postgresql/src/backend/parser/parse_agg.c

1316 lines
40 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* parse_agg.c
* handle aggregates and window functions in parser
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/parser/parse_agg.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
#include "catalog/pg_aggregate.h"
#include "catalog/pg_constraint.h"
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/tlist.h"
#include "parser/parse_agg.h"
#include "parser/parse_clause.h"
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
#include "utils/builtins.h"
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
#include "utils/lsyscache.h"
typedef struct
{
ParseState *pstate;
int min_varlevel;
int min_agglevel;
int sublevels_up;
} check_agg_arguments_context;
typedef struct
{
ParseState *pstate;
Query *qry;
List *groupClauses;
bool have_non_var_grouping;
List **func_grouped_rels;
int sublevels_up;
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
bool in_agg_direct_args;
} check_ungrouped_columns_context;
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
static int check_agg_arguments(ParseState *pstate,
List *directargs,
List *args,
Expr *filter);
static bool check_agg_arguments_walker(Node *node,
check_agg_arguments_context *context);
static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
List *groupClauses, bool have_non_var_grouping,
List **func_grouped_rels);
static bool check_ungrouped_columns_walker(Node *node,
check_ungrouped_columns_context *context);
/*
* transformAggregateCall -
* Finish initial transformation of an aggregate call
*
* parse_func.c has recognized the function as an aggregate, and has set up
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
* all the fields of the Aggref except aggdirectargs, args, aggorder,
* aggdistinct and agglevelsup. The passed-in args list has been through
* standard expression transformation and type coercion to match the agg's
* declared arg types, while the passed-in aggorder list hasn't been
* transformed at all.
*
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
* Here we separate the args list into direct and aggregated args, storing the
* former in agg->aggdirectargs and the latter in agg->args. The regular
* args, but not the direct args, are converted into a targetlist by inserting
* TargetEntry nodes. We then transform the aggorder and agg_distinct
* specifications to produce lists of SortGroupClause nodes for agg->aggorder
* and agg->aggdistinct. (For a regular aggregate, this might result in
* adding resjunk expressions to the targetlist; but for ordered-set
* aggregates the aggorder list will always be one-to-one with the aggregated
* args.)
*
* We must also determine which query level the aggregate actually belongs to,
* set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
* pstate level.
*/
void
transformAggregateCall(ParseState *pstate, Aggref *agg,
List *args, List *aggorder, bool agg_distinct)
{
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
List *tlist = NIL;
List *torder = NIL;
2010-02-26 03:01:40 +01:00
List *tdistinct = NIL;
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
AttrNumber attno = 1;
2010-02-26 03:01:40 +01:00
int save_next_resno;
int min_varlevel;
ListCell *lc;
const char *err;
bool errkind;
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
{
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
/*
* For an ordered-set agg, the args list includes direct args and
* aggregated args; we must split them apart.
*/
int numDirectArgs = list_length(args) - list_length(aggorder);
List *aargs;
ListCell *lc2;
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
Assert(numDirectArgs >= 0);
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
aargs = list_copy_tail(args, numDirectArgs);
agg->aggdirectargs = list_truncate(args, numDirectArgs);
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
/*
* Build a tlist from the aggregated args, and make a sortlist entry
* for each one. Note that the expressions in the SortBy nodes are
* ignored (they are the raw versions of the transformed args); we are
* just looking at the sort information in the SortBy nodes.
*/
forboth(lc, aargs, lc2, aggorder)
{
Expr *arg = (Expr *) lfirst(lc);
SortBy *sortby = (SortBy *) lfirst(lc2);
TargetEntry *tle;
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
/* We don't bother to assign column names to the entries */
tle = makeTargetEntry(arg, attno++, NULL, false);
tlist = lappend(tlist, tle);
torder = addTargetToSortList(pstate, tle,
torder, tlist, sortby,
true /* fix unknowns */ );
}
/* Never any DISTINCT in an ordered-set agg */
Assert(!agg_distinct);
}
else
{
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
/* Regular aggregate, so it has no direct args */
agg->aggdirectargs = NIL;
/*
* Transform the plain list of Exprs into a targetlist.
*/
foreach(lc, args)
{
Expr *arg = (Expr *) lfirst(lc);
TargetEntry *tle;
/* We don't bother to assign column names to the entries */
tle = makeTargetEntry(arg, attno++, NULL, false);
tlist = lappend(tlist, tle);
}
/*
* If we have an ORDER BY, transform it. This will add columns to the
* tlist if they appear in ORDER BY but weren't already in the arg
* list. They will be marked resjunk = true so we can tell them apart
* from regular aggregate arguments later.
*
* We need to mess with p_next_resno since it will be used to number
* any new targetlist entries.
*/
save_next_resno = pstate->p_next_resno;
pstate->p_next_resno = attno;
torder = transformSortClause(pstate,
aggorder,
&tlist,
EXPR_KIND_ORDER_BY,
true /* fix unknowns */ ,
true /* force SQL99 rules */ );
/*
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
* If we have DISTINCT, transform that to produce a distinctList.
*/
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
if (agg_distinct)
{
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
/*
* Remove this check if executor support for hashed distinct for
* aggregates is ever added.
