postgresql/src/backend/access/nbtree/nbtree.c

1006 lines
29 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* nbtree.c
* Implementation of Lehman and Yao's btree management algorithm for
* Postgres.
*
* NOTES
* This file contains only the public interface routines.
*
*
2011-01-01 19:18:15 +01:00
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/access/nbtree/nbtree.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
1996-11-05 11:35:38 +01:00
#include "access/genam.h"
1999-07-16 07:00:38 +02:00
#include "access/nbtree.h"
#include "access/relscan.h"
#include "catalog/index.h"
#include "catalog/storage.h"
#include "commands/vacuum.h"
#include "storage/bufmgr.h"
#include "storage/freespace.h"
#include "storage/indexfsm.h"
#include "storage/ipc.h"
#include "storage/lmgr.h"
Implement genuine serializable isolation level. Until now, our Serializable mode has in fact been what's called Snapshot Isolation, which allows some anomalies that could not occur in any serialized ordering of the transactions. This patch fixes that using a method called Serializable Snapshot Isolation, based on research papers by Michael J. Cahill (see README-SSI for full references). In Serializable Snapshot Isolation, transactions run like they do in Snapshot Isolation, but a predicate lock manager observes the reads and writes performed and aborts transactions if it detects that an anomaly might occur. This method produces some false positives, ie. it sometimes aborts transactions even though there is no anomaly. To track reads we implement predicate locking, see storage/lmgr/predicate.c. Whenever a tuple is read, a predicate lock is acquired on the tuple. Shared memory is finite, so when a transaction takes many tuple-level locks on a page, the locks are promoted to a single page-level lock, and further to a single relation level lock if necessary. To lock key values with no matching tuple, a sequential scan always takes a relation-level lock, and an index scan acquires a page-level lock that covers the search key, whether or not there are any matching keys at the moment. A predicate lock doesn't conflict with any regular locks or with another predicate locks in the normal sense. They're only used by the predicate lock manager to detect the danger of anomalies. Only serializable transactions participate in predicate locking, so there should be no extra overhead for for other transactions. Predicate locks can't be released at commit, but must be remembered until all the transactions that overlapped with it have completed. That means that we need to remember an unbounded amount of predicate locks, so we apply a lossy but conservative method of tracking locks for committed transactions. If we run short of shared memory, we overflow to a new "pg_serial" SLRU pool. We don't currently allow Serializable transactions in Hot Standby mode. That would be hard, because even read-only transactions can cause anomalies that wouldn't otherwise occur. Serializable isolation mode now means the new fully serializable level. Repeatable Read gives you the old Snapshot Isolation level that we have always had. Kevin Grittner and Dan Ports, reviewed by Jeff Davis, Heikki Linnakangas and Anssi Kääriäinen
2011-02-07 22:46:51 +01:00
#include "storage/predicate.h"
#include "storage/smgr.h"
#include "utils/memutils.h"
2001-03-22 05:01:46 +01:00
/* Working state for btbuild and its callback */
typedef struct
{
bool isUnique;
bool haveDead;
Relation heapRel;
BTSpool *spool;
/*
2005-10-15 04:49:52 +02:00
* spool2 is needed only when the index is an unique index. Dead tuples
* are put into spool2 instead of spool in order to avoid uniqueness
* check.
*/
BTSpool *spool2;
double indtuples;
} BTBuildState;
/* Working state needed by btvacuumpage */
typedef struct
{
IndexVacuumInfo *info;
IndexBulkDeleteResult *stats;
IndexBulkDeleteCallback callback;
void *callback_state;
BTCycleId cycleid;
2010-02-26 03:01:40 +01:00
BlockNumber lastBlockVacuumed; /* last blkno reached by Vacuum scan */
BlockNumber lastUsedPage; /* blkno of last non-recyclable page */
2006-10-04 02:30:14 +02:00
BlockNumber totFreePages; /* true total # of free pages */
MemoryContext pagedelcontext;
} BTVacState;
static void btbuildCallback(Relation index,
HeapTuple htup,
Datum *values,
bool *isnull,
bool tupleIsAlive,
void *state);
static void btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback, void *callback_state,
BTCycleId cycleid);
static void btvacuumpage(BTVacState *vstate, BlockNumber blkno,
2006-10-04 02:30:14 +02:00
BlockNumber orig_blkno);
/*
* btbuild() -- build a new btree index.
