postgresql/src/backend/utils/cache/plancache.c

1900 lines
60 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* plancache.c
* Plan cache management.
*
* The plan cache manager has two principal responsibilities: deciding when
* to use a generic plan versus a custom (parameter-value-specific) plan,
* and tracking whether cached plans need to be invalidated because of schema
* changes in the objects they depend on.
*
* The logic for choosing generic or custom plans is in choose_custom_plan,
* which see for comments.
*
* Cache invalidation is driven off sinval events. Any CachedPlanSource
* that matches the event is marked invalid, as is its generic CachedPlan
* if it has one. When (and if) the next demand for a cached plan occurs,
* parse analysis and rewrite is repeated to build a new valid query tree,
* and then planning is performed as normal. We also force re-analysis and
Reset plan->row_security_env and planUserId In the plancache, we check if the environment we planned the query under has changed in a way which requires us to re-plan, such as when the user for whom the plan was prepared changes and RLS is being used (and, therefore, there may be different policies to apply). Unfortunately, while those values were set and checked, they were not being reset when the query was re-planned and therefore, in cases where we change role, re-plan, and then change role again, we weren't re-planning again. This leads to potentially incorrect policies being applied in cases where role-specific policies are used and a given query is planned under one role and then executed under other roles, which could happen under security definer functions or when a common user and query is planned initially and then re-used across multiple SET ROLEs. Further, extensions which made use of CopyCachedPlan() may suffer from similar issues as the RLS-related fields were not properly copied as part of the plan and therefore RevalidateCachedQuery() would copy in the current settings without invalidating the query. Fix by using the same approach used for 'search_path', where we set the correct values in CompleteCachedPlan(), check them early on in RevalidateCachedQuery() and then properly reset them if re-planning. Also, copy through the values during CopyCachedPlan(). Pointed out by Ashutosh Bapat. Reviewed by Michael Paquier. Back-patch to 9.5 where RLS was introduced. Security: CVE-2016-2193
2016-03-28 15:03:20 +02:00
* re-planning if the active search_path is different from the previous time
* or, if RLS is involved, if the user changes or the RLS environment changes.
*
* Note that if the sinval was a result of user DDL actions, parse analysis
* could throw an error, for example if a column referenced by the query is
* no longer present. Another possibility is for the query's output tupdesc
* to change (for instance "SELECT *" might expand differently than before).
* The creator of a cached plan can specify whether it is allowable for the
* query to change output tupdesc on replan --- if so, it's up to the
* caller to notice changes and cope with them.
*
* Currently, we track exactly the dependencies of plans on relations and
* user-defined functions. On relcache invalidation events or pg_proc
* syscache invalidation events, we invalidate just those plans that depend
* on the particular object being modified. (Note: this scheme assumes
* that any table modification that requires replanning will generate a
* relcache inval event.) We also watch for inval events on certain other
* system catalogs, such as pg_namespace; but for them, our response is
* just to invalidate all plans. We expect updates on those catalogs to
* be infrequent enough that more-detailed tracking is not worth the effort.
*
*
2017-01-03 19:48:53 +01:00
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/utils/cache/plancache.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include "access/transam.h"
#include "catalog/namespace.h"
#include "executor/executor.h"
Row-Level Security Policies (RLS) Building on the updatable security-barrier views work, add the ability to define policies on tables to limit the set of rows which are returned from a query and which are allowed to be added to a table. Expressions defined by the policy for filtering are added to the security barrier quals of the query, while expressions defined to check records being added to a table are added to the with-check options of the query. New top-level commands are CREATE/ALTER/DROP POLICY and are controlled by the table owner. Row Security is able to be enabled and disabled by the owner on a per-table basis using ALTER TABLE .. ENABLE/DISABLE ROW SECURITY. Per discussion, ROW SECURITY is disabled on tables by default and must be enabled for policies on the table to be used. If no policies exist on a table with ROW SECURITY enabled, a default-deny policy is used and no records will be visible. By default, row security is applied at all times except for the table owner and the superuser. A new GUC, row_security, is added which can be set to ON, OFF, or FORCE. When set to FORCE, row security will be applied even for the table owner and superusers. When set to OFF, row security will be disabled when allowed and an error will be thrown if the user does not have rights to bypass row security. Per discussion, pg_dump sets row_security = OFF by default to ensure that exports and backups will have all data in the table or will error if there are insufficient privileges to bypass row security. A new option has been added to pg_dump, --enable-row-security, to ask pg_dump to export with row security enabled. A new role capability, BYPASSRLS, which can only be set by the superuser, is added to allow other users to be able to bypass row security using row_security = OFF. Many thanks to the various individuals who have helped with the design, particularly Robert Haas for his feedback. Authors include Craig Ringer, KaiGai Kohei, Adam Brightwell, Dean Rasheed, with additional changes and rework by me. Reviewers have included all of the above, Greg Smith, Jeff McCormick, and Robert Haas.
2014-09-19 17:18:35 +02:00
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/cost.h"
#include "optimizer/planmain.h"
#include "optimizer/prep.h"
#include "parser/analyze.h"
#include "parser/parsetree.h"
#include "storage/lmgr.h"
#include "tcop/pquery.h"
#include "tcop/utility.h"
#include "utils/inval.h"
#include "utils/memutils.h"
#include "utils/resowner_private.h"
#include "utils/rls.h"
#include "utils/snapmgr.h"
#include "utils/syscache.h"
/*
* We must skip "overhead" operations that involve database access when the
* cached plan's subject statement is a transaction control command.
*/
#define IsTransactionStmtPlan(plansource) \
((plansource)->raw_parse_tree && \
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
IsA((plansource)->raw_parse_tree->stmt, TransactionStmt))
/*
* This is the head of the backend's list of "saved" CachedPlanSources (i.e.,
* those that are in long-lived storage and are examined for sinval events).
* We thread the structs manually instead of using List cells so that we can
* guarantee to save a CachedPlanSource without error.
*/
static CachedPlanSource *first_saved_plan = NULL;
static void ReleaseGenericPlan(CachedPlanSource *plansource);
static List *RevalidateCachedQuery(CachedPlanSource *plansource);
static bool CheckCachedPlan(CachedPlanSource *plansource);
static CachedPlan *BuildCachedPlan(CachedPlanSource *plansource, List *qlist,
ParamListInfo boundParams);
static bool choose_custom_plan(CachedPlanSource *plansource,
ParamListInfo boundParams);
static double cached_plan_cost(CachedPlan *plan, bool include_planner);
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
static Query *QueryListGetPrimaryStmt(List *stmts);
static void AcquireExecutorLocks(List *stmt_list, bool acquire);
static void AcquirePlannerLocks(List *stmt_list, bool acquire);
static void ScanQueryForLocks(Query *parsetree, bool acquire);
static bool ScanQueryWalker(Node *node, bool *acquire);
static TupleDesc PlanCacheComputeResultDesc(List *stmt_list);
static void PlanCacheRelCallback(Datum arg, Oid relid);
static void PlanCacheFuncCallback(Datum arg, int cacheid, uint32 hashvalue);
static void PlanCacheSysCallback(Datum arg, int cacheid, uint32 hashvalue);
/*
* InitPlanCache: initialize module during InitPostgres.
*
* All we need to do is hook into inval.c's callback lists.
*/
void
InitPlanCache(void)
{
CacheRegisterRelcacheCallback(PlanCacheRelCallback, (Datum) 0);
CacheRegisterSyscacheCallback(PROCOID, PlanCacheFuncCallback, (Datum) 0);
CacheRegisterSyscacheCallback(NAMESPACEOID, PlanCacheSysCallback, (Datum) 0);
CacheRegisterSyscacheCallback(OPEROID, PlanCacheSysCallback, (Datum) 0);
CacheRegisterSyscacheCallback(AMOPOPID, PlanCacheSysCallback, (Datum) 0);
CacheRegisterSyscacheCallback(FOREIGNSERVEROID, PlanCacheSysCallback, (Datum) 0);
CacheRegisterSyscacheCallback(FOREIGNDATAWRAPPEROID, PlanCacheSysCallback, (Datum) 0);
}
/*
* CreateCachedPlan: initially create a plan cache entry.
*
* Creation of a cached plan is divided into two steps, CreateCachedPlan and
* CompleteCachedPlan. CreateCachedPlan should be called after running the
* query through raw_parser, but before doing parse analysis and rewrite;
* CompleteCachedPlan is called after that. The reason for this arrangement
* is that it can save one round of copying of the raw parse tree, since
* the parser will normally scribble on the raw parse tree. Callers would
* otherwise need to make an extra copy of the parse tree to ensure they
* still had a clean copy to present at plan cache creation time.
*
* All arguments presented to CreateCachedPlan are copied into a memory
* context created as a child of the call-time CurrentMemoryContext, which
* should be a reasonably short-lived working context that will go away in
* event of an error. This ensures that the cached plan data structure will
* likewise disappear if an error occurs before we have fully constructed it.
* Once constructed, the cached plan can be made longer-lived, if needed,
* by calling SaveCachedPlan.