*/
foreach(lc, tdistinct)
{
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
if (!OidIsValid(sortcl->sortop))
{
Node *expr = get_sortgroupclause_expr(sortcl, tlist);
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not identify an ordering operator for type %s",
format_type_be(exprType(expr))),
errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
parser_errposition(pstate, exprLocation(expr))));
}
}
}
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
pstate->p_next_resno = save_next_resno;
}
/* Update the Aggref with the transformation results */
agg->args = tlist;
agg->aggorder = torder;
agg->aggdistinct = tdistinct;
/*
* Check the arguments to compute the aggregate's level and detect
* improper nesting.
*/
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
min_varlevel = check_agg_arguments(pstate,
agg->aggdirectargs,
agg->args,
agg->aggfilter);
agg->agglevelsup = min_varlevel;
/* Mark the correct pstate level as having aggregates */
while (min_varlevel-- > 0)
pstate = pstate->parentParseState;
pstate->p_hasAggs = true;
/*
* Check to see if the aggregate function is in an invalid place within
* its aggregation query.
*
* For brevity we support two schemes for reporting an error here: set
* "err" to a custom message, or set "errkind" true if the error context
* is sufficiently identified by what ParseExprKindName will return, *and*
* what it will return is just a SQL keyword. (Otherwise, use a custom
* message to avoid creating translation problems.)
*/
err = NULL;
errkind = false;
switch (pstate->p_expr_kind)
{
case EXPR_KIND_NONE:
Assert(false); /* can't happen */
break;
case EXPR_KIND_OTHER:
/* Accept aggregate here; caller must throw error if wanted */
break;
case EXPR_KIND_JOIN_ON:
case EXPR_KIND_JOIN_USING:
err = _("aggregate functions are not allowed in JOIN conditions");
break;
case EXPR_KIND_FROM_SUBSELECT:
/* Should only be possible in a LATERAL subquery */
Assert(pstate->p_lateral_active);
/* Aggregate scope rules make it worth being explicit here */
err = _("aggregate functions are not allowed in FROM clause of their own query level");
break;
case EXPR_KIND_FROM_FUNCTION:
err = _("aggregate functions are not allowed in functions in FROM");
break;
case EXPR_KIND_WHERE:
errkind = true;
break;
case EXPR_KIND_HAVING:
/* okay */
break;
case EXPR_KIND_FILTER:
errkind = true;
break;
case EXPR_KIND_WINDOW_PARTITION:
/* okay */
break;
case EXPR_KIND_WINDOW_ORDER:
/* okay */
break;
case EXPR_KIND_WINDOW_FRAME_RANGE:
err = _("aggregate functions are not allowed in window RANGE");
break;
case EXPR_KIND_WINDOW_FRAME_ROWS:
err = _("aggregate functions are not allowed in window ROWS");
break;
case EXPR_KIND_SELECT_TARGET:
/* okay */
break;
case EXPR_KIND_INSERT_TARGET:
case EXPR_KIND_UPDATE_SOURCE:
case EXPR_KIND_UPDATE_TARGET:
errkind = true;
break;
case EXPR_KIND_GROUP_BY:
errkind = true;
break;
case EXPR_KIND_ORDER_BY:
/* okay */
break;
case EXPR_KIND_DISTINCT_ON:
/* okay */
break;
case EXPR_KIND_LIMIT:
case EXPR_KIND_OFFSET:
errkind = true;
break;
case EXPR_KIND_RETURNING:
errkind = true;
break;
case EXPR_KIND_VALUES:
errkind = true;
break;
case EXPR_KIND_CHECK_CONSTRAINT:
case EXPR_KIND_DOMAIN_CHECK:
2013-01-05 14:25:21 +01:00
err = _("aggregate functions are not allowed in check constraints");
break;
case EXPR_KIND_COLUMN_DEFAULT:
case EXPR_KIND_FUNCTION_DEFAULT:
err = _("aggregate functions are not allowed in DEFAULT expressions");
break;
case EXPR_KIND_INDEX_EXPRESSION:
err = _("aggregate functions are not allowed in index expressions");
break;
case EXPR_KIND_INDEX_PREDICATE:
err = _("aggregate functions are not allowed in index predicates");
break;
case EXPR_KIND_ALTER_COL_TRANSFORM:
err = _("aggregate functions are not allowed in transform expressions");
break;
case EXPR_KIND_EXECUTE_PARAMETER:
err = _("aggregate functions are not allowed in EXECUTE parameters");
break;
case EXPR_KIND_TRIGGER_WHEN:
err = _("aggregate functions are not allowed in trigger WHEN conditions");
break;
/*
* There is intentionally no default: case here, so that the
* compiler will warn if we add a new ParseExprKind without
* extending this switch. If we do see an unrecognized value at
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
* which is sane anyway.
*/
}
if (err)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg_internal("%s", err),
parser_errposition(pstate, agg->location)));
if (errkind)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
/* translator: %s is name of a SQL construct, eg GROUP BY */
errmsg("aggregate functions are not allowed in %s",
ParseExprKindName(pstate->p_expr_kind)),
parser_errposition(pstate, agg->location)));
}
/*
* check_agg_arguments
* Scan the arguments of an aggregate function to determine the
* aggregate's semantic level (zero is the current select's level,
* one is its parent, etc).
*
* The aggregate's level is the same as the level of the lowest-level variable
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
* or aggregate in its aggregated arguments (including any ORDER BY columns)
* or filter expression; or if it contains no variables at all, we presume it
* to be local.