*/
Datum
btbuild(PG_FUNCTION_ARGS)
{
2001-03-22 05:01:46 +01:00
Relation heap = (Relation) PG_GETARG_POINTER(0);
Relation index = (Relation) PG_GETARG_POINTER(1);
IndexInfo *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2);
IndexBuildResult *result;
double reltuples;
BTBuildState buildstate;
2001-03-22 05:01:46 +01:00
buildstate.isUnique = indexInfo->ii_Unique;
buildstate.haveDead = false;
buildstate.heapRel = heap;
buildstate.spool = NULL;
buildstate.spool2 = NULL;
buildstate.indtuples = 0;
#ifdef BTREE_BUILD_STATS
if (log_btree_build_stats)
ResetUsage();
#endif /* BTREE_BUILD_STATS */
/*
2005-10-15 04:49:52 +02:00
* We expect to be called exactly once for any index relation. If that's
* not the case, big trouble's what we have.
*/
if (RelationGetNumberOfBlocks(index) != 0)
elog(ERROR, "index \"%s\" already contains data",
RelationGetRelationName(index));
buildstate.spool = _bt_spoolinit(index, indexInfo->ii_Unique, false);
/*
2006-10-04 02:30:14 +02:00
* If building a unique index, put dead tuples in a second spool to keep
* them out of the uniqueness check.
*/
if (indexInfo->ii_Unique)
buildstate.spool2 = _bt_spoolinit(index, false, true);
/* do the heap scan */
reltuples = IndexBuildHeapScan(heap, index, indexInfo, true,
btbuildCallback, (void *) &buildstate);
/* okay, all heap tuples are indexed */
if (buildstate.spool2 && !buildstate.haveDead)
{
/* spool2 turns out to be unnecessary */
_bt_spooldestroy(buildstate.spool2);
buildstate.spool2 = NULL;
}
/*
* Finish the build by (1) completing the sort of the spool file, (2)
* inserting the sorted tuples into btree pages and (3) building the upper
* levels.
*/
_bt_leafbuild(buildstate.spool, buildstate.spool2);
_bt_spooldestroy(buildstate.spool);
if (buildstate.spool2)
_bt_spooldestroy(buildstate.spool2);
#ifdef BTREE_BUILD_STATS
if (log_btree_build_stats)
{
ShowUsage("BTREE BUILD STATS");
ResetUsage();
}
#endif /* BTREE_BUILD_STATS */
/*
2006-10-04 02:30:14 +02:00
* If we are reindexing a pre-existing index, it is critical to send out a
* relcache invalidation SI message to ensure all backends re-read the
* index metapage. We expect that the caller will ensure that happens
* (typically as a side effect of updating index stats, but it must happen
* even if the stats don't change!)
*/
/*
* Return statistics
*/
result = (IndexBuildResult *) palloc(sizeof(IndexBuildResult));
result->heap_tuples = reltuples;
result->index_tuples = buildstate.indtuples;
PG_RETURN_POINTER(result);
}
/*
* Per-tuple callback from IndexBuildHeapScan
*/
static void
btbuildCallback(Relation index,
HeapTuple htup,
Datum *values,
bool *isnull,
bool tupleIsAlive,
void *state)
{
BTBuildState *buildstate = (BTBuildState *) state;
IndexTuple itup;
/* form an index tuple and point it at the heap tuple */
itup = index_form_tuple(RelationGetDescr(index), values, isnull);
itup->t_tid = htup->t_self;
/*
* insert the index tuple into the appropriate spool file for subsequent
* processing
*/
if (tupleIsAlive || buildstate->spool2 == NULL)
_bt_spool(itup, buildstate->spool);
else
{
/* dead tuples are put into spool2 */
buildstate->haveDead = true;
_bt_spool(itup, buildstate->spool2);
}
buildstate->indtuples += 1;
pfree(itup);
}
/*
* btbuildempty() -- build an empty btree index in the initialization fork
*/
Datum
btbuildempty(PG_FUNCTION_ARGS)
{
Relation index = (Relation) PG_GETARG_POINTER(0);
Page metapage;
/* Construct metapage. */
metapage = (Page) palloc(BLCKSZ);
_bt_initmetapage(metapage, P_NONE, 0);
/* Write the page. If archiving/streaming, XLOG it. */
smgrwrite(index->rd_smgr, INIT_FORKNUM, BTREE_METAPAGE,
(char *) metapage, true);
if (XLogIsNeeded())
log_newpage(&index->rd_smgr->smgr_rnode.node, INIT_FORKNUM,
BTREE_METAPAGE, metapage);
/*
* An immediate sync is require even if we xlog'd the page, because the
* write did not go through shared_buffers and therefore a concurrent
* checkpoint may have move the redo pointer past our xlog record.
*/
smgrimmedsync(index->rd_smgr, INIT_FORKNUM);
PG_RETURN_VOID();
}
/*
* btinsert() -- insert an index tuple into a btree.
*
* Descend the tree recursively, find the appropriate location for our
* new tuple, and put it there.
