postgresql/src/backend/utils/cache/catcache.c

1417 lines
37 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* catcache.c
* System catalog cache for tuples matching a key.
*
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/utils/cache/catcache.c,v 1.93 2002/03/26 19:16:08 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/hash.h"
1999-07-16 07:00:38 +02:00
#include "access/heapam.h"
1997-11-24 06:09:50 +01:00
#include "access/valid.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_operator.h"
1999-07-16 05:14:30 +02:00
#include "catalog/pg_type.h"
#include "catalog/catname.h"
#include "catalog/indexing.h"
1999-07-16 07:00:38 +02:00
#include "miscadmin.h"
#ifdef CATCACHE_STATS
#include "storage/ipc.h" /* for on_proc_exit */
#endif
1999-07-16 07:00:38 +02:00
#include "utils/builtins.h"
#include "utils/fmgroids.h"
1999-07-16 07:00:38 +02:00
#include "utils/catcache.h"
#include "utils/relcache.h"
#include "utils/syscache.h"
/* #define CACHEDEBUG */ /* turns DEBUG elogs on */
/*
* Constants related to size of the catcache.
*
* NCCBUCKETS must be a power of two and must be less than 64K (because
* SharedInvalCatcacheMsg crams hash indexes into a uint16 field). In
* practice it should be a lot less, anyway, to avoid chewing up too much
* space on hash bucket headers.
*
* MAXCCTUPLES could be as small as a few hundred, if per-backend memory
* consumption is at a premium.
*/
#define NCCBUCKETS 256 /* Hash buckets per CatCache */
#define MAXCCTUPLES 5000 /* Maximum # of tuples in all caches */
/*
* Given a hash value and the size of the hash table, find the bucket
* in which the hash value belongs. Since the hash table must contain
* a power-of-2 number of elements, this is a simple bitmask.
*/
#define HASH_INDEX(h, sz) ((Index) ((h) & ((sz) - 1)))
/*
* variables, macros and other stuff
*/
#ifdef CACHEDEBUG
#define CACHE1_elog(a,b) elog(a,b)
#define CACHE2_elog(a,b,c) elog(a,b,c)
#define CACHE3_elog(a,b,c,d) elog(a,b,c,d)
#define CACHE4_elog(a,b,c,d,e) elog(a,b,c,d,e)
#define CACHE5_elog(a,b,c,d,e,f) elog(a,b,c,d,e,f)
#define CACHE6_elog(a,b,c,d,e,f,g) elog(a,b,c,d,e,f,g)
#else
#define CACHE1_elog(a,b)
#define CACHE2_elog(a,b,c)
#define CACHE3_elog(a,b,c,d)
#define CACHE4_elog(a,b,c,d,e)
#define CACHE5_elog(a,b,c,d,e,f)
#define CACHE6_elog(a,b,c,d,e,f,g)
#endif
/* Cache management header --- pointer is NULL until created */
static CatCacheHeader *CacheHdr = NULL;
/*
* EQPROC is used in CatalogCacheInitializeCache to find the equality
* functions for system types that are used as cache key fields.
* See also GetCCHashFunc, which should support the same set of types.
*
* XXX this should be replaced by catalog lookups,
* but that seems to pose considerable risk of circularity...
*/
static const Oid eqproc[] = {
F_BOOLEQ, InvalidOid, F_CHAREQ, F_NAMEEQ, InvalidOid,
F_INT2EQ, F_INT2VECTOREQ, F_INT4EQ, F_OIDEQ, F_TEXTEQ,
F_OIDEQ, InvalidOid, InvalidOid, InvalidOid, F_OIDVECTOREQ
};
#define EQPROC(SYSTEMTYPEOID) eqproc[(SYSTEMTYPEOID)-BOOLOID]
static uint32 CatalogCacheComputeHashValue(CatCache *cache,
ScanKey cur_skey);
static uint32 CatalogCacheComputeTupleHashValue(CatCache *cache,
HeapTuple tuple);
#ifdef CATCACHE_STATS
static void CatCachePrintStats(void);
#endif
static void CatCacheRemoveCTup(CatCache *cache, CatCTup *ct);
static void CatalogCacheInitializeCache(CatCache *cache);
/*
* internal support functions
*/
static PGFunction
GetCCHashFunc(Oid keytype)
{
switch (keytype)
{
case BOOLOID:
case CHAROID:
return hashchar;
case NAMEOID:
return hashname;
case INT2OID:
return hashint2;
case INT2VECTOROID:
return hashint2vector;
case INT4OID:
return hashint4;
case TEXTOID:
return hashvarlena;
case REGPROCOID:
case OIDOID:
return hashoid;
case OIDVECTOROID:
return hashoidvector;
default:
elog(FATAL, "GetCCHashFunc: type %u unsupported as catcache key",
keytype);
return (PGFunction) NULL;
}
}
/*
* CatalogCacheComputeHashValue
*
* Compute the hash value associated with a given set of lookup keys
*/
static uint32
CatalogCacheComputeHashValue(CatCache *cache, ScanKey cur_skey)
{
uint32 hashValue = 0;