*
* Vars/Aggs in direct arguments are *not* counted towards determining the
* agg's level, as those arguments aren't evaluated per-row but only
* per-group, and so in some sense aren't really agg arguments. However,
* this can mean that we decide an agg is upper-level even when its direct
* args contain lower-level Vars/Aggs, and that case has to be disallowed.
* (This is a little strange, but the SQL standard seems pretty definite that
* direct args are not to be considered when setting the agg's level.)
*
* We also take this opportunity to detect any aggregates or window functions
* nested within the arguments. We can throw error immediately if we find
* a window function. Aggregates are a bit trickier because it's only an
* error if the inner aggregate is of the same semantic level as the outer,
* which we can't know until we finish scanning the arguments.
*/
static int
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
check_agg_arguments(ParseState *pstate,
List *directargs,
List *args,
Expr *filter)
{
int agglevel;
check_agg_arguments_context context;
context.pstate = pstate;
context.min_varlevel = -1; /* signifies nothing found yet */
context.min_agglevel = -1;
context.sublevels_up = 0;
(void) expression_tree_walker((Node *) args,
check_agg_arguments_walker,
(void *) &context);
(void) expression_tree_walker((Node *) filter,
check_agg_arguments_walker,
(void *) &context);
/*
* If we found no vars nor aggs at all, it's a level-zero aggregate;
* otherwise, its level is the minimum of vars or aggs.
*/
if (context.min_varlevel < 0)
{
if (context.min_agglevel < 0)
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
agglevel = 0;
else
agglevel = context.min_agglevel;
}
else if (context.min_agglevel < 0)
agglevel = context.min_varlevel;
else
agglevel = Min(context.min_varlevel, context.min_agglevel);
/*
* If there's a nested aggregate of the same semantic level, complain.
*/
if (agglevel == context.min_agglevel)
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
{
int aggloc;
aggloc = locate_agg_of_level((Node *) args, agglevel);
if (aggloc < 0)
aggloc = locate_agg_of_level((Node *) filter, agglevel);
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot be nested"),
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
parser_errposition(pstate, aggloc)));
}
/*
* Now check for vars/aggs in the direct arguments, and throw error if
* needed. Note that we allow a Var of the agg's semantic level, but not
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
* an Agg of that level. In principle such Aggs could probably be
* supported, but it would create an ordering dependency among the
* aggregates at execution time. Since the case appears neither to be
* required by spec nor particularly useful, we just treat it as a
* nested-aggregate situation.
*/
if (directargs)
{
context.min_varlevel = -1;
context.min_agglevel = -1;
(void) expression_tree_walker((Node *) directargs,
check_agg_arguments_walker,
(void *) &context);
if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
parser_errposition(pstate,
locate_var_of_level((Node *) directargs,
context.min_varlevel))));
if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot be nested"),
parser_errposition(pstate,
locate_agg_of_level((Node *) directargs,
context.min_agglevel))));
}
return agglevel;
}
static bool
check_agg_arguments_walker(Node *node,
check_agg_arguments_context *context)
{
if (node == NULL)
return false;
if (IsA(node, Var))
{
int varlevelsup = ((Var *) node)->varlevelsup;
/* convert levelsup to frame of reference of original query */
varlevelsup -= context->sublevels_up;
/* ignore local vars of subqueries */
if (varlevelsup >= 0)
{
if (context->min_varlevel < 0 ||
context->min_varlevel > varlevelsup)
context->min_varlevel = varlevelsup;
}
return false;
}
if (IsA(node, Aggref))
{
int agglevelsup = ((Aggref *) node)->agglevelsup;
/* convert levelsup to frame of reference of original query */
agglevelsup -= context->sublevels_up;
/* ignore local aggs of subqueries */
if (agglevelsup >= 0)
{
if (context->min_agglevel < 0 ||
context->min_agglevel > agglevelsup)
context->min_agglevel = agglevelsup;
}
/* no need to examine args of the inner aggregate */
return false;
}
/* We can throw error on sight for a window function */
if (IsA(node, WindowFunc))
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot contain window function calls"),
parser_errposition(context->pstate,
((WindowFunc *) node)->location)));
if (IsA(node, Query))
{
/* Recurse into subselects */
bool result;
context->sublevels_up++;
result = query_tree_walker((Query *) node,
check_agg_arguments_walker,
(void *) context,
0);
context->sublevels_up--;
return result;
}
return expression_tree_walker(node,
check_agg_arguments_walker,
(void *) context);
}
/*
* transformWindowFuncCall -
* Finish initial transformation of a window function call
*
* parse_func.c has recognized the function as a window function, and has set
* up all the fields of the WindowFunc except winref. Here we must (1) add
* the WindowDef to the pstate (if not a duplicate of one already present) and
* set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
* Unlike aggregates, only the most closely nested pstate level need be
* considered --- there are no "outer window functions" per SQL spec.
*/
void
transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc,
WindowDef *windef)
{
const char *err;
bool errkind;
/*
* A window function call can't contain another one (but aggs are OK). XXX
* is this required by spec, or just an unimplemented feature?
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
*
* Note: we don't need to check the filter expression here, because the
* context checks done below and in transformAggregateCall would have
* already rejected any window funcs or aggs within the filter.
