemVariableCache->nextOid = checkPoint.nextOid;
ShmemVariableCache->oidCount = 0;
MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
/* Set up the XLOG page header */
page->xlp_magic = XLOG_PAGE_MAGIC;
page->xlp_info = XLP_LONG_HEADER;
page->xlp_tli = ThisTimeLineID;
page->xlp_pageaddr.xlogid = 0;
page->xlp_pageaddr.xrecoff = XLogSegSize;
longpage = (XLogLongPageHeader) page;
longpage->xlp_sysid = sysidentifier;
longpage->xlp_seg_size = XLogSegSize;
longpage->xlp_xlog_blcksz = XLOG_BLCKSZ;
/* Insert the initial checkpoint record */
record = (XLogRecord *) ((char *) page + SizeOfXLogLongPHD);
record->xl_prev.xlogid = 0;
record->xl_prev.xrecoff = 0;
record->xl_xid = InvalidTransactionId;
record->xl_tot_len = SizeOfXLogRecord + sizeof(checkPoint);
record->xl_len = sizeof(checkPoint);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
record->xl_info = XLOG_CHECKPOINT_SHUTDOWN;
record->xl_rmid = RM_XLOG_ID;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
memcpy(XLogRecGetData(record), &checkPoint, sizeof(checkPoint));
INIT_CRC32(crc);
COMP_CRC32(crc, &checkPoint, sizeof(checkPoint));
COMP_CRC32(crc, (char *) record + sizeof(pg_crc32),
SizeOfXLogRecord - sizeof(pg_crc32));
FIN_CRC32(crc);
record->xl_crc = crc;
/* Create first XLOG segment file */
use_existent = false;
openLogFile = XLogFileInit(0, 1, &use_existent, false);
/* Write the first page with the initial record */
errno = 0;
if (write(openLogFile, page, XLOG_BLCKSZ) != XLOG_BLCKSZ)
{
/* if write didn't set errno, assume problem is no disk space */
if (errno == 0)
errno = ENOSPC;
ereport(PANIC,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not write bootstrap transaction log file: %m")));
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (pg_fsync(openLogFile) != 0)
ereport(PANIC,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not fsync bootstrap transaction log file: %m")));
if (close(openLogFile))
ereport(PANIC,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not close bootstrap transaction log file: %m")));
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
openLogFile = -1;
/* Now create pg_control */
memset(ControlFile, 0, sizeof(ControlFileData));
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Initialize pg_control status fields */
ControlFile->system_identifier = sysidentifier;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
ControlFile->state = DB_SHUTDOWNED;
ControlFile->time = checkPoint.time;
ControlFile->checkPoint = checkPoint.redo;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
ControlFile->checkPointCopy = checkPoint;
/* Set important parameter values for use when replaying WAL */
ControlFile->MaxConnections = MaxConnections;
ControlFile->max_prepared_xacts = max_prepared_xacts;
ControlFile->max_locks_per_xact = max_locks_per_xact;
ControlFile->wal_level = wal_level;
/* some additional ControlFile fields are set in WriteControlFile() */
WriteControlFile();
/* Bootstrap the commit log, too */
BootStrapCLOG();
BootStrapSUBTRANS();
BootStrapMultiXact();
pfree(buffer);
}
static char *
str_time(pg_time_t tnow)
{
static char buf[128];
pg_strftime(buf, sizeof(buf),
"%Y-%m-%d %H:%M:%S %Z",
pg_localtime(&tnow, log_timezone));
return buf;
}
/*
* See if there is a recovery command file (recovery.conf), and if so
* read in parameters for archive recovery and XLOG streaming.
*
* The file is parsed using the main configuration parser.
*/
static void
readRecoveryCommandFile(void)
{
2004-08-29 07:07:03 +02:00
FILE *fd;
TimeLineID rtli = 0;
bool rtliGiven = false;
ConfigVariable *item,
2011-04-10 17:42:00 +02:00
*head = NULL,
*tail = NULL;
2004-08-29 07:07:03 +02:00
fd = AllocateFile(RECOVERY_COMMAND_FILE, "r");
if (fd == NULL)
{
if (errno == ENOENT)
return; /* not there, so no archive recovery */
ereport(FATAL,
2004-08-29 07:07:03 +02:00
(errcode_for_file_access(),
errmsg("could not open recovery command file \"%s\": %m",
RECOVERY_COMMAND_FILE)));
}
2004-08-29 07:07:03 +02:00
/*
Restructure error handling in reading of postgresql.conf. This patch has two distinct purposes: to report multiple problems in postgresql.conf rather than always bailing out after the first one, and to change the policy for whether changes are applied when there are unrelated errors in postgresql.conf. Formerly the policy was to apply no changes if any errors could be detected, but that had a significant consistency problem, because in some cases specific values might be seen as valid by some processes but invalid by others. This meant that the latter processes would fail to adopt changes in other parameters even though the former processes had done so. The new policy is that during SIGHUP, the file is rejected as a whole if there are any errors in the "name = value" syntax, or if any lines attempt to set nonexistent built-in parameters, or if any lines attempt to set custom parameters whose prefix is not listed in (the new value of) custom_variable_classes. These tests should always give the same results in all processes, and provide what seems a reasonably robust defense against loading values from badly corrupted config files. If these tests pass, all processes will apply all settings that they individually see as good, ignoring (but logging) any they don't. In addition, the postmaster does not abandon reading a configuration file after the first syntax error, but continues to read the file and report syntax errors (up to a maximum of 100 syntax errors per file). The postmaster will still refuse to start up if the configuration file contains any errors at startup time, but these changes allow multiple errors to be detected and reported before quitting. Alexey Klyukin, reviewed by Andy Colson and av (Alexander ?) with some additional hacking by Tom Lane
2011-10-02 22:50:04 +02:00
* Since we're asking ParseConfigFp() to report errors as FATAL, there's
* no need to check the return value.
2011-04-10 17:42:00 +02:00
*/
Restructure error handling in reading of postgresql.conf. This patch has two distinct purposes: to report multiple problems in postgresql.conf rather than always bailing out after the first one, and to change the policy for whether changes are applied when there are unrelated errors in postgresql.conf. Formerly the policy was to apply no changes if any errors could be detected, but that had a significant consistency problem, because in some cases specific values might be seen as valid by some processes but invalid by others. This meant that the latter processes would fail to adopt changes in other parameters even though the former processes had done so. The new policy is that during SIGHUP, the file is rejected as a whole if there are any errors in the "name = value" syntax, or if any lines attempt to set nonexistent built-in parameters, or if any lines attempt to set custom parameters whose prefix is not listed in (the new value of) custom_variable_classes. These tests should always give the same results in all processes, and provide what seems a reasonably robust defense against loading values from badly corrupted config files. If these tests pass, all processes will apply all settings that they individually see as good, ignoring (but logging) any they don't. In addition, the postmaster does not abandon reading a configuration file after the first syntax error, but continues to read the file and report syntax errors (up to a maximum of 100 syntax errors per file). The postmaster will still refuse to start up if the configuration file contains any errors at startup time, but these changes allow multiple errors to be detected and reported before quitting. Alexey Klyukin, reviewed by Andy Colson and av (Alexander ?) with some additional hacking by Tom Lane
2011-10-02 22:50:04 +02:00
(void) ParseConfigFp(fd, RECOVERY_COMMAND_FILE, 0, FATAL, &head, &tail);
FreeFile(fd);
for (item = head; item; item = item->next)
{
if (strcmp(item->name, "restore_command") == 0)
2004-08-29 07:07:03 +02:00
{
recoveryRestoreCommand = pstrdup(item->value);
ereport(DEBUG2,
(errmsg_internal("restore_command = '%s'",
recoveryRestoreCommand)));
}
else if (strcmp(item->name, "recovery_end_command") == 0)
{
recoveryEndCommand = pstrdup(item->value);
ereport(DEBUG2,
(errmsg_internal("recovery_end_command = '%s'",
recoveryEndCommand)));
}
else if (strcmp(item->name, "archive_cleanup_command") == 0)
{
archiveCleanupCommand = pstrdup(item->value);
ereport(DEBUG2,
(errmsg_internal("archive_cleanup_command = '%s'",
archiveCleanupCommand)));
}
else if (strcmp(item->name, "pause_at_recovery_target") == 0)
{
if (!parse_bool(item->value, &recoveryPauseAtTarget))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("parameter \"%s\" requires a Boolean value", "pause_at_recovery_target")));
ereport(DEBUG2,
(errmsg_internal("pause_at_recovery_target = '%s'",
item->value)));
}
else if (strcmp(item->name, "recovery_target_timeline") == 0)
2004-08-29 07:07:03 +02:00
{
rtliGiven = true;
if (strcmp(item->value, "latest") == 0)
rtli = 0;
else
{
errno = 0;
rtli = (TimeLineID) strtoul(item->value, NULL, 0);
if (errno == EINVAL || errno == ERANGE)
ereport(FATAL,
(errmsg("recovery_target_timeline is not a valid number: \"%s\"",
item->value)));
}
if (rtli)
ereport(DEBUG2,
(errmsg_internal("recovery_target_timeline = %u", rtli)));
else
ereport(DEBUG2,
(errmsg_internal("recovery_target_timeline = latest")));
}
else if (strcmp(item->name, "recovery_target_xid") == 0)
2004-08-29 07:07:03 +02:00
{
errno = 0;
recoveryTargetXid = (TransactionId) strtoul(item->value, NULL, 0);
if (errno == EINVAL || errno == ERANGE)
ereport(FATAL,
2005-10-15 04:49:52 +02:00
(errmsg("recovery_target_xid is not a valid number: \"%s\"",
item->value)));
ereport(DEBUG2,
(errmsg_internal("recovery_target_xid = %u",
recoveryTargetXid)));
recoveryTarget = RECOVERY_TARGET_XID;
}
else if (strcmp(item->name, "recovery_target_time") == 0)
2004-08-29 07:07:03 +02:00
{
/*
* if recovery_target_xid or recovery_target_name specified, then
* this overrides recovery_target_time
*/
if (recoveryTarget == RECOVERY_TARGET_XID ||
2011-04-10 17:42:00 +02:00
recoveryTarget == RECOVERY_TARGET_NAME)
continue;
recoveryTarget = RECOVERY_TARGET_TIME;
2004-08-29 07:07:03 +02:00
/*
* Convert the time string given by the user to TimestampTz form.
*/
recoveryTargetTime =
DatumGetTimestampTz(DirectFunctionCall3(timestamptz_in,
2011-04-10 17:42:00 +02:00
CStringGetDatum(item->value),
ObjectIdGetDatum(InvalidOid),
Int32GetDatum(-1)));
ereport(DEBUG2,
(errmsg_internal("recovery_target_time = '%s'",
timestamptz_to_str(recoveryTargetTime))));
}
else if (strcmp(item->name, "recovery_target_name") == 0)
{
/*
* if recovery_target_xid specified, then this overrides
* recovery_target_name
*/
if (recoveryTarget == RECOVERY_TARGET_XID)
continue;
recoveryTarget = RECOVERY_TARGET_NAME;
recoveryTargetName = pstrdup(item->value);
if (strlen(recoveryTargetName) >= MAXFNAMELEN)
ereport(FATAL,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("recovery_target_name is too long (maximum %d characters)",
MAXFNAMELEN - 1)));
ereport(DEBUG2,
(errmsg_internal("recovery_target_name = '%s'",
recoveryTargetName)));
}
else if (strcmp(item->name, "recovery_target_inclusive") == 0)
2004-08-29 07:07:03 +02:00
{
/*
* does nothing if a recovery_target is not also set
*/
if (!parse_bool(item->value, &recoveryTargetInclusive))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("parameter \"%s\" requires a Boolean value",
"recovery_target_inclusive")));
ereport(DEBUG2,
(errmsg_internal("recovery_target_inclusive = %s",
item->value)));
}
else if (strcmp(item->name, "standby_mode") == 0)
{
if (!parse_bool(item->value, &StandbyMode))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("parameter \"%s\" requires a Boolean value",
"standby_mode")));
ereport(DEBUG2,
(errmsg_internal("standby_mode = '%s'", item->value)));
}
else if (strcmp(item->name, "primary_conninfo") == 0)
{
PrimaryConnInfo = pstrdup(item->value);
ereport(DEBUG2,
(errmsg_internal("primary_conninfo = '%s'",
PrimaryConnInfo)));
}
else if (strcmp(item->name, "trigger_file") == 0)
{
TriggerFile = pstrdup(item->value);
ereport(DEBUG2,
(errmsg_internal("trigger_file = '%s'",
TriggerFile)));
}
else
ereport(FATAL,
(errmsg("unrecognized recovery parameter \"%s\"",
item->name)));
}
/*
* Check for compulsory parameters
*/
if (StandbyMode)
{
if (PrimaryConnInfo == NULL && recoveryRestoreCommand == NULL)
ereport(WARNING,
(errmsg("recovery command file \"%s\" specified neither primary_conninfo nor restore_command",
RECOVERY_COMMAND_FILE),
errhint("The database server will regularly poll the pg_xlog subdirectory to check for files placed there.")));
}
else
{
if (recoveryRestoreCommand == NULL)
ereport(FATAL,
(errmsg("recovery command file \"%s\" must specify restore_command when standby mode is not enabled",
RECOVERY_COMMAND_FILE)));
}
/* Enable fetching from archive recovery area */
InArchiveRecovery = true;
/*
2005-10-15 04:49:52 +02:00
* If user specified recovery_target_timeline, validate it or compute the
* "latest" value. We can't do this until after we've gotten the restore
* command and set InArchiveRecovery, because we need to fetch timeline
* history files from the archive.
*/
if (rtliGiven)
{
if (rtli)
{
/* Timeline 1 does not have a history file, all else should */
if (rtli != 1 && !existsTimeLineHistory(rtli))
ereport(FATAL,
(errmsg("recovery target timeline %u does not exist",
2005-10-15 04:49:52 +02:00
rtli)));
recoveryTargetTLI = rtli;
recoveryTargetIsLatest = false;
}
else
{
/* We start the "latest" search from pg_control's timeline */
recoveryTargetTLI = findNewestTimeLine(recoveryTargetTLI);
recoveryTargetIsLatest = true;
}
}
FreeConfigVariables(head);
}
/*
* Exit archive-recovery state
*/
static void
exitArchiveRecovery(TimeLineID endTLI, uint32 endLogId, uint32 endLogSeg)
{
2004-08-29 07:07:03 +02:00
char recoveryPath[MAXPGPATH];
char xlogpath[MAXPGPATH];
/*
* We are no longer in archive recovery state.
*/
InArchiveRecovery = false;
/*
* Update min recovery point one last time.
*/
UpdateMinRecoveryPoint(InvalidXLogRecPtr, true);
/*
2010-02-26 03:01:40 +01:00
* If the ending log segment is still open, close it (to avoid problems on
* Windows with trying to rename or delete an open file).
*/
if (readFile >= 0)
{
close(readFile);
readFile = -1;
}
/*
* If we are establishing a new timeline, we have to copy data from
* the last WAL segment of the old timeline to create a starting WAL
* segment for the new timeline.
*
* Notify the archiver that the last WAL segment of the old timeline
* is ready to copy to archival storage. Otherwise, it is not archived
* for a while.
*/
if (endTLI != ThisTimeLineID)
{
XLogFileCopy(endLogId, endLogSeg,
endTLI, endLogId, endLogSeg);
2004-08-29 07:07:03 +02:00
if (XLogArchivingActive())
{
XLogFileName(xlogpath, endTLI, endLogId, endLogSeg);
XLogArchiveNotify(xlogpath);
}
}
/*
2005-10-15 04:49:52 +02:00
* Let's just make real sure there are not .ready or .done flags posted
* for the new segment.
*/
XLogFileName(xlogpath, ThisTimeLineID, endLogId, endLogSeg);
XLogArchiveCleanup(xlogpath);
/*
* Since there might be a partial WAL segment named RECOVERYXLOG,
* get rid of it.
*/
snprintf(recoveryPath, MAXPGPATH, XLOGDIR "/RECOVERYXLOG");
unlink(recoveryPath); /* ignore any error */
/* Get rid of any remaining recovered timeline-history file, too */
snprintf(recoveryPath, MAXPGPATH, XLOGDIR "/RECOVERYHISTORY");
2004-08-29 07:07:03 +02:00
unlink(recoveryPath); /* ignore any error */
/*
2005-10-15 04:49:52 +02:00
* Rename the config file out of the way, so that we don't accidentally
* re-enter archive recovery mode in a subsequent crash.
*/
unlink(RECOVERY_COMMAND_DONE);
if (rename(RECOVERY_COMMAND_FILE, RECOVERY_COMMAND_DONE) != 0)
ereport(FATAL,
(errcode_for_file_access(),
errmsg("could not rename file \"%s\" to \"%s\": %m",
RECOVERY_COMMAND_FILE, RECOVERY_COMMAND_DONE)));
ereport(LOG,
(errmsg("archive recovery complete")));
}
/*
* For point-in-time recovery, this function decides whether we want to
* stop applying the XLOG at or after the current record.
*
* Returns TRUE if we are stopping, FALSE otherwise. On TRUE return,
* *includeThis is set TRUE if we should apply this record before stopping.
*
* We also track the timestamp of the latest applied COMMIT/ABORT
* record in XLogCtl->recoveryLastXTime, for logging purposes.
* Also, some information is saved in recoveryStopXid et al for use in
* annotating the new timeline's history file.
*/
static bool
recoveryStopsHere(XLogRecord *record, bool *includeThis)
{
bool stopsHere;
2004-08-29 07:07:03 +02:00
uint8 record_info;
2007-11-15 22:14:46 +01:00
TimestampTz recordXtime;
char recordRPName[MAXFNAMELEN];
/* We only consider stopping at COMMIT, ABORT or RESTORE POINT records */
if (record->xl_rmid != RM_XACT_ID && record->xl_rmid != RM_XLOG_ID)
return false;
record_info = record->xl_info & ~XLR_INFO_MASK;
if (record->xl_rmid == RM_XACT_ID && record_info == XLOG_XACT_COMMIT_COMPACT)
{
xl_xact_commit_compact *recordXactCommitData;
recordXactCommitData = (xl_xact_commit_compact *) XLogRecGetData(record);
recordXtime = recordXactCommitData->xact_time;
}
else if (record->xl_rmid == RM_XACT_ID && record_info == XLOG_XACT_COMMIT)
{
xl_xact_commit *recordXactCommitData;
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
recordXactCommitData = (xl_xact_commit *) XLogRecGetData(record);
recordXtime = recordXactCommitData->xact_time;
}
else if (record->xl_rmid == RM_XACT_ID && record_info == XLOG_XACT_ABORT)
{
xl_xact_abort *recordXactAbortData;
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
recordXactAbortData = (xl_xact_abort *) XLogRecGetData(record);
recordXtime = recordXactAbortData->xact_time;
}
else if (record->xl_rmid == RM_XLOG_ID && record_info == XLOG_RESTORE_POINT)
{
xl_restore_point *recordRestorePointData;
recordRestorePointData = (xl_restore_point *) XLogRecGetData(record);
recordXtime = recordRestorePointData->rp_time;
strncpy(recordRPName, recordRestorePointData->rp_name, MAXFNAMELEN);
}
else
return false;
/* Do we have a PITR target at all? */
if (recoveryTarget == RECOVERY_TARGET_UNSET)
{
/*
2011-04-10 17:42:00 +02:00
* Save timestamp of latest transaction commit/abort if this is a
* transaction record
*/
if (record->xl_rmid == RM_XACT_ID)
SetLatestXTime(recordXtime);
return false;
}
if (recoveryTarget == RECOVERY_TARGET_XID)
{
/*
* There can be only one transaction end record with this exact
2004-08-29 07:07:03 +02:00
* transactionid
*
2004-08-29 07:07:03 +02:00
* when testing for an xid, we MUST test for equality only, since
2005-10-15 04:49:52 +02:00
* transactions are numbered in the order they start, not the order
* they complete. A higher numbered xid will complete before you about
* 50% of the time...
*/
stopsHere = (record->xl_xid == recoveryTargetXid);
if (stopsHere)
*includeThis = recoveryTargetInclusive;
}
else if (recoveryTarget == RECOVERY_TARGET_NAME)
{
/*
2011-04-10 17:42:00 +02:00
* There can be many restore points that share the same name, so we
* stop at the first one
*/
stopsHere = (strcmp(recordRPName, recoveryTargetName) == 0);
/*
* Ignore recoveryTargetInclusive because this is not a transaction
* record
*/
*includeThis = false;
}
else
{
/*
* There can be many transactions that share the same commit time, so
2005-10-15 04:49:52 +02:00
* we stop after the last one, if we are inclusive, or stop at the
* first one if we are exclusive
*/
if (recoveryTargetInclusive)
stopsHere = (recordXtime > recoveryTargetTime);
else
stopsHere = (recordXtime >= recoveryTargetTime);
if (stopsHere)
*includeThis = false;
}
if (stopsHere)
{
recoveryStopXid = record->xl_xid;
recoveryStopTime = recordXtime;
recoveryStopAfter = *includeThis;
if (record_info == XLOG_XACT_COMMIT_COMPACT || record_info == XLOG_XACT_COMMIT)
{
if (recoveryStopAfter)
ereport(LOG,
(errmsg("recovery stopping after commit of transaction %u, time %s",
recoveryStopXid,
timestamptz_to_str(recoveryStopTime))));
else
ereport(LOG,
(errmsg("recovery stopping before commit of transaction %u, time %s",
recoveryStopXid,
timestamptz_to_str(recoveryStopTime))));
}
else if (record_info == XLOG_XACT_ABORT)
{
if (recoveryStopAfter)
ereport(LOG,
(errmsg("recovery stopping after abort of transaction %u, time %s",
recoveryStopXid,
timestamptz_to_str(recoveryStopTime))));
else
ereport(LOG,
(errmsg("recovery stopping before abort of transaction %u, time %s",
recoveryStopXid,
timestamptz_to_str(recoveryStopTime))));
}
else
{
strncpy(recoveryStopName, recordRPName, MAXFNAMELEN);
ereport(LOG,
2011-04-10 17:42:00 +02:00
(errmsg("recovery stopping at restore point \"%s\", time %s",
recoveryStopName,
timestamptz_to_str(recoveryStopTime))));
}
/*
2011-04-10 17:42:00 +02:00
* Note that if we use a RECOVERY_TARGET_TIME then we can stop at a
* restore point since they are timestamped, though the latest
* transaction time is not updated.