*
* raw_parse_tree: output of raw_parser(), or NULL if empty query
* query_string: original query text
* commandTag: compile-time-constant tag for query, or NULL if empty query
*/
CachedPlanSource *
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
CreateCachedPlan(RawStmt *raw_parse_tree,
const char *query_string,
const char *commandTag)
{
CachedPlanSource *plansource;
MemoryContext source_context;
MemoryContext oldcxt;
Assert(query_string != NULL); /* required as of 8.4 */
/*
* Make a dedicated memory context for the CachedPlanSource and its
* permanent subsidiary data. It's probably not going to be large, but
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
* just in case, allow it to grow large. Initially it's a child of the
* caller's context (which we assume to be transient), so that it will be
* cleaned up on error.
*/
source_context = AllocSetContextCreate(CurrentMemoryContext,
"CachedPlanSource",
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
ALLOCSET_START_SMALL_SIZES);
/*
* Create and fill the CachedPlanSource struct within the new context.
* Most fields are just left empty for the moment.
*/
oldcxt = MemoryContextSwitchTo(source_context);
plansource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource));
plansource->magic = CACHEDPLANSOURCE_MAGIC;
plansource->raw_parse_tree = copyObject(raw_parse_tree);
plansource->query_string = pstrdup(query_string);
plansource->commandTag = commandTag;
plansource->param_types = NULL;
plansource->num_params = 0;
plansource->parserSetup = NULL;
plansource->parserSetupArg = NULL;
plansource->cursor_options = 0;
plansource->fixed_result = false;
plansource->resultDesc = NULL;
plansource->context = source_context;
plansource->query_list = NIL;
plansource->relationOids = NIL;
plansource->invalItems = NIL;
plansource->search_path = NULL;
plansource->query_context = NULL;
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
plansource->rewriteRoleId = InvalidOid;
plansource->rewriteRowSecurity = false;
plansource->dependsOnRLS = false;
plansource->gplan = NULL;
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
plansource->is_oneshot = false;
plansource->is_complete = false;
plansource->is_saved = false;
plansource->is_valid = false;
plansource->generation = 0;
plansource->next_saved = NULL;
plansource->generic_cost = -1;
plansource->total_custom_cost = 0;
plansource->num_custom_plans = 0;
MemoryContextSwitchTo(oldcxt);
return plansource;
}
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
/*
* CreateOneShotCachedPlan: initially create a one-shot plan cache entry.
*
* This variant of CreateCachedPlan creates a plan cache entry that is meant
* to be used only once. No data copying occurs: all data structures remain
* in the caller's memory context (which typically should get cleared after
* completing execution). The CachedPlanSource struct itself is also created
* in that context.
*
* A one-shot plan cannot be saved or copied, since we make no effort to
* preserve the raw parse tree unmodified. There is also no support for
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
* invalidation, so plan use must be completed in the current transaction,
* and DDL that might invalidate the querytree_list must be avoided as well.
*
* raw_parse_tree: output of raw_parser(), or NULL if empty query
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
* query_string: original query text
* commandTag: compile-time-constant tag for query, or NULL if empty query
*/
CachedPlanSource *
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
CreateOneShotCachedPlan(RawStmt *raw_parse_tree,
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
const char *query_string,
const char *commandTag)
{
CachedPlanSource *plansource;
Assert(query_string != NULL); /* required as of 8.4 */
/*
* Create and fill the CachedPlanSource struct within the caller's memory
* context. Most fields are just left empty for the moment.
*/
plansource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource));
plansource->magic = CACHEDPLANSOURCE_MAGIC;
plansource->raw_parse_tree = raw_parse_tree;
plansource->query_string = query_string;
plansource->commandTag = commandTag;
plansource->param_types = NULL;
plansource->num_params = 0;
plansource->parserSetup = NULL;
plansource->parserSetupArg = NULL;
plansource->cursor_options = 0;
plansource->fixed_result = false;
plansource->resultDesc = NULL;
plansource->context = CurrentMemoryContext;
plansource->query_list = NIL;
plansource->relationOids = NIL;
plansource->invalItems = NIL;
plansource->search_path = NULL;
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
plansource->query_context = NULL;
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
plansource->rewriteRoleId = InvalidOid;
plansource->rewriteRowSecurity = false;
plansource->dependsOnRLS = false;
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
plansource->gplan = NULL;
plansource->is_oneshot = true;
plansource->is_complete = false;
plansource->is_saved = false;
plansource->is_valid = false;
plansource->generation = 0;
plansource->next_saved = NULL;
plansource->generic_cost = -1;
plansource->total_custom_cost = 0;
plansource->num_custom_plans = 0;
return plansource;
}
/*
* CompleteCachedPlan: second step of creating a plan cache entry.
*
* Pass in the analyzed-and-rewritten form of the query, as well as the
* required subsidiary data about parameters and such. All passed values will
* be copied into the CachedPlanSource's memory, except as specified below.
* After this is called, GetCachedPlan can be called to obtain a plan, and
* optionally the CachedPlanSource can be saved using SaveCachedPlan.
*
* If querytree_context is not NULL, the querytree_list must be stored in that
* context (but the other parameters need not be). The querytree_list is not
* copied, rather the given context is kept as the initial query_context of
* the CachedPlanSource. (It should have been created as a child of the
* caller's working memory context, but it will now be reparented to belong
* to the CachedPlanSource.) The querytree_context is normally the context in
* which the caller did raw parsing and parse analysis. This approach saves
* one tree copying step compared to passing NULL, but leaves lots of extra
* cruft in the query_context, namely whatever extraneous stuff parse analysis
* created, as well as whatever went unused from the raw parse tree. Using
* this option is a space-for-time tradeoff that is appropriate if the
* CachedPlanSource is not expected to survive long.
*
* plancache.c cannot know how to copy the data referenced by parserSetupArg,
* and it would often be inappropriate to do so anyway. When using that
* option, it is caller's responsibility that the referenced data remains
* valid for as long as the CachedPlanSource exists.
*
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
* If the CachedPlanSource is a "oneshot" plan, then no querytree copying
* occurs at all, and querytree_context is ignored; it is caller's
* responsibility that the passed querytree_list is sufficiently long-lived.
*
* plansource: structure returned by CreateCachedPlan
* querytree_list: analyzed-and-rewritten form of query (list of Query nodes)
* querytree_context: memory context containing querytree_list,
* or NULL to copy querytree_list into a fresh context
* param_types: array of fixed parameter type OIDs, or NULL if none
* num_params: number of fixed parameters
* parserSetup: alternate method for handling query parameters
* parserSetupArg: data to pass to parserSetup
* cursor_options: options bitmask to pass to planner
* fixed_result: TRUE to disallow future changes in query's result tupdesc
*/
void
CompleteCachedPlan(CachedPlanSource *plansource,
List *querytree_list,
MemoryContext querytree_context,
Oid *param_types,
int num_params,
ParserSetupHook parserSetup,
void *parserSetupArg,
int cursor_options,
bool fixed_result)
{
MemoryContext source_context = plansource->context;
MemoryContext oldcxt = CurrentMemoryContext;
/* Assert caller is doing things in a sane order */
Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC);
Assert(!plansource->is_complete);
/*
* If caller supplied a querytree_context, reparent it underneath the
* CachedPlanSource's context; otherwise, create a suitable context and
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
* copy the querytree_list into it. But no data copying should be done
* for one-shot plans; for those, assume the passed querytree_list is
* sufficiently long-lived.
*/
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
if (plansource->is_oneshot)
{
querytree_context = CurrentMemoryContext;
}
else if (querytree_context != NULL)
{
MemoryContextSetParent(querytree_context, source_context);
MemoryContextSwitchTo(querytree_context);
}
else
{
/* Again, it's a good bet the querytree_context can be small */
querytree_context = AllocSetContextCreate(source_context,
"CachedPlanQuery",
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
ALLOCSET_START_SMALL_SIZES);
MemoryContextSwitchTo(querytree_context);
querytree_list = (List *) copyObject(querytree_list);
}
plansource->query_context = querytree_context;
plansource->query_list = querytree_list;
if (!plansource->is_oneshot && !IsTransactionStmtPlan(plansource))
{
/*
* Use the planner machinery to extract dependencies. Data is saved
* in query_context. (We assume that not a lot of extra cruft is
* created by this call.) We can skip this for one-shot plans, and
* transaction control commands have no such dependencies anyway.
*/
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
extract_query_dependencies((Node *) querytree_list,
&plansource->relationOids,
Row-Level Security Policies (RLS) Building on the updatable security-barrier views work, add the ability to define policies on tables to limit the set of rows which are returned from a query and which are allowed to be added to a table. Expressions defined by the policy for filtering are added to the security barrier quals of the query, while expressions defined to check records being added to a table are added to the with-check options of the query. New top-level commands are CREATE/ALTER/DROP POLICY and are controlled by the table owner. Row Security is able to be enabled and disabled by the owner on a per-table basis using ALTER TABLE .. ENABLE/DISABLE ROW SECURITY. Per discussion, ROW SECURITY is disabled on tables by default and must be enabled for policies on the table to be used. If no policies exist on a table with ROW SECURITY enabled, a default-deny policy is used and no records will be visible. By default, row security is applied at all times except for the table owner and the superuser. A new GUC, row_security, is added which can be set to ON, OFF, or FORCE. When set to FORCE, row security will be applied even for the table owner and superusers. When set to OFF, row security will be disabled when allowed and an error will be thrown if the user does not have rights to bypass row security. Per discussion, pg_dump sets row_security = OFF by default to ensure that exports and backups will have all data in the table or will error if there are insufficient privileges to bypass row security. A new option has been added to pg_dump, --enable-row-security, to ask pg_dump to export with row security enabled. A new role capability, BYPASSRLS, which can only be set by the superuser, is added to allow other users to be able to bypass row security using row_security = OFF. Many thanks to the various individuals who have helped with the design, particularly Robert Haas for his feedback. Authors include Craig Ringer, KaiGai Kohei, Adam Brightwell, Dean Rasheed, with additional changes and rework by me. Reviewers have included all of the above, Greg Smith, Jeff McCormick, and Robert Haas.