*/
if (pstate->p_hasWindowFuncs &&
contain_windowfuncs((Node *) wfunc->args))
ereport(ERROR,
(errcode(ERRCODE_WINDOWING_ERROR),
errmsg("window function calls cannot be nested"),
parser_errposition(pstate,
locate_windowfunc((Node *) wfunc->args))));
/*
* Check to see if the window function is in an invalid place within the
* query.
*
* For brevity we support two schemes for reporting an error here: set
* "err" to a custom message, or set "errkind" true if the error context
* is sufficiently identified by what ParseExprKindName will return, *and*
* what it will return is just a SQL keyword. (Otherwise, use a custom
* message to avoid creating translation problems.)
*/
err = NULL;
errkind = false;
switch (pstate->p_expr_kind)
{
case EXPR_KIND_NONE:
Assert(false); /* can't happen */
break;
case EXPR_KIND_OTHER:
/* Accept window func here; caller must throw error if wanted */
break;
case EXPR_KIND_JOIN_ON:
case EXPR_KIND_JOIN_USING:
err = _("window functions are not allowed in JOIN conditions");
break;
case EXPR_KIND_FROM_SUBSELECT:
/* can't get here, but just in case, throw an error */
errkind = true;
break;
case EXPR_KIND_FROM_FUNCTION:
err = _("window functions are not allowed in functions in FROM");
break;
case EXPR_KIND_WHERE:
errkind = true;
break;
case EXPR_KIND_HAVING:
errkind = true;
break;
case EXPR_KIND_FILTER:
errkind = true;
break;
case EXPR_KIND_WINDOW_PARTITION:
case EXPR_KIND_WINDOW_ORDER:
case EXPR_KIND_WINDOW_FRAME_RANGE:
case EXPR_KIND_WINDOW_FRAME_ROWS:
err = _("window functions are not allowed in window definitions");
break;
case EXPR_KIND_SELECT_TARGET:
/* okay */
break;
case EXPR_KIND_INSERT_TARGET:
case EXPR_KIND_UPDATE_SOURCE:
case EXPR_KIND_UPDATE_TARGET:
errkind = true;
break;
case EXPR_KIND_GROUP_BY:
errkind = true;
break;
case EXPR_KIND_ORDER_BY:
/* okay */
break;
case EXPR_KIND_DISTINCT_ON:
/* okay */
break;
case EXPR_KIND_LIMIT:
case EXPR_KIND_OFFSET:
errkind = true;
break;
case EXPR_KIND_RETURNING:
errkind = true;
break;
case EXPR_KIND_VALUES:
errkind = true;
break;
case EXPR_KIND_CHECK_CONSTRAINT:
case EXPR_KIND_DOMAIN_CHECK:
2013-01-05 14:25:21 +01:00
err = _("window functions are not allowed in check constraints");
break;
case EXPR_KIND_COLUMN_DEFAULT:
case EXPR_KIND_FUNCTION_DEFAULT:
err = _("window functions are not allowed in DEFAULT expressions");
break;
case EXPR_KIND_INDEX_EXPRESSION:
err = _("window functions are not allowed in index expressions");
break;
case EXPR_KIND_INDEX_PREDICATE:
err = _("window functions are not allowed in index predicates");
break;
case EXPR_KIND_ALTER_COL_TRANSFORM:
err = _("window functions are not allowed in transform expressions");
break;
case EXPR_KIND_EXECUTE_PARAMETER:
err = _("window functions are not allowed in EXECUTE parameters");
break;
case EXPR_KIND_TRIGGER_WHEN:
err = _("window functions are not allowed in trigger WHEN conditions");
break;
/*
* There is intentionally no default: case here, so that the
* compiler will warn if we add a new ParseExprKind without
* extending this switch. If we do see an unrecognized value at
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
* which is sane anyway.
*/
}
if (err)
ereport(ERROR,
(errcode(ERRCODE_WINDOWING_ERROR),
errmsg_internal("%s", err),
parser_errposition(pstate, wfunc->location)));
if (errkind)
ereport(ERROR,
(errcode(ERRCODE_WINDOWING_ERROR),
/* translator: %s is name of a SQL construct, eg GROUP BY */
errmsg("window functions are not allowed in %s",
ParseExprKindName(pstate->p_expr_kind)),
parser_errposition(pstate, wfunc->location)));
/*
* If the OVER clause just specifies a window name, find that WINDOW
* clause (which had better be present). Otherwise, try to match all the
* properties of the OVER clause, and make a new entry in the p_windowdefs
* list if no luck.
*/
if (windef->name)
{
Index winref = 0;
ListCell *lc;
Assert(windef->refname == NULL &&
windef->partitionClause == NIL &&
windef->orderClause == NIL &&
windef->frameOptions == FRAMEOPTION_DEFAULTS);
foreach(lc, pstate->p_windowdefs)
{
WindowDef *refwin = (WindowDef *) lfirst(lc);
winref++;
if (refwin->name && strcmp(refwin->name, windef->name) == 0)
{
wfunc->winref = winref;
break;
}
}
if (lc == NULL) /* didn't find it? */
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("window \"%s\" does not exist", windef->name),
parser_errposition(pstate, windef->location)));
}
else
{
Index winref = 0;
ListCell *lc;
foreach(lc, pstate->p_windowdefs)
{
WindowDef *refwin = (WindowDef *) lfirst(lc);
winref++;
if (refwin->refname && windef->refname &&
strcmp(refwin->refname, windef->refname) == 0)
/* matched on refname */ ;
else if (!refwin->refname && !windef->refname)
/* matched, no refname */ ;
else
continue;
if (equal(refwin->partitionClause, windef->partitionClause) &&
equal(refwin->orderClause, windef->orderClause) &&
refwin->frameOptions == windef->frameOptions &&
equal(refwin->startOffset, windef->startOffset) &&
equal(refwin->endOffset, windef->endOffset))
{
/* found a duplicate window specification */
wfunc->winref = winref;
break;
}
}
if (lc == NULL) /* didn't find it? */
{
pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
wfunc->winref = list_length(pstate->p_windowdefs);
}
}
pstate->p_hasWindowFuncs = true;
}
/*
* parseCheckAggregates
* Check for aggregates where they shouldn't be and improper grouping.