*/
if (record->xl_rmid == RM_XACT_ID && recoveryStopAfter)
SetLatestXTime(recordXtime);
}
else if (record->xl_rmid == RM_XACT_ID)
SetLatestXTime(recordXtime);
return stopsHere;
}
/*
* Recheck shared recoveryPause by polling.
*
* XXX Can also be done with shared latch.
*/
static void
recoveryPausesHere(void)
{
ereport(LOG,
(errmsg("recovery has paused"),
errhint("Execute pg_xlog_replay_resume() to continue.")));
while (RecoveryIsPaused())
{
2011-04-10 17:42:00 +02:00
pg_usleep(1000000L); /* 1000 ms */
HandleStartupProcInterrupts();
}
}
bool
RecoveryIsPaused(void)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
2011-04-10 17:42:00 +02:00
bool recoveryPause;
SpinLockAcquire(&xlogctl->info_lck);
recoveryPause = xlogctl->recoveryPause;
SpinLockRelease(&xlogctl->info_lck);
return recoveryPause;
}
void
SetRecoveryPause(bool recoveryPause)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->recoveryPause = recoveryPause;
SpinLockRelease(&xlogctl->info_lck);
}
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
* Save timestamp of latest processed commit/abort record.
*
* We keep this in XLogCtl, not a simple static variable, so that it can be
* seen by processes other than the startup process. Note in particular
* that CreateRestartPoint is executed in the checkpointer.
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
*/
static void
SetLatestXTime(TimestampTz xtime)
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->recoveryLastXTime = xtime;
SpinLockRelease(&xlogctl->info_lck);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
}
/*
* Fetch timestamp of latest processed commit/abort record.
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
*/
TimestampTz
GetLatestXTime(void)
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
TimestampTz xtime;
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
SpinLockAcquire(&xlogctl->info_lck);
xtime = xlogctl->recoveryLastXTime;
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
SpinLockRelease(&xlogctl->info_lck);
return xtime;
}
/*
* Save timestamp of the next chunk of WAL records to apply.
*
* We keep this in XLogCtl, not a simple static variable, so that it can be
* seen by all backends.
*/
static void
SetCurrentChunkStartTime(TimestampTz xtime)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->currentChunkStartTime = xtime;
SpinLockRelease(&xlogctl->info_lck);
}
/*
* Fetch timestamp of latest processed commit/abort record.
* Startup process maintains an accurate local copy in XLogReceiptTime
*/
TimestampTz
GetCurrentChunkReplayStartTime(void)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
TimestampTz xtime;
SpinLockAcquire(&xlogctl->info_lck);
xtime = xlogctl->currentChunkStartTime;
SpinLockRelease(&xlogctl->info_lck);
return xtime;
}
/*
* Returns time of receipt of current chunk of XLOG data, as well as
* whether it was received from streaming replication or from archives.
*/
void
GetXLogReceiptTime(TimestampTz *rtime, bool *fromStream)
{
/*
2010-07-06 21:19:02 +02:00
* This must be executed in the startup process, since we don't export the
* relevant state to shared memory.
*/
Assert(InRecovery);
*rtime = XLogReceiptTime;
*fromStream = (XLogReceiptSource == XLOG_FROM_STREAM);
}
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
* Note that text field supplied is a parameter name and does not require
* translation
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
*/
#define RecoveryRequiresIntParameter(param_name, currValue, minValue) \
do { \
if (currValue < minValue) \
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
ereport(ERROR, \
(errmsg("hot standby is not possible because " \
"%s = %d is a lower setting than on the master server " \
"(its value was %d)", \
param_name, \
currValue, \
minValue))); \
} while(0)
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
* Check to see if required parameters are set high enough on this server
* for various aspects of recovery operation.
*/
static void
CheckRequiredParameterValues(void)
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
{
/*
2010-07-06 21:19:02 +02:00
* For archive recovery, the WAL must be generated with at least 'archive'
* wal_level.
*/
if (InArchiveRecovery && ControlFile->wal_level == WAL_LEVEL_MINIMAL)
{
ereport(WARNING,
(errmsg("WAL was generated with wal_level=minimal, data may be missing"),
errhint("This happens if you temporarily set wal_level=minimal without taking a new base backup.")));
}
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
2010-07-06 21:19:02 +02:00
* For Hot Standby, the WAL must be generated with 'hot_standby' mode, and
* we must have at least as many backend slots as the primary.
*/
if (InArchiveRecovery && EnableHotStandby)
{
if (ControlFile->wal_level < WAL_LEVEL_HOT_STANDBY)
ereport(ERROR,
(errmsg("hot standby is not possible because wal_level was not set to \"hot_standby\" on the master server"),
errhint("Either set wal_level to \"hot_standby\" on the master, or turn off hot_standby here.")));
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/* We ignore autovacuum_max_workers when we make this test. */
RecoveryRequiresIntParameter("max_connections",
MaxConnections,
ControlFile->MaxConnections);
RecoveryRequiresIntParameter("max_prepared_xacts",
max_prepared_xacts,
ControlFile->max_prepared_xacts);
RecoveryRequiresIntParameter("max_locks_per_xact",
max_locks_per_xact,
ControlFile->max_locks_per_xact);
}
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
}
/*
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* This must be called ONCE during postmaster or standalone-backend startup
*/
void
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
StartupXLOG(void)
{
XLogCtlInsert *Insert;
CheckPoint checkPoint;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
bool wasShutdown;
bool reachedStopPoint = false;
bool haveBackupLabel = false;
XLogRecPtr RecPtr,
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
checkPointLoc,
EndOfLog;
uint32 endLogId;
uint32 endLogSeg;
XLogRecord *record;
uint32 freespace;
TransactionId oldestActiveXID;
bool backupEndRequired = false;
bool backupFromStandby = false;
DBState dbstate_at_startup;
/*
* Read control file and check XLOG status looks valid.
*
* Note: in most control paths, *ControlFile is already valid and we need
* not do ReadControlFile() here, but might as well do it to be sure.
*/
ReadControlFile();
if (ControlFile->state < DB_SHUTDOWNED ||
ControlFile->state > DB_IN_PRODUCTION ||
!XRecOffIsValid(ControlFile->checkPoint.xrecoff))
ereport(FATAL,
(errmsg("control file contains invalid data")));
if (ControlFile->state == DB_SHUTDOWNED)
ereport(LOG,
(errmsg("database system was shut down at %s",
str_time(ControlFile->time))));
else if (ControlFile->state == DB_SHUTDOWNED_IN_RECOVERY)
ereport(LOG,
(errmsg("database system was shut down in recovery at %s",
str_time(ControlFile->time))));
else if (ControlFile->state == DB_SHUTDOWNING)
ereport(LOG,
(errmsg("database system shutdown was interrupted; last known up at %s",
str_time(ControlFile->time))));
else if (ControlFile->state == DB_IN_CRASH_RECOVERY)
ereport(LOG,
2005-10-15 04:49:52 +02:00
(errmsg("database system was interrupted while in recovery at %s",
str_time(ControlFile->time)),
errhint("This probably means that some data is corrupted and"
" you will have to use the last backup for recovery.")));
else if (ControlFile->state == DB_IN_ARCHIVE_RECOVERY)
ereport(LOG,
2006-10-04 02:30:14 +02:00
(errmsg("database system was interrupted while in recovery at log time %s",
str_time(ControlFile->checkPointCopy.time)),
errhint("If this has occurred more than once some data might be corrupted"
2007-11-15 22:14:46 +01:00
" and you might need to choose an earlier recovery target.")));
else if (ControlFile->state == DB_IN_PRODUCTION)
ereport(LOG,
2007-11-15 22:14:46 +01:00
(errmsg("database system was interrupted; last known up at %s",
str_time(ControlFile->time))));
/* This is just to allow attaching to startup process with a debugger */
#ifdef XLOG_REPLAY_DELAY
if (ControlFile->state != DB_SHUTDOWNED)
pg_usleep(60000000L);
#endif
/*
* Verify that pg_xlog and pg_xlog/archive_status exist. In cases where
* someone has performed a copy for PITR, these directories may have been
* excluded and need to be re-created.
*/
ValidateXLOGDirectoryStructure();
/*
2010-02-26 03:01:40 +01:00
* Clear out any old relcache cache files. This is *necessary* if we do
* any WAL replay, since that would probably result in the cache files
* being out of sync with database reality. In theory we could leave them
* in place if the database had been cleanly shut down, but it seems
* safest to just remove them always and let them be rebuilt during the
* first backend startup.
*/
RelationCacheInitFileRemove();
/*
2005-10-15 04:49:52 +02:00
* Initialize on the assumption we want to recover to the same timeline
* that's active according to pg_control.
*/
recoveryTargetTLI = ControlFile->checkPointCopy.ThisTimeLineID;
/*
2004-08-29 07:07:03 +02:00
* Check for recovery control file, and if so set up state for offline
* recovery
*/
readRecoveryCommandFile();
/* Now we can determine the list of expected TLIs */
expectedTLIs = readTimeLineHistory(recoveryTargetTLI);
/*
* If pg_control's timeline is not in expectedTLIs, then we cannot
* proceed: the backup is not part of the history of the requested
* timeline.
*/
if (!list_member_int(expectedTLIs,
2005-10-15 04:49:52 +02:00
(int) ControlFile->checkPointCopy.ThisTimeLineID))
ereport(FATAL,
(errmsg("requested timeline %u is not a child of database system timeline %u",
recoveryTargetTLI,
ControlFile->checkPointCopy.ThisTimeLineID)));
/*
2010-07-06 21:19:02 +02:00
* Save the selected recovery target timeline ID and
* archive_cleanup_command in shared memory so that other processes can
* see them
*/
XLogCtl->RecoveryTargetTLI = recoveryTargetTLI;
strncpy(XLogCtl->archiveCleanupCommand,
archiveCleanupCommand ? archiveCleanupCommand : "",
sizeof(XLogCtl->archiveCleanupCommand));
if (InArchiveRecovery)
{
if (StandbyMode)
ereport(LOG,
(errmsg("entering standby mode")));
else if (recoveryTarget == RECOVERY_TARGET_XID)
ereport(LOG,
2010-07-06 21:19:02 +02:00
(errmsg("starting point-in-time recovery to XID %u",
recoveryTargetXid)));
else if (recoveryTarget == RECOVERY_TARGET_TIME)
ereport(LOG,
(errmsg("starting point-in-time recovery to %s",
timestamptz_to_str(recoveryTargetTime))));
else if (recoveryTarget == RECOVERY_TARGET_NAME)
ereport(LOG,
(errmsg("starting point-in-time recovery to \"%s\"",
recoveryTargetName)));
else
ereport(LOG,
(errmsg("starting archive recovery")));
}
/*
* Take ownership of the wakeup latch if we're going to sleep during
* recovery.
*/
if (StandbyMode)
OwnLatch(&XLogCtl->recoveryWakeupLatch);
if (read_backup_label(&checkPointLoc, &backupEndRequired,
&backupFromStandby))
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
/*
2005-10-15 04:49:52 +02:00
* When a backup_label file is present, we want to roll forward from
* the checkpoint it identifies, rather than using pg_control.
*/
record = ReadCheckpointRecord(checkPointLoc, 0);
if (record != NULL)
{
memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
wasShutdown = (record->xl_info == XLOG_CHECKPOINT_SHUTDOWN);
ereport(DEBUG1,
(errmsg("checkpoint record is at %X/%X",
2005-10-15 04:49:52 +02:00
checkPointLoc.xlogid, checkPointLoc.xrecoff)));
InRecovery = true; /* force recovery even if SHUTDOWNED */
/*
2011-04-10 17:42:00 +02:00
* Make sure that REDO location exists. This may not be the case
* if there was a crash during an online backup, which left a
* backup_label around that references a WAL segment that's
* already been archived.
*/
if (XLByteLT(checkPoint.redo, checkPointLoc))
{
if (!ReadRecord(&(checkPoint.redo), LOG, false))
ereport(FATAL,
(errmsg("could not find redo location referenced by checkpoint record"),
errhint("If you are not restoring from a backup, try removing the file \"%s/backup_label\".", DataDir)));
}
}
else
{
ereport(FATAL,
2005-10-15 04:49:52 +02:00
(errmsg("could not locate required checkpoint record"),
errhint("If you are not restoring from a backup, try removing the file \"%s/backup_label\".", DataDir)));
2011-04-10 17:42:00 +02:00
wasShutdown = false; /* keep compiler quiet */
}
/* set flag to delete it later */
haveBackupLabel = true;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
else
{
/*
2005-10-15 04:49:52 +02:00
* Get the last valid checkpoint record. If the latest one according
* to pg_control is broken, try the next-to-last one.
*/
checkPointLoc = ControlFile->checkPoint;
RedoStartLSN = ControlFile->checkPointCopy.redo;
record = ReadCheckpointRecord(checkPointLoc, 1);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (record != NULL)
{
ereport(DEBUG1,
(errmsg("checkpoint record is at %X/%X",
2005-10-15 04:49:52 +02:00
checkPointLoc.xlogid, checkPointLoc.xrecoff)));
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
else if (StandbyMode)
{
/*
* The last valid checkpoint record required for a streaming
* recovery exists in neither standby nor the primary.
*/
ereport(PANIC,
(errmsg("could not locate a valid checkpoint record")));
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
else
{
checkPointLoc = ControlFile->prevCheckPoint;
record = ReadCheckpointRecord(checkPointLoc, 2);
if (record != NULL)
{
ereport(LOG,
2005-10-15 04:49:52 +02:00
(errmsg("using previous checkpoint record at %X/%X",
checkPointLoc.xlogid, checkPointLoc.xrecoff)));
InRecovery = true; /* force recovery even if SHUTDOWNED */
}
else
ereport(PANIC,
2005-10-15 04:49:52 +02:00
(errmsg("could not locate a valid checkpoint record")));
}
memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
wasShutdown = (record->xl_info == XLOG_CHECKPOINT_SHUTDOWN);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
LastRec = RecPtr = checkPointLoc;
ereport(DEBUG1,
2007-11-15 22:14:46 +01:00
(errmsg("redo record is at %X/%X; shutdown %s",
checkPoint.redo.xlogid, checkPoint.redo.xrecoff,
wasShutdown ? "TRUE" : "FALSE")));
ereport(DEBUG1,
(errmsg("next transaction ID: %u/%u; next OID: %u",
checkPoint.nextXidEpoch, checkPoint.nextXid,
checkPoint.nextOid)));
ereport(DEBUG1,
(errmsg("next MultiXactId: %u; next MultiXactOffset: %u",
checkPoint.nextMulti, checkPoint.nextMultiOffset)));
ereport(DEBUG1,
(errmsg("oldest unfrozen transaction ID: %u, in database %u",
checkPoint.oldestXid, checkPoint.oldestXidDB)));
if (!TransactionIdIsNormal(checkPoint.nextXid))
ereport(PANIC,
(errmsg("invalid next transaction ID")));
ShmemVariableCache->nextXid = checkPoint.nextXid;
ShmemVariableCache->nextOid = checkPoint.nextOid;
ShmemVariableCache->oidCount = 0;
MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
/*
2005-10-15 04:49:52 +02:00
* We must replay WAL entries using the same TimeLineID they were created
* under, so temporarily adopt the TLI indicated by the checkpoint (see
* also xlog_redo()).
*/
ThisTimeLineID = checkPoint.ThisTimeLineID;
lastFullPageWrites = checkPoint.fullPageWrites;
RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo;
2000-10-21 17:43:36 +02:00
if (XLByteLT(RecPtr, checkPoint.redo))
ereport(PANIC,
(errmsg("invalid redo in checkpoint record")));
/*
2004-08-29 07:07:03 +02:00
* Check whether we need to force recovery from WAL. If it appears to
2005-10-15 04:49:52 +02:00
* have been a clean shutdown and we did not have a recovery.conf file,
* then assume no recovery needed.
*/
if (XLByteLT(checkPoint.redo, RecPtr))
{
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (wasShutdown)
ereport(PANIC,
2007-11-15 22:14:46 +01:00
(errmsg("invalid redo record in shutdown checkpoint")));
2000-10-28 18:21:00 +02:00
InRecovery = true;
}
else if (ControlFile->state != DB_SHUTDOWNED)
2000-10-28 18:21:00 +02:00
InRecovery = true;
else if (InArchiveRecovery)
{
/* force recovery due to presence of recovery.conf */
InRecovery = true;
}
2000-10-28 18:21:00 +02:00
/* REDO */
if (InRecovery)
{
2003-08-04 02:43:34 +02:00
int rmid;
2010-07-06 21:19:02 +02:00
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
/*
2006-10-04 02:30:14 +02:00
* Update pg_control to show that we are recovering and to show the
* selected checkpoint as the place we are starting from. We also mark
* pg_control with any minimum recovery stop point obtained from a
* backup history file.
*/
dbstate_at_startup = ControlFile->state;
if (InArchiveRecovery)
ControlFile->state = DB_IN_ARCHIVE_RECOVERY;
else
{
ereport(LOG,
(errmsg("database system was not properly shut down; "
"automatic recovery in progress")));
ControlFile->state = DB_IN_CRASH_RECOVERY;
}
ControlFile->prevCheckPoint = ControlFile->checkPoint;
ControlFile->checkPoint = checkPointLoc;
ControlFile->checkPointCopy = checkPoint;
if (InArchiveRecovery)
{
/* initialize minRecoveryPoint if not set yet */
if (XLByteLT(ControlFile->minRecoveryPoint, checkPoint.redo))
ControlFile->minRecoveryPoint = checkPoint.redo;
}
2010-02-26 03:01:40 +01:00
/*
* Set backupStartPoint if we're starting recovery from a base backup.
*
* Set backupEndPoint and use minRecoveryPoint as the backup end location
* if we're starting recovery from a base backup which was taken from
* the standby. In this case, the database system status in pg_control must
* indicate DB_IN_ARCHIVE_RECOVERY. If not, which means that backup
* is corrupted, so we cancel recovery.
*/
if (haveBackupLabel)
{
ControlFile->backupStartPoint = checkPoint.redo;
ControlFile->backupEndRequired = backupEndRequired;
if (backupFromStandby)
{
if (dbstate_at_startup != DB_IN_ARCHIVE_RECOVERY)
ereport(FATAL,
(errmsg("backup_label contains inconsistent data with control file"),
errhint("This means that the backup is corrupted and you will "
"have to use another backup for recovery.")));
ControlFile->backupEndPoint = ControlFile->minRecoveryPoint;
}
}
ControlFile->time = (pg_time_t) time(NULL);
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/* No need to hold ControlFileLock yet, we aren't up far enough */
UpdateControlFile();
/* initialize our local copy of minRecoveryPoint */
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
minRecoveryPoint = ControlFile->minRecoveryPoint;
/*
* Reset pgstat data, because it may be invalid after recovery.
*/
pgstat_reset_all();
/*
2006-10-04 02:30:14 +02:00
* If there was a backup label file, it's done its job and the info
* has now been propagated into pg_control. We must get rid of the
* label file so that if we crash during recovery, we'll pick up at
* the latest recovery restartpoint instead of going all the way back
* to the backup start point. It seems prudent though to just rename
* the file out of the way rather than delete it completely.
*/
if (haveBackupLabel)
{
unlink(BACKUP_LABEL_OLD);
if (rename(BACKUP_LABEL_FILE, BACKUP_LABEL_OLD) != 0)
ereport(FATAL,
(errcode_for_file_access(),
errmsg("could not rename file \"%s\" to \"%s\": %m",
BACKUP_LABEL_FILE, BACKUP_LABEL_OLD)));
}
/* Check that the GUCs used to generate the WAL allow recovery */
CheckRequiredParameterValues();
/*
* We're in recovery, so unlogged relations relations may be trashed
2011-04-10 17:42:00 +02:00
* and must be reset. This should be done BEFORE allowing Hot Standby
* connections, so that read-only backends don't try to read whatever
* garbage is left over from before.
*/
ResetUnloggedRelations(UNLOGGED_RELATION_CLEANUP);
/*
* Likewise, delete any saved transaction snapshot files that got
* left behind by crashed backends.
*/
DeleteAllExportedSnapshotFiles();
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
2010-07-06 21:19:02 +02:00
* Initialize for Hot Standby, if enabled. We won't let backends in
* yet, not until we've reached the min recovery point specified in
2010-02-26 03:01:40 +01:00
* control file and we've established a recovery snapshot from a
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
* running-xacts WAL record.
*/
if (InArchiveRecovery && EnableHotStandby)
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
{
TransactionId *xids;
2010-02-26 03:01:40 +01:00
int nxids;
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
ereport(DEBUG1,
(errmsg("initializing for hot standby")));
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
InitRecoveryTransactionEnvironment();
if (wasShutdown)
oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
else
oldestActiveXID = checkPoint.oldestActiveXid;
Assert(TransactionIdIsValid(oldestActiveXID));
/*
* Startup commit log and subtrans only. Other SLRUs are not
* maintained during recovery and need not be started yet.
*/
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
StartupCLOG();
StartupSUBTRANS(oldestActiveXID);
/*
* If we're beginning at a shutdown checkpoint, we know that
2010-07-06 21:19:02 +02:00
* nothing was running on the master at this point. So fake-up an
* empty running-xacts record and use that here and now. Recover
* additional standby state for prepared transactions.
*/
if (wasShutdown)
{
RunningTransactionsData running;
TransactionId latestCompletedXid;
/*
2010-07-06 21:19:02 +02:00
* Construct a RunningTransactions snapshot representing a
* shut down server, with only prepared transactions still
* alive. We're never overflowed at this point because all
* subxids are listed with their parent prepared transactions.
*/
running.xcnt = nxids;
running.subxid_overflow = false;
running.nextXid = checkPoint.nextXid;
running.oldestRunningXid = oldestActiveXID;
latestCompletedXid = checkPoint.nextXid;
TransactionIdRetreat(latestCompletedXid);
Assert(TransactionIdIsNormal(latestCompletedXid));
running.latestCompletedXid = latestCompletedXid;
running.xids = xids;
ProcArrayApplyRecoveryInfo(&running);
StandbyRecoverPreparedTransactions(false);
}
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
}
/* Initialize resource managers */
for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
{
if (RmgrTable[rmid].rm_startup != NULL)
RmgrTable[rmid].rm_startup();
}
/*
* Initialize shared replayEndRecPtr, recoveryLastRecPtr, and
* recoveryLastXTime.
*
* This is slightly confusing if we're starting from an online
2010-07-06 21:19:02 +02:00
* checkpoint; we've just read and replayed the chekpoint record, but
* we're going to start replay from its redo pointer, which precedes
* the location of the checkpoint record itself. So even though the
* last record we've replayed is indeed ReadRecPtr, we haven't
* replayed all the preceding records yet. That's OK for the current
* use of these variables.