2014-09-19 17:18:35 +02:00
&plansource->invalItems,
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
&plansource->dependsOnRLS);
/* Update RLS info as well. */
plansource->rewriteRoleId = GetUserId();
plansource->rewriteRowSecurity = row_security;
/*
* Also save the current search_path in the query_context. (This
* should not generate much extra cruft either, since almost certainly
* the path is already valid.) Again, we don't really need this for
* one-shot plans; and we *must* skip this for transaction control
* commands, because this could result in catalog accesses.
*/
plansource->search_path = GetOverrideSearchPath(querytree_context);
}
/*
* Save the final parameter types (or other parameter specification data)
* into the source_context, as well as our other parameters. Also save
* the result tuple descriptor.
*/
MemoryContextSwitchTo(source_context);
if (num_params > 0)
{
plansource->param_types = (Oid *) palloc(num_params * sizeof(Oid));
memcpy(plansource->param_types, param_types, num_params * sizeof(Oid));
}
else
plansource->param_types = NULL;
plansource->num_params = num_params;
plansource->parserSetup = parserSetup;
plansource->parserSetupArg = parserSetupArg;
plansource->cursor_options = cursor_options;
plansource->fixed_result = fixed_result;
plansource->resultDesc = PlanCacheComputeResultDesc(querytree_list);
MemoryContextSwitchTo(oldcxt);
plansource->is_complete = true;
plansource->is_valid = true;
}
/*
* SaveCachedPlan: save a cached plan permanently
*
* This function moves the cached plan underneath CacheMemoryContext (making
* it live for the life of the backend, unless explicitly dropped), and adds
* it to the list of cached plans that are checked for invalidation when an
* sinval event occurs.
*
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
* This is guaranteed not to throw error, except for the caller-error case
* of trying to save a one-shot plan. Callers typically depend on that
* since this is called just before or just after adding a pointer to the
* CachedPlanSource to some permanent data structure of their own. Up until
* this is done, a CachedPlanSource is just transient data that will go away
* automatically on transaction abort.
*/
void
SaveCachedPlan(CachedPlanSource *plansource)
{
/* Assert caller is doing things in a sane order */
Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC);
Assert(plansource->is_complete);
Assert(!plansource->is_saved);
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
/* This seems worth a real test, though */
if (plansource->is_oneshot)
elog(ERROR, "cannot save one-shot cached plan");
/*
* In typical use, this function would be called before generating any
* plans from the CachedPlanSource. If there is a generic plan, moving it
* into CacheMemoryContext would be pretty risky since it's unclear
* whether the caller has taken suitable care with making references
* long-lived. Best thing to do seems to be to discard the plan.
*/
ReleaseGenericPlan(plansource);
/*
* Reparent the source memory context under CacheMemoryContext so that it
* will live indefinitely. The query_context follows along since it's
* already a child of the other one.
*/
MemoryContextSetParent(plansource->context, CacheMemoryContext);
/*
* Add the entry to the global list of cached plans.
*/
plansource->next_saved = first_saved_plan;
first_saved_plan = plansource;
plansource->is_saved = true;
}
/*
* DropCachedPlan: destroy a cached plan.
*
* Actually this only destroys the CachedPlanSource: any referenced CachedPlan
* is released, but not destroyed until its refcount goes to zero. That
* handles the situation where DropCachedPlan is called while the plan is
* still in use.
*/
void
DropCachedPlan(CachedPlanSource *plansource)
{
Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC);
/* If it's been saved, remove it from the list */
if (plansource->is_saved)
{
if (first_saved_plan == plansource)
first_saved_plan = plansource->next_saved;
else
{
CachedPlanSource *psrc;
for (psrc = first_saved_plan; psrc; psrc = psrc->next_saved)
{
if (psrc->next_saved == plansource)
{
psrc->next_saved = plansource->next_saved;
break;
}
}
}
plansource->is_saved = false;
}
/* Decrement generic CachePlan's refcount and drop if no longer needed */
ReleaseGenericPlan(plansource);
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
/* Mark it no longer valid */
plansource->magic = 0;
/*
* Remove the CachedPlanSource and all subsidiary data (including the
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
* query_context if any). But if it's a one-shot we can't free anything.
*/
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
if (!plansource->is_oneshot)
MemoryContextDelete(plansource->context);
}
/*
* ReleaseGenericPlan: release a CachedPlanSource's generic plan, if any.
*/
static void
ReleaseGenericPlan(CachedPlanSource *plansource)
{
/* Be paranoid about the possibility that ReleaseCachedPlan fails */
if (plansource->gplan)
{
CachedPlan *plan = plansource->gplan;
Assert(plan->magic == CACHEDPLAN_MAGIC);
plansource->gplan = NULL;
ReleaseCachedPlan(plan, false);
}
}
/*
* RevalidateCachedQuery: ensure validity of analyzed-and-rewritten query tree.
*
* What we do here is re-acquire locks and redo parse analysis if necessary.
* On return, the query_list is valid and we have sufficient locks to begin
* planning.
*
* If any parse analysis activity is required, the caller's memory context is
* used for that work.
*
* The result value is the transient analyzed-and-rewritten query tree if we
* had to do re-analysis, and NIL otherwise. (This is returned just to save
* a tree copying step in a subsequent BuildCachedPlan call.)
*/
static List *
RevalidateCachedQuery(CachedPlanSource *plansource)
{
bool snapshot_set;
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
RawStmt *rawtree;
List *tlist; /* transient query-tree list */
List *qlist; /* permanent query-tree list */
TupleDesc resultDesc;
MemoryContext querytree_context;
MemoryContext oldcxt;
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
/*
* For one-shot plans, we do not support revalidation checking; it's
* assumed the query is parsed, planned, and executed in one transaction,
* so that no lock re-acquisition is necessary. Also, there is never any
* need to revalidate plans for transaction control commands (and we
* mustn't risk any catalog accesses when handling those).
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
*/
if (plansource->is_oneshot || IsTransactionStmtPlan(plansource))
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
{
Assert(plansource->is_valid);
return NIL;
}
/*
* If the query is currently valid, we should have a saved search_path ---
* check to see if that matches the current environment. If not, we want
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
* to force replan.
*/
if (plansource->is_valid)
{
Assert(plansource->search_path != NULL);
if (!OverrideSearchPathMatchesCurrent(plansource->search_path))
{
/* Invalidate the querytree and generic plan */
plansource->is_valid = false;
if (plansource->gplan)
plansource->gplan->is_valid = false;
}
}
Row-Level Security Policies (RLS) Building on the updatable security-barrier views work, add the ability to define policies on tables to limit the set of rows which are returned from a query and which are allowed to be added to a table. Expressions defined by the policy for filtering are added to the security barrier quals of the query, while expressions defined to check records being added to a table are added to the with-check options of the query. New top-level commands are CREATE/ALTER/DROP POLICY and are controlled by the table owner. Row Security is able to be enabled and disabled by the owner on a per-table basis using ALTER TABLE .. ENABLE/DISABLE ROW SECURITY. Per discussion, ROW SECURITY is disabled on tables by default and must be enabled for policies on the table to be used. If no policies exist on a table with ROW SECURITY enabled, a default-deny policy is used and no records will be visible. By default, row security is applied at all times except for the table owner and the superuser. A new GUC, row_security, is added which can be set to ON, OFF, or FORCE. When set to FORCE, row security will be applied even for the table owner and superusers. When set to OFF, row security will be disabled when allowed and an error will be thrown if the user does not have rights to bypass row security. Per discussion, pg_dump sets row_security = OFF by default to ensure that exports and backups will have all data in the table or will error if there are insufficient privileges to bypass row security. A new option has been added to pg_dump, --enable-row-security, to ask pg_dump to export with row security enabled. A new role capability, BYPASSRLS, which can only be set by the superuser, is added to allow other users to be able to bypass row security using row_security = OFF. Many thanks to the various individuals who have helped with the design, particularly Robert Haas for his feedback. Authors include Craig Ringer, KaiGai Kohei, Adam Brightwell, Dean Rasheed, with additional changes and rework by me. Reviewers have included all of the above, Greg Smith, Jeff McCormick, and Robert Haas.
2014-09-19 17:18:35 +02:00
/*
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
* If the query rewrite phase had a possible RLS dependency, we must redo
* it if either the role or the row_security setting has changed.