* This function should be called after the target list and qualifications
* are finalized.
*
* Misplaced aggregates are now mostly detected in transformAggregateCall,
* but it seems more robust to check for aggregates in recursive queries
* only after everything is finalized. In any case it's hard to detect
* improper grouping on-the-fly, so we have to make another pass over the
* query for that.
*/
void
parseCheckAggregates(ParseState *pstate, Query *qry)
{
List *groupClauses = NIL;
bool have_non_var_grouping;
List *func_grouped_rels = NIL;
ListCell *l;
bool hasJoinRTEs;
bool hasSelfRefRTEs;
PlannerInfo *root;
Node *clause;
/* This should only be called if we found aggregates or grouping */
Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual);
/*
* Scan the range table to see if there are JOIN or self-reference CTE
* entries. We'll need this info below.
*/
hasJoinRTEs = hasSelfRefRTEs = false;
foreach(l, pstate->p_rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
if (rte->rtekind == RTE_JOIN)
hasJoinRTEs = true;
else if (rte->rtekind == RTE_CTE && rte->self_reference)
hasSelfRefRTEs = true;
}
/*
* Build a list of the acceptable GROUP BY expressions for use by
* check_ungrouped_columns().
*/
foreach(l, qry->groupClause)
{
SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
Node *expr;
expr = get_sortgroupclause_expr(grpcl, qry->targetList);
if (expr == NULL)
continue; /* probably cannot happen */
groupClauses = lcons(expr, groupClauses);
}
/*
2005-10-15 04:49:52 +02:00
* If there are join alias vars involved, we have to flatten them to the
* underlying vars, so that aliased and unaliased vars will be correctly
* taken as equal. We can skip the expense of doing this if no rangetable
* entries are RTE_JOIN kind. We use the planner's flatten_join_alias_vars
* routine to do the flattening; it wants a PlannerInfo root node, which
* fortunately can be mostly dummy.
*/
if (hasJoinRTEs)
{
root = makeNode(PlannerInfo);
root->parse = qry;
root->planner_cxt = CurrentMemoryContext;
root->hasJoinRTEs = true;
groupClauses = (List *) flatten_join_alias_vars(root,
2005-10-15 04:49:52 +02:00
(Node *) groupClauses);
}
else
root = NULL; /* keep compiler quiet */
/*
2005-10-15 04:49:52 +02:00
* Detect whether any of the grouping expressions aren't simple Vars; if
* they're all Vars then we don't have to work so hard in the recursive
* scans. (Note we have to flatten aliases before this.)
*/
have_non_var_grouping = false;
foreach(l, groupClauses)
{
if (!IsA((Node *) lfirst(l), Var))
{
have_non_var_grouping = true;
break;
}
}
/*
* Check the targetlist and HAVING clause for ungrouped variables.
*
* Note: because we check resjunk tlist elements as well as regular ones,
* this will also find ungrouped variables that came from ORDER BY and
* WINDOW clauses. For that matter, it's also going to examine the
* grouping expressions themselves --- but they'll all pass the test ...
*/
clause = (Node *) qry->targetList;
if (hasJoinRTEs)
clause = flatten_join_alias_vars(root, clause);
check_ungrouped_columns(clause, pstate, qry,
groupClauses, have_non_var_grouping,
&func_grouped_rels);
clause = (Node *) qry->havingQual;
if (hasJoinRTEs)
clause = flatten_join_alias_vars(root, clause);
check_ungrouped_columns(clause, pstate, qry,
groupClauses, have_non_var_grouping,
&func_grouped_rels);
/*
* Per spec, aggregates can't appear in a recursive term.
*/
if (pstate->p_hasAggs && hasSelfRefRTEs)
ereport(ERROR,
(errcode(ERRCODE_INVALID_RECURSION),
errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
parser_errposition(pstate,
locate_agg_of_level((Node *) qry, 0))));
}
/*
* check_ungrouped_columns -
* Scan the given expression tree for ungrouped variables (variables
* that are not listed in the groupClauses list and are not within
* the arguments of aggregate functions). Emit a suitable error message
* if any are found.
*
* NOTE: we assume that the given clause has been transformed suitably for
* parser output. This means we can use expression_tree_walker.
*
* NOTE: we recognize grouping expressions in the main query, but only
* grouping Vars in subqueries. For example, this will be rejected,
* although it could be allowed:
* SELECT
* (SELECT x FROM bar where y = (foo.a + foo.b))
* FROM foo
* GROUP BY a + b;
* The difficulty is the need to account for different sublevels_up.
* This appears to require a whole custom version of equal(), which is
* way more pain than the feature seems worth.