*/
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->replayEndRecPtr = ReadRecPtr;
xlogctl->recoveryLastRecPtr = EndRecPtr;
xlogctl->recoveryLastXTime = 0;
xlogctl->currentChunkStartTime = 0;
xlogctl->recoveryPause = false;
SpinLockRelease(&xlogctl->info_lck);
/* Also ensure XLogReceiptTime has a sane value */
XLogReceiptTime = GetCurrentTimestamp();
/*
2010-07-06 21:19:02 +02:00
* Let postmaster know we've started redo now, so that it can launch
* checkpointer to perform restartpoints. We don't bother during crash
2010-07-06 21:19:02 +02:00
* recovery as restartpoints can only be performed during archive
* recovery. And we'd like to keep crash recovery simple, to avoid
* introducing bugs that could affect you when recovering after crash.
*
* After this point, we can no longer assume that we're the only
* process in addition to postmaster! Also, fsync requests are
* subsequently to be handled by the checkpointer, not locally.
*/
if (InArchiveRecovery && IsUnderPostmaster)
{
PublishStartupProcessInformation();
SetForwardFsyncRequests();
SendPostmasterSignal(PMSIGNAL_RECOVERY_STARTED);
bgwriterLaunched = true;
}
/*
2010-07-06 21:19:02 +02:00
* Allow read-only connections immediately if we're consistent
* already.
*/
CheckRecoveryConsistency();
/*
2005-10-15 04:49:52 +02:00
* Find the first record that logically follows the checkpoint --- it
* might physically precede it, though.
*/
if (XLByteLT(checkPoint.redo, RecPtr))
{
/* back up to find the record */
record = ReadRecord(&(checkPoint.redo), PANIC, false);
}
2001-03-22 05:01:46 +01:00
else
{
/* just have to read next record after CheckPoint */
record = ReadRecord(NULL, LOG, false);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (record != NULL)
{
bool recoveryContinue = true;
bool recoveryApply = true;
bool recoveryPause = false;
2006-10-04 02:30:14 +02:00
ErrorContextCallback errcontext;
TimestampTz xtime;
2000-10-28 18:21:00 +02:00
InRedo = true;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
ereport(LOG,
(errmsg("redo starts at %X/%X",
ReadRecPtr.xlogid, ReadRecPtr.xrecoff)));
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* main redo apply loop
*/
do
{
#ifdef WAL_DEBUG
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
if (XLOG_DEBUG ||
2010-02-26 03:01:40 +01:00
(rmid == RM_XACT_ID && trace_recovery_messages <= DEBUG2) ||
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
(rmid != RM_XACT_ID && trace_recovery_messages <= DEBUG3))
2000-10-21 17:43:36 +02:00
{
2006-10-04 02:30:14 +02:00
StringInfoData buf;
2000-10-21 17:43:36 +02:00
initStringInfo(&buf);
appendStringInfo(&buf, "REDO @ %X/%X; LSN %X/%X: ",
2006-10-04 02:30:14 +02:00
ReadRecPtr.xlogid, ReadRecPtr.xrecoff,
EndRecPtr.xlogid, EndRecPtr.xrecoff);
xlog_outrec(&buf, record);
appendStringInfo(&buf, " - ");
RmgrTable[record->xl_rmid].rm_desc(&buf,
record->xl_info,
2006-10-04 02:30:14 +02:00
XLogRecGetData(record));
elog(LOG, "%s", buf.data);
pfree(buf.data);
2000-10-21 17:43:36 +02:00
}
#endif
2000-10-21 17:43:36 +02:00
/* Handle interrupt signals of startup process */
HandleStartupProcInterrupts();
/* Allow read-only connections if we're consistent now */
CheckRecoveryConsistency();
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* Have we reached our recovery target?
*/
if (recoveryStopsHere(record, &recoveryApply))
{
/*
2011-04-10 17:42:00 +02:00
* Pause only if users can connect to send a resume
* message
*/
if (recoveryPauseAtTarget && standbyState == STANDBY_SNAPSHOT_READY)
{
SetRecoveryPause(true);
recoveryPausesHere();
}
2007-11-15 22:14:46 +01:00
reachedStopPoint = true; /* see below */
recoveryContinue = false;
if (!recoveryApply)
break;
}
/* Setup error traceback support for ereport() */
errcontext.callback = rm_redo_error_callback;
errcontext.arg = (void *) record;
errcontext.previous = error_context_stack;
error_context_stack = &errcontext;
/*
* ShmemVariableCache->nextXid must be beyond record's xid.
*
* We don't expect anyone else to modify nextXid, hence we
* don't need to hold a lock while examining it. We still
* acquire the lock to modify it, though.
*/
if (TransactionIdFollowsOrEquals(record->xl_xid,
2005-10-15 04:49:52 +02:00
ShmemVariableCache->nextXid))
{
LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
ShmemVariableCache->nextXid = record->xl_xid;
TransactionIdAdvance(ShmemVariableCache->nextXid);
LWLockRelease(XidGenLock);
}
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* Update shared replayEndRecPtr before replaying this record,
* so that XLogFlush will update minRecoveryPoint correctly.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->replayEndRecPtr = EndRecPtr;
recoveryPause = xlogctl->recoveryPause;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
SpinLockRelease(&xlogctl->info_lck);
/*
* Pause only if users can connect to send a resume message
*/
if (recoveryPause && standbyState == STANDBY_SNAPSHOT_READY)
recoveryPausesHere();
2010-07-06 21:19:02 +02:00
/*
* If we are attempting to enter Hot Standby mode, process
* XIDs we see
*/
if (standbyState >= STANDBY_INITIALIZED &&
TransactionIdIsValid(record->xl_xid))
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
RecordKnownAssignedTransactionIds(record->xl_xid);
/* Now apply the WAL record itself */
RmgrTable[record->xl_rmid].rm_redo(EndRecPtr, record);
/* Pop the error context stack */
error_context_stack = errcontext.previous;
if (!XLogRecPtrIsInvalid(ControlFile->backupStartPoint) &&
XLByteLE(ControlFile->backupEndPoint, EndRecPtr))
{
/*
* We have reached the end of base backup, the point where
* the minimum recovery point in pg_control indicates.
* The data on disk is now consistent. Reset backupStartPoint
* and backupEndPoint.
*/
elog(DEBUG1, "end of backup reached");
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
MemSet(&ControlFile->backupStartPoint, 0, sizeof(XLogRecPtr));
MemSet(&ControlFile->backupEndPoint, 0, sizeof(XLogRecPtr));
ControlFile->backupEndRequired = false;
UpdateControlFile();
LWLockRelease(ControlFileLock);
}
/*
* Update shared recoveryLastRecPtr after this record has been
* replayed.
*/
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->recoveryLastRecPtr = EndRecPtr;
SpinLockRelease(&xlogctl->info_lck);
LastRec = ReadRecPtr;
record = ReadRecord(NULL, LOG, false);
} while (record != NULL && recoveryContinue);
2004-08-29 07:07:03 +02:00
/*
* end of main redo apply loop
*/
ereport(LOG,
(errmsg("redo done at %X/%X",
ReadRecPtr.xlogid, ReadRecPtr.xrecoff)));
xtime = GetLatestXTime();
if (xtime)
ereport(LOG,
2007-11-15 22:14:46 +01:00
(errmsg("last completed transaction was at log time %s",
timestamptz_to_str(xtime))));
2000-10-28 18:21:00 +02:00
InRedo = false;
}
else
{
/* there are no WAL records following the checkpoint */
ereport(LOG,
(errmsg("redo is not required")));
}
2000-10-28 18:21:00 +02:00
}
/*
* Kill WAL receiver, if it's still running, before we continue to write
* the startup checkpoint record. It will trump over the checkpoint and
* subsequent records if it's still alive when we start writing WAL.
*/
ShutdownWalRcv();
/*
* We don't need the latch anymore. It's not strictly necessary to disown
* it, but let's do it for the sake of tidiness.
*/
if (StandbyMode)
DisownLatch(&XLogCtl->recoveryWakeupLatch);
/*
* We are now done reading the xlog from stream. Turn off streaming
2010-02-26 03:01:40 +01:00
* recovery to force fetching the files (which would be required at end of
* recovery, e.g., timeline history file) from archive or pg_xlog.
*/
StandbyMode = false;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Re-fetch the last valid or last applied record, so we can identify the
* exact endpoint of what we consider the valid portion of WAL.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
record = ReadRecord(&LastRec, PANIC, false);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
EndOfLog = EndRecPtr;
XLByteToPrevSeg(EndOfLog, endLogId, endLogSeg);
/*
* Complain if we did not roll forward far enough to render the backup
* dump consistent. Note: it is indeed okay to look at the local variable
* minRecoveryPoint here, even though ControlFile->minRecoveryPoint might
* be further ahead --- ControlFile->minRecoveryPoint cannot have been
* advanced beyond the WAL we processed.
*/
if (InRecovery &&
(XLByteLT(EndOfLog, minRecoveryPoint) ||
!XLogRecPtrIsInvalid(ControlFile->backupStartPoint)))
{
if (reachedStopPoint)
{
/* stopped because of stop request */
ereport(FATAL,
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
(errmsg("requested recovery stop point is before consistent recovery point")));
}
2011-06-09 20:32:50 +02:00
/*
2011-06-09 20:32:50 +02:00
* Ran off end of WAL before reaching end-of-backup WAL record, or
* minRecoveryPoint. That's usually a bad sign, indicating that you
* tried to recover from an online backup but never called
* pg_stop_backup(), or you didn't archive all the WAL up to that
2011-06-09 20:32:50 +02:00
* point. However, this also happens in crash recovery, if the system
* crashes while an online backup is in progress. We must not treat
* that as an error, or the database will refuse to start up.
*/
if (InArchiveRecovery || ControlFile->backupEndRequired)
{
if (ControlFile->backupEndRequired)
ereport(FATAL,
(errmsg("WAL ends before end of online backup"),
errhint("All WAL generated while online backup was taken must be available at recovery.")));
else if (!XLogRecPtrIsInvalid(ControlFile->backupStartPoint))
ereport(FATAL,
(errmsg("WAL ends before end of online backup"),
errhint("Online backup started with pg_start_backup() must be ended with pg_stop_backup(), and all WAL up to that point must be available at recovery.")));
else
ereport(FATAL,
2011-06-09 20:32:50 +02:00
(errmsg("WAL ends before consistent recovery point")));
}
}
/*
* Consider whether we need to assign a new timeline ID.
*
2007-11-15 22:14:46 +01:00
* If we are doing an archive recovery, we always assign a new ID. This
* handles a couple of issues. If we stopped short of the end of WAL
* during recovery, then we are clearly generating a new timeline and must
* assign it a unique new ID. Even if we ran to the end, modifying the
2007-11-15 22:14:46 +01:00
* current last segment is problematic because it may result in trying to
* overwrite an already-archived copy of that segment, and we encourage
* DBAs to make their archive_commands reject that. We can dodge the
* problem by making the new active segment have a new timeline ID.
*
* In a normal crash recovery, we can just extend the timeline we were in.
*/
if (InArchiveRecovery)
{
ThisTimeLineID = findNewestTimeLine(recoveryTargetTLI) + 1;
ereport(LOG,
(errmsg("selected new timeline ID: %u", ThisTimeLineID)));
writeTimeLineHistory(ThisTimeLineID, recoveryTargetTLI,
curFileTLI, endLogId, endLogSeg);
}
/* Save the selected TimeLineID in shared memory, too */
XLogCtl->ThisTimeLineID = ThisTimeLineID;
/*
2005-10-15 04:49:52 +02:00
* We are now done reading the old WAL. Turn off archive fetching if it
* was active, and make a writable copy of the last WAL segment. (Note
* that we also have a copy of the last block of the old WAL in readBuf;
* we will use that below.)
*/
if (InArchiveRecovery)
exitArchiveRecovery(curFileTLI, endLogId, endLogSeg);
/*
* Prepare to write WAL starting at EndOfLog position, and init xlog
* buffer cache using the block containing the last record from the
* previous incarnation.
*/
openLogId = endLogId;
openLogSeg = endLogSeg;
openLogFile = XLogFileOpen(openLogId, openLogSeg);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
openLogOff = 0;
2000-10-28 18:21:00 +02:00
Insert = &XLogCtl->Insert;
Insert->PrevRecord = LastRec;
XLogCtl->xlblocks[0].xlogid = openLogId;
XLogCtl->xlblocks[0].xrecoff =
((EndOfLog.xrecoff - 1) / XLOG_BLCKSZ + 1) * XLOG_BLCKSZ;
2001-03-22 05:01:46 +01:00
/*
2005-10-15 04:49:52 +02:00
* Tricky point here: readBuf contains the *last* block that the LastRec
* record spans, not the one it starts in. The last block is indeed the
* one we want to use.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
Assert(readOff == (XLogCtl->xlblocks[0].xrecoff - XLOG_BLCKSZ) % XLogSegSize);
memcpy((char *) Insert->currpage, readBuf, XLOG_BLCKSZ);
Insert->currpos = (char *) Insert->currpage +
(EndOfLog.xrecoff + XLOG_BLCKSZ - XLogCtl->xlblocks[0].xrecoff);
2000-10-28 18:21:00 +02:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
LogwrtResult.Write = LogwrtResult.Flush = EndOfLog;
2000-10-28 18:21:00 +02:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
XLogCtl->Write.LogwrtResult = LogwrtResult;
Insert->LogwrtResult = LogwrtResult;
XLogCtl->LogwrtResult = LogwrtResult;
2000-10-28 18:21:00 +02:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
XLogCtl->LogwrtRqst.Write = EndOfLog;
XLogCtl->LogwrtRqst.Flush = EndOfLog;
freespace = INSERT_FREESPACE(Insert);
if (freespace > 0)
{
/* Make sure rest of page is zero */
MemSet(Insert->currpos, 0, freespace);
XLogCtl->Write.curridx = 0;
}
else
{
/*
2005-10-15 04:49:52 +02:00
* Whenever Write.LogwrtResult points to exactly the end of a page,
* Write.curridx must point to the *next* page (see XLogWrite()).
*
2003-08-04 02:43:34 +02:00
* Note: it might seem we should do AdvanceXLInsertBuffer() here, but
2004-08-29 07:07:03 +02:00
* this is sufficient. The first actual attempt to insert a log
* record will advance the insert state.
*/
XLogCtl->Write.curridx = NextBufIdx(0);
}
/* Pre-scan prepared transactions to find out the range of XIDs present */
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
oldestActiveXID = PrescanPreparedTransactions(NULL, NULL);
/*
* Update full_page_writes in shared memory and write an
* XLOG_FPW_CHANGE record before resource manager writes cleanup
* WAL records or checkpoint record is written.
*/
Insert->fullPageWrites = lastFullPageWrites;
LocalSetXLogInsertAllowed();
UpdateFullPageWrites();
LocalXLogInsertAllowed = -1;
2000-10-28 18:21:00 +02:00
if (InRecovery)
{
2003-08-04 02:43:34 +02:00
int rmid;
/*
* Resource managers might need to write WAL records, eg, to record
* index cleanup actions. So temporarily enable XLogInsertAllowed in
* this process only.
*/
LocalSetXLogInsertAllowed();
/*
* Allow resource managers to do any required cleanup.
*/
for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
{
if (RmgrTable[rmid].rm_cleanup != NULL)
RmgrTable[rmid].rm_cleanup();
}
/* Disallow XLogInsert again */
LocalXLogInsertAllowed = -1;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Perform a checkpoint to update all our recovery activity to disk.
*
* Note that we write a shutdown checkpoint rather than an on-line
* one. This is not particularly critical, but since we may be
* assigning a new TLI, using a shutdown checkpoint allows us to have
* the rule that TLI only changes in shutdown checkpoints, which
* allows some extra error checking in xlog_redo.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
if (bgwriterLaunched)
RequestCheckpoint(CHECKPOINT_END_OF_RECOVERY |
CHECKPOINT_IMMEDIATE |
CHECKPOINT_WAIT);
else
CreateCheckPoint(CHECKPOINT_END_OF_RECOVERY | CHECKPOINT_IMMEDIATE);
2009-05-14 23:28:35 +02:00
/*
* And finally, execute the recovery_end_command, if any.
*/
if (recoveryEndCommand)
ExecuteRecoveryCommand(recoveryEndCommand,
"recovery_end_command",
true);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Preallocate additional log files, if wanted.
*/
PreallocXlogFiles(EndOfLog);
/*
* Reset initial contents of unlogged relations. This has to be done
* AFTER recovery is complete so that any unlogged relations created
* during recovery also get picked up.
*/
if (InRecovery)
ResetUnloggedRelations(UNLOGGED_RELATION_INIT);
/*
* Okay, we're officially UP.
*/
2000-10-28 18:21:00 +02:00
InRecovery = false;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->state = DB_IN_PRODUCTION;
ControlFile->time = (pg_time_t) time(NULL);
UpdateControlFile();
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LWLockRelease(ControlFileLock);
/* start the archive_timeout timer running */
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
XLogCtl->Write.lastSegSwitchTime = (pg_time_t) time(NULL);
/* initialize shared-memory copy of latest checkpoint XID/epoch */
XLogCtl->ckptXidEpoch = ControlFile->checkPointCopy.nextXidEpoch;
XLogCtl->ckptXid = ControlFile->checkPointCopy.nextXid;
/* also initialize latestCompletedXid, to nextXid - 1 */
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
ShmemVariableCache->latestCompletedXid = ShmemVariableCache->nextXid;
TransactionIdRetreat(ShmemVariableCache->latestCompletedXid);
LWLockRelease(ProcArrayLock);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
* Start up the commit log and subtrans, if not already done for
* hot standby.
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
*/
if (standbyState == STANDBY_DISABLED)
{
StartupCLOG();
StartupSUBTRANS(oldestActiveXID);
}
/*
* Perform end of recovery actions for any SLRUs that need it.
*/
StartupMultiXact();
TrimCLOG();
/* Reload shared-memory state for prepared transactions */
RecoverPreparedTransactions();
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
* Shutdown the recovery environment. This must occur after
* RecoverPreparedTransactions(), see notes for lock_twophase_recover()
*/
if (standbyState != STANDBY_DISABLED)
ShutdownRecoveryTransactionEnvironment();
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Shut down readFile facility, free space */
if (readFile >= 0)
{
close(readFile);
readFile = -1;
}
if (readBuf)
{
free(readBuf);
readBuf = NULL;
}
if (readRecordBuf)
{
free(readRecordBuf);
readRecordBuf = NULL;
readRecordBufSize = 0;
}
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* If any of the critical GUCs have changed, log them before we allow
* backends to write WAL.
*/
LocalSetXLogInsertAllowed();
XLogReportParameters();
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
2010-02-26 03:01:40 +01:00
* All done. Allow backends to write WAL. (Although the bool flag is
* probably atomic in itself, we use the info_lck here to ensure that
* there are no race conditions concerning visibility of other recent
* updates to shared memory.)
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->SharedRecoveryInProgress = false;
SpinLockRelease(&xlogctl->info_lck);
}
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
}
/*
* Checks if recovery has reached a consistent state. When consistency is
* reached and we have a valid starting standby snapshot, tell postmaster
* that it can start accepting read-only connections.
*/
static void
CheckRecoveryConsistency(void)
{
/*
* During crash recovery, we don't reach a consistent state until we've
* replayed all the WAL.
*/
if (XLogRecPtrIsInvalid(minRecoveryPoint))
return;
/*
* Have we passed our safe starting point?
*/
if (!reachedConsistency &&
XLByteLE(minRecoveryPoint, EndRecPtr) &&
XLogRecPtrIsInvalid(ControlFile->backupStartPoint))
{
/*
* Check to see if the XLOG sequence contained any unresolved
* references to uninitialized pages.
*/
XLogCheckInvalidPages();
reachedConsistency = true;
ereport(LOG,
(errmsg("consistent recovery state reached at %X/%X",
EndRecPtr.xlogid, EndRecPtr.xrecoff)));
}
/*
2010-07-06 21:19:02 +02:00
* Have we got a valid starting snapshot that will allow queries to be
* run? If so, we can tell postmaster that the database is consistent now,
* enabling connections.
*/
if (standbyState == STANDBY_SNAPSHOT_READY &&
!LocalHotStandbyActive &&
reachedConsistency &&
IsUnderPostmaster)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->SharedHotStandbyActive = true;
SpinLockRelease(&xlogctl->info_lck);
LocalHotStandbyActive = true;
SendPostmasterSignal(PMSIGNAL_BEGIN_HOT_STANDBY);
}
}
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* Is the system still in recovery?
*
* Unlike testing InRecovery, this works in any process that's connected to
* shared memory.
*
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
* As a side-effect, we initialize the local TimeLineID and RedoRecPtr
* variables the first time we see that recovery is finished.
*/
bool
RecoveryInProgress(void)
{
/*
2010-02-26 03:01:40 +01:00
* We check shared state each time only until we leave recovery mode. We
* can't re-enter recovery, so there's no need to keep checking after the
* shared variable has once been seen false.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
if (!LocalRecoveryInProgress)
return false;
else
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
/* spinlock is essential on machines with weak memory ordering! */
SpinLockAcquire(&xlogctl->info_lck);
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LocalRecoveryInProgress = xlogctl->SharedRecoveryInProgress;
SpinLockRelease(&xlogctl->info_lck);
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* Initialize TimeLineID and RedoRecPtr when we discover that recovery
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
* is finished. InitPostgres() relies upon this behaviour to ensure
2010-02-26 03:01:40 +01:00
* that InitXLOGAccess() is called at backend startup. (If you change
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
* this, see also LocalSetXLogInsertAllowed.)
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
if (!LocalRecoveryInProgress)
InitXLOGAccess();
return LocalRecoveryInProgress;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
/*
* Is HotStandby active yet? This is only important in special backends
* since normal backends won't ever be able to connect until this returns
* true. Postmaster knows this by way of signal, not via shared memory.
*
* Unlike testing standbyState, this works in any process that's connected to
* shared memory.
*/
bool
HotStandbyActive(void)
{
/*
* We check shared state each time only until Hot Standby is active. We
2011-04-10 17:42:00 +02:00
* can't de-activate Hot Standby, so there's no need to keep checking
* after the shared variable has once been seen true.