Row-Level Security Policies (RLS) Building on the updatable security-barrier views work, add the ability to define policies on tables to limit the set of rows which are returned from a query and which are allowed to be added to a table. Expressions defined by the policy for filtering are added to the security barrier quals of the query, while expressions defined to check records being added to a table are added to the with-check options of the query. New top-level commands are CREATE/ALTER/DROP POLICY and are controlled by the table owner. Row Security is able to be enabled and disabled by the owner on a per-table basis using ALTER TABLE .. ENABLE/DISABLE ROW SECURITY. Per discussion, ROW SECURITY is disabled on tables by default and must be enabled for policies on the table to be used. If no policies exist on a table with ROW SECURITY enabled, a default-deny policy is used and no records will be visible. By default, row security is applied at all times except for the table owner and the superuser. A new GUC, row_security, is added which can be set to ON, OFF, or FORCE. When set to FORCE, row security will be applied even for the table owner and superusers. When set to OFF, row security will be disabled when allowed and an error will be thrown if the user does not have rights to bypass row security. Per discussion, pg_dump sets row_security = OFF by default to ensure that exports and backups will have all data in the table or will error if there are insufficient privileges to bypass row security. A new option has been added to pg_dump, --enable-row-security, to ask pg_dump to export with row security enabled. A new role capability, BYPASSRLS, which can only be set by the superuser, is added to allow other users to be able to bypass row security using row_security = OFF. Many thanks to the various individuals who have helped with the design, particularly Robert Haas for his feedback. Authors include Craig Ringer, KaiGai Kohei, Adam Brightwell, Dean Rasheed, with additional changes and rework by me. Reviewers have included all of the above, Greg Smith, Jeff McCormick, and Robert Haas.
2014-09-19 17:18:35 +02:00
*/
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
if (plansource->is_valid && plansource->dependsOnRLS &&
(plansource->rewriteRoleId != GetUserId() ||
plansource->rewriteRowSecurity != row_security))
Row-Level Security Policies (RLS) Building on the updatable security-barrier views work, add the ability to define policies on tables to limit the set of rows which are returned from a query and which are allowed to be added to a table. Expressions defined by the policy for filtering are added to the security barrier quals of the query, while expressions defined to check records being added to a table are added to the with-check options of the query. New top-level commands are CREATE/ALTER/DROP POLICY and are controlled by the table owner. Row Security is able to be enabled and disabled by the owner on a per-table basis using ALTER TABLE .. ENABLE/DISABLE ROW SECURITY. Per discussion, ROW SECURITY is disabled on tables by default and must be enabled for policies on the table to be used. If no policies exist on a table with ROW SECURITY enabled, a default-deny policy is used and no records will be visible. By default, row security is applied at all times except for the table owner and the superuser. A new GUC, row_security, is added which can be set to ON, OFF, or FORCE. When set to FORCE, row security will be applied even for the table owner and superusers. When set to OFF, row security will be disabled when allowed and an error will be thrown if the user does not have rights to bypass row security. Per discussion, pg_dump sets row_security = OFF by default to ensure that exports and backups will have all data in the table or will error if there are insufficient privileges to bypass row security. A new option has been added to pg_dump, --enable-row-security, to ask pg_dump to export with row security enabled. A new role capability, BYPASSRLS, which can only be set by the superuser, is added to allow other users to be able to bypass row security using row_security = OFF. Many thanks to the various individuals who have helped with the design, particularly Robert Haas for his feedback. Authors include Craig Ringer, KaiGai Kohei, Adam Brightwell, Dean Rasheed, with additional changes and rework by me. Reviewers have included all of the above, Greg Smith, Jeff McCormick, and Robert Haas.
2014-09-19 17:18:35 +02:00
plansource->is_valid = false;
/*
* If the query is currently valid, acquire locks on the referenced
* objects; then check again. We need to do it this way to cover the race
* condition that an invalidation message arrives before we get the locks.
*/
if (plansource->is_valid)
{
AcquirePlannerLocks(plansource->query_list, true);
/*
* By now, if any invalidation has happened, the inval callback
* functions will have marked the query invalid.
*/
if (plansource->is_valid)
{
/* Successfully revalidated and locked the query. */
return NIL;
}
/* Ooops, the race case happened. Release useless locks. */
AcquirePlannerLocks(plansource->query_list, false);
}
/*
* Discard the no-longer-useful query tree. (Note: we don't want to do
* this any earlier, else we'd not have been able to release locks
* correctly in the race condition case.)
*/
plansource->is_valid = false;
plansource->query_list = NIL;
plansource->relationOids = NIL;
plansource->invalItems = NIL;
plansource->search_path = NULL;
/*
* Free the query_context. We don't really expect MemoryContextDelete to
* fail, but just in case, make sure the CachedPlanSource is left in a
* reasonably sane state. (The generic plan won't get unlinked yet, but
* that's acceptable.)
*/
if (plansource->query_context)
{
MemoryContext qcxt = plansource->query_context;
plansource->query_context = NULL;
MemoryContextDelete(qcxt);
}
/* Drop the generic plan reference if any */
ReleaseGenericPlan(plansource);
/*
* Now re-do parse analysis and rewrite. This not incidentally acquires
* the locks we need to do planning safely.
*/
Assert(plansource->is_complete);
/*
* If a snapshot is already set (the normal case), we can just use that
* for parsing/planning. But if it isn't, install one. Note: no point in
* checking whether parse analysis requires a snapshot; utility commands
* don't have invalidatable plans, so we'd not get here for such a
* command.
*/
snapshot_set = false;
if (!ActiveSnapshotSet())
{
PushActiveSnapshot(GetTransactionSnapshot());
snapshot_set = true;
}
/*
* Run parse analysis and rule rewriting. The parser tends to scribble on
* its input, so we must copy the raw parse tree to prevent corruption of
* the cache.
*/
rawtree = copyObject(plansource->raw_parse_tree);
if (rawtree == NULL)
tlist = NIL;
else if (plansource->parserSetup != NULL)
tlist = pg_analyze_and_rewrite_params(rawtree,
plansource->query_string,
plansource->parserSetup,
plansource->parserSetupArg);
else
tlist = pg_analyze_and_rewrite(rawtree,
plansource->query_string,
plansource->param_types,
plansource->num_params);
/* Release snapshot if we got one */
if (snapshot_set)
PopActiveSnapshot();
/*
* Check or update the result tupdesc. XXX should we use a weaker
* condition than equalTupleDescs() here?
*
* We assume the parameter types didn't change from the first time, so no
* need to update that.
*/
resultDesc = PlanCacheComputeResultDesc(tlist);
if (resultDesc == NULL && plansource->resultDesc == NULL)
{
/* OK, doesn't return tuples */
}
else if (resultDesc == NULL || plansource->resultDesc == NULL ||
!equalTupleDescs(resultDesc, plansource->resultDesc))
{
/* can we give a better error message? */
if (plansource->fixed_result)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cached plan must not change result type")));
oldcxt = MemoryContextSwitchTo(plansource->context);
if (resultDesc)
resultDesc = CreateTupleDescCopy(resultDesc);
if (plansource->resultDesc)
FreeTupleDesc(plansource->resultDesc);
plansource->resultDesc = resultDesc;
MemoryContextSwitchTo(oldcxt);
}
/*
* Allocate new query_context and copy the completed querytree into it.
* It's transient until we complete the copying and dependency extraction.
*/
querytree_context = AllocSetContextCreate(CurrentMemoryContext,
"CachedPlanQuery",
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
ALLOCSET_START_SMALL_SIZES);
oldcxt = MemoryContextSwitchTo(querytree_context);
qlist = (List *) copyObject(tlist);
/*
* Use the planner machinery to extract dependencies. Data is saved in
* query_context. (We assume that not a lot of extra cruft is created by
* this call.)
*/
extract_query_dependencies((Node *) qlist,
&plansource->relationOids,
Row-Level Security Policies (RLS) Building on the updatable security-barrier views work, add the ability to define policies on tables to limit the set of rows which are returned from a query and which are allowed to be added to a table. Expressions defined by the policy for filtering are added to the security barrier quals of the query, while expressions defined to check records being added to a table are added to the with-check options of the query. New top-level commands are CREATE/ALTER/DROP POLICY and are controlled by the table owner. Row Security is able to be enabled and disabled by the owner on a per-table basis using ALTER TABLE .. ENABLE/DISABLE ROW SECURITY. Per discussion, ROW SECURITY is disabled on tables by default and must be enabled for policies on the table to be used. If no policies exist on a table with ROW SECURITY enabled, a default-deny policy is used and no records will be visible. By default, row security is applied at all times except for the table owner and the superuser. A new GUC, row_security, is added which can be set to ON, OFF, or FORCE. When set to FORCE, row security will be applied even for the table owner and superusers. When set to OFF, row security will be disabled when allowed and an error will be thrown if the user does not have rights to bypass row security. Per discussion, pg_dump sets row_security = OFF by default to ensure that exports and backups will have all data in the table or will error if there are insufficient privileges to bypass row security. A new option has been added to pg_dump, --enable-row-security, to ask pg_dump to export with row security enabled. A new role capability, BYPASSRLS, which can only be set by the superuser, is added to allow other users to be able to bypass row security using row_security = OFF. Many thanks to the various individuals who have helped with the design, particularly Robert Haas for his feedback. Authors include Craig Ringer, KaiGai Kohei, Adam Brightwell, Dean Rasheed, with additional changes and rework by me. Reviewers have included all of the above, Greg Smith, Jeff McCormick, and Robert Haas.