*/
Datum
btinsert(PG_FUNCTION_ARGS)
{
2001-03-22 05:01:46 +01:00
Relation rel = (Relation) PG_GETARG_POINTER(0);
Datum *values = (Datum *) PG_GETARG_POINTER(1);
bool *isnull = (bool *) PG_GETARG_POINTER(2);
2001-03-22 05:01:46 +01:00
ItemPointer ht_ctid = (ItemPointer) PG_GETARG_POINTER(3);
Relation heapRel = (Relation) PG_GETARG_POINTER(4);
IndexUniqueCheck checkUnique = (IndexUniqueCheck) PG_GETARG_INT32(5);
bool result;
IndexTuple itup;
/* generate an index tuple */
itup = index_form_tuple(RelationGetDescr(rel), values, isnull);
itup->t_tid = *ht_ctid;
result = _bt_doinsert(rel, itup, checkUnique, heapRel);
pfree(itup);
PG_RETURN_BOOL(result);
}
/*
* btgettuple() -- Get the next tuple in the scan.
*/
Datum
btgettuple(PG_FUNCTION_ARGS)
{
2001-03-22 05:01:46 +01:00
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
ScanDirection dir = (ScanDirection) PG_GETARG_INT32(1);
BTScanOpaque so = (BTScanOpaque) scan->opaque;
bool res;
/* btree indexes are never lossy */
scan->xs_recheck = false;
/*
2005-10-15 04:49:52 +02:00
* If we've already initialized this scan, we can just advance it in the
* appropriate direction. If we haven't done so yet, we call a routine to
* get the first item in the scan.
*/
if (BTScanPosIsValid(so->currPos))
1998-07-30 07:05:05 +02:00
{
/*
* Check to see if we should kill the previously-fetched tuple.
*/
if (scan->kill_prior_tuple)
{
/*
2006-10-04 02:30:14 +02:00
* Yes, remember it for later. (We'll deal with all such tuples
* at once right before leaving the index page.) The test for
* numKilled overrun is not just paranoia: if the caller reverses
* direction in the indexscan then the same item might get entered
2006-10-04 02:30:14 +02:00
* multiple times. It's not worth trying to optimize that, so we
* don't detect it, but instead just forget any excess entries.
*/
if (so->killedItems == NULL)
so->killedItems = (int *)
palloc(MaxIndexTuplesPerPage * sizeof(int));
if (so->numKilled < MaxIndexTuplesPerPage)
so->killedItems[so->numKilled++] = so->currPos.itemIndex;
}
2002-09-04 22:31:48 +02:00
/*
* Now continue the scan.
*/
res = _bt_next(scan, dir);
1998-07-30 07:05:05 +02:00
}
else
res = _bt_first(scan, dir);
PG_RETURN_BOOL(res);
}
/*
* btgetbitmap() -- gets all matching tuples, and adds them to a bitmap
*/
Datum
btgetbitmap(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
TIDBitmap *tbm = (TIDBitmap *) PG_GETARG_POINTER(1);
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int64 ntids = 0;
ItemPointer heapTid;
/* Fetch the first page & tuple. */
if (!_bt_first(scan, ForwardScanDirection))
{
/* empty scan */
PG_RETURN_INT64(0);
}
/* Save tuple ID, and continue scanning */
heapTid = &scan->xs_ctup.t_self;
tbm_add_tuples(tbm, heapTid, 1, false);
ntids++;
for (;;)
{
/*
2006-10-04 02:30:14 +02:00
* Advance to next tuple within page. This is the same as the easy
* case in _bt_next().
*/
if (++so->currPos.itemIndex > so->currPos.lastItem)
{
/* let _bt_next do the heavy lifting */
if (!_bt_next(scan, ForwardScanDirection))
break;
}
/* Save tuple ID, and continue scanning */
heapTid = &so->currPos.items[so->currPos.itemIndex].heapTid;
tbm_add_tuples(tbm, heapTid, 1, false);
ntids++;
}
PG_RETURN_INT64(ntids);
}
/*
* btbeginscan() -- start a scan on a btree index
*/
Datum
btbeginscan(PG_FUNCTION_ARGS)
{
Relation rel = (Relation) PG_GETARG_POINTER(0);
int nkeys = PG_GETARG_INT32(1);
int norderbys = PG_GETARG_INT32(2);
IndexScanDesc scan;
BTScanOpaque so;
/* no order by operators allowed */
Assert(norderbys == 0);
/* get the scan */
scan = RelationGetIndexScan(rel, nkeys, norderbys);
/* allocate private workspace */
so = (BTScanOpaque) palloc(sizeof(BTScanOpaqueData));
so->currPos.buf = so->markPos.buf = InvalidBuffer;
if (scan->numberOfKeys > 0)
so->keyData = (ScanKey) palloc(scan->numberOfKeys * sizeof(ScanKeyData));
else
so->keyData = NULL;
so->killedItems = NULL; /* until needed */
so->numKilled = 0;
scan->opaque = so;
PG_RETURN_POINTER(scan);
}
/*
* btrescan() -- rescan an index relation
*/
Datum
btrescan(PG_FUNCTION_ARGS)
{
2001-03-22 05:01:46 +01:00
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
ScanKey scankey = (ScanKey) PG_GETARG_POINTER(1);
/* remaining arguments are ignored */
BTScanOpaque so = (BTScanOpaque) scan->opaque;
/* we aren't holding any read locks, but gotta drop the pins */
if (BTScanPosIsValid(so->currPos))
{
/* Before leaving current page, deal with any killed items */
if (so->numKilled > 0)
_bt_killitems(scan, false);
ReleaseBuffer(so->currPos.buf);
so->currPos.buf = InvalidBuffer;
}
if (BTScanPosIsValid(so->markPos))
{
ReleaseBuffer(so->markPos.buf);
so->markPos.buf = InvalidBuffer;
}
so->markItemIndex = -1;
/*
2005-10-15 04:49:52 +02:00
* Reset the scan keys. Note that keys ordering stuff moved to _bt_first.