*/
if (LocalHotStandbyActive)
return true;
else
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
/* spinlock is essential on machines with weak memory ordering! */
SpinLockAcquire(&xlogctl->info_lck);
LocalHotStandbyActive = xlogctl->SharedHotStandbyActive;
SpinLockRelease(&xlogctl->info_lck);
return LocalHotStandbyActive;
}
}
/*
* Is this process allowed to insert new WAL records?
*
* Ordinarily this is essentially equivalent to !RecoveryInProgress().
* But we also have provisions for forcing the result "true" or "false"
* within specific processes regardless of the global state.
*/
bool
XLogInsertAllowed(void)
{
/*
2010-02-26 03:01:40 +01:00
* If value is "unconditionally true" or "unconditionally false", just
* return it. This provides the normal fast path once recovery is known
* done.
*/
if (LocalXLogInsertAllowed >= 0)
return (bool) LocalXLogInsertAllowed;
/*
* Else, must check to see if we're still in recovery.
*/
if (RecoveryInProgress())
return false;
/*
2010-02-26 03:01:40 +01:00
* On exit from recovery, reset to "unconditionally true", since there is
* no need to keep checking.
*/
LocalXLogInsertAllowed = 1;
return true;
}
/*
* Make XLogInsertAllowed() return true in the current process only.
*
* Note: it is allowed to switch LocalXLogInsertAllowed back to -1 later,
* and even call LocalSetXLogInsertAllowed() again after that.
*/
static void
LocalSetXLogInsertAllowed(void)
{
Assert(LocalXLogInsertAllowed == -1);
LocalXLogInsertAllowed = 1;
/* Initialize as RecoveryInProgress() would do when switching state */
InitXLOGAccess();
}
/*
* Subroutine to try to fetch and validate a prior checkpoint record.
*
* whichChkpt identifies the checkpoint (merely for reporting purposes).
* 1 for "primary", 2 for "secondary", 0 for "other" (backup_label)
*/
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
static XLogRecord *
ReadCheckpointRecord(XLogRecPtr RecPtr, int whichChkpt)
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
XLogRecord *record;
if (!XRecOffIsValid(RecPtr.xrecoff))
{
switch (whichChkpt)
{
case 1:
ereport(LOG,
2005-10-15 04:49:52 +02:00
(errmsg("invalid primary checkpoint link in control file")));
break;
case 2:
ereport(LOG,
(errmsg("invalid secondary checkpoint link in control file")));
break;
default:
ereport(LOG,
2005-10-15 04:49:52 +02:00
(errmsg("invalid checkpoint link in backup_label file")));
break;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
return NULL;
}
record = ReadRecord(&RecPtr, LOG, true);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (record == NULL)
{
switch (whichChkpt)
{
case 1:
ereport(LOG,
(errmsg("invalid primary checkpoint record")));
break;
case 2:
ereport(LOG,
(errmsg("invalid secondary checkpoint record")));
break;
default:
ereport(LOG,
(errmsg("invalid checkpoint record")));
break;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
return NULL;
}
if (record->xl_rmid != RM_XLOG_ID)
{
switch (whichChkpt)
{
case 1:
ereport(LOG,
(errmsg("invalid resource manager ID in primary checkpoint record")));
break;
case 2:
ereport(LOG,
(errmsg("invalid resource manager ID in secondary checkpoint record")));
break;
default:
ereport(LOG,
2005-10-15 04:49:52 +02:00
(errmsg("invalid resource manager ID in checkpoint record")));
break;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
return NULL;
}
if (record->xl_info != XLOG_CHECKPOINT_SHUTDOWN &&
record->xl_info != XLOG_CHECKPOINT_ONLINE)
{
switch (whichChkpt)
{
case 1:
ereport(LOG,
2005-10-15 04:49:52 +02:00
(errmsg("invalid xl_info in primary checkpoint record")));
break;
case 2:
ereport(LOG,
2005-10-15 04:49:52 +02:00
(errmsg("invalid xl_info in secondary checkpoint record")));
break;
default:
ereport(LOG,
(errmsg("invalid xl_info in checkpoint record")));
break;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
return NULL;
}
if (record->xl_len != sizeof(CheckPoint) ||
record->xl_tot_len != SizeOfXLogRecord + sizeof(CheckPoint))
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
switch (whichChkpt)
{
case 1:
ereport(LOG,
2005-10-15 04:49:52 +02:00
(errmsg("invalid length of primary checkpoint record")));
break;
case 2:
ereport(LOG,
2005-10-15 04:49:52 +02:00
(errmsg("invalid length of secondary checkpoint record")));
break;
default:
ereport(LOG,
(errmsg("invalid length of checkpoint record")));
break;
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
return NULL;
}
return record;
}
2000-10-21 17:43:36 +02:00
/*
* This must be called during startup of a backend process, except that
* it need not be called in a standalone backend (which does StartupXLOG
* instead). We need to initialize the local copies of ThisTimeLineID and
* RedoRecPtr.
*
* Note: before Postgres 8.0, we went to some effort to keep the postmaster
* process's copies of ThisTimeLineID and RedoRecPtr valid too. This was
* unnecessary however, since the postmaster itself never touches XLOG anyway.
2000-10-21 17:43:36 +02:00
*/
void
InitXLOGAccess(void)
2000-10-21 17:43:36 +02:00
{
/* ThisTimeLineID doesn't change so we need no lock to copy it */
ThisTimeLineID = XLogCtl->ThisTimeLineID;
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
Assert(ThisTimeLineID != 0 || IsBootstrapProcessingMode());
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/* Use GetRedoRecPtr to copy the RedoRecPtr safely */
(void) GetRedoRecPtr();
}
/*
* Once spawned, a backend may update its local RedoRecPtr from
* XLogCtl->Insert.RedoRecPtr; it must hold the insert lock or info_lck
* to do so. This is done in XLogInsert() or GetRedoRecPtr().
*/
XLogRecPtr
GetRedoRecPtr(void)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
Assert(XLByteLE(RedoRecPtr, xlogctl->Insert.RedoRecPtr));
RedoRecPtr = xlogctl->Insert.RedoRecPtr;
SpinLockRelease(&xlogctl->info_lck);
return RedoRecPtr;
2000-10-21 17:43:36 +02:00
}
/*
* GetInsertRecPtr -- Returns the current insert position.
*
* NOTE: The value *actually* returned is the position of the last full
* xlog page. It lags behind the real insert position by at most 1 page.
* For that, we don't need to acquire WALInsertLock which can be quite
* heavily contended, and an approximation is enough for the current
* usage of this function.
*/
XLogRecPtr
GetInsertRecPtr(void)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
2007-11-15 22:14:46 +01:00
XLogRecPtr recptr;
SpinLockAcquire(&xlogctl->info_lck);
recptr = xlogctl->LogwrtRqst.Write;
SpinLockRelease(&xlogctl->info_lck);
return recptr;
}
/*
* GetFlushRecPtr -- Returns the current flush position, ie, the last WAL
* position known to be fsync'd to disk.
*/
XLogRecPtr
GetFlushRecPtr(void)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
XLogRecPtr recptr;
SpinLockAcquire(&xlogctl->info_lck);
recptr = xlogctl->LogwrtResult.Flush;
SpinLockRelease(&xlogctl->info_lck);
return recptr;
}
/*
* Get the time of the last xlog segment switch
*/
pg_time_t
GetLastSegSwitchTime(void)
{
pg_time_t result;
/* Need WALWriteLock, but shared lock is sufficient */
LWLockAcquire(WALWriteLock, LW_SHARED);
result = XLogCtl->Write.lastSegSwitchTime;
LWLockRelease(WALWriteLock);
return result;
}
/*
* GetNextXidAndEpoch - get the current nextXid value and associated epoch
*
* This is exported for use by code that would like to have 64-bit XIDs.
* We don't really support such things, but all XIDs within the system
* can be presumed "close to" the result, and thus the epoch associated
* with them can be determined.
*/
void
GetNextXidAndEpoch(TransactionId *xid, uint32 *epoch)
{
2006-10-04 02:30:14 +02:00
uint32 ckptXidEpoch;
TransactionId ckptXid;
TransactionId nextXid;
/* Must read checkpoint info first, else have race condition */
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
ckptXidEpoch = xlogctl->ckptXidEpoch;
ckptXid = xlogctl->ckptXid;
SpinLockRelease(&xlogctl->info_lck);
}
/* Now fetch current nextXid */
nextXid = ReadNewTransactionId();
/*
* nextXid is certainly logically later than ckptXid. So if it's
* numerically less, it must have wrapped into the next epoch.
*/
if (nextXid < ckptXid)
ckptXidEpoch++;
*xid = nextXid;
*epoch = ckptXidEpoch;
}
/*
* GetRecoveryTargetTLI - get the recovery target timeline ID
*/
TimeLineID
GetRecoveryTargetTLI(void)
{
/* RecoveryTargetTLI doesn't change so we need no lock to copy it */
return XLogCtl->RecoveryTargetTLI;
}
/*
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
* This must be called ONCE during postmaster or standalone-backend shutdown
*/
void
ShutdownXLOG(int code, Datum arg)
{
ereport(LOG,
(errmsg("shutting down")));
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
if (RecoveryInProgress())
CreateRestartPoint(CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_IMMEDIATE);
else
{
/*
* If archiving is enabled, rotate the last XLOG file so that all the
* remaining records are archived (postmaster wakes up the archiver
* process one more time at the end of shutdown). The checkpoint
* record will go to the next XLOG file and won't be archived (yet).
*/
if (XLogArchivingActive() && XLogArchiveCommandSet())
RequestXLogSwitch();
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
CreateCheckPoint(CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_IMMEDIATE);
}
ShutdownCLOG();
ShutdownSUBTRANS();
ShutdownMultiXact();
ereport(LOG,
(errmsg("database system is shut down")));
}
/*
* Log start of a checkpoint.
*/
static void
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LogCheckpointStart(int flags, bool restartpoint)
{
const char *msg;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* XXX: This is hopelessly untranslatable. We could call gettext_noop for
* the main message, but what about all the flags?
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
if (restartpoint)
msg = "restartpoint starting:%s%s%s%s%s%s%s";
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
else
msg = "checkpoint starting:%s%s%s%s%s%s%s";
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
elog(LOG, msg,
(flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
(flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
(flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "",
(flags & CHECKPOINT_FORCE) ? " force" : "",
(flags & CHECKPOINT_WAIT) ? " wait" : "",
(flags & CHECKPOINT_CAUSE_XLOG) ? " xlog" : "",
(flags & CHECKPOINT_CAUSE_TIME) ? " time" : "");
}
/*
* Log end of a checkpoint.
*/
static void
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LogCheckpointEnd(bool restartpoint)
{
2007-11-15 22:14:46 +01:00
long write_secs,
sync_secs,
total_secs,
longest_secs,
average_secs;
2007-11-15 22:14:46 +01:00
int write_usecs,
sync_usecs,
total_usecs,
longest_usecs,
average_usecs;
uint64 average_sync_time;
CheckpointStats.ckpt_end_t = GetCurrentTimestamp();
TimestampDifference(CheckpointStats.ckpt_start_t,
CheckpointStats.ckpt_end_t,
&total_secs, &total_usecs);
TimestampDifference(CheckpointStats.ckpt_write_t,
CheckpointStats.ckpt_sync_t,
&write_secs, &write_usecs);
TimestampDifference(CheckpointStats.ckpt_sync_t,
CheckpointStats.ckpt_sync_end_t,
&sync_secs, &sync_usecs);
/*
* Timing values returned from CheckpointStats are in microseconds.
* Convert to the second plus microsecond form that TimestampDifference
* returns for homogeneous printing.
*/
longest_secs = (long) (CheckpointStats.ckpt_longest_sync / 1000000);
longest_usecs = CheckpointStats.ckpt_longest_sync -
2011-04-10 17:42:00 +02:00
(uint64) longest_secs *1000000;
average_sync_time = 0;
2011-04-10 17:42:00 +02:00
if (CheckpointStats.ckpt_sync_rels > 0)
average_sync_time = CheckpointStats.ckpt_agg_sync_time /
CheckpointStats.ckpt_sync_rels;
average_secs = (long) (average_sync_time / 1000000);
2011-04-10 17:42:00 +02:00
average_usecs = average_sync_time - (uint64) average_secs *1000000;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
if (restartpoint)
elog(LOG, "restartpoint complete: wrote %d buffers (%.1f%%); "
"%d transaction log file(s) added, %d removed, %d recycled; "
"write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s; "
"sync files=%d, longest=%ld.%03d s, average=%ld.%03d s",
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
CheckpointStats.ckpt_bufs_written,
(double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers,
CheckpointStats.ckpt_segs_added,
CheckpointStats.ckpt_segs_removed,
CheckpointStats.ckpt_segs_recycled,
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
write_secs, write_usecs / 1000,
sync_secs, sync_usecs / 1000,
total_secs, total_usecs / 1000,
CheckpointStats.ckpt_sync_rels,
longest_secs, longest_usecs / 1000,
average_secs, average_usecs / 1000);
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
else
elog(LOG, "checkpoint complete: wrote %d buffers (%.1f%%); "
"%d transaction log file(s) added, %d removed, %d recycled; "
"write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s; "
"sync files=%d, longest=%ld.%03d s, average=%ld.%03d s",
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
CheckpointStats.ckpt_bufs_written,
(double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers,
CheckpointStats.ckpt_segs_added,
CheckpointStats.ckpt_segs_removed,
CheckpointStats.ckpt_segs_recycled,
write_secs, write_usecs / 1000,
sync_secs, sync_usecs / 1000,
total_secs, total_usecs / 1000,
CheckpointStats.ckpt_sync_rels,
longest_secs, longest_usecs / 1000,
average_secs, average_usecs / 1000);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Perform a checkpoint --- either during shutdown, or on-the-fly
*
* flags is a bitwise OR of the following:
* CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
* CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
* CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP,
* ignoring checkpoint_completion_target parameter.
* CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occured
* since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
* CHECKPOINT_END_OF_RECOVERY).
*
* Note: flags contains other bits, of interest here only for logging purposes.
* In particular note that this routine is synchronous and does not pay
* attention to CHECKPOINT_WAIT.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
void
CreateCheckPoint(int flags)
{
bool shutdown;
CheckPoint checkPoint;
XLogRecPtr recptr;
XLogCtlInsert *Insert = &XLogCtl->Insert;
2001-03-22 05:01:46 +01:00
XLogRecData rdata;
uint32 freespace;
uint32 _logId;
uint32 _logSeg;
uint32 redo_logId;
uint32 redo_logSeg;
uint32 insert_logId;
uint32 insert_logSeg;
TransactionId *inCommitXids;
int nInCommit;
/*
* An end-of-recovery checkpoint is really a shutdown checkpoint, just
* issued at a different time.
*/
if (flags & (CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_END_OF_RECOVERY))
shutdown = true;
else
shutdown = false;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/* sanity check */
if (RecoveryInProgress() && (flags & CHECKPOINT_END_OF_RECOVERY) == 0)
elog(ERROR, "can't create a checkpoint during recovery");
/*
* Acquire CheckpointLock to ensure only one checkpoint happens at a time.
* (This is just pro forma, since in the present system structure there is
* only one process that is allowed to issue checkpoints at any given
* time.)
*/
LWLockAcquire(CheckpointLock, LW_EXCLUSIVE);
/*
* Prepare to accumulate statistics.
*
* Note: because it is possible for log_checkpoints to change while a
* checkpoint proceeds, we always accumulate stats, even if
* log_checkpoints is currently off.
*/
MemSet(&CheckpointStats, 0, sizeof(CheckpointStats));
CheckpointStats.ckpt_start_t = GetCurrentTimestamp();
/*
* Use a critical section to force system panic if we have trouble.
*/
START_CRIT_SECTION();
if (shutdown)
{
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->state = DB_SHUTDOWNING;
ControlFile->time = (pg_time_t) time(NULL);
UpdateControlFile();
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LWLockRelease(ControlFileLock);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2007-11-15 22:14:46 +01:00
* Let smgr prepare for checkpoint; this has to happen before we determine
* the REDO pointer. Note that smgr must not do anything that'd have to
* be undone if we decide no checkpoint is needed.
*/
smgrpreckpt();
/* Begin filling in the checkpoint WAL record */
MemSet(&checkPoint, 0, sizeof(checkPoint));
checkPoint.time = (pg_time_t) time(NULL);
/*
* For Hot Standby, derive the oldestActiveXid before we fix the redo pointer.
* This allows us to begin accumulating changes to assemble our starting
* snapshot of locks and transactions.
*/
if (!shutdown && XLogStandbyInfoActive())
checkPoint.oldestActiveXid = GetOldestActiveTransactionId();
else
checkPoint.oldestActiveXid = InvalidTransactionId;
/*
* We must hold WALInsertLock while examining insert state to determine
* the checkpoint REDO pointer.
*/
LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* If this isn't a shutdown or forced checkpoint, and we have not switched
* to the next WAL file since the start of the last checkpoint, skip the
2005-10-15 04:49:52 +02:00
* checkpoint. The idea here is to avoid inserting duplicate checkpoints
* when the system is idle. That wastes log space, and more importantly it
* exposes us to possible loss of both current and previous checkpoint
* records if the machine crashes just as we're writing the update.
* (Perhaps it'd make even more sense to checkpoint only when the previous
* checkpoint record is in a different xlog page?)
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*
* While holding the WALInsertLock we find the current WAL insertion point
* and compare that with the starting point of the last checkpoint, which
* is the redo pointer. We use the redo pointer because the start and end
* points of a checkpoint can be hundreds of files apart on large systems
* when checkpoint writes are spread out over time.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
if ((flags & (CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_END_OF_RECOVERY |
CHECKPOINT_FORCE)) == 0)
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
XLogRecPtr curInsert;
INSERT_RECPTR(curInsert, Insert, Insert->curridx);
XLByteToSeg(curInsert, insert_logId, insert_logSeg);
XLByteToSeg(ControlFile->checkPointCopy.redo, redo_logId, redo_logSeg);
if (insert_logId == redo_logId &&
insert_logSeg == redo_logSeg)
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
{
LWLockRelease(WALInsertLock);
LWLockRelease(CheckpointLock);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
END_CRIT_SECTION();
return;
}
}
/*
* An end-of-recovery checkpoint is created before anyone is allowed to
* write WAL. To allow us to write the checkpoint record, temporarily
* enable XLogInsertAllowed. (This also ensures ThisTimeLineID is
* initialized, which we need here and in AdvanceXLInsertBuffer.)
*/
if (flags & CHECKPOINT_END_OF_RECOVERY)
LocalSetXLogInsertAllowed();
checkPoint.ThisTimeLineID = ThisTimeLineID;
checkPoint.fullPageWrites = Insert->fullPageWrites;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Compute new REDO record ptr = location of next XLOG record.
*
2005-10-15 04:49:52 +02:00
* NB: this is NOT necessarily where the checkpoint record itself will be,
* since other backends may insert more XLOG records while we're off doing
* the buffer flush work. Those XLOG records are logically after the
* checkpoint, even though physically before it. Got that?
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
freespace = INSERT_FREESPACE(Insert);
if (freespace < SizeOfXLogRecord)
{
(void) AdvanceXLInsertBuffer(false);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* OK to ignore update return flag, since we will do flush anyway */
freespace = INSERT_FREESPACE(Insert);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
INSERT_RECPTR(checkPoint.redo, Insert, Insert->curridx);
2001-03-22 05:01:46 +01:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Here we update the shared RedoRecPtr for future XLogInsert calls; this
* must be done while holding the insert lock AND the info_lck.
*
2003-08-04 02:43:34 +02:00
* Note: if we fail to complete the checkpoint, RedoRecPtr will be left
2005-10-15 04:49:52 +02:00
* pointing past where it really needs to point. This is okay; the only
* consequence is that XLogInsert might back up whole buffers that it
* didn't really need to. We can't postpone advancing RedoRecPtr because
* XLogInserts that happen while we are dumping buffers must assume that
* their buffer changes are not included in the checkpoint.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
RedoRecPtr = xlogctl->Insert.RedoRecPtr = checkPoint.redo;
SpinLockRelease(&xlogctl->info_lck);
}
2001-03-22 05:01:46 +01:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Now we can release WAL insert lock, allowing other xacts to proceed
* while we are flushing disk buffers.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
LWLockRelease(WALInsertLock);
/*
2007-11-15 22:14:46 +01:00
* If enabled, log checkpoint start. We postpone this until now so as not
* to log anything if we decided to skip the checkpoint.
*/
if (log_checkpoints)
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LogCheckpointStart(flags, false);
TRACE_POSTGRESQL_CHECKPOINT_START(flags);
/*
* Before flushing data, we must wait for any transactions that are
* currently in their commit critical sections. If an xact inserted its
* commit record into XLOG just before the REDO point, then a crash
* restart from the REDO point would not replay that record, which means
* that our flushing had better include the xact's update of pg_clog. So
* we wait till he's out of his commit critical section before proceeding.
* See notes in RecordTransactionCommit().
*
* Because we've already released WALInsertLock, this test is a bit fuzzy:
* it is possible that we will wait for xacts we didn't really need to
* wait for. But the delay should be short and it seems better to make
* checkpoint take a bit longer than to hold locks longer than necessary.
* (In fact, the whole reason we have this issue is that xact.c does
* commit record XLOG insertion and clog update as two separate steps
2007-11-15 22:14:46 +01:00
* protected by different locks, but again that seems best on grounds of
* minimizing lock contention.)
*
2007-11-15 22:14:46 +01:00
* A transaction that has not yet set inCommit when we look cannot be at
* risk, since he's not inserted his commit record yet; and one that's
* already cleared it is not at risk either, since he's done fixing clog
* and we will correctly flush the update below. So we cannot miss any
* xacts we need to wait for.
*/
nInCommit = GetTransactionsInCommit(&inCommitXids);
if (nInCommit > 0)
{
2007-11-15 22:14:46 +01:00
do
{
pg_usleep(10000L); /* wait for 10 msec */
} while (HaveTransactionsInCommit(inCommitXids, nInCommit));
}
pfree(inCommitXids);
/*
* Get the other info we need for the checkpoint record.