2014-09-19 17:18:35 +02:00
&plansource->invalItems,
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
&plansource->dependsOnRLS);
/* Update RLS info as well. */
plansource->rewriteRoleId = GetUserId();
plansource->rewriteRowSecurity = row_security;
/*
* Also save the current search_path in the query_context. (This should
* not generate much extra cruft either, since almost certainly the path
* is already valid.)
*/
plansource->search_path = GetOverrideSearchPath(querytree_context);
MemoryContextSwitchTo(oldcxt);
/* Now reparent the finished query_context and save the links */
MemoryContextSetParent(querytree_context, plansource->context);
plansource->query_context = querytree_context;
plansource->query_list = qlist;
/*
* Note: we do not reset generic_cost or total_custom_cost, although we
* could choose to do so. If the DDL or statistics change that prompted
* the invalidation meant a significant change in the cost estimates, it
* would be better to reset those variables and start fresh; but often it
* doesn't, and we're better retaining our hard-won knowledge about the
* relative costs.
*/
plansource->is_valid = true;
/* Return transient copy of querytrees for possible use in planning */
return tlist;
}
/*
* CheckCachedPlan: see if the CachedPlanSource's generic plan is valid.
*
* Caller must have already called RevalidateCachedQuery to verify that the
* querytree is up to date.
*
* On a "true" return, we have acquired the locks needed to run the plan.
* (We must do this for the "true" result to be race-condition-free.)
*/
static bool
CheckCachedPlan(CachedPlanSource *plansource)
{
CachedPlan *plan = plansource->gplan;
/* Assert that caller checked the querytree */
Assert(plansource->is_valid);
/* If there's no generic plan, just say "false" */
if (!plan)
return false;
Assert(plan->magic == CACHEDPLAN_MAGIC);
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
/* Generic plans are never one-shot */
Assert(!plan->is_oneshot);
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
/*
* If plan isn't valid for current role, we can't use it.
*/
if (plan->is_valid && plan->dependsOnRole &&
plan->planRoleId != GetUserId())
plan->is_valid = false;
/*
* If it appears valid, acquire locks and recheck; this is much the same
* logic as in RevalidateCachedQuery, but for a plan.
*/
if (plan->is_valid)
{
/*
* Plan must have positive refcount because it is referenced by
* plansource; so no need to fear it disappears under us here.
*/
Assert(plan->refcount > 0);
AcquireExecutorLocks(plan->stmt_list, true);
/*
* If plan was transient, check to see if TransactionXmin has
* advanced, and if so invalidate it.
*/
if (plan->is_valid &&
TransactionIdIsValid(plan->saved_xmin) &&
!TransactionIdEquals(plan->saved_xmin, TransactionXmin))
plan->is_valid = false;
/*
* By now, if any invalidation has happened, the inval callback
* functions will have marked the plan invalid.
*/
if (plan->is_valid)
{
/* Successfully revalidated and locked the query. */
return true;
}
/* Ooops, the race case happened. Release useless locks. */
AcquireExecutorLocks(plan->stmt_list, false);
}
/*
* Plan has been invalidated, so unlink it from the parent and release it.
*/
ReleaseGenericPlan(plansource);
return false;
}
/*
* BuildCachedPlan: construct a new CachedPlan from a CachedPlanSource.
*
* qlist should be the result value from a previous RevalidateCachedQuery,
* or it can be set to NIL if we need to re-copy the plansource's query_list.
*
* To build a generic, parameter-value-independent plan, pass NULL for
* boundParams. To build a custom plan, pass the actual parameter values via
* boundParams. For best effect, the PARAM_FLAG_CONST flag should be set on
* each parameter value; otherwise the planner will treat the value as a
* hint rather than a hard constant.
*
* Planning work is done in the caller's memory context. The finished plan
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
* is in a child memory context, which typically should get reparented
* (unless this is a one-shot plan, in which case we don't copy the plan).
*/
static CachedPlan *
BuildCachedPlan(CachedPlanSource *plansource, List *qlist,
ParamListInfo boundParams)
{
CachedPlan *plan;
List *plist;
bool snapshot_set;
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
bool is_transient;
MemoryContext plan_context;
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
MemoryContext oldcxt = CurrentMemoryContext;
2016-06-10 00:02:36 +02:00
ListCell *lc;
/*
* Normally the querytree should be valid already, but if it's not,
* rebuild it.
*
* NOTE: GetCachedPlan should have called RevalidateCachedQuery first, so
* we ought to be holding sufficient locks to prevent any invalidation.
* However, if we're building a custom plan after having built and
* rejected a generic plan, it's possible to reach here with is_valid
* false due to an invalidation while making the generic plan. In theory
* the invalidation must be a false positive, perhaps a consequence of an
* sinval reset event or the CLOBBER_CACHE_ALWAYS debug code. But for
* safety, let's treat it as real and redo the RevalidateCachedQuery call.
*/
if (!plansource->is_valid)
qlist = RevalidateCachedQuery(plansource);
/*
* If we don't already have a copy of the querytree list that can be
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
* scribbled on by the planner, make one. For a one-shot plan, we assume
* it's okay to scribble on the original query_list.
*/
if (qlist == NIL)
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
{
if (!plansource->is_oneshot)
qlist = (List *) copyObject(plansource->query_list);
else
qlist = plansource->query_list;
}
/*
* If a snapshot is already set (the normal case), we can just use that
* for planning. But if it isn't, and we need one, install one.
*/
snapshot_set = false;
if (!ActiveSnapshotSet() &&
plansource->raw_parse_tree &&
analyze_requires_snapshot(plansource->raw_parse_tree))
{
PushActiveSnapshot(GetTransactionSnapshot());
snapshot_set = true;
}
/*
* Generate the plan.
*/
plist = pg_plan_queries(qlist, plansource->cursor_options, boundParams);
/* Release snapshot if we got one */
if (snapshot_set)
PopActiveSnapshot();
/*
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
* Normally we make a dedicated memory context for the CachedPlan and its
* subsidiary data. (It's probably not going to be large, but just in
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
* case, allow it to grow large. It's transient for the moment.) But for
* a one-shot plan, we just leave it in the caller's memory context.
*/
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
if (!plansource->is_oneshot)
{
plan_context = AllocSetContextCreate(CurrentMemoryContext,
"CachedPlan",
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
ALLOCSET_START_SMALL_SIZES);
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
/*
* Copy plan into the new context.
*/
MemoryContextSwitchTo(plan_context);
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
plist = (List *) copyObject(plist);
}
else
plan_context = CurrentMemoryContext;
/*
* Create and fill the CachedPlan struct within the new context.
*/
plan = (CachedPlan *) palloc(sizeof(CachedPlan));
plan->magic = CACHEDPLAN_MAGIC;
plan->stmt_list = plist;
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
/*
* CachedPlan is dependent on role either if RLS affected the rewrite
* phase or if a role dependency was injected during planning. And it's
* transient if any plan is marked so.
*/
plan->planRoleId = GetUserId();
plan->dependsOnRole = plansource->dependsOnRLS;
is_transient = false;
foreach(lc, plist)
{
PlannedStmt *plannedstmt = castNode(PlannedStmt, lfirst(lc));
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
if (plannedstmt->commandType == CMD_UTILITY)
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
continue; /* Ignore utility statements */
if (plannedstmt->transientPlan)
is_transient = true;
if (plannedstmt->dependsOnRole)
plan->dependsOnRole = true;
}
if (is_transient)
{
Assert(TransactionIdIsNormal(TransactionXmin));
plan->saved_xmin = TransactionXmin;
}
else
plan->saved_xmin = InvalidTransactionId;
plan->refcount = 0;
plan->context = plan_context;
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
plan->is_oneshot = plansource->is_oneshot;
plan->is_saved = false;
plan->is_valid = true;
/* assign generation number to new plan */
plan->generation = ++(plansource->generation);
MemoryContextSwitchTo(oldcxt);
return plan;
}
/*
* choose_custom_plan: choose whether to use custom or generic plan
*
* This defines the policy followed by GetCachedPlan.
*/
static bool
choose_custom_plan(CachedPlanSource *plansource, ParamListInfo boundParams)
{
double avg_custom_cost;
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
/* One-shot plans will always be considered custom */
if (plansource->is_oneshot)
return true;
/* Otherwise, never any point in a custom plan if there's no parameters */
if (boundParams == NULL)
return false;
/* ... nor for transaction control statements */
if (IsTransactionStmtPlan(plansource))
return false;
/* See if caller wants to force the decision */
if (plansource->cursor_options & CURSOR_OPT_GENERIC_PLAN)
return false;
if (plansource->cursor_options & CURSOR_OPT_CUSTOM_PLAN)
return true;
/* Generate custom plans until we have done at least 5 (arbitrary) */
if (plansource->num_custom_plans < 5)
return true;
avg_custom_cost = plansource->total_custom_cost / plansource->num_custom_plans;
/*
* Prefer generic plan if it's less expensive than the average custom
* plan. (Because we include a charge for cost of planning in the
* custom-plan costs, this means the generic plan only has to be less
* expensive than the execution cost plus replan cost of the custom
* plans.)