* - vadim 05/05/97
*/
if (scankey && scan->numberOfKeys > 0)
memmove(scan->keyData,
scankey,
scan->numberOfKeys * sizeof(ScanKeyData));
so->numberOfKeys = 0; /* until _bt_preprocess_keys sets it */
PG_RETURN_VOID();
}
/*
* btendscan() -- close down a scan
*/
Datum
btendscan(PG_FUNCTION_ARGS)
{
2001-03-22 05:01:46 +01:00
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
BTScanOpaque so = (BTScanOpaque) scan->opaque;
/* we aren't holding any read locks, but gotta drop the pins */
if (BTScanPosIsValid(so->currPos))
{
/* Before leaving current page, deal with any killed items */
if (so->numKilled > 0)
_bt_killitems(scan, false);
ReleaseBuffer(so->currPos.buf);
so->currPos.buf = InvalidBuffer;
}
if (BTScanPosIsValid(so->markPos))
{
ReleaseBuffer(so->markPos.buf);
so->markPos.buf = InvalidBuffer;
}
so->markItemIndex = -1;
if (so->killedItems != NULL)
pfree(so->killedItems);
if (so->keyData != NULL)
pfree(so->keyData);
pfree(so);
PG_RETURN_VOID();
}
/*
* btmarkpos() -- save current scan position
*/
Datum
btmarkpos(PG_FUNCTION_ARGS)
{
2001-03-22 05:01:46 +01:00
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
BTScanOpaque so = (BTScanOpaque) scan->opaque;
/* we aren't holding any read locks, but gotta drop the pin */
if (BTScanPosIsValid(so->markPos))
{
ReleaseBuffer(so->markPos.buf);
so->markPos.buf = InvalidBuffer;
}
/*
* Just record the current itemIndex. If we later step to next page
2006-10-04 02:30:14 +02:00
* before releasing the marked position, _bt_steppage makes a full copy of
* the currPos struct in markPos. If (as often happens) the mark is moved
* before we leave the page, we don't have to do that work.
*/
if (BTScanPosIsValid(so->currPos))
so->markItemIndex = so->currPos.itemIndex;
else
so->markItemIndex = -1;
PG_RETURN_VOID();
}
/*
* btrestrpos() -- restore scan to last saved position
*/
Datum
btrestrpos(PG_FUNCTION_ARGS)
{
2001-03-22 05:01:46 +01:00
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
BTScanOpaque so = (BTScanOpaque) scan->opaque;
if (so->markItemIndex >= 0)
{
/*
2006-10-04 02:30:14 +02:00
* The mark position is on the same page we are currently on. Just
* restore the itemIndex.
*/
so->currPos.itemIndex = so->markItemIndex;
2006-10-04 02:30:14 +02:00
}
else
{
/* we aren't holding any read locks, but gotta drop the pin */
if (BTScanPosIsValid(so->currPos))
{
/* Before leaving current page, deal with any killed items */
if (so->numKilled > 0 &&
so->currPos.buf != so->markPos.buf)
_bt_killitems(scan, false);
ReleaseBuffer(so->currPos.buf);
so->currPos.buf = InvalidBuffer;
}
if (BTScanPosIsValid(so->markPos))
{
/* bump pin on mark buffer for assignment to current buffer */
IncrBufferRefCount(so->markPos.buf);
memcpy(&so->currPos, &so->markPos,
offsetof(BTScanPosData, items[1]) +
so->markPos.lastItem * sizeof(BTScanPosItem));
}
}
PG_RETURN_VOID();
}
/*
* Bulk deletion of all index entries pointing to a set of heap tuples.
* The set of target tuples is specified via a callback routine that tells
* whether any given heap tuple (identified by ItemPointer) is being deleted.