*/
LWLockAcquire(XidGenLock, LW_SHARED);
checkPoint.nextXid = ShmemVariableCache->nextXid;
checkPoint.oldestXid = ShmemVariableCache->oldestXid;
checkPoint.oldestXidDB = ShmemVariableCache->oldestXidDB;
LWLockRelease(XidGenLock);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/* Increase XID epoch if we've wrapped around since last checkpoint */
checkPoint.nextXidEpoch = ControlFile->checkPointCopy.nextXidEpoch;
if (checkPoint.nextXid < ControlFile->checkPointCopy.nextXid)
checkPoint.nextXidEpoch++;
LWLockAcquire(OidGenLock, LW_SHARED);
checkPoint.nextOid = ShmemVariableCache->nextOid;
if (!shutdown)
checkPoint.nextOid += ShmemVariableCache->oidCount;
LWLockRelease(OidGenLock);
MultiXactGetCheckptMulti(shutdown,
&checkPoint.nextMulti,
&checkPoint.nextMultiOffset);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Having constructed the checkpoint record, ensure all shmem disk buffers
* and commit-log buffers are flushed to disk.
*
* This I/O could fail for various reasons. If so, we will fail to
* complete the checkpoint, but there is no reason to force a system
* panic. Accordingly, exit critical section while doing it.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
END_CRIT_SECTION();
CheckPointGuts(checkPoint.redo, flags);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
2010-02-26 03:01:40 +01:00
* Take a snapshot of running transactions and write this to WAL. This
* allows us to reconstruct the state of running transactions during
* archive recovery, if required. Skip, if this info disabled.
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
*
* If we are shutting down, or Startup process is completing crash
* recovery we don't need to write running xact data.
*
* Update checkPoint.nextXid since we have a later value
*/
if (!shutdown && XLogStandbyInfoActive())
LogStandbySnapshot(&checkPoint.nextXid);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
START_CRIT_SECTION();
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Now insert the checkpoint record into XLOG.
*/
2001-03-22 05:01:46 +01:00
rdata.data = (char *) (&checkPoint);
rdata.len = sizeof(checkPoint);
rdata.buffer = InvalidBuffer;
rdata.next = NULL;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
recptr = XLogInsert(RM_XLOG_ID,
shutdown ? XLOG_CHECKPOINT_SHUTDOWN :
XLOG_CHECKPOINT_ONLINE,
&rdata);
XLogFlush(recptr);
/*
2010-02-26 03:01:40 +01:00
* We mustn't write any new WAL after a shutdown checkpoint, or it will be
* overwritten at next startup. No-one should even try, this just allows
* sanity-checking. In the case of an end-of-recovery checkpoint, we want
* to just temporarily disable writing until the system has exited
* recovery.
*/
if (shutdown)
{
if (flags & CHECKPOINT_END_OF_RECOVERY)
2010-02-26 03:01:40 +01:00
LocalXLogInsertAllowed = -1; /* return to "check" state */
else
2010-02-26 03:01:40 +01:00
LocalXLogInsertAllowed = 0; /* never again write WAL */
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* We now have ProcLastRecPtr = start of actual checkpoint record, recptr
* = end of actual checkpoint record.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
if (shutdown && !XLByteEQ(checkPoint.redo, ProcLastRecPtr))
ereport(PANIC,
(errmsg("concurrent transaction log activity while database system is shutting down")));
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Select point at which we can truncate the log, which we base on the
* prior checkpoint's earliest info.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
XLByteToSeg(ControlFile->checkPointCopy.redo, _logId, _logSeg);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Update the control file.
*/
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
if (shutdown)
ControlFile->state = DB_SHUTDOWNED;
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
ControlFile->prevCheckPoint = ControlFile->checkPoint;
ControlFile->checkPoint = ProcLastRecPtr;
ControlFile->checkPointCopy = checkPoint;
ControlFile->time = (pg_time_t) time(NULL);
/* crash recovery should always recover to the end of WAL */
MemSet(&ControlFile->minRecoveryPoint, 0, sizeof(XLogRecPtr));
UpdateControlFile();
LWLockRelease(ControlFileLock);
/* Update shared-memory copy of checkpoint XID/epoch */
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->ckptXidEpoch = checkPoint.nextXidEpoch;
xlogctl->ckptXid = checkPoint.nextXid;
SpinLockRelease(&xlogctl->info_lck);
}
/*
2005-10-15 04:49:52 +02:00
* We are now done with critical updates; no need for system panic if we
* have trouble while fooling with old log segments.
*/
END_CRIT_SECTION();
/*
* Let smgr do post-checkpoint cleanup (eg, deleting old files).
*/
smgrpostckpt();
/*
* Delete old log files (those no longer needed even for previous
* checkpoint or the standbys in XLOG streaming).
*/
if (_logId || _logSeg)
{
KeepLogSeg(recptr, &_logId, &_logSeg);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
PrevLogSeg(_logId, _logSeg);
RemoveOldXlogFiles(_logId, _logSeg, recptr);
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Make more log segments if needed. (Do this after recycling old log
* segments, since that may supply some of the needed files.)
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
if (!shutdown)
PreallocXlogFiles(recptr);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
2005-10-15 04:49:52 +02:00
* Truncate pg_subtrans if possible. We can throw away all data before
* the oldest XMIN of any running transaction. No future transaction will
* attempt to reference any pg_subtrans entry older than that (see Asserts
* in subtrans.c). During recovery, though, we mustn't do this because
* StartupSUBTRANS hasn't been called yet.
*/
if (!RecoveryInProgress())
TruncateSUBTRANS(GetOldestXmin(true, false));
/* All real work is done, but log before releasing lock. */
if (log_checkpoints)
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LogCheckpointEnd(false);
TRACE_POSTGRESQL_CHECKPOINT_DONE(CheckpointStats.ckpt_bufs_written,
NBuffers,
CheckpointStats.ckpt_segs_added,
CheckpointStats.ckpt_segs_removed,
CheckpointStats.ckpt_segs_recycled);
LWLockRelease(CheckpointLock);
}
2000-10-21 17:43:36 +02:00
/*
* Flush all data in shared memory to disk, and fsync
*
* This is the common code shared between regular checkpoints and
* recovery restartpoints.
*/
static void
CheckPointGuts(XLogRecPtr checkPointRedo, int flags)
{
CheckPointCLOG();
CheckPointSUBTRANS();
CheckPointMultiXact();
CheckPointPredicate();
CheckPointRelationMap();
2007-11-15 22:14:46 +01:00
CheckPointBuffers(flags); /* performs all required fsyncs */
/* We deliberately delay 2PC checkpointing as long as possible */
CheckPointTwoPhase(checkPointRedo);
}
/*
* Save a checkpoint for recovery restart if appropriate
*
* This function is called each time a checkpoint record is read from XLOG.
* It must determine whether the checkpoint represents a safe restartpoint or
* not. If so, the checkpoint record is stashed in shared memory so that
* CreateRestartPoint can consult it. (Note that the latter function is
* executed by the checkpointer, while this one will be executed by the
* startup process.)
*/
static void
RecoveryRestartPoint(const CheckPoint *checkPoint)
{
2006-10-04 02:30:14 +02:00
int rmid;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
/*
* Is it safe to restartpoint? We must ask each of the resource managers
* whether they have any partial state information that might prevent a
* correct restart from this point. If so, we skip this opportunity, but
* return at the next checkpoint record for another try.
*/
for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
{
if (RmgrTable[rmid].rm_safe_restartpoint != NULL)
if (!(RmgrTable[rmid].rm_safe_restartpoint()))
{
elog(trace_recovery(DEBUG2),
"RM %d not safe to record restart point at %X/%X",
rmid,
checkPoint->redo.xlogid,
checkPoint->redo.xrecoff);
return;
}
}
/*
* Also refrain from creating a restartpoint if we have seen any references
* to non-existent pages. Restarting recovery from the restartpoint would
* not see the references, so we would lose the cross-check that the pages
* belonged to a relation that was dropped later.
*/
if (XLogHaveInvalidPages())
{
elog(trace_recovery(DEBUG2),
"could not record restart point at %X/%X because there "
"are unresolved references to invalid pages",
checkPoint->redo.xlogid,
checkPoint->redo.xrecoff);
return;
}
/*
* Copy the checkpoint record to shared memory, so that checkpointer
* can work out the next time it wants to perform a restartpoint.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
SpinLockAcquire(&xlogctl->info_lck);
XLogCtl->lastCheckPointRecPtr = ReadRecPtr;
memcpy(&XLogCtl->lastCheckPoint, checkPoint, sizeof(CheckPoint));
SpinLockRelease(&xlogctl->info_lck);
}
/*
* Establish a restartpoint if possible.
*
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
* This is similar to CreateCheckPoint, but is used during WAL recovery
* to establish a point from which recovery can roll forward without
* replaying the entire recovery log.
*
* Returns true if a new restartpoint was established. We can only establish
* a restartpoint if we have replayed a safe checkpoint record since last
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
* restartpoint.
*/
bool
CreateRestartPoint(int flags)
{
XLogRecPtr lastCheckPointRecPtr;
CheckPoint lastCheckPoint;
uint32 _logId;
uint32 _logSeg;
2010-07-06 21:19:02 +02:00
TimestampTz xtime;
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
/*
* Acquire CheckpointLock to ensure only one restartpoint or checkpoint
* happens at a time.
*/
LWLockAcquire(CheckpointLock, LW_EXCLUSIVE);
/* Get a local copy of the last safe checkpoint record. */
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
SpinLockAcquire(&xlogctl->info_lck);
lastCheckPointRecPtr = xlogctl->lastCheckPointRecPtr;
memcpy(&lastCheckPoint, &XLogCtl->lastCheckPoint, sizeof(CheckPoint));
SpinLockRelease(&xlogctl->info_lck);
/*
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
* Check that we're still in recovery mode. It's ok if we exit recovery
* mode after this check, the restart point is valid anyway.
*/
if (!RecoveryInProgress())
{
ereport(DEBUG2,
(errmsg("skipping restartpoint, recovery has already ended")));
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LWLockRelease(CheckpointLock);
return false;
}
/*
* If the last checkpoint record we've replayed is already our last
* restartpoint, we can't perform a new restart point. We still update
* minRecoveryPoint in that case, so that if this is a shutdown restart
* point, we won't start up earlier than before. That's not strictly
2010-07-06 21:19:02 +02:00
* necessary, but when hot standby is enabled, it would be rather weird if
* the database opened up for read-only connections at a point-in-time
* before the last shutdown. Such time travel is still possible in case of
* immediate shutdown, though.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*
* We don't explicitly advance minRecoveryPoint when we do create a
* restartpoint. It's assumed that flushing the buffers will do that as a
* side-effect.
*/
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
if (XLogRecPtrIsInvalid(lastCheckPointRecPtr) ||
XLByteLE(lastCheckPoint.redo, ControlFile->checkPointCopy.redo))
{
ereport(DEBUG2,
(errmsg("skipping restartpoint, already performed at %X/%X",
lastCheckPoint.redo.xlogid, lastCheckPoint.redo.xrecoff)));
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
UpdateMinRecoveryPoint(InvalidXLogRecPtr, true);
if (flags & CHECKPOINT_IS_SHUTDOWN)
{
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->state = DB_SHUTDOWNED_IN_RECOVERY;
ControlFile->time = (pg_time_t) time(NULL);
UpdateControlFile();
LWLockRelease(ControlFileLock);
}
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LWLockRelease(CheckpointLock);
return false;
}
/*
2010-07-06 21:19:02 +02:00
* Update the shared RedoRecPtr so that the startup process can calculate
* the number of segments replayed since last restartpoint, and request a
* restartpoint if it exceeds checkpoint_segments.
*
* You need to hold WALInsertLock and info_lck to update it, although
* during recovery acquiring WALInsertLock is just pro forma, because
* there is no other processes updating Insert.RedoRecPtr.
*/
LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
SpinLockAcquire(&xlogctl->info_lck);
xlogctl->Insert.RedoRecPtr = lastCheckPoint.redo;
SpinLockRelease(&xlogctl->info_lck);
LWLockRelease(WALInsertLock);
/*
* Prepare to accumulate statistics.
*
* Note: because it is possible for log_checkpoints to change while a
* checkpoint proceeds, we always accumulate stats, even if
* log_checkpoints is currently off.
*/
MemSet(&CheckpointStats, 0, sizeof(CheckpointStats));
CheckpointStats.ckpt_start_t = GetCurrentTimestamp();
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
if (log_checkpoints)
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LogCheckpointStart(flags, true);
CheckPointGuts(lastCheckPoint.redo, flags);
/*
* Select point at which we can truncate the xlog, which we base on the
* prior checkpoint's earliest info.
*/
XLByteToSeg(ControlFile->checkPointCopy.redo, _logId, _logSeg);
/*
* Update pg_control, using current time. Check that it still shows
* IN_ARCHIVE_RECOVERY state and an older checkpoint, else do nothing;
2010-02-26 03:01:40 +01:00
* this is a quick hack to make sure nothing really bad happens if somehow
* we get here after the end-of-recovery checkpoint.
*/
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
if (ControlFile->state == DB_IN_ARCHIVE_RECOVERY &&
XLByteLT(ControlFile->checkPointCopy.redo, lastCheckPoint.redo))
{
ControlFile->prevCheckPoint = ControlFile->checkPoint;
ControlFile->checkPoint = lastCheckPointRecPtr;
ControlFile->checkPointCopy = lastCheckPoint;
ControlFile->time = (pg_time_t) time(NULL);
if (flags & CHECKPOINT_IS_SHUTDOWN)
ControlFile->state = DB_SHUTDOWNED_IN_RECOVERY;
UpdateControlFile();
}
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LWLockRelease(ControlFileLock);
/*
* Delete old log files (those no longer needed even for previous
* checkpoint/restartpoint) to prevent the disk holding the xlog from
* growing full.
*/
if (_logId || _logSeg)
{
XLogRecPtr endptr;
/* Get the current (or recent) end of xlog */
endptr = GetStandbyFlushRecPtr();
KeepLogSeg(endptr, &_logId, &_logSeg);
PrevLogSeg(_logId, _logSeg);
RemoveOldXlogFiles(_logId, _logSeg, endptr);
/*
* Make more log segments if needed. (Do this after recycling old log
* segments, since that may supply some of the needed files.)
*/
PreallocXlogFiles(endptr);
}
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/*
* Truncate pg_subtrans if possible. We can throw away all data before
* the oldest XMIN of any running transaction. No future transaction will
* attempt to reference any pg_subtrans entry older than that (see Asserts
* in subtrans.c). When hot standby is disabled, though, we mustn't do
* this because StartupSUBTRANS hasn't been called yet.
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*/
if (EnableHotStandby)
TruncateSUBTRANS(GetOldestXmin(true, false));
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
/* All real work is done, but log before releasing lock. */
if (log_checkpoints)
LogCheckpointEnd(true);
xtime = GetLatestXTime();
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
ereport((log_checkpoints ? LOG : DEBUG2),
(errmsg("recovery restart point at %X/%X",
lastCheckPoint.redo.xlogid, lastCheckPoint.redo.xrecoff),
2010-07-06 21:19:02 +02:00
xtime ? errdetail("last completed transaction was at log time %s",
timestamptz_to_str(xtime)) : 0));
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
LWLockRelease(CheckpointLock);
/*
* Finally, execute archive_cleanup_command, if any.
*/
if (XLogCtl->archiveCleanupCommand[0])
ExecuteRecoveryCommand(XLogCtl->archiveCleanupCommand,
"archive_cleanup_command",
false);
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
return true;
}
/*
* Calculate the last segment that we need to retain because of
* wal_keep_segments, by subtracting wal_keep_segments from
* the given xlog location, recptr.
*/
static void
KeepLogSeg(XLogRecPtr recptr, uint32 *logId, uint32 *logSeg)
{
uint32 log;
uint32 seg;
int d_log;
int d_seg;
if (wal_keep_segments == 0)
return;
XLByteToSeg(recptr, log, seg);
d_seg = wal_keep_segments % XLogSegsPerFile;
d_log = wal_keep_segments / XLogSegsPerFile;
if (seg < d_seg)
{
d_log += 1;
seg = seg - d_seg + XLogSegsPerFile;
}
else
seg = seg - d_seg;
/* avoid underflow, don't go below (0,1) */
if (log < d_log || (log == d_log && seg == 0))
{
log = 0;
seg = 1;
}
else
log = log - d_log;
/* don't delete WAL segments newer than the calculated segment */
if (log < *logId || (log == *logId && seg < *logSeg))
{
*logId = log;
*logSeg = seg;
}
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* Write a NEXTOID log record
*/
void
XLogPutNextOid(Oid nextOid)
{
2001-03-22 05:01:46 +01:00
XLogRecData rdata;
2001-03-22 05:01:46 +01:00
rdata.data = (char *) (&nextOid);
rdata.len = sizeof(Oid);
rdata.buffer = InvalidBuffer;
rdata.next = NULL;
(void) XLogInsert(RM_XLOG_ID, XLOG_NEXTOID, &rdata);
2005-10-15 04:49:52 +02:00
/*
* We need not flush the NEXTOID record immediately, because any of the
2005-10-15 04:49:52 +02:00
* just-allocated OIDs could only reach disk as part of a tuple insert or
* update that would have its own XLOG record that must follow the NEXTOID
* record. Therefore, the standard buffer LSN interlock applied to those
* records will ensure no such OID reaches disk before the NEXTOID record
* does.
*
* Note, however, that the above statement only covers state "within" the
2007-11-15 22:14:46 +01:00
* database. When we use a generated OID as a file or directory name, we
* are in a sense violating the basic WAL rule, because that filesystem
* change may reach disk before the NEXTOID WAL record does. The impact
2007-11-15 22:14:46 +01:00
* of this is that if a database crash occurs immediately afterward, we
* might after restart re-generate the same OID and find that it conflicts
* with the leftover file or directory. But since for safety's sake we
* always loop until finding a nonconflicting filename, this poses no real
* problem in practice. See pgsql-hackers discussion 27-Sep-2006.
*/
}
/*
* Write an XLOG SWITCH record.
*
* Here we just blindly issue an XLogInsert request for the record.
* All the magic happens inside XLogInsert.
*
* The return value is either the end+1 address of the switch record,
* or the end+1 address of the prior segment if we did not need to
* write a switch record because we are already at segment start.
*/
XLogRecPtr
RequestXLogSwitch(void)
{
XLogRecPtr RecPtr;
XLogRecData rdata;
/* XLOG SWITCH, alone among xlog record types, has no data */
rdata.buffer = InvalidBuffer;
rdata.data = NULL;
rdata.len = 0;
rdata.next = NULL;
RecPtr = XLogInsert(RM_XLOG_ID, XLOG_SWITCH, &rdata);
return RecPtr;
}
/*
* Write a RESTORE POINT record
*/
XLogRecPtr
XLogRestorePoint(const char *rpName)
{
2011-04-10 17:42:00 +02:00
XLogRecPtr RecPtr;
XLogRecData rdata;
xl_restore_point xlrec;
xlrec.rp_time = GetCurrentTimestamp();
strncpy(xlrec.rp_name, rpName, MAXFNAMELEN);
rdata.buffer = InvalidBuffer;
rdata.data = (char *) &xlrec;
rdata.len = sizeof(xl_restore_point);
rdata.next = NULL;
RecPtr = XLogInsert(RM_XLOG_ID, XLOG_RESTORE_POINT, &rdata);
ereport(LOG,
(errmsg("restore point \"%s\" created at %X/%X",
2011-04-10 17:42:00 +02:00
rpName, RecPtr.xlogid, RecPtr.xrecoff)));
return RecPtr;
}
/*
* Check if any of the GUC parameters that are critical for hot standby
* have changed, and update the value in pg_control file if necessary.
*/
static void
XLogReportParameters(void)
{
if (wal_level != ControlFile->wal_level ||
MaxConnections != ControlFile->MaxConnections ||
max_prepared_xacts != ControlFile->max_prepared_xacts ||
2010-06-12 11:14:52 +02:00
max_locks_per_xact != ControlFile->max_locks_per_xact)
{
/*
2010-07-06 21:19:02 +02:00
* The change in number of backend slots doesn't need to be WAL-logged
* if archiving is not enabled, as you can't start archive recovery
* with wal_level=minimal anyway. We don't really care about the
* values in pg_control either if wal_level=minimal, but seems better
* to keep them up-to-date to avoid confusion.
*/
if (wal_level != ControlFile->wal_level || XLogIsNeeded())
{
XLogRecData rdata;
xl_parameter_change xlrec;
xlrec.MaxConnections = MaxConnections;
xlrec.max_prepared_xacts = max_prepared_xacts;
xlrec.max_locks_per_xact = max_locks_per_xact;
xlrec.wal_level = wal_level;
rdata.buffer = InvalidBuffer;
rdata.data = (char *) &xlrec;
rdata.len = sizeof(xlrec);
rdata.next = NULL;
XLogInsert(RM_XLOG_ID, XLOG_PARAMETER_CHANGE, &rdata);
}
ControlFile->MaxConnections = MaxConnections;
ControlFile->max_prepared_xacts = max_prepared_xacts;
ControlFile->max_locks_per_xact = max_locks_per_xact;
ControlFile->wal_level = wal_level;
UpdateControlFile();
}
}
/*
* Update full_page_writes in shared memory, and write an
* XLOG_FPW_CHANGE record if necessary.
*/
void
UpdateFullPageWrites(void)
{
XLogCtlInsert *Insert = &XLogCtl->Insert;
/*
* Do nothing if full_page_writes has not been changed.
*
* It's safe to check the shared full_page_writes without the lock,
* because we can guarantee that there is no concurrently running
* process which can update it.
*/
if (fullPageWrites == Insert->fullPageWrites)
return;
START_CRIT_SECTION();
/*
* It's always safe to take full page images, even when not strictly
* required, but not the other round. So if we're setting full_page_writes
* to true, first set it true and then write the WAL record. If we're
* setting it to false, first write the WAL record and then set the
* global flag.
*/
if (fullPageWrites)
{
LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
Insert->fullPageWrites = true;
LWLockRelease(WALInsertLock);
}
/*
* Write an XLOG_FPW_CHANGE record. This allows us to keep
* track of full_page_writes during archive recovery, if required.