*
* Note that if generic_cost is -1 (indicating we've not yet determined
* the generic plan cost), we'll always prefer generic at this point.
*/
if (plansource->generic_cost < avg_custom_cost)
return false;
return true;
}
/*
* cached_plan_cost: calculate estimated cost of a plan
*
* If include_planner is true, also include the estimated cost of constructing
* the plan. (We must factor that into the cost of using a custom plan, but
* we don't count it for a generic plan.)
*/
static double
cached_plan_cost(CachedPlan *plan, bool include_planner)
{
double result = 0;
ListCell *lc;
foreach(lc, plan->stmt_list)
{
PlannedStmt *plannedstmt = castNode(PlannedStmt, lfirst(lc));
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
if (plannedstmt->commandType == CMD_UTILITY)
continue; /* Ignore utility statements */
result += plannedstmt->planTree->total_cost;
if (include_planner)
{
/*
* Currently we use a very crude estimate of planning effort based
* on the number of relations in the finished plan's rangetable.
* Join planning effort actually scales much worse than linearly
* in the number of relations --- but only until the join collapse
* limits kick in. Also, while inheritance child relations surely
* add to planning effort, they don't make the join situation
* worse. So the actual shape of the planning cost curve versus
* number of relations isn't all that obvious. It will take
* considerable work to arrive at a less crude estimate, and for
* now it's not clear that's worth doing.
*
* The other big difficulty here is that we don't have any very
* good model of how planning cost compares to execution costs.
* The current multiplier of 1000 * cpu_operator_cost is probably
* on the low side, but we'll try this for awhile before making a
* more aggressive correction.
*
* If we ever do write a more complicated estimator, it should
* probably live in src/backend/optimizer/ not here.
*/
int nrelations = list_length(plannedstmt->rtable);
result += 1000.0 * cpu_operator_cost * (nrelations + 1);
}
}
return result;
}
/*
* GetCachedPlan: get a cached plan from a CachedPlanSource.
*
* This function hides the logic that decides whether to use a generic
* plan or a custom plan for the given parameters: the caller does not know
* which it will get.
*
* On return, the plan is valid and we have sufficient locks to begin
* execution.
*
* On return, the refcount of the plan has been incremented; a later
* ReleaseCachedPlan() call is expected. The refcount has been reported
* to the CurrentResourceOwner if useResOwner is true (note that that must
* only be true if it's a "saved" CachedPlanSource).
*
* Note: if any replanning activity is required, the caller's memory context
* is used for that work.
*/
CachedPlan *
GetCachedPlan(CachedPlanSource *plansource, ParamListInfo boundParams,
bool useResOwner)
{
CachedPlan *plan = NULL;
List *qlist;
bool customplan;
/* Assert caller is doing things in a sane order */
Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC);
Assert(plansource->is_complete);
/* This seems worth a real test, though */
if (useResOwner && !plansource->is_saved)
elog(ERROR, "cannot apply ResourceOwner to non-saved cached plan");
/* Make sure the querytree list is valid and we have parse-time locks */
qlist = RevalidateCachedQuery(plansource);
/* Decide whether to use a custom plan */
customplan = choose_custom_plan(plansource, boundParams);
if (!customplan)
{
if (CheckCachedPlan(plansource))
{
/* We want a generic plan, and we already have a valid one */
plan = plansource->gplan;
Assert(plan->magic == CACHEDPLAN_MAGIC);
}
else
{
/* Build a new generic plan */
plan = BuildCachedPlan(plansource, qlist, NULL);
/* Just make real sure plansource->gplan is clear */
ReleaseGenericPlan(plansource);
/* Link the new generic plan into the plansource */
plansource->gplan = plan;
plan->refcount++;
/* Immediately reparent into appropriate context */
if (plansource->is_saved)
{
/* saved plans all live under CacheMemoryContext */
MemoryContextSetParent(plan->context, CacheMemoryContext);
plan->is_saved = true;
}
else
{
/* otherwise, it should be a sibling of the plansource */
MemoryContextSetParent(plan->context,
MemoryContextGetParent(plansource->context));
}
/* Update generic_cost whenever we make a new generic plan */
plansource->generic_cost = cached_plan_cost(plan, false);
/*
* If, based on the now-known value of generic_cost, we'd not have
* chosen to use a generic plan, then forget it and make a custom
* plan. This is a bit of a wart but is necessary to avoid a
* glitch in behavior when the custom plans are consistently big
* winners; at some point we'll experiment with a generic plan and
* find it's a loser, but we don't want to actually execute that
* plan.
*/
customplan = choose_custom_plan(plansource, boundParams);
/*
* If we choose to plan again, we need to re-copy the query_list,
* since the planner probably scribbled on it. We can force
* BuildCachedPlan to do that by passing NIL.
*/
qlist = NIL;
}
}
if (customplan)
{
/* Build a custom plan */
plan = BuildCachedPlan(plansource, qlist, boundParams);
/* Accumulate total costs of custom plans, but 'ware overflow */
if (plansource->num_custom_plans < INT_MAX)
{
plansource->total_custom_cost += cached_plan_cost(plan, true);
plansource->num_custom_plans++;
}
}
Assert(plan != NULL);
/* Flag the plan as in use by caller */
if (useResOwner)
ResourceOwnerEnlargePlanCacheRefs(CurrentResourceOwner);
plan->refcount++;
if (useResOwner)
ResourceOwnerRememberPlanCacheRef(CurrentResourceOwner, plan);
/*
* Saved plans should be under CacheMemoryContext so they will not go away
* until their reference count goes to zero. In the generic-plan cases we
* already took care of that, but for a custom plan, do it as soon as we
* have created a reference-counted link.
*/
if (customplan && plansource->is_saved)
{
MemoryContextSetParent(plan->context, CacheMemoryContext);
plan->is_saved = true;
}
return plan;
}
/*
* ReleaseCachedPlan: release active use of a cached plan.
*
* This decrements the reference count, and frees the plan if the count
* has thereby gone to zero. If useResOwner is true, it is assumed that
* the reference count is managed by the CurrentResourceOwner.
*
* Note: useResOwner = false is used for releasing references that are in
* persistent data structures, such as the parent CachedPlanSource or a
* Portal. Transient references should be protected by a resource owner.
*/
void
ReleaseCachedPlan(CachedPlan *plan, bool useResOwner)
{
Assert(plan->magic == CACHEDPLAN_MAGIC);
if (useResOwner)
{
Assert(plan->is_saved);
ResourceOwnerForgetPlanCacheRef(CurrentResourceOwner, plan);
}
Assert(plan->refcount > 0);
plan->refcount--;
if (plan->refcount == 0)
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
{
/* Mark it no longer valid */
plan->magic = 0;
/* One-shot plans do not own their context, so we can't free them */
if (!plan->is_oneshot)
MemoryContextDelete(plan->context);
}
}
/*
* CachedPlanSetParentContext: move a CachedPlanSource to a new memory context
*
* This can only be applied to unsaved plans; once saved, a plan always
* lives underneath CacheMemoryContext.
*/
void
CachedPlanSetParentContext(CachedPlanSource *plansource,
MemoryContext newcontext)
{
/* Assert caller is doing things in a sane order */
Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC);
Assert(plansource->is_complete);
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
/* These seem worth real tests, though */
if (plansource->is_saved)
elog(ERROR, "cannot move a saved cached plan to another context");
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
if (plansource->is_oneshot)
elog(ERROR, "cannot move a one-shot cached plan to another context");
/* OK, let the caller keep the plan where he wishes */
MemoryContextSetParent(plansource->context, newcontext);
/*
* The query_context needs no special handling, since it's a child of
* plansource->context. But if there's a generic plan, it should be
* maintained as a sibling of plansource->context.
*/
if (plansource->gplan)
{
Assert(plansource->gplan->magic == CACHEDPLAN_MAGIC);
MemoryContextSetParent(plansource->gplan->context, newcontext);
}
}
/*
* CopyCachedPlan: make a copy of a CachedPlanSource
*
* This is a convenience routine that does the equivalent of
* CreateCachedPlan + CompleteCachedPlan, using the data stored in the
* input CachedPlanSource. The result is therefore "unsaved" (regardless
* of the state of the source), and we don't copy any generic plan either.
* The result will be currently valid, or not, the same as the source.
*/
CachedPlanSource *
CopyCachedPlan(CachedPlanSource *plansource)
{
CachedPlanSource *newsource;
MemoryContext source_context;
MemoryContext querytree_context;
MemoryContext oldcxt;
Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC);
Assert(plansource->is_complete);
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
/*
* One-shot plans can't be copied, because we haven't taken care that
* parsing/planning didn't scribble on the raw parse tree or querytrees.