*
* Result: a palloc'd struct containing statistical info for VACUUM displays.
*/
Datum
btbulkdelete(PG_FUNCTION_ARGS)
{
IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
2006-10-04 02:30:14 +02:00
IndexBulkDeleteResult *volatile stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(2);
void *callback_state = (void *) PG_GETARG_POINTER(3);
Relation rel = info->index;
BTCycleId cycleid;
/* allocate stats if first time through, else re-use existing struct */
if (stats == NULL)
stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
/* Establish the vacuum cycle ID to use for this scan */
/* The ENSURE stuff ensures we clean up shared memory on failure */
PG_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
{
cycleid = _bt_start_vacuum(rel);
2003-08-04 02:43:34 +02:00
btvacuumscan(info, stats, callback, callback_state, cycleid);
}
PG_END_ENSURE_ERROR_CLEANUP(_bt_end_vacuum_callback, PointerGetDatum(rel));
_bt_end_vacuum(rel);
PG_RETURN_POINTER(stats);
}
1998-07-30 07:05:05 +02:00
/*
* Post-VACUUM cleanup.
*
* Result: a palloc'd struct containing statistical info for VACUUM displays.
*/
Datum
btvacuumcleanup(PG_FUNCTION_ARGS)
{
IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
/* No-op in ANALYZE ONLY mode */
if (info->analyze_only)
PG_RETURN_POINTER(stats);
/*
2006-10-04 02:30:14 +02:00
* If btbulkdelete was called, we need not do anything, just return the
* stats from the latest btbulkdelete call. If it wasn't called, we must
* still do a pass over the index, to recycle any newly-recyclable pages
* and to obtain index statistics.
*
* Since we aren't going to actually delete any leaf items, there's no
* need to go through all the vacuum-cycle-ID pushups.
*/
if (stats == NULL)
{
stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
btvacuumscan(info, stats, NULL, NULL, 0);
}
/* Finally, vacuum the FSM */
IndexFreeSpaceMapVacuum(info->index);
/*
* It's quite possible for us to be fooled by concurrent page splits into
* double-counting some index tuples, so disbelieve any total that exceeds
* the underlying heap's count ... if we know that accurately. Otherwise
* this might just make matters worse.
*/
if (!info->estimated_count)
{
if (stats->num_index_tuples > info->num_heap_tuples)
stats->num_index_tuples = info->num_heap_tuples;
}
PG_RETURN_POINTER(stats);
}
/*
* btvacuumscan --- scan the index for VACUUMing purposes
*
* This combines the functions of looking for leaf tuples that are deletable
* according to the vacuum callback, looking for empty pages that can be
* deleted, and looking for old deleted pages that can be recycled. Both
* btbulkdelete and btvacuumcleanup invoke this (the latter only if no
* btbulkdelete call occurred).
*
* The caller is responsible for initially allocating/zeroing a stats struct
* and for obtaining a vacuum cycle ID if necessary.
*/
static void
btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback, void *callback_state,
BTCycleId cycleid)
{
Relation rel = info->index;
BTVacState vstate;
BlockNumber num_pages;
BlockNumber blkno;
bool needLock;
/*
2006-10-04 02:30:14 +02:00
* Reset counts that will be incremented during the scan; needed in case
* of multiple scans during a single VACUUM command
*/
stats->estimated_count = false;
stats->num_index_tuples = 0;
stats->pages_deleted = 0;
/* Set up info to pass down to btvacuumpage */
vstate.info = info;
vstate.stats = stats;
vstate.callback = callback;
vstate.callback_state = callback_state;
vstate.cycleid = cycleid;
2010-02-26 03:01:40 +01:00
vstate.lastBlockVacuumed = BTREE_METAPAGE; /* Initialise at first block */
vstate.lastUsedPage = BTREE_METAPAGE;
vstate.totFreePages = 0;
/* Create a temporary memory context to run _bt_pagedel in */
vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext,
"_bt_pagedel",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
/*
2006-10-04 02:30:14 +02:00
* The outer loop iterates over all index pages except the metapage, in
* physical order (we hope the kernel will cooperate in providing
* read-ahead for speed). It is critical that we visit all leaf pages,
* including ones added after we start the scan, else we might fail to
* delete some deletable tuples. Hence, we must repeatedly check the
* relation length. We must acquire the relation-extension lock while
* doing so to avoid a race condition: if someone else is extending the
* relation, there is a window where bufmgr/smgr have created a new
2006-10-04 02:30:14 +02:00
* all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
* we manage to scan such a page here, we'll improperly assume it can be
* recycled. Taking the lock synchronizes things enough to prevent a
* problem: either num_pages won't include the new page, or _bt_getbuf
* already has write lock on the buffer and it will be fully initialized
* before we can examine it. (See also vacuumlazy.c, which has the same
2006-10-04 02:30:14 +02:00
* issue.) Also, we need not worry if a page is added immediately after
* we look; the page splitting code already has write-lock on the left
2006-10-04 02:30:14 +02:00
* page before it adds a right page, so we must already have processed any
* tuples due to be moved into such a page.