*/
if (XLogStandbyInfoActive() && !RecoveryInProgress())
{
XLogRecData rdata;
rdata.data = (char *) (&fullPageWrites);
rdata.len = sizeof(bool);
rdata.buffer = InvalidBuffer;
rdata.next = NULL;
XLogInsert(RM_XLOG_ID, XLOG_FPW_CHANGE, &rdata);
}
if (!fullPageWrites)
{
LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
Insert->fullPageWrites = false;
LWLockRelease(WALInsertLock);
}
END_CRIT_SECTION();
}
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
/*
* XLOG resource manager's routines
Start background writer during archive recovery. Background writer now performs its usual buffer cleaning duties during archive recovery, and it's responsible for performing restartpoints. This requires some changes in postmaster. When the startup process has done all the initialization and is ready to start WAL redo, it signals the postmaster to launch the background writer. The postmaster is signaled again when the point in recovery is reached where we know that the database is in consistent state. Postmaster isn't interested in that at the moment, but that's the point where we could let other backends in to perform read-only queries. The postmaster is signaled third time when the recovery has ended, so that postmaster knows that it's safe to start accepting connections. The startup process now traps SIGTERM, and performs a "clean" shutdown. If you do a fast shutdown during recovery, a shutdown restartpoint is performed, like a shutdown checkpoint, and postmaster kills the processes cleanly. You still have to continue the recovery at next startup, though. Currently, the background writer is only launched during archive recovery. We could launch it during crash recovery as well, but it seems better to keep that codepath as simple as possible, for the sake of robustness. And it couldn't do any restartpoints during crash recovery anyway, so it wouldn't be that useful. log_restartpoints is gone. Use log_checkpoints instead. This is yet to be documented. This whole operation is a pre-requisite for Hot Standby, but has some value of its own whether the hot standby patch makes 8.4 or not. Simon Riggs, with lots of modifications by me.
2009-02-18 16:58:41 +01:00
*
* Definitions of info values are in include/catalog/pg_control.h, though
* not all record types are related to control file updates.
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
*/
2000-10-21 17:43:36 +02:00
void
xlog_redo(XLogRecPtr lsn, XLogRecord *record)
{
2001-03-22 05:01:46 +01:00
uint8 info = record->xl_info & ~XLR_INFO_MASK;
/* Backup blocks are not used in xlog records */
Assert(!(record->xl_info & XLR_BKP_BLOCK_MASK));
if (info == XLOG_NEXTOID)
{
2001-03-22 05:01:46 +01:00
Oid nextOid;
/*
* We used to try to take the maximum of ShmemVariableCache->nextOid
* and the recorded nextOid, but that fails if the OID counter wraps
* around. Since no OID allocation should be happening during replay
* anyway, better to just believe the record exactly. We still take
* OidGenLock while setting the variable, just in case.
*/
memcpy(&nextOid, XLogRecGetData(record), sizeof(Oid));
LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
ShmemVariableCache->nextOid = nextOid;
ShmemVariableCache->oidCount = 0;
LWLockRelease(OidGenLock);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
else if (info == XLOG_CHECKPOINT_SHUTDOWN)
{
CheckPoint checkPoint;
memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
/* In a SHUTDOWN checkpoint, believe the counters exactly */
LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
ShmemVariableCache->nextXid = checkPoint.nextXid;
LWLockRelease(XidGenLock);
LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
ShmemVariableCache->nextOid = checkPoint.nextOid;
ShmemVariableCache->oidCount = 0;
LWLockRelease(OidGenLock);
MultiXactSetNextMXact(checkPoint.nextMulti,
checkPoint.nextMultiOffset);
SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
2004-08-29 07:07:03 +02:00
/*
2010-07-06 21:19:02 +02:00
* If we see a shutdown checkpoint while waiting for an end-of-backup
* record, the backup was canceled and the end-of-backup record will
2010-07-06 21:19:02 +02:00
* never arrive.
*/
if (InArchiveRecovery &&
!XLogRecPtrIsInvalid(ControlFile->backupStartPoint) &&
XLogRecPtrIsInvalid(ControlFile->backupEndPoint))
ereport(PANIC,
(errmsg("online backup was canceled, recovery cannot continue")));
/*
2010-07-06 21:19:02 +02:00
* If we see a shutdown checkpoint, we know that nothing was running
* on the master at this point. So fake-up an empty running-xacts
* record and use that here and now. Recover additional standby state
* for prepared transactions.
*/
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
if (standbyState >= STANDBY_INITIALIZED)
{
TransactionId *xids;
int nxids;
TransactionId oldestActiveXID;
TransactionId latestCompletedXid;
RunningTransactionsData running;
oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
* Construct a RunningTransactions snapshot representing a shut
2010-07-06 21:19:02 +02:00
* down server, with only prepared transactions still alive. We're
* never overflowed at this point because all subxids are listed
* with their parent prepared transactions.
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
*/
running.xcnt = nxids;
running.subxid_overflow = false;
running.nextXid = checkPoint.nextXid;
running.oldestRunningXid = oldestActiveXID;
latestCompletedXid = checkPoint.nextXid;
TransactionIdRetreat(latestCompletedXid);
Assert(TransactionIdIsNormal(latestCompletedXid));
running.latestCompletedXid = latestCompletedXid;
running.xids = xids;
ProcArrayApplyRecoveryInfo(&running);
StandbyRecoverPreparedTransactions(true);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
}
/* ControlFile->checkPointCopy always tracks the latest ckpt XID */
ControlFile->checkPointCopy.nextXidEpoch = checkPoint.nextXidEpoch;
ControlFile->checkPointCopy.nextXid = checkPoint.nextXid;
/*
2005-10-15 04:49:52 +02:00
* TLI may change in a shutdown checkpoint, but it shouldn't decrease
*/
if (checkPoint.ThisTimeLineID != ThisTimeLineID)
{
if (checkPoint.ThisTimeLineID < ThisTimeLineID ||
!list_member_int(expectedTLIs,
(int) checkPoint.ThisTimeLineID))
ereport(PANIC,
(errmsg("unexpected timeline ID %u (after %u) in checkpoint record",
checkPoint.ThisTimeLineID, ThisTimeLineID)));
/* Following WAL records should be run with new TLI */
ThisTimeLineID = checkPoint.ThisTimeLineID;
}
RecoveryRestartPoint(&checkPoint);
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
else if (info == XLOG_CHECKPOINT_ONLINE)
{
CheckPoint checkPoint;
memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
/* In an ONLINE checkpoint, treat the XID counter as a minimum */
LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
if (TransactionIdPrecedes(ShmemVariableCache->nextXid,
checkPoint.nextXid))
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
ShmemVariableCache->nextXid = checkPoint.nextXid;
LWLockRelease(XidGenLock);
/* ... but still treat OID counter as exact */
LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
ShmemVariableCache->nextOid = checkPoint.nextOid;
ShmemVariableCache->oidCount = 0;
LWLockRelease(OidGenLock);
MultiXactAdvanceNextMXact(checkPoint.nextMulti,
checkPoint.nextMultiOffset);
if (TransactionIdPrecedes(ShmemVariableCache->oldestXid,
checkPoint.oldestXid))
SetTransactionIdLimit(checkPoint.oldestXid,
checkPoint.oldestXidDB);
/* ControlFile->checkPointCopy always tracks the latest ckpt XID */
ControlFile->checkPointCopy.nextXidEpoch = checkPoint.nextXidEpoch;
ControlFile->checkPointCopy.nextXid = checkPoint.nextXid;
/* TLI should not change in an on-line checkpoint */
if (checkPoint.ThisTimeLineID != ThisTimeLineID)
ereport(PANIC,
(errmsg("unexpected timeline ID %u (should be %u) in checkpoint record",
checkPoint.ThisTimeLineID, ThisTimeLineID)));
RecoveryRestartPoint(&checkPoint);
}
else if (info == XLOG_NOOP)
{
/* nothing to do here */
}
else if (info == XLOG_SWITCH)
{
/* nothing to do here */
}
else if (info == XLOG_RESTORE_POINT)
{
/* nothing to do here */
}
else if (info == XLOG_BACKUP_END)
{
XLogRecPtr startpoint;
2010-02-26 03:01:40 +01:00
memcpy(&startpoint, XLogRecGetData(record), sizeof(startpoint));
if (XLByteEQ(ControlFile->backupStartPoint, startpoint))
{
/*
* We have reached the end of base backup, the point where
* pg_stop_backup() was done. The data on disk is now consistent.
* Reset backupStartPoint, and update minRecoveryPoint to make
* sure we don't allow starting up at an earlier point even if
* recovery is stopped and restarted soon after this.
*/
elog(DEBUG1, "end of backup reached");
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
if (XLByteLT(ControlFile->minRecoveryPoint, lsn))
ControlFile->minRecoveryPoint = lsn;
MemSet(&ControlFile->backupStartPoint, 0, sizeof(XLogRecPtr));
ControlFile->backupEndRequired = false;
UpdateControlFile();
LWLockRelease(ControlFileLock);
}
}
else if (info == XLOG_PARAMETER_CHANGE)
{
xl_parameter_change xlrec;
/* Update our copy of the parameters in pg_control */
memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_parameter_change));
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->MaxConnections = xlrec.MaxConnections;
ControlFile->max_prepared_xacts = xlrec.max_prepared_xacts;
ControlFile->max_locks_per_xact = xlrec.max_locks_per_xact;
ControlFile->wal_level = xlrec.wal_level;
2010-07-06 21:19:02 +02:00
/*
2010-07-06 21:19:02 +02:00
* Update minRecoveryPoint to ensure that if recovery is aborted, we
* recover back up to this point before allowing hot standby again.
* This is particularly important if wal_level was set to 'archive'
* before, and is now 'hot_standby', to ensure you don't run queries
* against the WAL preceding the wal_level change. Same applies to
* decreasing max_* settings.
*/
minRecoveryPoint = ControlFile->minRecoveryPoint;
if ((minRecoveryPoint.xlogid != 0 || minRecoveryPoint.xrecoff != 0)
&& XLByteLT(minRecoveryPoint, lsn))
{
ControlFile->minRecoveryPoint = lsn;
}
UpdateControlFile();
LWLockRelease(ControlFileLock);
/* Check to see if any changes to max_connections give problems */
CheckRequiredParameterValues();
}
else if (info == XLOG_FPW_CHANGE)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
bool fpw;
memcpy(&fpw, XLogRecGetData(record), sizeof(bool));
/*
* Update the LSN of the last replayed XLOG_FPW_CHANGE record
* so that do_pg_start_backup() and do_pg_stop_backup() can check
* whether full_page_writes has been disabled during online backup.
*/
if (!fpw)
{
SpinLockAcquire(&xlogctl->info_lck);
if (XLByteLT(xlogctl->lastFpwDisableRecPtr, ReadRecPtr))
xlogctl->lastFpwDisableRecPtr = ReadRecPtr;
SpinLockRelease(&xlogctl->info_lck);
}
/* Keep track of full_page_writes */
lastFullPageWrites = fpw;
}
2000-10-21 17:43:36 +02:00
}
2001-03-22 05:01:46 +01:00
2000-10-21 17:43:36 +02:00
void
xlog_desc(StringInfo buf, uint8 xl_info, char *rec)
2000-10-21 17:43:36 +02:00
{
2006-10-04 02:30:14 +02:00
uint8 info = xl_info & ~XLR_INFO_MASK;
2000-10-21 17:43:36 +02:00
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
if (info == XLOG_CHECKPOINT_SHUTDOWN ||
info == XLOG_CHECKPOINT_ONLINE)
2000-10-21 17:43:36 +02:00
{
2001-03-22 05:01:46 +01:00
CheckPoint *checkpoint = (CheckPoint *) rec;
appendStringInfo(buf, "checkpoint: redo %X/%X; "
"tli %u; fpw %s; xid %u/%u; oid %u; multi %u; offset %u; "
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
"oldest xid %u in DB %u; oldest running xid %u; %s",
2006-10-04 02:30:14 +02:00
checkpoint->redo.xlogid, checkpoint->redo.xrecoff,
checkpoint->ThisTimeLineID,
checkpoint->fullPageWrites ? "true" : "false",
2006-10-04 02:30:14 +02:00
checkpoint->nextXidEpoch, checkpoint->nextXid,
checkpoint->nextOid,
checkpoint->nextMulti,
checkpoint->nextMultiOffset,
checkpoint->oldestXid,
checkpoint->oldestXidDB,
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
checkpoint->oldestActiveXid,
2006-10-04 02:30:14 +02:00
(info == XLOG_CHECKPOINT_SHUTDOWN) ? "shutdown" : "online");
XLOG (and related) changes: * Store two past checkpoint locations, not just one, in pg_control. On startup, we fall back to the older checkpoint if the newer one is unreadable. Also, a physical copy of the newest checkpoint record is kept in pg_control for possible use in disaster recovery (ie, complete loss of pg_xlog). Also add a version number for pg_control itself. Remove archdir from pg_control; it ought to be a GUC parameter, not a special case (not that it's implemented yet anyway). * Suppress successive checkpoint records when nothing has been entered in the WAL log since the last one. This is not so much to avoid I/O as to make it actually useful to keep track of the last two checkpoints. If the things are right next to each other then there's not a lot of redundancy gained... * Change CRC scheme to a true 64-bit CRC, not a pair of 32-bit CRCs on alternate bytes. Polynomial borrowed from ECMA DLT1 standard. * Fix XLOG record length handling so that it will work at BLCKSZ = 32k. * Change XID allocation to work more like OID allocation. (This is of dubious necessity, but I think it's a good idea anyway.) * Fix a number of minor bugs, such as off-by-one logic for XLOG file wraparound at the 4 gig mark. * Add documentation and clean up some coding infelicities; move file format declarations out to include files where planned contrib utilities can get at them. * Checkpoint will now occur every CHECKPOINT_SEGMENTS log segments or every CHECKPOINT_TIMEOUT seconds, whichever comes first. It is also possible to force a checkpoint by sending SIGUSR1 to the postmaster (undocumented feature...) * Defend against kill -9 postmaster by storing shmem block's key and ID in postmaster.pid lockfile, and checking at startup to ensure that no processes are still connected to old shmem block (if it still exists). * Switch backends to accept SIGQUIT rather than SIGUSR1 for emergency stop, for symmetry with postmaster and xlog utilities. Clean up signal handling in bootstrap.c so that xlog utilities launched by postmaster will react to signals better. * Standalone bootstrap now grabs lockfile in target directory, as added insurance against running it in parallel with live postmaster.
2001-03-13 02:17:06 +01:00
}
else if (info == XLOG_NOOP)
{
appendStringInfo(buf, "xlog no-op");
}
else if (info == XLOG_NEXTOID)
{
2001-03-22 05:01:46 +01:00
Oid nextOid;
memcpy(&nextOid, rec, sizeof(Oid));
appendStringInfo(buf, "nextOid: %u", nextOid);
}
else if (info == XLOG_SWITCH)
{
appendStringInfo(buf, "xlog switch");
}
else if (info == XLOG_RESTORE_POINT)
{
xl_restore_point *xlrec = (xl_restore_point *) rec;
appendStringInfo(buf, "restore point: %s", xlrec->rp_name);
}
else if (info == XLOG_BACKUP_END)
{
2010-02-26 03:01:40 +01:00
XLogRecPtr startpoint;
memcpy(&startpoint, rec, sizeof(XLogRecPtr));
appendStringInfo(buf, "backup end: %X/%X",
startpoint.xlogid, startpoint.xrecoff);
}
else if (info == XLOG_PARAMETER_CHANGE)
{
xl_parameter_change xlrec;
const char *wal_level_str;
const struct config_enum_entry *entry;
memcpy(&xlrec, rec, sizeof(xl_parameter_change));
/* Find a string representation for wal_level */
wal_level_str = "?";
for (entry = wal_level_options; entry->name; entry++)
{
if (entry->val == xlrec.wal_level)
{
wal_level_str = entry->name;
break;
}
}
appendStringInfo(buf, "parameter change: max_connections=%d max_prepared_xacts=%d max_locks_per_xact=%d wal_level=%s",
xlrec.MaxConnections,
xlrec.max_prepared_xacts,
xlrec.max_locks_per_xact,
wal_level_str);
}
else if (info == XLOG_FPW_CHANGE)
{
bool fpw;
memcpy(&fpw, rec, sizeof(bool));
appendStringInfo(buf, "full_page_writes: %s", fpw ? "true" : "false");
}
2000-10-21 17:43:36 +02:00
else
appendStringInfo(buf, "UNKNOWN");
2000-10-21 17:43:36 +02:00
}
#ifdef WAL_DEBUG
2000-10-21 17:43:36 +02:00
static void
xlog_outrec(StringInfo buf, XLogRecord *record)
2000-10-21 17:43:36 +02:00
{
2001-03-22 05:01:46 +01:00
int i;
appendStringInfo(buf, "prev %X/%X; xid %u",
record->xl_prev.xlogid, record->xl_prev.xrecoff,
record->xl_xid);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
appendStringInfo(buf, "; len %u",
record->xl_len);
for (i = 0; i < XLR_MAX_BKP_BLOCKS; i++)
{
if (record->xl_info & XLR_SET_BKP_BLOCK(i))
2006-10-04 02:30:14 +02:00
appendStringInfo(buf, "; bkpb%d", i + 1);
}
appendStringInfo(buf, ": %s", RmgrTable[record->xl_rmid].rm_name);
2000-10-21 17:43:36 +02:00
}
2004-08-29 07:07:03 +02:00
#endif /* WAL_DEBUG */
/*
* Return the (possible) sync flag used for opening a file, depending on the
* value of the GUC wal_sync_method.
*/
static int
get_sync_bit(int method)
{
2010-02-26 03:01:40 +01:00
int o_direct_flag = 0;
/* If fsync is disabled, never open in sync mode */
if (!enableFsync)
return 0;
/*
* Optimize writes by bypassing kernel cache with O_DIRECT when using
2011-04-10 17:42:00 +02:00
* O_SYNC/O_FSYNC and O_DSYNC. But only if archiving and streaming are
2010-02-26 03:01:40 +01:00
* disabled, otherwise the archive command or walsender process will read
* the WAL soon after writing it, which is guaranteed to cause a physical
* read if we bypassed the kernel cache. We also skip the
* posix_fadvise(POSIX_FADV_DONTNEED) call in XLogFileClose() for the same
* reason.
*
* Never use O_DIRECT in walreceiver process for similar reasons; the WAL
* written by walreceiver is normally read by the startup process soon
* after its written. Also, walreceiver performs unaligned writes, which
* don't work with O_DIRECT, so it is required for correctness too.
*/
if (!XLogIsNeeded() && !am_walreceiver)
o_direct_flag = PG_O_DIRECT;
switch (method)
{
/*
* enum values for all sync options are defined even if they are
* not supported on the current platform. But if not, they are
* not included in the enum option array, and therefore will never
* be seen here.
*/
2008-05-12 10:35:05 +02:00
case SYNC_METHOD_FSYNC:
case SYNC_METHOD_FSYNC_WRITETHROUGH:
case SYNC_METHOD_FDATASYNC:
return 0;
#ifdef OPEN_SYNC_FLAG
2008-05-12 10:35:05 +02:00
case SYNC_METHOD_OPEN:
return OPEN_SYNC_FLAG | o_direct_flag;
#endif
#ifdef OPEN_DATASYNC_FLAG
2008-05-12 10:35:05 +02:00
case SYNC_METHOD_OPEN_DSYNC:
return OPEN_DATASYNC_FLAG | o_direct_flag;
#endif
2008-05-12 10:35:05 +02:00
default:
/* can't happen (unless we are out of sync with option array) */
elog(ERROR, "unrecognized wal_sync_method: %d", method);
return 0; /* silence warning */
2008-05-12 10:35:05 +02:00
}
}
/*
* GUC support
*/
void
assign_xlog_sync_method(int new_sync_method, void *extra)
{
if (sync_method != new_sync_method)
{
/*
2001-03-22 05:01:46 +01:00
* To ensure that no blocks escape unsynced, force an fsync on the
* currently open log segment (if any). Also, if the open flag is
2005-10-15 04:49:52 +02:00
* changing, close the log file so it will be reopened (with new flag
* bit) at next use.
*/
if (openLogFile >= 0)
{
if (pg_fsync(openLogFile) != 0)
ereport(PANIC,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not fsync log file %u, segment %u: %m",
openLogId, openLogSeg)));
if (get_sync_bit(sync_method) != get_sync_bit(new_sync_method))
XLogFileClose();
}
}
}
/*
* Issue appropriate kind of fsync (if any) for an XLOG output file.
*
* 'fd' is a file descriptor for the XLOG file to be fsync'd.
* 'log' and 'seg' are for error reporting purposes.
*/
void
issue_xlog_fsync(int fd, uint32 log, uint32 seg)
{
switch (sync_method)
{
case SYNC_METHOD_FSYNC:
if (pg_fsync_no_writethrough(fd) != 0)
ereport(PANIC,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not fsync log file %u, segment %u: %m",
log, seg)));
break;
#ifdef HAVE_FSYNC_WRITETHROUGH
case SYNC_METHOD_FSYNC_WRITETHROUGH:
if (pg_fsync_writethrough(fd) != 0)
ereport(PANIC,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not fsync write-through log file %u, segment %u: %m",
log, seg)));
break;
#endif
#ifdef HAVE_FDATASYNC
case SYNC_METHOD_FDATASYNC:
if (pg_fdatasync(fd) != 0)
ereport(PANIC,
(errcode_for_file_access(),
2005-10-15 04:49:52 +02:00
errmsg("could not fdatasync log file %u, segment %u: %m",
log, seg)));
break;
#endif
case SYNC_METHOD_OPEN:
case SYNC_METHOD_OPEN_DSYNC:
/* write synced it already */
break;
default:
elog(PANIC, "unrecognized wal_sync_method: %d", sync_method);
break;
}
}
/*
* do_pg_start_backup is the workhorse of the user-visible pg_start_backup()
* function. It creates the necessary starting checkpoint and constructs the
* backup label file.
2011-04-10 17:42:00 +02:00
*
* There are two kind of backups: exclusive and non-exclusive. An exclusive
* backup is started with pg_start_backup(), and there can be only one active
* at a time. The backup label file of an exclusive backup is written to
* $PGDATA/backup_label, and it is removed by pg_stop_backup().
*
* A non-exclusive backup is used for the streaming base backups (see
* src/backend/replication/basebackup.c). The difference to exclusive backups
* is that the backup label file is not written to disk. Instead, its would-be
* contents are returned in *labelfile, and the caller is responsible for
* including it in the backup archive as 'backup_label'. There can be many
* non-exclusive backups active at the same time, and they don't conflict
* with an exclusive backup either.
*
* Every successfully started non-exclusive backup must be stopped by calling
* do_pg_stop_backup() or do_pg_abort_backup().
*/
XLogRecPtr
do_pg_start_backup(const char *backupidstr, bool fast, char **labelfile)
{
bool exclusive = (labelfile == NULL);
bool backup_started_in_recovery = false;
XLogRecPtr checkpointloc;
XLogRecPtr startpoint;
pg_time_t stamp_time;
char strfbuf[128];
char xlogfilename[MAXFNAMELEN];
uint32 _logId;
uint32 _logSeg;
struct stat stat_buf;
FILE *fp;
StringInfoData labelfbuf;
backup_started_in_recovery = RecoveryInProgress();
if (!superuser() && !is_authenticated_user_replication_role())
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2011-04-10 17:42:00 +02:00
errmsg("must be superuser or replication role to run a backup")));
/*
* Currently only non-exclusive backup can be taken during recovery.