*/
if (plansource->is_oneshot)
elog(ERROR, "cannot copy a one-shot cached plan");
source_context = AllocSetContextCreate(CurrentMemoryContext,
"CachedPlanSource",
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
ALLOCSET_START_SMALL_SIZES);
oldcxt = MemoryContextSwitchTo(source_context);
newsource = (CachedPlanSource *) palloc0(sizeof(CachedPlanSource));
newsource->magic = CACHEDPLANSOURCE_MAGIC;
newsource->raw_parse_tree = copyObject(plansource->raw_parse_tree);
newsource->query_string = pstrdup(plansource->query_string);
newsource->commandTag = plansource->commandTag;
if (plansource->num_params > 0)
{
newsource->param_types = (Oid *)
palloc(plansource->num_params * sizeof(Oid));
memcpy(newsource->param_types, plansource->param_types,
plansource->num_params * sizeof(Oid));
}
else
newsource->param_types = NULL;
newsource->num_params = plansource->num_params;
newsource->parserSetup = plansource->parserSetup;
newsource->parserSetupArg = plansource->parserSetupArg;
newsource->cursor_options = plansource->cursor_options;
newsource->fixed_result = plansource->fixed_result;
if (plansource->resultDesc)
newsource->resultDesc = CreateTupleDescCopy(plansource->resultDesc);
else
newsource->resultDesc = NULL;
newsource->context = source_context;
querytree_context = AllocSetContextCreate(source_context,
"CachedPlanQuery",
Add macros to make AllocSetContextCreate() calls simpler and safer. I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls had typos in the context-sizing parameters. While none of these led to especially significant problems, they did create minor inefficiencies, and it's now clear that expecting people to copy-and-paste those calls accurately is not a great idea. Let's reduce the risk of future errors by introducing single macros that encapsulate the common use-cases. Three such macros are enough to cover all but two special-purpose contexts; those two calls can be left as-is, I think. While this patch doesn't in itself improve matters for third-party extensions, it doesn't break anything for them either, and they can gradually adopt the simplified notation over time. In passing, change TopMemoryContext to use the default allocation parameters. Formerly it could only be extended 8K at a time. That was probably reasonable when this code was written; but nowadays we create many more contexts than we did then, so that it's not unusual to have a couple hundred K in TopMemoryContext, even without considering various dubious code that sticks other things there. There seems no good reason not to let it use growing blocks like most other contexts. Back-patch to 9.6, mostly because that's still close enough to HEAD that it's easy to do so, and keeping the branches in sync can be expected to avoid some future back-patching pain. The bugs fixed by these changes don't seem to be significant enough to justify fixing them further back. Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 23:50:38 +02:00
ALLOCSET_START_SMALL_SIZES);
MemoryContextSwitchTo(querytree_context);
newsource->query_list = (List *) copyObject(plansource->query_list);
newsource->relationOids = (List *) copyObject(plansource->relationOids);
newsource->invalItems = (List *) copyObject(plansource->invalItems);
if (plansource->search_path)
newsource->search_path = CopyOverrideSearchPath(plansource->search_path);
newsource->query_context = querytree_context;
Avoid invalidating all foreign-join cached plans when user mappings change. We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
2016-07-15 23:22:56 +02:00
newsource->rewriteRoleId = plansource->rewriteRoleId;
newsource->rewriteRowSecurity = plansource->rewriteRowSecurity;
newsource->dependsOnRLS = plansource->dependsOnRLS;
newsource->gplan = NULL;
Invent a "one-shot" variant of CachedPlans for better performance. SPI_execute() and related functions create a CachedPlan, execute it once, and immediately discard it, so that the functionality offered by plancache.c is of no value in this code path. And performance measurements show that the extra data copying and invalidation checking done by plancache.c slows down simple queries by 10% or more compared to 9.1. However, enough of the SPI code is shared with functions that do need plan caching that it seems impractical to bypass plancache.c altogether. Instead, let's invent a variant version of cached plans that preserves 99% of the API but doesn't offer any of the actual functionality, nor the overhead. This puts SPI_execute() performance back on par, or maybe even slightly better, than it was before. This change should resolve recent complaints of performance degradation from Dong Ye, Pavel Stehule, and others. By avoiding data copying, this change also reduces the amount of memory needed to execute many-statement SPI_execute() strings, as for instance in a recent complaint from Tomas Vondra. An additional benefit of this change is that multi-statement SPI_execute() query strings are now processed fully serially, that is we complete execution of earlier statements before running parse analysis and planning on following ones. This eliminates a long-standing POLA violation, in that DDL that affects the behavior of a later statement will now behave as expected. Back-patch to 9.2, since this was a performance regression compared to 9.1. (In 9.2, place the added struct fields so as to avoid changing the offsets of existing fields.) Heikki Linnakangas and Tom Lane
2013-01-04 23:42:19 +01:00
newsource->is_oneshot = false;
newsource->is_complete = true;
newsource->is_saved = false;
newsource->is_valid = plansource->is_valid;
newsource->generation = plansource->generation;
newsource->next_saved = NULL;
/* We may as well copy any acquired cost knowledge */
newsource->generic_cost = plansource->generic_cost;
newsource->total_custom_cost = plansource->total_custom_cost;
newsource->num_custom_plans = plansource->num_custom_plans;
MemoryContextSwitchTo(oldcxt);
return newsource;
}
/*
* CachedPlanIsValid: test whether the rewritten querytree within a
* CachedPlanSource is currently valid (that is, not marked as being in need
* of revalidation).
*
* This result is only trustworthy (ie, free from race conditions) if
* the caller has acquired locks on all the relations used in the plan.
*/
bool
CachedPlanIsValid(CachedPlanSource *plansource)
{
Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC);
return plansource->is_valid;
}
/*
* CachedPlanGetTargetList: return tlist, if any, describing plan's output
*
* The result is guaranteed up-to-date. However, it is local storage
* within the cached plan, and may disappear next time the plan is updated.
*/
List *
CachedPlanGetTargetList(CachedPlanSource *plansource)
{
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
Query *pstmt;
/* Assert caller is doing things in a sane order */
Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC);
Assert(plansource->is_complete);
/*
* No work needed if statement doesn't return tuples (we assume this
* feature cannot be changed by an invalidation)
*/
if (plansource->resultDesc == NULL)
return NIL;
/* Make sure the querytree list is valid and we have parse-time locks */
RevalidateCachedQuery(plansource);
/* Get the primary statement and find out what it returns */
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
pstmt = QueryListGetPrimaryStmt(plansource->query_list);
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
return FetchStatementTargetList((Node *) pstmt);
}
/*
* QueryListGetPrimaryStmt
* Get the "primary" stmt within a list, ie, the one marked canSetTag.
*
* Returns NULL if no such stmt. If multiple queries within the list are
* marked canSetTag, returns the first one. Neither of these cases should
* occur in present usages of this function.
*/
static Query *
QueryListGetPrimaryStmt(List *stmts)
{
ListCell *lc;
foreach(lc, stmts)
{
Query *stmt = castNode(Query, lfirst(lc));
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
if (stmt->canSetTag)
return stmt;
}
return NULL;
}
/*
* AcquireExecutorLocks: acquire locks needed for execution of a cached plan;
* or release them if acquire is false.
*/
static void
AcquireExecutorLocks(List *stmt_list, bool acquire)
{
ListCell *lc1;
foreach(lc1, stmt_list)
{
PlannedStmt *plannedstmt = castNode(PlannedStmt, lfirst(lc1));
int rt_index;
ListCell *lc2;
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
if (plannedstmt->commandType == CMD_UTILITY)
{
/*
* Ignore utility statements, except those (such as EXPLAIN) that
* contain a parsed-but-not-planned query. Note: it's okay to use
* ScanQueryForLocks, even though the query hasn't been through
* rule rewriting, because rewriting doesn't change the query
* representation.
*/
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
Query *query = UtilityContainsQuery(plannedstmt->utilityStmt);
if (query)
ScanQueryForLocks(query, acquire);
continue;
}
rt_index = 0;
foreach(lc2, plannedstmt->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc2);
LOCKMODE lockmode;
PlanRowMark *rc;
rt_index++;
if (rte->rtekind != RTE_RELATION)
continue;
/*
2007-11-15 22:14:46 +01:00
* Acquire the appropriate type of lock on each relation OID. Note
* that we don't actually try to open the rel, and hence will not
* fail if it's been dropped entirely --- we'll just transiently
* acquire a non-conflicting lock.
*/
if (list_member_int(plannedstmt->resultRelations, rt_index))
lockmode = RowExclusiveLock;
else if ((rc = get_plan_rowmark(plannedstmt->rowMarks, rt_index)) != NULL &&
RowMarkRequiresRowShareLock(rc->markType))
lockmode = RowShareLock;
else
lockmode = AccessShareLock;
if (acquire)
LockRelationOid(rte->relid, lockmode);
else
UnlockRelationOid(rte->relid, lockmode);
}
}
}
/*
* AcquirePlannerLocks: acquire locks needed for planning of a querytree list;
* or release them if acquire is false.
*
* Note that we don't actually try to open the relations, and hence will not
* fail if one has been dropped entirely --- we'll just transiently acquire
* a non-conflicting lock.