*/
static void
check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
List *groupClauses, bool have_non_var_grouping,
List **func_grouped_rels)
{
check_ungrouped_columns_context context;
context.pstate = pstate;
context.qry = qry;
context.groupClauses = groupClauses;
context.have_non_var_grouping = have_non_var_grouping;
context.func_grouped_rels = func_grouped_rels;
context.sublevels_up = 0;
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
context.in_agg_direct_args = false;
check_ungrouped_columns_walker(node, &context);
}
static bool
check_ungrouped_columns_walker(Node *node,
check_ungrouped_columns_context *context)
{
ListCell *gl;
if (node == NULL)
return false;
if (IsA(node, Const) ||
IsA(node, Param))
return false; /* constants are always acceptable */
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
if (IsA(node, Aggref))
{
Aggref *agg = (Aggref *) node;
if ((int) agg->agglevelsup == context->sublevels_up)
{
/*
* If we find an aggregate call of the original level, do not
* recurse into its normal arguments, ORDER BY arguments, or
* filter; ungrouped vars there are not an error. But we should
* check direct arguments as though they weren't in an aggregate.
* We set a special flag in the context to help produce a useful
* error message for ungrouped vars in direct arguments.
*/
bool result;
Assert(!context->in_agg_direct_args);
context->in_agg_direct_args = true;
result = check_ungrouped_columns_walker((Node *) agg->aggdirectargs,
context);
context->in_agg_direct_args = false;
return result;
}
/*
* We can skip recursing into aggregates of higher levels altogether,
* since they could not possibly contain Vars of concern to us (see
* transformAggregateCall). We do need to look at aggregates of lower
* levels, however.
*/
if ((int) agg->agglevelsup > context->sublevels_up)
return false;
}
/*
2005-10-15 04:49:52 +02:00
* If we have any GROUP BY items that are not simple Vars, check to see if
* subexpression as a whole matches any GROUP BY item. We need to do this
* at every recursion level so that we recognize GROUPed-BY expressions
* before reaching variables within them. But this only works at the outer
* query level, as noted above.
*/
if (context->have_non_var_grouping && context->sublevels_up == 0)
{
foreach(gl, context->groupClauses)
{
if (equal(node, lfirst(gl)))
return false; /* acceptable, do not descend more */
}
}
/*
* If we have an ungrouped Var of the original query level, we have a
2005-10-15 04:49:52 +02:00
* failure. Vars below the original query level are not a problem, and
* neither are Vars from above it. (If such Vars are ungrouped as far as
2005-10-15 04:49:52 +02:00
* their own query level is concerned, that's someone else's problem...)
*/
if (IsA(node, Var))
{
Var *var = (Var *) node;
RangeTblEntry *rte;
char *attname;
if (var->varlevelsup != context->sublevels_up)
return false; /* it's not local to my query, ignore */
2003-08-04 02:43:34 +02:00
/*
* Check for a match, if we didn't do it above.
*/
if (!context->have_non_var_grouping || context->sublevels_up != 0)
{
foreach(gl, context->groupClauses)
{
2003-08-04 02:43:34 +02:00
Var *gvar = (Var *) lfirst(gl);
if (IsA(gvar, Var) &&
gvar->varno == var->varno &&
gvar->varattno == var->varattno &&
gvar->varlevelsup == 0)
2003-08-04 02:43:34 +02:00
return false; /* acceptable, we're okay */
}
}
/*
* Check whether the Var is known functionally dependent on the GROUP
* BY columns. If so, we can allow the Var to be used, because the
* grouping is really a no-op for this table. However, this deduction
* depends on one or more constraints of the table, so we have to add
* those constraints to the query's constraintDeps list, because it's
* not semantically valid anymore if the constraint(s) get dropped.
* (Therefore, this check must be the last-ditch effort before raising
* error: we don't want to add dependencies unnecessarily.)
*
* Because this is a pretty expensive check, and will have the same
* outcome for all columns of a table, we remember which RTEs we've
* already proven functional dependency for in the func_grouped_rels
2011-04-10 17:42:00 +02:00
* list. This test also prevents us from adding duplicate entries to
* the constraintDeps list.
*/
if (list_member_int(*context->func_grouped_rels, var->varno))
2011-04-10 17:42:00 +02:00
return false; /* previously proven acceptable */
Assert(var->varno > 0 &&
2005-10-15 04:49:52 +02:00
(int) var->varno <= list_length(context->pstate->p_rtable));
rte = rt_fetch(var->varno, context->pstate->p_rtable);
if (rte->rtekind == RTE_RELATION)
{
if (check_functional_grouping(rte->relid,
var->varno,
0,
context->groupClauses,
&context->qry->constraintDeps))
{
*context->func_grouped_rels =
lappend_int(*context->func_grouped_rels, var->varno);
2011-04-10 17:42:00 +02:00
return false; /* acceptable */
}
}
/* Found an ungrouped local variable; generate error message */
attname = get_rte_attribute_name(rte, var->varattno);
if (context->sublevels_up == 0)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
rte->eref->aliasname, attname),
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
context->in_agg_direct_args ?
errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
parser_errposition(context->pstate, var->location)));
else
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
rte->eref->aliasname, attname),
parser_errposition(context->pstate, var->location)));
}
if (IsA(node, Query))
{
/* Recurse into subselects */
bool result;
context->sublevels_up++;
result = query_tree_walker((Query *) node,
check_ungrouped_columns_walker,
(void *) context,
0);
context->sublevels_up--;
return result;
}
return expression_tree_walker(node, check_ungrouped_columns_walker,
(void *) context);
}
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
/*
* get_aggregate_argtypes
* Identify the specific datatypes passed to an aggregate call.