*/
if (backup_started_in_recovery && exclusive)
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("recovery is in progress"),
errhint("WAL control functions cannot be executed during recovery.")));
/*
* During recovery, we don't need to check WAL level. Because, if WAL level
* is not sufficient, it's impossible to get here during recovery.
*/
if (!backup_started_in_recovery && !XLogIsNeeded())
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
2010-07-06 21:19:02 +02:00
errmsg("WAL level not sufficient for making an online backup"),
errhint("wal_level must be set to \"archive\" or \"hot_standby\" at server start.")));
if (strlen(backupidstr) > MAXPGPATH)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("backup label too long (max %d bytes)",
MAXPGPATH)));
/*
* Mark backup active in shared memory. We must do full-page WAL writes
* during an on-line backup even if not doing so at other times, because
* it's quite possible for the backup dump to obtain a "torn" (partially
2006-10-04 02:30:14 +02:00
* written) copy of a database page if it reads the page concurrently with
* our write to the same page. This can be fixed as long as the first
* write to the page in the WAL sequence is a full-page write. Hence, we
* turn on forcePageWrites and then force a CHECKPOINT, to ensure there
* are no dirty pages in shared memory that might get dumped while the
* backup is in progress without having a corresponding WAL record. (Once
* the backup is complete, we need not force full-page writes anymore,
* since we expect that any pages not modified during the backup interval
* must have been correctly captured by the backup.)
*
* Note that forcePageWrites has no effect during an online backup from
* the standby.
*
2006-10-04 02:30:14 +02:00
* We must hold WALInsertLock to change the value of forcePageWrites, to
* ensure adequate interlocking against XLogInsert().
*/
LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
if (exclusive)
{
if (XLogCtl->Insert.exclusiveBackup)
{
LWLockRelease(WALInsertLock);
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("a backup is already in progress"),
errhint("Run pg_stop_backup() and try again.")));
}
XLogCtl->Insert.exclusiveBackup = true;
}
else
XLogCtl->Insert.nonExclusiveBackups++;
XLogCtl->Insert.forcePageWrites = true;
LWLockRelease(WALInsertLock);
2004-08-29 07:07:03 +02:00
/* Ensure we release forcePageWrites if fail below */
PG_ENSURE_ERROR_CLEANUP(pg_start_backup_callback, (Datum) BoolGetDatum(exclusive));
{
2011-04-10 17:42:00 +02:00
bool gotUniqueStartpoint = false;
/*
* Force an XLOG file switch before the checkpoint, to ensure that the
* WAL segment the checkpoint is written to doesn't contain pages with
* old timeline IDs. That would otherwise happen if you called
* pg_start_backup() right after restoring from a PITR archive: the
* first WAL segment containing the startup checkpoint has pages in
* the beginning with the old timeline ID. That can cause trouble at
* recovery: we won't have a history file covering the old timeline if
* pg_xlog directory was not included in the base backup and the WAL
* archive was cleared too before starting the backup.
*
* This also ensures that we have emitted a WAL page header that has
* XLP_BKP_REMOVABLE off before we emit the checkpoint record.
* Therefore, if a WAL archiver (such as pglesslog) is trying to
* compress out removable backup blocks, it won't remove any that
* occur after this point.
*
* During recovery, we skip forcing XLOG file switch, which means that
* the backup taken during recovery is not available for the special
* recovery case described above.
*/
if (!backup_started_in_recovery)
RequestXLogSwitch();
do
{
bool checkpointfpw;
/*
* Force a CHECKPOINT. Aside from being necessary to prevent torn
2011-04-10 17:42:00 +02:00
* page problems, this guarantees that two successive backup runs
* will have different checkpoint positions and hence different
* history file names, even if nothing happened in between.
*
* During recovery, establish a restartpoint if possible. We use the last
* restartpoint as the backup starting checkpoint. This means that two
* successive backup runs can have same checkpoint positions.
*
* Since the fact that we are executing do_pg_start_backup() during
* recovery means that checkpointer is running, we can use
* RequestCheckpoint() to establish a restartpoint.
*
2011-04-10 17:42:00 +02:00
* We use CHECKPOINT_IMMEDIATE only if requested by user (via
* passing fast = true). Otherwise this can take awhile.
*/
RequestCheckpoint(CHECKPOINT_FORCE | CHECKPOINT_WAIT |
(fast ? CHECKPOINT_IMMEDIATE : 0));
/*
2011-04-10 17:42:00 +02:00
* Now we need to fetch the checkpoint record location, and also
* its REDO pointer. The oldest point in WAL that would be needed
* to restore starting from the checkpoint is precisely the REDO
* pointer.
*/
LWLockAcquire(ControlFileLock, LW_SHARED);
checkpointloc = ControlFile->checkPoint;
startpoint = ControlFile->checkPointCopy.redo;
checkpointfpw = ControlFile->checkPointCopy.fullPageWrites;
LWLockRelease(ControlFileLock);
if (backup_started_in_recovery)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
XLogRecPtr recptr;
/*
* Check to see if all WAL replayed during online backup (i.e.,
* since last restartpoint used as backup starting checkpoint)
* contain full-page writes.
*/
SpinLockAcquire(&xlogctl->info_lck);
recptr = xlogctl->lastFpwDisableRecPtr;
SpinLockRelease(&xlogctl->info_lck);
if (!checkpointfpw || XLByteLE(startpoint, recptr))
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("WAL generated with full_page_writes=off was replayed "
"since last restartpoint"),
errhint("This means that the backup being taken on standby "
"is corrupt and should not be used. "
"Enable full_page_writes and run CHECKPOINT on the master, "
"and then try an online backup again.")));
/*
* During recovery, since we don't use the end-of-backup WAL
* record and don't write the backup history file, the starting WAL
* location doesn't need to be unique. This means that two base
* backups started at the same time might use the same checkpoint
* as starting locations.
*/
gotUniqueStartpoint = true;
}
/*
2011-04-10 17:42:00 +02:00
* If two base backups are started at the same time (in WAL sender
* processes), we need to make sure that they use different
* checkpoints as starting locations, because we use the starting
* WAL location as a unique identifier for the base backup in the
* end-of-backup WAL record and when we write the backup history
* file. Perhaps it would be better generate a separate unique ID
* for each backup instead of forcing another checkpoint, but
* taking a checkpoint right after another is not that expensive
* either because only few buffers have been dirtied yet.
*/
LWLockAcquire(WALInsertLock, LW_SHARED);
if (XLByteLT(XLogCtl->Insert.lastBackupStart, startpoint))
{
XLogCtl->Insert.lastBackupStart = startpoint;
gotUniqueStartpoint = true;
}
LWLockRelease(WALInsertLock);
2011-04-10 17:42:00 +02:00
} while (!gotUniqueStartpoint);
2004-08-29 07:07:03 +02:00
XLByteToSeg(startpoint, _logId, _logSeg);
XLogFileName(xlogfilename, ThisTimeLineID, _logId, _logSeg);
2004-08-29 07:07:03 +02:00
/*
2011-04-10 17:42:00 +02:00
* Construct backup label file
*/
initStringInfo(&labelfbuf);
/* Use the log timezone here, not the session timezone */
stamp_time = (pg_time_t) time(NULL);
pg_strftime(strfbuf, sizeof(strfbuf),
"%Y-%m-%d %H:%M:%S %Z",
pg_localtime(&stamp_time, log_timezone));
appendStringInfo(&labelfbuf, "START WAL LOCATION: %X/%X (file %s)\n",
startpoint.xlogid, startpoint.xrecoff, xlogfilename);
appendStringInfo(&labelfbuf, "CHECKPOINT LOCATION: %X/%X\n",
checkpointloc.xlogid, checkpointloc.xrecoff);
appendStringInfo(&labelfbuf, "BACKUP METHOD: %s\n",
exclusive ? "pg_start_backup" : "streamed");
appendStringInfo(&labelfbuf, "BACKUP FROM: %s\n",
backup_started_in_recovery ? "standby" : "master");
appendStringInfo(&labelfbuf, "START TIME: %s\n", strfbuf);
appendStringInfo(&labelfbuf, "LABEL: %s\n", backupidstr);
/*
* Okay, write the file, or return its contents to caller.
*/
if (exclusive)
{
/*
* Check for existing backup label --- implies a backup is already
2011-04-10 17:42:00 +02:00
* running. (XXX given that we checked exclusiveBackup above,
* maybe it would be OK to just unlink any such label file?)
*/
if (stat(BACKUP_LABEL_FILE, &stat_buf) != 0)
{
if (errno != ENOENT)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not stat file \"%s\": %m",
BACKUP_LABEL_FILE)));
}
else
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("a backup is already in progress"),
errhint("If you're sure there is no backup in progress, remove file \"%s\" and try again.",
BACKUP_LABEL_FILE)));
fp = AllocateFile(BACKUP_LABEL_FILE, "w");
if (!fp)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not create file \"%s\": %m",
BACKUP_LABEL_FILE)));
if (fwrite(labelfbuf.data, labelfbuf.len, 1, fp) != 1 ||
fflush(fp) != 0 ||
ferror(fp) ||
FreeFile(fp))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not write file \"%s\": %m",
BACKUP_LABEL_FILE)));
pfree(labelfbuf.data);
}
else
*labelfile = labelfbuf.data;
}
PG_END_ENSURE_ERROR_CLEANUP(pg_start_backup_callback, (Datum) BoolGetDatum(exclusive));
2004-08-29 07:07:03 +02:00
/*
* We're done. As a convenience, return the starting WAL location.
*/
return startpoint;
}
/* Error cleanup callback for pg_start_backup */
static void
pg_start_backup_callback(int code, Datum arg)
{
2011-04-10 17:42:00 +02:00
bool exclusive = DatumGetBool(arg);
/* Update backup counters and forcePageWrites on failure */
LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
if (exclusive)
{
Assert(XLogCtl->Insert.exclusiveBackup);
XLogCtl->Insert.exclusiveBackup = false;
}
else
{
Assert(XLogCtl->Insert.nonExclusiveBackups > 0);
XLogCtl->Insert.nonExclusiveBackups--;
}
if (!XLogCtl->Insert.exclusiveBackup &&
XLogCtl->Insert.nonExclusiveBackups == 0)
{
XLogCtl->Insert.forcePageWrites = false;
}
LWLockRelease(WALInsertLock);
}
/*
* do_pg_stop_backup is the workhorse of the user-visible pg_stop_backup()
* function.
* If labelfile is NULL, this stops an exclusive backup. Otherwise this stops
* the non-exclusive backup specified by 'labelfile'.
*/
XLogRecPtr
do_pg_stop_backup(char *labelfile, bool waitforarchive)
{
bool exclusive = (labelfile == NULL);
bool backup_started_in_recovery = false;
XLogRecPtr startpoint;
XLogRecPtr stoppoint;
2010-02-26 03:01:40 +01:00
XLogRecData rdata;
pg_time_t stamp_time;
char strfbuf[128];
char histfilepath[MAXPGPATH];
char startxlogfilename[MAXFNAMELEN];
char stopxlogfilename[MAXFNAMELEN];
char lastxlogfilename[MAXFNAMELEN];
char histfilename[MAXFNAMELEN];
char backupfrom[20];
uint32 _logId;
uint32 _logSeg;
FILE *lfp;
FILE *fp;
char ch;
int seconds_before_warning;
int waits = 0;
bool reported_waiting = false;
char *remaining;
char *ptr;
backup_started_in_recovery = RecoveryInProgress();
if (!superuser() && !is_authenticated_user_replication_role())
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
2011-04-10 17:42:00 +02:00
(errmsg("must be superuser or replication role to run a backup"))));
2004-08-29 07:07:03 +02:00
/*
* Currently only non-exclusive backup can be taken during recovery.
*/
if (backup_started_in_recovery && exclusive)
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("recovery is in progress"),
errhint("WAL control functions cannot be executed during recovery.")));
/*
* During recovery, we don't need to check WAL level. Because, if WAL level
* is not sufficient, it's impossible to get here during recovery.
*/
if (!backup_started_in_recovery && !XLogIsNeeded())
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
2010-07-06 21:19:02 +02:00
errmsg("WAL level not sufficient for making an online backup"),
errhint("wal_level must be set to \"archive\" or \"hot_standby\" at server start.")));
/*
* OK to update backup counters and forcePageWrites
*/
LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
if (exclusive)
XLogCtl->Insert.exclusiveBackup = false;
else
{
/*
* The user-visible pg_start/stop_backup() functions that operate on
* exclusive backups can be called at any time, but for non-exclusive
* backups, it is expected that each do_pg_start_backup() call is
* matched by exactly one do_pg_stop_backup() call.
*/
Assert(XLogCtl->Insert.nonExclusiveBackups > 0);
XLogCtl->Insert.nonExclusiveBackups--;
}
if (!XLogCtl->Insert.exclusiveBackup &&
XLogCtl->Insert.nonExclusiveBackups == 0)
{
XLogCtl->Insert.forcePageWrites = false;
}
LWLockRelease(WALInsertLock);
if (exclusive)
{
/*
* Read the existing label file into memory.
*/
2011-04-10 17:42:00 +02:00
struct stat statbuf;
int r;
if (stat(BACKUP_LABEL_FILE, &statbuf))
{
if (errno != ENOENT)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not stat file \"%s\": %m",
BACKUP_LABEL_FILE)));
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("a backup is not in progress")));
}
lfp = AllocateFile(BACKUP_LABEL_FILE, "r");
if (!lfp)
{
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not read file \"%s\": %m",
BACKUP_LABEL_FILE)));
}
labelfile = palloc(statbuf.st_size + 1);
r = fread(labelfile, statbuf.st_size, 1, lfp);
labelfile[statbuf.st_size] = '\0';
/*
* Close and remove the backup label file
*/
if (r != 1 || ferror(lfp) || FreeFile(lfp))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not read file \"%s\": %m",
BACKUP_LABEL_FILE)));
if (unlink(BACKUP_LABEL_FILE) != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not remove file \"%s\": %m",
BACKUP_LABEL_FILE)));
}
2004-08-29 07:07:03 +02:00
/*
2005-10-15 04:49:52 +02:00
* Read and parse the START WAL LOCATION line (this code is pretty crude,
* but we are not expecting any variability in the file format).
*/
if (sscanf(labelfile, "START WAL LOCATION: %X/%X (file %24s)%c",
&startpoint.xlogid, &startpoint.xrecoff, startxlogfilename,
&ch) != 4 || ch != '\n')
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("invalid data in file \"%s\"", BACKUP_LABEL_FILE)));
2011-04-10 17:42:00 +02:00
remaining = strchr(labelfile, '\n') + 1; /* %n is not portable enough */
2004-08-29 07:07:03 +02:00
/*
* Parse the BACKUP FROM line. If we are taking an online backup from
* the standby, we confirm that the standby has not been promoted
* during the backup.
*/
ptr = strstr(remaining, "BACKUP FROM:");
if (sscanf(ptr, "BACKUP FROM: %19s\n", backupfrom) != 1)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("invalid data in file \"%s\"", BACKUP_LABEL_FILE)));
if (strcmp(backupfrom, "standby") == 0 && !backup_started_in_recovery)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("the standby was promoted during online backup"),
errhint("This means that the backup being taken is corrupt "
"and should not be used. "
"Try taking another online backup.")));
/*
* During recovery, we don't write an end-of-backup record. We assume
* that pg_control was backed up last and its minimum recovery
* point can be available as the backup end location. Since we don't
* have an end-of-backup record, we use the pg_control value to check
* whether we've reached the end of backup when starting recovery from
* this backup. We have no way of checking if pg_control wasn't backed
* up last however.
*
* We don't force a switch to new WAL file and wait for all the required
* files to be archived. This is okay if we use the backup to start
* the standby. But, if it's for an archive recovery, to ensure all the
* required files are available, a user should wait for them to be archived,
* or include them into the backup.
*
* We return the current minimum recovery point as the backup end
* location. Note that it's would be bigger than the exact backup end
* location if the minimum recovery point is updated since the backup
* of pg_control. This is harmless for current uses.
*
* XXX currently a backup history file is for informational and debug
* purposes only. It's not essential for an online backup. Furthermore,
* even if it's created, it will not be archived during recovery because
* an archiver is not invoked. So it doesn't seem worthwhile to write
* a backup history file during recovery.
*/
if (backup_started_in_recovery)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
XLogRecPtr recptr;
/*
* Check to see if all WAL replayed during online backup contain
* full-page writes.
*/
SpinLockAcquire(&xlogctl->info_lck);
recptr = xlogctl->lastFpwDisableRecPtr;
SpinLockRelease(&xlogctl->info_lck);
if (XLByteLE(startpoint, recptr))
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("WAL generated with full_page_writes=off was replayed "
"during online backup"),
errhint("This means that the backup being taken on standby "
"is corrupt and should not be used. "
"Enable full_page_writes and run CHECKPOINT on the master, "
"and then try an online backup again.")));
LWLockAcquire(ControlFileLock, LW_SHARED);
stoppoint = ControlFile->minRecoveryPoint;
LWLockRelease(ControlFileLock);
return stoppoint;
}
/*
* Write the backup-end xlog record
*/
rdata.data = (char *) (&startpoint);
rdata.len = sizeof(startpoint);
rdata.buffer = InvalidBuffer;
rdata.next = NULL;
stoppoint = XLogInsert(RM_XLOG_ID, XLOG_BACKUP_END, &rdata);
/*
* Force a switch to a new xlog segment file, so that the backup is valid
* as soon as archiver moves out the current segment file.
*/
RequestXLogSwitch();
XLByteToPrevSeg(stoppoint, _logId, _logSeg);
XLogFileName(stopxlogfilename, ThisTimeLineID, _logId, _logSeg);
/* Use the log timezone here, not the session timezone */
stamp_time = (pg_time_t) time(NULL);
pg_strftime(strfbuf, sizeof(strfbuf),
"%Y-%m-%d %H:%M:%S %Z",
pg_localtime(&stamp_time, log_timezone));
/*
* Write the backup history file
*/
XLByteToSeg(startpoint, _logId, _logSeg);
BackupHistoryFilePath(histfilepath, ThisTimeLineID, _logId, _logSeg,
startpoint.xrecoff % XLogSegSize);
fp = AllocateFile(histfilepath, "w");
if (!fp)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not create file \"%s\": %m",
histfilepath)));
fprintf(fp, "START WAL LOCATION: %X/%X (file %s)\n",
startpoint.xlogid, startpoint.xrecoff, startxlogfilename);
fprintf(fp, "STOP WAL LOCATION: %X/%X (file %s)\n",
stoppoint.xlogid, stoppoint.xrecoff, stopxlogfilename);
/* transfer remaining lines from label to history file */
fprintf(fp, "%s", remaining);
fprintf(fp, "STOP TIME: %s\n", strfbuf);
if (fflush(fp) || ferror(fp) || FreeFile(fp))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not write file \"%s\": %m",
histfilepath)));
2004-08-29 07:07:03 +02:00
/*
2006-10-04 02:30:14 +02:00
* Clean out any no-longer-needed history files. As a side effect, this
* will post a .ready file for the newly created history file, notifying
* the archiver that history file may be archived immediately.
*/
CleanupBackupHistory();
2004-08-29 07:07:03 +02:00
/*
* If archiving is enabled, wait for all the required WAL files to be
2010-07-06 21:19:02 +02:00
* archived before returning. If archiving isn't enabled, the required WAL
* needs to be transported via streaming replication (hopefully with
* wal_keep_segments set high enough), or some more exotic mechanism like
* polling and copying files from pg_xlog with script. We have no
* knowledge of those mechanisms, so it's up to the user to ensure that he
* gets all the required WAL.
*
* We wait until both the last WAL file filled during backup and the
2010-07-06 21:19:02 +02:00
* history file have been archived, and assume that the alphabetic sorting
* property of the WAL files ensures any earlier WAL files are safely
* archived as well.
*
* We wait forever, since archive_command is supposed to work and we
* assume the admin wanted his backup to work completely. If you don't
2010-02-26 03:01:40 +01:00
* wish to wait, you can set statement_timeout. Also, some notices are
* issued to clue in anyone who might be doing this interactively.
*/
if (waitforarchive && XLogArchivingActive())
{
2010-07-06 21:19:02 +02:00
XLByteToPrevSeg(stoppoint, _logId, _logSeg);
XLogFileName(lastxlogfilename, ThisTimeLineID, _logId, _logSeg);
2010-07-06 21:19:02 +02:00
XLByteToSeg(startpoint, _logId, _logSeg);
BackupHistoryFileName(histfilename, ThisTimeLineID, _logId, _logSeg,
startpoint.xrecoff % XLogSegSize);
2010-07-06 21:19:02 +02:00
seconds_before_warning = 60;
waits = 0;
2010-07-06 21:19:02 +02:00
while (XLogArchiveIsBusy(lastxlogfilename) ||
XLogArchiveIsBusy(histfilename))
{
2010-07-06 21:19:02 +02:00
CHECK_FOR_INTERRUPTS();
2010-07-06 21:19:02 +02:00
if (!reported_waiting && waits > 5)
{
ereport(NOTICE,
(errmsg("pg_stop_backup cleanup done, waiting for required WAL segments to be archived")));
reported_waiting = true;
}
2010-07-06 21:19:02 +02:00
pg_usleep(1000000L);
if (++waits >= seconds_before_warning)
{
seconds_before_warning *= 2; /* This wraps in >10 years... */
ereport(WARNING,
(errmsg("pg_stop_backup still waiting for all required WAL segments to be archived (%d seconds elapsed)",
waits),
errhint("Check that your archive_command is executing properly. "
"pg_stop_backup can be canceled safely, "
2010-07-06 21:19:02 +02:00
"but the database backup will not be usable without all the WAL segments.")));
}
}
2010-07-06 21:19:02 +02:00
ereport(NOTICE,
(errmsg("pg_stop_backup complete, all required WAL segments have been archived")));
}
else if (waitforarchive)
ereport(NOTICE,
(errmsg("WAL archiving is not enabled; you must ensure that all required WAL segments are copied through other means to complete the backup")));
/*
* We're done. As a convenience, return the ending WAL location.
*/
return stoppoint;
}
/*
* do_pg_abort_backup: abort a running backup
*
* This does just the most basic steps of do_pg_stop_backup(), by taking the
* system out of backup mode, thus making it a lot more safe to call from
* an error handler.