*
* We can skip locking for new or temp relations, however, since no one
* else could be accessing them.
*/
needLock = !RELATION_IS_LOCAL(rel);
blkno = BTREE_METAPAGE + 1;
for (;;)
{
/* Get the current relation length */
if (needLock)
LockRelationForExtension(rel, ExclusiveLock);
num_pages = RelationGetNumberOfBlocks(rel);
if (needLock)
UnlockRelationForExtension(rel, ExclusiveLock);
/* Quit if we've scanned the whole relation */
if (blkno >= num_pages)
break;
/* Iterate over pages, then loop back to recheck length */
for (; blkno < num_pages; blkno++)
{
btvacuumpage(&vstate, blkno, blkno);
}
}
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
* InHotStandby we need to scan right up to the end of the index for
* correct locking, so we may need to write a WAL record for the final
* block in the index if it was not vacuumed. It's possible that VACUUMing
* has actually removed zeroed pages at the end of the index so we need to
* take care to issue the record for last actual block and not for the
* last block that was scanned. Ignore empty indexes.
*/
if (XLogStandbyInfoActive() &&
num_pages > 1 && vstate.lastBlockVacuumed < (num_pages - 1))
{
Buffer buf;
/*
* We can't use _bt_getbuf() here because it always applies
* _bt_checkpage(), which will barf on an all-zero page. We want to
2010-02-26 03:01:40 +01:00
* recycle all-zero pages, not fail. Also, we want to use a
* nondefault buffer access strategy.
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
*/
buf = ReadBufferExtended(rel, MAIN_FORKNUM, num_pages - 1, RBM_NORMAL,
info->strategy);
LockBufferForCleanup(buf);
_bt_delitems_vacuum(rel, buf, NULL, 0, vstate.lastBlockVacuumed);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
_bt_relbuf(rel, buf);
}
MemoryContextDelete(vstate.pagedelcontext);
/* update statistics */
stats->num_pages = num_pages;
stats->pages_free = vstate.totFreePages;
}
/*
* btvacuumpage --- VACUUM one page
*
* This processes a single page for btvacuumscan(). In some cases we
* must go back and re-examine previously-scanned pages; this routine
* recurses when necessary to handle that case.
*
* blkno is the page to process. orig_blkno is the highest block number
* reached by the outer btvacuumscan loop (the same as blkno, unless we
* are recursing to re-examine a previous page).
*/
static void
btvacuumpage(BTVacState *vstate, BlockNumber blkno, BlockNumber orig_blkno)
{
IndexVacuumInfo *info = vstate->info;
IndexBulkDeleteResult *stats = vstate->stats;
IndexBulkDeleteCallback callback = vstate->callback;
void *callback_state = vstate->callback_state;
Relation rel = info->index;
bool delete_now;
2006-10-04 02:30:14 +02:00
BlockNumber recurse_to;
Buffer buf;
Page page;
BTPageOpaque opaque;
restart:
delete_now = false;
recurse_to = P_NONE;
/* call vacuum_delay_point while not holding any buffer lock */
vacuum_delay_point();
/*
* We can't use _bt_getbuf() here because it always applies
* _bt_checkpage(), which will barf on an all-zero page. We want to
* recycle all-zero pages, not fail. Also, we want to use a nondefault
* buffer access strategy.
*/
buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
info->strategy);
LockBuffer(buf, BT_READ);
page = BufferGetPage(buf);
opaque = (BTPageOpaque) PageGetSpecialPointer(page);
if (!PageIsNew(page))
_bt_checkpage(rel, buf);
/*
2006-10-04 02:30:14 +02:00
* If we are recursing, the only case we want to do anything with is a
* live leaf page having the current vacuum cycle ID. Any other state
* implies we already saw the page (eg, deleted it as being empty).