*
* Given an Aggref, extract the actual datatypes of the input arguments.
* The input datatypes are reported in a way that matches up with the
* aggregate's declaration, ie, any ORDER BY columns attached to a plain
* aggregate are ignored, but we report both direct and aggregated args of
* an ordered-set aggregate.
*
* Datatypes are returned into inputTypes[], which must reference an array
* of length FUNC_MAX_ARGS.
*
* The function result is the number of actual arguments.
*/
int
get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
{
int numArguments = 0;
ListCell *lc;
/* Any direct arguments of an ordered-set aggregate come first */
foreach(lc, aggref->aggdirectargs)
{
Node *expr = (Node *) lfirst(lc);
inputTypes[numArguments] = exprType(expr);
numArguments++;
}
/* Now get the regular (aggregated) arguments */
foreach(lc, aggref->args)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
/* Ignore ordering columns of a plain aggregate */
if (tle->resjunk)
continue;
inputTypes[numArguments] = exprType((Node *) tle->expr);
numArguments++;
}
return numArguments;
}
/*
* resolve_aggregate_transtype
* Identify the transition state value's datatype for an aggregate call.
*
* This function resolves a polymorphic aggregate's state datatype.
* It must be passed the aggtranstype from the aggregate's catalog entry,
* as well as the actual argument types extracted by get_aggregate_argtypes.
* (We could fetch these values internally, but for all existing callers that
* would just duplicate work the caller has to do too, so we pass them in.)
*/
Oid
resolve_aggregate_transtype(Oid aggfuncid,
Oid aggtranstype,
Oid *inputTypes,
int numArguments)
{
/* resolve actual type of transition state, if polymorphic */
if (IsPolymorphicType(aggtranstype))
{
/* have to fetch the agg's declared input types... */
Oid *declaredArgTypes;
int agg_nargs;
(void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
/*
* VARIADIC ANY aggs could have more actual than declared args, but
* such extra args can't affect polymorphic type resolution.
*/
Assert(agg_nargs <= numArguments);
aggtranstype = enforce_generic_type_consistency(inputTypes,
declaredArgTypes,
agg_nargs,
aggtranstype,
false);
pfree(declaredArgTypes);
}
return aggtranstype;
}
/*
* Create expression trees for the transition and final functions
* of an aggregate. These are needed so that polymorphic functions
* can be used within an aggregate --- without the expression trees,
* such functions would not know the datatypes they are supposed to use.
* (The trees will never actually be executed, however, so we can skimp
* a bit on correctness.)
*
* agg_input_types, agg_state_type, agg_result_type identify the input,
* transition, and result types of the aggregate. These should all be
* resolved to actual types (ie, none should ever be ANYELEMENT etc).
* agg_input_collation is the aggregate function's input collation.
*
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
* For an ordered-set aggregate, remember that agg_input_types describes
* the direct arguments followed by the aggregated arguments.
*
* transfn_oid, invtransfn_oid and finalfn_oid identify the funcs to be
* called; the latter two may be InvalidOid.
*
* Pointers to the constructed trees are returned into *transfnexpr,
* *invtransfnexpr and *finalfnexpr. If there is no invtransfn or finalfn,
* the respective pointers are set to NULL. Since use of the invtransfn is
* optional, NULL may be passed for invtransfnexpr.
*/
void
build_aggregate_fnexprs(Oid *agg_input_types,
int agg_num_inputs,
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
int agg_num_direct_inputs,
Allow polymorphic aggregates to have non-polymorphic state data types. Before 9.4, such an aggregate couldn't be declared, because its final function would have to have polymorphic result type but no polymorphic argument, which CREATE FUNCTION would quite properly reject. The ordered-set-aggregate patch found a workaround: allow the final function to be declared as accepting additional dummy arguments that have types matching the aggregate's regular input arguments. However, we failed to notice that this problem applies just as much to regular aggregates, despite the fact that we had a built-in regular aggregate array_agg() that was known to be undeclarable in SQL because its final function had an illegal signature. So what we should have done, and what this patch does, is to decouple the extra-dummy-arguments behavior from ordered-set aggregates and make it generally available for all aggregate declarations. We have to put this into 9.4 rather than waiting till later because it slightly alters the rules for declaring ordered-set aggregates. The patch turned out a bit bigger than I'd hoped because it proved necessary to record the extra-arguments option in a new pg_aggregate column. I'd thought we could just look at the final function's pronargs at runtime, but that didn't work well for variadic final functions. It's probably just as well though, because it simplifies life for pg_dump to record the option explicitly. While at it, fix array_agg() to have a valid final-function signature, and add an opr_sanity test to notice future deviations from polymorphic consistency. I also marked the percentile_cont() aggregates as not needing extra arguments, since they don't.