*
* NB: This is only for aborting a non-exclusive backup that doesn't write
* backup_label. A backup started with pg_stop_backup() needs to be finished
* with pg_stop_backup().
*/
void
do_pg_abort_backup(void)
{
LWLockAcquire(WALInsertLock, LW_EXCLUSIVE);
Assert(XLogCtl->Insert.nonExclusiveBackups > 0);
XLogCtl->Insert.nonExclusiveBackups--;
if (!XLogCtl->Insert.exclusiveBackup &&
XLogCtl->Insert.nonExclusiveBackups == 0)
{
XLogCtl->Insert.forcePageWrites = false;
}
LWLockRelease(WALInsertLock);
}
/*
* Get latest redo apply position.
*
* Optionally, returns the end byte position of the last restored
* WAL segment. Callers not interested in that value may pass
* NULL for restoreLastRecPtr.
*
* Exported to allow WALReceiver to read the pointer directly.
*/
XLogRecPtr
GetXLogReplayRecPtr(XLogRecPtr *restoreLastRecPtr)
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
XLogRecPtr recptr;
SpinLockAcquire(&xlogctl->info_lck);
recptr = xlogctl->recoveryLastRecPtr;
if (restoreLastRecPtr)
*restoreLastRecPtr = xlogctl->restoreLastRecPtr;
SpinLockRelease(&xlogctl->info_lck);
return recptr;
}
/*
* Get current standby flush position, ie, the last WAL position
* known to be fsync'd to disk in standby.
*/
XLogRecPtr
GetStandbyFlushRecPtr(void)
{
XLogRecPtr receivePtr;
XLogRecPtr replayPtr;
XLogRecPtr restorePtr;
receivePtr = GetWalRcvWriteRecPtr(NULL);
replayPtr = GetXLogReplayRecPtr(&restorePtr);
if (XLByteLT(receivePtr, replayPtr))
return XLByteLT(replayPtr, restorePtr) ? restorePtr : replayPtr;
else
return XLByteLT(receivePtr, restorePtr) ? restorePtr : receivePtr;
}
/*
* Get latest WAL insert pointer
*/
XLogRecPtr
GetXLogInsertRecPtr(void)
{
XLogCtlInsert *Insert = &XLogCtl->Insert;
XLogRecPtr current_recptr;
LWLockAcquire(WALInsertLock, LW_SHARED);
INSERT_RECPTR(current_recptr, Insert, Insert->curridx);
LWLockRelease(WALInsertLock);
return current_recptr;
}
/*
* Get latest WAL write pointer
*/
XLogRecPtr
GetXLogWriteRecPtr(void)
{
{
/* use volatile pointer to prevent code rearrangement */
volatile XLogCtlData *xlogctl = XLogCtl;
SpinLockAcquire(&xlogctl->info_lck);
LogwrtResult = xlogctl->LogwrtResult;
SpinLockRelease(&xlogctl->info_lck);
}
return LogwrtResult.Write;
}
/*
* read_backup_label: check to see if a backup_label file is present
*
* If we see a backup_label during recovery, we assume that we are recovering
* from a backup dump file, and we therefore roll forward from the checkpoint
2004-08-29 07:07:03 +02:00
* identified by the label file, NOT what pg_control says. This avoids the
* problem that pg_control might have been archived one or more checkpoints
* later than the start of the dump, and so if we rely on it as the start
* point, we will fail to restore a consistent database state.
*
* Returns TRUE if a backup_label was found (and fills the checkpoint
* location and its REDO location into *checkPointLoc and RedoStartLSN,
* respectively); returns FALSE if not. If this backup_label came from a
* streamed backup, *backupEndRequired is set to TRUE. If this backup_label
* was created during recovery, *backupFromStandby is set to TRUE.
*/
static bool
read_backup_label(XLogRecPtr *checkPointLoc, bool *backupEndRequired,
bool *backupFromStandby)
{
char startxlogfilename[MAXFNAMELEN];
TimeLineID tli;
FILE *lfp;
char ch;
char backuptype[20];
char backupfrom[20];
*backupEndRequired = false;
*backupFromStandby = false;
/*
* See if label file is present
*/
lfp = AllocateFile(BACKUP_LABEL_FILE, "r");
if (!lfp)
{
if (errno != ENOENT)
ereport(FATAL,
(errcode_for_file_access(),
errmsg("could not read file \"%s\": %m",
BACKUP_LABEL_FILE)));
return false; /* it's not there, all is fine */
}
2004-08-29 07:07:03 +02:00
/*
2005-10-15 04:49:52 +02:00
* Read and parse the START WAL LOCATION and CHECKPOINT lines (this code
* is pretty crude, but we are not expecting any variability in the file
* format).
*/
if (fscanf(lfp, "START WAL LOCATION: %X/%X (file %08X%16s)%c",
&RedoStartLSN.xlogid, &RedoStartLSN.xrecoff, &tli,
startxlogfilename, &ch) != 5 || ch != '\n')
ereport(FATAL,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("invalid data in file \"%s\"", BACKUP_LABEL_FILE)));
if (fscanf(lfp, "CHECKPOINT LOCATION: %X/%X%c",
&checkPointLoc->xlogid, &checkPointLoc->xrecoff,
&ch) != 3 || ch != '\n')
ereport(FATAL,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("invalid data in file \"%s\"", BACKUP_LABEL_FILE)));
/*
* BACKUP METHOD and BACKUP FROM lines are new in 9.2. We can't
* restore from an older backup anyway, but since the information on it
* is not strictly required, don't error out if it's missing for some reason.
*/
if (fscanf(lfp, "BACKUP METHOD: %19s\n", backuptype) == 1)
{
if (strcmp(backuptype, "streamed") == 0)
*backupEndRequired = true;
}
if (fscanf(lfp, "BACKUP FROM: %19s\n", backupfrom) == 1)
{
if (strcmp(backupfrom, "standby") == 0)
*backupFromStandby = true;
}
if (ferror(lfp) || FreeFile(lfp))
ereport(FATAL,
(errcode_for_file_access(),
errmsg("could not read file \"%s\": %m",
BACKUP_LABEL_FILE)));
2004-08-29 07:07:03 +02:00
return true;
}
/*
* Error context callback for errors occurring during rm_redo().
*/
static void
rm_redo_error_callback(void *arg)
{
2006-10-04 02:30:14 +02:00
XLogRecord *record = (XLogRecord *) arg;
StringInfoData buf;
initStringInfo(&buf);
RmgrTable[record->xl_rmid].rm_desc(&buf,
record->xl_info,
XLogRecGetData(record));
/* don't bother emitting empty description */
if (buf.len > 0)
errcontext("xlog redo %s", buf.data);
pfree(buf.data);
}
/*
* BackupInProgress: check if online backup mode is active
*
* This is done by checking for existence of the "backup_label" file.
*/
bool
BackupInProgress(void)
{
struct stat stat_buf;
return (stat(BACKUP_LABEL_FILE, &stat_buf) == 0);
}
/*
* CancelBackup: rename the "backup_label" file to cancel backup mode
*
* If the "backup_label" file exists, it will be renamed to "backup_label.old".
* Note that this will render an online backup in progress useless.
* To correctly finish an online backup, pg_stop_backup must be called.
*/
void
CancelBackup(void)
{
struct stat stat_buf;
/* if the file is not there, return */
if (stat(BACKUP_LABEL_FILE, &stat_buf) < 0)
return;
/* remove leftover file from previously canceled backup if it exists */
unlink(BACKUP_LABEL_OLD);
if (rename(BACKUP_LABEL_FILE, BACKUP_LABEL_OLD) == 0)
{
ereport(LOG,
(errmsg("online backup mode canceled"),
errdetail("\"%s\" was renamed to \"%s\".",
BACKUP_LABEL_FILE, BACKUP_LABEL_OLD)));
}
else
{
ereport(WARNING,
(errcode_for_file_access(),
errmsg("online backup mode was not canceled"),
errdetail("Could not rename \"%s\" to \"%s\": %m.",
BACKUP_LABEL_FILE, BACKUP_LABEL_OLD)));
}
}
/*
* Read the XLOG page containing RecPtr into readBuf (if not read already).
* Returns true if the page is read successfully.
*
* This is responsible for restoring files from archive as needed, as well
* as for waiting for the requested WAL record to arrive in standby mode.
*
* 'emode' specifies the log level used for reporting "file not found" or
* "end of WAL" situations in archive recovery, or in standby mode when a
* trigger file is found. If set to WARNING or below, XLogPageRead() returns
* false in those situations, on higher log levels the ereport() won't
* return.
*
* In standby mode, if after a successful return of XLogPageRead() the
* caller finds the record it's interested in to be broken, it should
* ereport the error with the level determined by
* emode_for_corrupt_record(), and then set "failedSources |= readSource"
* and call XLogPageRead() again with the same arguments. This lets
* XLogPageRead() to try fetching the record from another source, or to
* sleep and retry.
*/
static bool
XLogPageRead(XLogRecPtr *RecPtr, int emode, bool fetching_ckpt,
bool randAccess)
{
static XLogRecPtr receivedUpto = {0, 0};
bool switched_segment = false;
uint32 targetPageOff;
uint32 targetRecOff;
uint32 targetId;
uint32 targetSeg;
static pg_time_t last_fail_time = 0;
XLByteToSeg(*RecPtr, targetId, targetSeg);
targetPageOff = ((RecPtr->xrecoff % XLogSegSize) / XLOG_BLCKSZ) * XLOG_BLCKSZ;
targetRecOff = RecPtr->xrecoff % XLOG_BLCKSZ;
/* Fast exit if we have read the record in the current buffer already */
if (failedSources == 0 && targetId == readId && targetSeg == readSeg &&
targetPageOff == readOff && targetRecOff < readLen)
return true;
/*
* See if we need to switch to a new segment because the requested record
* is not in the currently open one.
*/
if (readFile >= 0 && !XLByteInSeg(*RecPtr, readId, readSeg))
{
/*
* Request a restartpoint if we've replayed too much
2010-07-06 21:19:02 +02:00
* xlog since the last one.
*/
if (StandbyMode && bgwriterLaunched)
{
if (XLogCheckpointNeeded(readId, readSeg))
{
(void) GetRedoRecPtr();
if (XLogCheckpointNeeded(readId, readSeg))
RequestCheckpoint(CHECKPOINT_CAUSE_XLOG);
}
}
close(readFile);
readFile = -1;
readSource = 0;
}
XLByteToSeg(*RecPtr, readId, readSeg);
retry:
/* See if we need to retrieve more data */
if (readFile < 0 ||
(readSource == XLOG_FROM_STREAM && !XLByteLT(*RecPtr, receivedUpto)))
{
if (StandbyMode)
{
/*
* In standby mode, wait for the requested record to become
2010-02-26 03:01:40 +01:00
* available, either via restore_command succeeding to restore the
* segment, or via walreceiver having streamed the record.
*/
for (;;)
{
if (WalRcvInProgress())
{
2010-07-06 21:19:02 +02:00
bool havedata;
/*
* If we find an invalid record in the WAL streamed from
* master, something is seriously wrong. There's little
2010-07-06 21:19:02 +02:00
* chance that the problem will just go away, but PANIC is
* not good for availability either, especially in hot
* standby mode. Disconnect, and retry from
* archive/pg_xlog again. The WAL in the archive should be
* identical to what was streamed, so it's unlikely that
* it helps, but one can hope...
*/
if (failedSources & XLOG_FROM_STREAM)
{
ShutdownWalRcv();
continue;
}
/*
* Walreceiver is active, so see if new data has arrived.
*
* We only advance XLogReceiptTime when we obtain fresh
* WAL from walreceiver and observe that we had already
* processed everything before the most recent "chunk"
* that it flushed to disk. In steady state where we are
2010-07-06 21:19:02 +02:00
* keeping up with the incoming data, XLogReceiptTime will
* be updated on each cycle. When we are behind,
* XLogReceiptTime will not advance, so the grace time
* alloted to conflicting queries will decrease.
*/
if (XLByteLT(*RecPtr, receivedUpto))
havedata = true;
else
{
XLogRecPtr latestChunkStart;
receivedUpto = GetWalRcvWriteRecPtr(&latestChunkStart);
if (XLByteLT(*RecPtr, receivedUpto))
{
havedata = true;
if (!XLByteLT(*RecPtr, latestChunkStart))
{
XLogReceiptTime = GetCurrentTimestamp();
SetCurrentChunkStartTime(XLogReceiptTime);
}
}
else
havedata = false;
}
if (havedata)
{
/*
* Great, streamed far enough. Open the file if it's
* not open already. Use XLOG_FROM_STREAM so that
* source info is set correctly and XLogReceiptTime
* isn't changed.
*/
if (readFile < 0)
{
readFile =
XLogFileRead(readId, readSeg, PANIC,
recoveryTargetTLI,
XLOG_FROM_STREAM, false);
Assert(readFile >= 0);
switched_segment = true;
}
else
{
/* just make sure source info is correct... */
readSource = XLOG_FROM_STREAM;
XLogReceiptSource = XLOG_FROM_STREAM;
}
break;
}
/*
* Data not here yet, so check for trigger then sleep for
* five seconds like in the WAL file polling case below.
*/
if (CheckForStandbyTrigger())
goto retry;
/*
* Wait for more WAL to arrive, or timeout to be reached
*/
WaitLatch(&XLogCtl->recoveryWakeupLatch,
WL_LATCH_SET | WL_TIMEOUT,
5000L);
ResetLatch(&XLogCtl->recoveryWakeupLatch);
}
else
{
2010-07-06 21:19:02 +02:00
int sources;
pg_time_t now;
/*
* Until walreceiver manages to reconnect, poll the
* archive.
*/
if (readFile >= 0)
{
close(readFile);
readFile = -1;
}
/* Reset curFileTLI if random fetch. */
if (randAccess)
curFileTLI = 0;
/*
* Try to restore the file from archive, or read an
* existing file from pg_xlog.
*/
sources = XLOG_FROM_ARCHIVE | XLOG_FROM_PG_XLOG;
if (!(sources & ~failedSources))
{
/*
* We've exhausted all options for retrieving the
* file. Retry.
*/
failedSources = 0;
/*
* Before we sleep, re-scan for possible new timelines
* if we were requested to recover to the latest
* timeline.
*/
if (recoveryTargetIsLatest)
{
if (rescanLatestTimeLine())
continue;
}
/*
2011-04-10 17:42:00 +02:00
* If it hasn't been long since last attempt, sleep to
* avoid busy-waiting.
*/
now = (pg_time_t) time(NULL);
if ((now - last_fail_time) < 5)
{
pg_usleep(1000000L * (5 - (now - last_fail_time)));
now = (pg_time_t) time(NULL);
}
last_fail_time = now;
/*
* If primary_conninfo is set, launch walreceiver to
2010-07-06 21:19:02 +02:00
* try to stream the missing WAL, before retrying to
* restore from archive/pg_xlog.
*
* If fetching_ckpt is TRUE, RecPtr points to the
* initial checkpoint location. In that case, we use
2010-07-06 21:19:02 +02:00
* RedoStartLSN as the streaming start position
* instead of RecPtr, so that when we later jump
* backwards to start redo at RedoStartLSN, we will
* have the logs streamed already.
*/
if (PrimaryConnInfo)
{
RequestXLogStreaming(
2010-07-06 21:19:02 +02:00
fetching_ckpt ? RedoStartLSN : *RecPtr,
PrimaryConnInfo);
continue;
}
}
/* Don't try to read from a source that just failed */
sources &= ~failedSources;
readFile = XLogFileReadAnyTLI(readId, readSeg, DEBUG2,
sources);
switched_segment = true;
if (readFile >= 0)
break;
/*
* Nope, not found in archive and/or pg_xlog.
*/
failedSources |= sources;
/*
2010-07-06 21:19:02 +02:00
* Check to see if the trigger file exists. Note that we
* do this only after failure, so when you create the
* trigger file, we still finish replaying as much as we
* can from archive and pg_xlog before failover.
*/
if (CheckForStandbyTrigger())
goto triggered;
}
/*
2010-02-26 03:01:40 +01:00
* This possibly-long loop needs to handle interrupts of
* startup process.
*/
HandleStartupProcInterrupts();
}
}
else
{
/* In archive or crash recovery. */
if (readFile < 0)
{
2010-07-06 21:19:02 +02:00
int sources;
/* Reset curFileTLI if random fetch. */
if (randAccess)
curFileTLI = 0;
sources = XLOG_FROM_PG_XLOG;
if (InArchiveRecovery)
sources |= XLOG_FROM_ARCHIVE;
readFile = XLogFileReadAnyTLI(readId, readSeg, emode,
sources);
switched_segment = true;
if (readFile < 0)
return false;
}
}
}
/*
2010-07-06 21:19:02 +02:00
* At this point, we have the right segment open and if we're streaming we
* know the requested record is in it.
*/
Assert(readFile != -1);
/*
2010-02-26 03:01:40 +01:00
* If the current segment is being streamed from master, calculate how
* much of the current page we have received already. We know the
* requested record has been received, but this is for the benefit of
* future calls, to allow quick exit at the top of this function.
*/
if (readSource == XLOG_FROM_STREAM)
{
if (RecPtr->xlogid != receivedUpto.xlogid ||
(RecPtr->xrecoff / XLOG_BLCKSZ) != (receivedUpto.xrecoff / XLOG_BLCKSZ))
{
readLen = XLOG_BLCKSZ;
}
else
readLen = receivedUpto.xrecoff % XLogSegSize - targetPageOff;
}
else
readLen = XLOG_BLCKSZ;
if (switched_segment && targetPageOff != 0)
{
/*
* Whenever switching to a new WAL segment, we read the first page of
* the file and validate its header, even if that's not where the
* target record is. This is so that we can check the additional
* identification info that is present in the first page's "long"
* header.
*/
readOff = 0;
if (read(readFile, readBuf, XLOG_BLCKSZ) != XLOG_BLCKSZ)
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errcode_for_file_access(),
errmsg("could not read from log file %u, segment %u, offset %u: %m",
readId, readSeg, readOff)));
goto next_record_is_invalid;
}
if (!ValidXLOGHeader((XLogPageHeader) readBuf, emode))
goto next_record_is_invalid;
}
/* Read the requested page */
readOff = targetPageOff;
if (lseek(readFile, (off_t) readOff, SEEK_SET) < 0)
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errcode_for_file_access(),
2010-02-26 03:01:40 +01:00
errmsg("could not seek in log file %u, segment %u to offset %u: %m",
readId, readSeg, readOff)));
goto next_record_is_invalid;
}
if (read(readFile, readBuf, XLOG_BLCKSZ) != XLOG_BLCKSZ)
{
ereport(emode_for_corrupt_record(emode, *RecPtr),
(errcode_for_file_access(),
2010-02-26 03:01:40 +01:00
errmsg("could not read from log file %u, segment %u, offset %u: %m",
readId, readSeg, readOff)));
goto next_record_is_invalid;
}
if (!ValidXLOGHeader((XLogPageHeader) readBuf, emode))
goto next_record_is_invalid;
Assert(targetId == readId);
Assert(targetSeg == readSeg);
Assert(targetPageOff == readOff);
Assert(targetRecOff < readLen);
return true;
next_record_is_invalid:
failedSources |= readSource;
if (readFile >= 0)
close(readFile);
readFile = -1;
readLen = 0;
readSource = 0;
/* In standby-mode, keep trying */
if (StandbyMode)
goto retry;
else
return false;
triggered:
if (readFile >= 0)
close(readFile);
readFile = -1;
readLen = 0;
readSource = 0;
return false;
}
/*
* Determine what log level should be used to report a corrupt WAL record
* in the current WAL page, previously read by XLogPageRead().
*
* 'emode' is the error mode that would be used to report a file-not-found
2010-07-06 21:19:02 +02:00
* or legitimate end-of-WAL situation. Generally, we use it as-is, but if
* we're retrying the exact same record that we've tried previously, only
2010-07-06 21:19:02 +02:00
* complain the first time to keep the noise down. However, we only do when
* reading from pg_xlog, because we don't expect any invalid records in archive
* or in records streamed from master. Files in the archive should be complete,
* and we should never hit the end of WAL because we stop and wait for more WAL
2010-07-06 21:19:02 +02:00
* to arrive before replaying it.
*
* NOTE: This function remembers the RecPtr value it was last called with,
* to suppress repeated messages about the same record. Only call this when
* you are about to ereport(), or you might cause a later message to be
* erroneously suppressed.
*/
static int
emode_for_corrupt_record(int emode, XLogRecPtr RecPtr)
{
static XLogRecPtr lastComplaint = {0, 0};
if (readSource == XLOG_FROM_PG_XLOG && emode == LOG)
{
if (XLByteEQ(RecPtr, lastComplaint))
emode = DEBUG1;
else
lastComplaint = RecPtr;
}
return emode;
}
/*
* Check to see whether the user-specified trigger file exists and whether a
* promote request has arrived. If either condition holds, request postmaster
* to shut down walreceiver, wait for it to exit, and return true.
*/
static bool
CheckForStandbyTrigger(void)
{
struct stat stat_buf;
2011-04-10 17:42:00 +02:00
static bool triggered = false;
if (triggered)
return true;
if (IsPromoteTriggered())
{
ereport(LOG,
(errmsg("received promote request")));
ShutdownWalRcv();
ResetPromoteTriggered();
triggered = true;
return true;
}
if (TriggerFile == NULL)
return false;
if (stat(TriggerFile, &stat_buf) == 0)
{
ereport(LOG,
(errmsg("trigger file found: %s", TriggerFile)));
ShutdownWalRcv();
unlink(TriggerFile);
triggered = true;
return true;
}
return false;
}
/*
* Check to see if a promote request has arrived. Should be
* called by postmaster after receiving SIGUSR1.
*/
bool
CheckPromoteSignal(void)
{
struct stat stat_buf;
if (stat(PROMOTE_SIGNAL_FILE, &stat_buf) == 0)
{
/*
2011-04-10 17:42:00 +02:00
* Since we are in a signal handler, it's not safe to elog. We
* silently ignore any error from unlink.
*/
unlink(PROMOTE_SIGNAL_FILE);
return true;
}
return false;
}
/*
* Wake up startup process to replay newly arrived WAL, or to notice that
* failover has been requested.
*/
void
WakeupRecovery(void)
{
SetLatch(&XLogCtl->recoveryWakeupLatch);
}
/*
* Manage the WALWriterLatch
*/
Latch *
WALWriterLatch(void)
{
return &XLogCtl->WALWriterLatch;
}