*/
if (blkno != orig_blkno)
{
if (_bt_page_recyclable(page) ||
P_IGNORE(opaque) ||
!P_ISLEAF(opaque) ||
opaque->btpo_cycleid != vstate->cycleid)
{
_bt_relbuf(rel, buf);
return;
}
}
/* If the page is in use, update lastUsedPage */
if (!_bt_page_recyclable(page) && vstate->lastUsedPage < blkno)
vstate->lastUsedPage = blkno;
/* Page is valid, see what to do with it */
if (_bt_page_recyclable(page))
{
/* Okay to recycle this page */
Implement genuine serializable isolation level. Until now, our Serializable mode has in fact been what's called Snapshot Isolation, which allows some anomalies that could not occur in any serialized ordering of the transactions. This patch fixes that using a method called Serializable Snapshot Isolation, based on research papers by Michael J. Cahill (see README-SSI for full references). In Serializable Snapshot Isolation, transactions run like they do in Snapshot Isolation, but a predicate lock manager observes the reads and writes performed and aborts transactions if it detects that an anomaly might occur. This method produces some false positives, ie. it sometimes aborts transactions even though there is no anomaly. To track reads we implement predicate locking, see storage/lmgr/predicate.c. Whenever a tuple is read, a predicate lock is acquired on the tuple. Shared memory is finite, so when a transaction takes many tuple-level locks on a page, the locks are promoted to a single page-level lock, and further to a single relation level lock if necessary. To lock key values with no matching tuple, a sequential scan always takes a relation-level lock, and an index scan acquires a page-level lock that covers the search key, whether or not there are any matching keys at the moment. A predicate lock doesn't conflict with any regular locks or with another predicate locks in the normal sense. They're only used by the predicate lock manager to detect the danger of anomalies. Only serializable transactions participate in predicate locking, so there should be no extra overhead for for other transactions. Predicate locks can't be released at commit, but must be remembered until all the transactions that overlapped with it have completed. That means that we need to remember an unbounded amount of predicate locks, so we apply a lossy but conservative method of tracking locks for committed transactions. If we run short of shared memory, we overflow to a new "pg_serial" SLRU pool. We don't currently allow Serializable transactions in Hot Standby mode. That would be hard, because even read-only transactions can cause anomalies that wouldn't otherwise occur. Serializable isolation mode now means the new fully serializable level. Repeatable Read gives you the old Snapshot Isolation level that we have always had. Kevin Grittner and Dan Ports, reviewed by Jeff Davis, Heikki Linnakangas and Anssi Kääriäinen
2011-02-07 22:46:51 +01:00
Assert(!PageIsPredicateLocked(rel, blkno));
RecordFreeIndexPage(rel, blkno);
vstate->totFreePages++;
stats->pages_deleted++;
}
else if (P_ISDELETED(opaque))
{
/* Already deleted, but can't recycle yet */
stats->pages_deleted++;
}
else if (P_ISHALFDEAD(opaque))
{
/* Half-dead, try to delete */
delete_now = true;
}
else if (P_ISLEAF(opaque))
{
OffsetNumber deletable[MaxOffsetNumber];
int ndeletable;
OffsetNumber offnum,
2006-10-04 02:30:14 +02:00
minoff,
maxoff;
/*
2006-10-04 02:30:14 +02:00
* Trade in the initial read lock for a super-exclusive write lock on
* this page. We must get such a lock on every leaf page over the
* course of the vacuum scan, whether or not it actually contains any
* deletable tuples --- see nbtree/README.
*/
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
LockBufferForCleanup(buf);
/*
2006-10-04 02:30:14 +02:00
* Check whether we need to recurse back to earlier pages. What we
* are concerned about is a page split that happened since we started
* the vacuum scan. If the split moved some tuples to a lower page
* then we might have missed 'em. If so, set up for tail recursion.
* (Must do this before possibly clearing btpo_cycleid below!)
*/
if (vstate->cycleid != 0 &&
opaque->btpo_cycleid == vstate->cycleid &&
!(opaque->btpo_flags & BTP_SPLIT_END) &&
!P_RIGHTMOST(opaque) &&
opaque->btpo_next < orig_blkno)
recurse_to = opaque->btpo_next;
/*
2006-10-04 02:30:14 +02:00
* Scan over all items to see which ones need deleted according to the
* callback function.
*/
ndeletable = 0;
minoff = P_FIRSTDATAKEY(opaque);
maxoff = PageGetMaxOffsetNumber(page);
if (callback)
{
for (offnum = minoff;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
IndexTuple itup;
ItemPointer htup;
itup = (IndexTuple) PageGetItem(page,
PageGetItemId(page, offnum));
htup = &(itup->t_tid);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
2010-02-26 03:01:40 +01:00
* During Hot Standby we currently assume that
* XLOG_BTREE_VACUUM records do not produce conflicts. That is
* only true as long as the callback function depends only
* upon whether the index tuple refers to heap tuples removed
* in the initial heap scan. When vacuum starts it derives a
* value of OldestXmin. Backends taking later snapshots could
* have a RecentGlobalXmin with a later xid than the vacuum's
* OldestXmin, so it is possible that row versions deleted
* after OldestXmin could be marked as killed by other
* backends. The callback function *could* look at the index
* tuple state in isolation and decide to delete the index
* tuple, though currently it does not. If it ever did, we
* would need to reconsider whether XLOG_BTREE_VACUUM records
* should cause conflicts. If they did cause conflicts they
* would be fairly harsh conflicts, since we haven't yet
* worked out a way to pass a useful value for
* latestRemovedXid on the XLOG_BTREE_VACUUM records. This
* applies to *any* type of index that marks index tuples as
* killed.