2014-04-24 01:17:31 +02:00
int num_finalfn_inputs,
bool agg_variadic,
Oid agg_state_type,
Oid agg_result_type,
Oid agg_input_collation,
Oid transfn_oid,
Oid invtransfn_oid,
Oid finalfn_oid,
Expr **transfnexpr,
Expr **invtransfnexpr,
Expr **finalfnexpr)
{
Param *argp;
List *args;
FuncExpr *fexpr;
int i;
/*
2005-10-15 04:49:52 +02:00
* Build arg list to use in the transfn FuncExpr node. We really only care
* that transfn can discover the actual argument types at runtime using
* get_fn_expr_argtype(), so it's okay to use Param nodes that don't
* correspond to any real Param.
*/
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = agg_state_type;
argp->paramtypmod = -1;
argp->paramcollid = agg_input_collation;
argp->location = -1;
args = list_make1(argp);
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
{
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = agg_input_types[i];
argp->paramtypmod = -1;
argp->paramcollid = agg_input_collation;
argp->location = -1;
args = lappend(args, argp);
}
2003-08-04 02:43:34 +02:00
fexpr = makeFuncExpr(transfn_oid,
agg_state_type,
args,
InvalidOid,
agg_input_collation,
COERCE_EXPLICIT_CALL);
fexpr->funcvariadic = agg_variadic;
*transfnexpr = (Expr *) fexpr;
2003-08-04 02:43:34 +02:00
/*
* Build invtransfn expression if requested, with same args as transfn
*/
if (invtransfnexpr != NULL)
{
if (OidIsValid(invtransfn_oid))
{
fexpr = makeFuncExpr(invtransfn_oid,
agg_state_type,
args,
InvalidOid,
agg_input_collation,
COERCE_EXPLICIT_CALL);
fexpr->funcvariadic = agg_variadic;
*invtransfnexpr = (Expr *) fexpr;
}
else
*invtransfnexpr = NULL;
}
2003-08-04 02:43:34 +02:00
/* see if we have a final function */
if (!OidIsValid(finalfn_oid))
{
*finalfnexpr = NULL;
return;
}
2003-08-04 02:43:34 +02:00
/*
* Build expr tree for final function
*/
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = agg_state_type;
argp->paramtypmod = -1;
argp->paramcollid = agg_input_collation;
argp->location = -1;
args = list_make1(argp);
Allow polymorphic aggregates to have non-polymorphic state data types. Before 9.4, such an aggregate couldn't be declared, because its final function would have to have polymorphic result type but no polymorphic argument, which CREATE FUNCTION would quite properly reject. The ordered-set-aggregate patch found a workaround: allow the final function to be declared as accepting additional dummy arguments that have types matching the aggregate's regular input arguments. However, we failed to notice that this problem applies just as much to regular aggregates, despite the fact that we had a built-in regular aggregate array_agg() that was known to be undeclarable in SQL because its final function had an illegal signature. So what we should have done, and what this patch does, is to decouple the extra-dummy-arguments behavior from ordered-set aggregates and make it generally available for all aggregate declarations. We have to put this into 9.4 rather than waiting till later because it slightly alters the rules for declaring ordered-set aggregates. The patch turned out a bit bigger than I'd hoped because it proved necessary to record the extra-arguments option in a new pg_aggregate column. I'd thought we could just look at the final function's pronargs at runtime, but that didn't work well for variadic final functions. It's probably just as well though, because it simplifies life for pg_dump to record the option explicitly. While at it, fix array_agg() to have a valid final-function signature, and add an opr_sanity test to notice future deviations from polymorphic consistency. I also marked the percentile_cont() aggregates as not needing extra arguments, since they don't.
2014-04-24 01:17:31 +02:00
/* finalfn may take additional args, which match agg's input types */
for (i = 0; i < num_finalfn_inputs - 1; i++)
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
{
Allow polymorphic aggregates to have non-polymorphic state data types. Before 9.4, such an aggregate couldn't be declared, because its final function would have to have polymorphic result type but no polymorphic argument, which CREATE FUNCTION would quite properly reject. The ordered-set-aggregate patch found a workaround: allow the final function to be declared as accepting additional dummy arguments that have types matching the aggregate's regular input arguments. However, we failed to notice that this problem applies just as much to regular aggregates, despite the fact that we had a built-in regular aggregate array_agg() that was known to be undeclarable in SQL because its final function had an illegal signature. So what we should have done, and what this patch does, is to decouple the extra-dummy-arguments behavior from ordered-set aggregates and make it generally available for all aggregate declarations. We have to put this into 9.4 rather than waiting till later because it slightly alters the rules for declaring ordered-set aggregates. The patch turned out a bit bigger than I'd hoped because it proved necessary to record the extra-arguments option in a new pg_aggregate column. I'd thought we could just look at the final function's pronargs at runtime, but that didn't work well for variadic final functions. It's probably just as well though, because it simplifies life for pg_dump to record the option explicitly. While at it, fix array_agg() to have a valid final-function signature, and add an opr_sanity test to notice future deviations from polymorphic consistency. I also marked the percentile_cont() aggregates as not needing extra arguments, since they don't.
2014-04-24 01:17:31 +02:00
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = agg_input_types[i];
argp->paramtypmod = -1;
argp->paramcollid = agg_input_collation;
argp->location = -1;
args = lappend(args, argp);
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
}
2003-08-04 02:43:34 +02:00
*finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
agg_result_type,
args,
InvalidOid,
agg_input_collation,
COERCE_EXPLICIT_CALL);
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
/* finalfn is currently never treated as variadic */
}