*/
static void
AcquirePlannerLocks(List *stmt_list, bool acquire)
{
ListCell *lc;
foreach(lc, stmt_list)
{
Query *query = castNode(Query, lfirst(lc));
if (query->commandType == CMD_UTILITY)
{
/* Ignore utility statements, unless they contain a Query */
query = UtilityContainsQuery(query->utilityStmt);
if (query)
ScanQueryForLocks(query, acquire);
continue;
}
ScanQueryForLocks(query, acquire);
}
}
/*
* ScanQueryForLocks: recursively scan one Query for AcquirePlannerLocks.
*/
static void
ScanQueryForLocks(Query *parsetree, bool acquire)
{
ListCell *lc;
int rt_index;
/* Shouldn't get called on utility commands */
Assert(parsetree->commandType != CMD_UTILITY);
/*
* First, process RTEs of the current query level.
*/
rt_index = 0;
foreach(lc, parsetree->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
LOCKMODE lockmode;
rt_index++;
switch (rte->rtekind)
{
case RTE_RELATION:
/* Acquire or release the appropriate type of lock */
if (rt_index == parsetree->resultRelation)
lockmode = RowExclusiveLock;
else if (get_parse_rowmark(parsetree, rt_index) != NULL)
lockmode = RowShareLock;
else
lockmode = AccessShareLock;
if (acquire)
LockRelationOid(rte->relid, lockmode);
else
UnlockRelationOid(rte->relid, lockmode);
break;
case RTE_SUBQUERY:
/* Recurse into subquery-in-FROM */
ScanQueryForLocks(rte->subquery, acquire);
break;
default:
/* ignore other types of RTEs */
break;
}
}
/* Recurse into subquery-in-WITH */
foreach(lc, parsetree->cteList)
{
CommonTableExpr *cte = castNode(CommonTableExpr, lfirst(lc));
ScanQueryForLocks(castNode(Query, cte->ctequery), acquire);
}
/*
* Recurse into sublink subqueries, too. But we already did the ones in
* the rtable and cteList.
*/
if (parsetree->hasSubLinks)
{
query_tree_walker(parsetree, ScanQueryWalker,
(void *) &acquire,
QTW_IGNORE_RC_SUBQUERIES);
}
}
/*
* Walker to find sublink subqueries for ScanQueryForLocks
*/
static bool
ScanQueryWalker(Node *node, bool *acquire)
{
if (node == NULL)
return false;
if (IsA(node, SubLink))
{
SubLink *sub = (SubLink *) node;
/* Do what we came for */
ScanQueryForLocks(castNode(Query, sub->subselect), *acquire);
/* Fall through to process lefthand args of SubLink */
}
/*
* Do NOT recurse into Query nodes, because ScanQueryForLocks already
2007-11-15 22:14:46 +01:00
* processed subselects of subselects for us.
*/
return expression_tree_walker(node, ScanQueryWalker,
(void *) acquire);
}
/*
* PlanCacheComputeResultDesc: given a list of analyzed-and-rewritten Queries,
* determine the result tupledesc it will produce. Returns NULL if the
* execution will not return tuples.
*
* Note: the result is created or copied into current memory context.
*/
static TupleDesc
PlanCacheComputeResultDesc(List *stmt_list)
{
Query *query;
switch (ChoosePortalStrategy(stmt_list))
{
case PORTAL_ONE_SELECT:
case PORTAL_ONE_MOD_WITH:
query = castNode(Query, linitial(stmt_list));
return ExecCleanTypeFromTL(query->targetList, false);
case PORTAL_ONE_RETURNING:
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
query = QueryListGetPrimaryStmt(stmt_list);
Assert(query->returningList);
return ExecCleanTypeFromTL(query->returningList, false);
case PORTAL_UTIL_SELECT:
query = castNode(Query, linitial(stmt_list));
Assert(query->utilityStmt);
return UtilityTupleDescriptor(query->utilityStmt);
case PORTAL_MULTI_QUERY:
/* will not return tuples */
break;
}
return NULL;
}
/*
* PlanCacheRelCallback
* Relcache inval callback function
*
* Invalidate all plans mentioning the given rel, or all plans mentioning
* any rel at all if relid == InvalidOid.
*/
static void
PlanCacheRelCallback(Datum arg, Oid relid)
{
CachedPlanSource *plansource;
for (plansource = first_saved_plan; plansource; plansource = plansource->next_saved)
{
Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC);
/* No work if it's already invalidated */
if (!plansource->is_valid)
continue;
/* Never invalidate transaction control commands */
if (IsTransactionStmtPlan(plansource))
continue;
/*
* Check the dependency list for the rewritten querytree.
*/
if ((relid == InvalidOid) ? plansource->relationOids != NIL :
list_member_oid(plansource->relationOids, relid))
{
/* Invalidate the querytree and generic plan */
plansource->is_valid = false;
if (plansource->gplan)
plansource->gplan->is_valid = false;
}
/*
* The generic plan, if any, could have more dependencies than the
* querytree does, so we have to check it too.
*/
if (plansource->gplan && plansource->gplan->is_valid)
{
ListCell *lc;
foreach(lc, plansource->gplan->stmt_list)
{
PlannedStmt *plannedstmt = castNode(PlannedStmt, lfirst(lc));
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
if (plannedstmt->commandType == CMD_UTILITY)
2007-11-15 22:14:46 +01:00
continue; /* Ignore utility statements */
if ((relid == InvalidOid) ? plannedstmt->relationOids != NIL :
list_member_oid(plannedstmt->relationOids, relid))
{
/* Invalidate the generic plan only */
plansource->gplan->is_valid = false;
2007-11-15 22:14:46 +01:00
break; /* out of stmt_list scan */
}
}
}
}
}
/*
* PlanCacheFuncCallback
* Syscache inval callback function for PROCOID cache
*
* Invalidate all plans mentioning the object with the specified hash value,
* or all plans mentioning any member of this cache if hashvalue == 0.
*
* Note that the coding would support use for multiple caches, but right
* now only user-defined functions are tracked this way.
*/
static void
PlanCacheFuncCallback(Datum arg, int cacheid, uint32 hashvalue)
{
CachedPlanSource *plansource;
for (plansource = first_saved_plan; plansource; plansource = plansource->next_saved)
{
ListCell *lc;
Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC);
/* No work if it's already invalidated */
if (!plansource->is_valid)
continue;
/* Never invalidate transaction control commands */
if (IsTransactionStmtPlan(plansource))
continue;
/*
* Check the dependency list for the rewritten querytree.
*/
foreach(lc, plansource->invalItems)
{
PlanInvalItem *item = (PlanInvalItem *) lfirst(lc);
if (item->cacheId != cacheid)
continue;
if (hashvalue == 0 ||
item->hashValue == hashvalue)
{
/* Invalidate the querytree and generic plan */
plansource->is_valid = false;
if (plansource->gplan)
plansource->gplan->is_valid = false;
break;
}
}
/*
* The generic plan, if any, could have more dependencies than the
* querytree does, so we have to check it too.
*/
if (plansource->gplan && plansource->gplan->is_valid)
{
foreach(lc, plansource->gplan->stmt_list)
{
PlannedStmt *plannedstmt = castNode(PlannedStmt, lfirst(lc));
ListCell *lc3;
Change representation of statement lists, and add statement location info. This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 22:02:35 +01:00
if (plannedstmt->commandType == CMD_UTILITY)
continue; /* Ignore utility statements */
foreach(lc3, plannedstmt->invalItems)
{
PlanInvalItem *item = (PlanInvalItem *) lfirst(lc3);
if (item->cacheId != cacheid)
continue;
if (hashvalue == 0 ||
item->hashValue == hashvalue)
{
/* Invalidate the generic plan only */
plansource->gplan->is_valid = false;
break; /* out of invalItems scan */
}
}
if (!plansource->gplan->is_valid)
break; /* out of stmt_list scan */
}
}
}
}
/*
* PlanCacheSysCallback
* Syscache inval callback function for other caches
*
* Just invalidate everything...
*/
static void
PlanCacheSysCallback(Datum arg, int cacheid, uint32 hashvalue)
{
ResetPlanCache();
}
/*
* ResetPlanCache: invalidate all cached plans.
*/
void
ResetPlanCache(void)
{
CachedPlanSource *plansource;
for (plansource = first_saved_plan; plansource; plansource = plansource->next_saved)
{
ListCell *lc;
Assert(plansource->magic == CACHEDPLANSOURCE_MAGIC);
/* No work if it's already invalidated */
if (!plansource->is_valid)
continue;
/*
* We *must not* mark transaction control statements as invalid,
* particularly not ROLLBACK, because they may need to be executed in
* aborted transactions when we can't revalidate them (cf bug #5269).
*/
if (IsTransactionStmtPlan(plansource))
continue;
/*
* In general there is no point in invalidating utility statements
* since they have no plans anyway. So invalidate it only if it
* contains at least one non-utility statement, or contains a utility
* statement that contains a pre-analyzed query (which could have
* dependencies.)
*/
foreach(lc, plansource->query_list)
{
Query *query = castNode(Query, lfirst(lc));
if (query->commandType != CMD_UTILITY ||
UtilityContainsQuery(query->utilityStmt))
{
/* non-utility statement, so invalidate */
plansource->is_valid = false;
if (plansource->gplan)
plansource->gplan->is_valid = false;
/* no need to look further */
break;
}
}
}
}