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
*/
if (callback(htup, callback_state))
deletable[ndeletable++] = offnum;
}
}
/*
2006-10-04 02:30:14 +02:00
* Apply any needed deletes. We issue just one _bt_delitems() call
* per page, so as to minimize WAL traffic.
*/
if (ndeletable > 0)
{
2010-02-26 03:01:40 +01:00
BlockNumber lastBlockVacuumed = BufferGetBlockNumber(buf);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
_bt_delitems_vacuum(rel, buf, deletable, ndeletable, vstate->lastBlockVacuumed);
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
/*
2010-02-26 03:01:40 +01:00
* Keep track of the block number of the lastBlockVacuumed, so we
* can scan those blocks as well during WAL replay. This then
Allow read only connections during recovery, known as Hot Standby. Enabled by recovery_connections = on (default) and forcing archive recovery using a recovery.conf. Recovery processing now emulates the original transactions as they are replayed, providing full locking and MVCC behaviour for read only queries. Recovery must enter consistent state before connections are allowed, so there is a delay, typically short, before connections succeed. Replay of recovering transactions can conflict and in some cases deadlock with queries during recovery; these result in query cancellation after max_standby_delay seconds have expired. Infrastructure changes have minor effects on normal running, though introduce four new types of WAL record. New test mode "make standbycheck" allows regression tests of static command behaviour on a standby server while in recovery. Typical and extreme dynamic behaviours have been checked via code inspection and manual testing. Few port specific behaviours have been utilised, though primary testing has been on Linux only so far. This commit is the basic patch. Additional changes will follow in this release to enhance some aspects of behaviour, notably improved handling of conflicts, deadlock detection and query cancellation. Changes to VACUUM FULL are also required. Simon Riggs, with significant and lengthy review by Heikki Linnakangas, including streamlined redesign of snapshot creation and two-phase commit. Important contributions from Florian Pflug, Mark Kirkwood, Merlin Moncure, Greg Stark, Gianni Ciolli, Gabriele Bartolini, Hannu Krosing, Robert Haas, Tatsuo Ishii, Hiroyuki Yamada plus support and feedback from many other community members.
2009-12-19 02:32:45 +01:00
* provides concurrency protection and allows btrees to be used
* while in recovery.
*/
if (lastBlockVacuumed > vstate->lastBlockVacuumed)
vstate->lastBlockVacuumed = lastBlockVacuumed;
stats->tuples_removed += ndeletable;
/* must recompute maxoff */
maxoff = PageGetMaxOffsetNumber(page);
}
else
{
/*
* If the page has been split during this vacuum cycle, it seems
* worth expending a write to clear btpo_cycleid even if we don't
* have any deletions to do. (If we do, _bt_delitems takes care
* of this.) This ensures we won't process the page again.
*
2006-10-04 02:30:14 +02:00
* We treat this like a hint-bit update because there's no need to
* WAL-log it.
*/
if (vstate->cycleid != 0 &&
opaque->btpo_cycleid == vstate->cycleid)
{
opaque->btpo_cycleid = 0;
SetBufferCommitInfoNeedsSave(buf);
}
}
/*
2006-10-04 02:30:14 +02:00
* If it's now empty, try to delete; else count the live tuples. We
* don't delete when recursing, though, to avoid putting entries into
* freePages out-of-order (doesn't seem worth any extra code to handle
* the case).
*/
if (minoff > maxoff)
delete_now = (blkno == orig_blkno);
else
stats->num_index_tuples += maxoff - minoff + 1;
}
if (delete_now)
{
MemoryContext oldcontext;
int ndel;
/* Run pagedel in a temp context to avoid memory leakage */
MemoryContextReset(vstate->pagedelcontext);
oldcontext = MemoryContextSwitchTo(vstate->pagedelcontext);
ndel = _bt_pagedel(rel, buf, NULL);
/* count only this page, else may double-count parent */
if (ndel)
stats->pages_deleted++;
MemoryContextSwitchTo(oldcontext);
/* pagedel released buffer, so we shouldn't */
}
else
_bt_relbuf(rel, buf);
/*
2006-10-04 02:30:14 +02:00
* This is really tail recursion, but if the compiler is too stupid to
* optimize it as such, we'd eat an uncomfortably large amount of stack
* space per recursion level (due to the deletable[] array). A failure is
* improbable since the number of levels isn't likely to be large ... but
* just in case, let's hand-optimize into a loop.
*/
if (recurse_to != P_NONE)
{
blkno = recurse_to;
goto restart;
}
}