CACHE4_elog(DEBUG1, "CatalogCacheComputeHashValue %s %d %p",
cache->cc_relname,
cache->cc_nkeys,
cache);
switch (cache->cc_nkeys)
{
case 4:
hashValue ^=
DatumGetUInt32(DirectFunctionCall1(cache->cc_hashfunc[3],
2001-03-22 05:01:46 +01:00
cur_skey[3].sk_argument)) << 9;
/* FALLTHROUGH */
case 3:
hashValue ^=
DatumGetUInt32(DirectFunctionCall1(cache->cc_hashfunc[2],
2001-03-22 05:01:46 +01:00
cur_skey[2].sk_argument)) << 6;
/* FALLTHROUGH */
case 2:
hashValue ^=
DatumGetUInt32(DirectFunctionCall1(cache->cc_hashfunc[1],
2001-03-22 05:01:46 +01:00
cur_skey[1].sk_argument)) << 3;
/* FALLTHROUGH */
case 1:
hashValue ^=
DatumGetUInt32(DirectFunctionCall1(cache->cc_hashfunc[0],
2001-03-22 05:01:46 +01:00
cur_skey[0].sk_argument));
break;
default:
elog(FATAL, "CCComputeHashValue: %d cc_nkeys", cache->cc_nkeys);
break;
}
return hashValue;
}
/*
* CatalogCacheComputeTupleHashValue
*
* Compute the hash value associated with a given tuple to be cached
*/
static uint32
CatalogCacheComputeTupleHashValue(CatCache *cache, HeapTuple tuple)
{
ScanKeyData cur_skey[4];
bool isNull = false;
/* Copy pre-initialized overhead data for scankey */
memcpy(cur_skey, cache->cc_skey, sizeof(cur_skey));
/* Now extract key fields from tuple, insert into scankey */
switch (cache->cc_nkeys)
{
case 4:
cur_skey[3].sk_argument =
(cache->cc_key[3] == ObjectIdAttributeNumber)
? ObjectIdGetDatum(tuple->t_data->t_oid)
: fastgetattr(tuple,
cache->cc_key[3],
cache->cc_tupdesc,
&isNull);
Assert(!isNull);
/* FALLTHROUGH */
case 3:
cur_skey[2].sk_argument =
(cache->cc_key[2] == ObjectIdAttributeNumber)
? ObjectIdGetDatum(tuple->t_data->t_oid)
: fastgetattr(tuple,
cache->cc_key[2],
cache->cc_tupdesc,
&isNull);
Assert(!isNull);
/* FALLTHROUGH */
case 2:
cur_skey[1].sk_argument =
(cache->cc_key[1] == ObjectIdAttributeNumber)
? ObjectIdGetDatum(tuple->t_data->t_oid)
: fastgetattr(tuple,
cache->cc_key[1],
cache->cc_tupdesc,
&isNull);
Assert(!isNull);
/* FALLTHROUGH */
case 1:
cur_skey[0].sk_argument =
(cache->cc_key[0] == ObjectIdAttributeNumber)
? ObjectIdGetDatum(tuple->t_data->t_oid)
: fastgetattr(tuple,
cache->cc_key[0],
cache->cc_tupdesc,
&isNull);
Assert(!isNull);
break;
default:
elog(FATAL, "CCComputeTupleHashValue: %d cc_nkeys",
cache->cc_nkeys);
break;
}
return CatalogCacheComputeHashValue(cache, cur_skey);
}
#ifdef CATCACHE_STATS
static void
CatCachePrintStats(void)
{
CatCache *cache;
long cc_searches = 0;
long cc_hits = 0;
long cc_neg_hits = 0;
long cc_newloads = 0;
long cc_invals = 0;
long cc_discards = 0;
elog(DEBUG1, "Catcache stats dump: %d/%d tuples in catcaches",
CacheHdr->ch_ntup, CacheHdr->ch_maxtup);
for (cache = CacheHdr->ch_caches; cache; cache = cache->cc_next)
{
if (cache->cc_ntup == 0 && cache->cc_searches == 0)
continue; /* don't print unused caches */
elog(DEBUG1, "Catcache %s/%s: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld discards",
cache->cc_relname,
cache->cc_indname,
cache->cc_ntup,
cache->cc_searches,
cache->cc_hits,
cache->cc_neg_hits,
cache->cc_hits + cache->cc_neg_hits,
cache->cc_newloads,
cache->cc_searches - cache->cc_hits - cache->cc_neg_hits - cache->cc_newloads,
cache->cc_searches - cache->cc_hits - cache->cc_neg_hits,
cache->cc_invals,
cache->cc_discards);
cc_searches += cache->cc_searches;
cc_hits += cache->cc_hits;
cc_neg_hits += cache->cc_neg_hits;
cc_newloads += cache->cc_newloads;
cc_invals += cache->cc_invals;
cc_discards += cache->cc_discards;
}
elog(DEBUG1, "Catcache totals: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld discards",
CacheHdr->ch_ntup,
cc_searches,
cc_hits,
cc_neg_hits,
cc_hits + cc_neg_hits,
cc_newloads,
cc_searches - cc_hits - cc_neg_hits - cc_newloads,
cc_searches - cc_hits - cc_neg_hits,
cc_invals,
cc_discards);
}
#endif /* CATCACHE_STATS */
/*
* CatCacheRemoveCTup
*
* Unlink and delete the given cache entry
*/
static void
CatCacheRemoveCTup(CatCache *cache, CatCTup *ct)
{
Assert(ct->refcount == 0);
Assert(ct->my_cache == cache);
/* delink from linked lists */
DLRemove(&ct->lrulist_elem);
DLRemove(&ct->cache_elem);
/* free associated tuple data */
if (ct->tuple.t_data != NULL)
pfree(ct->tuple.t_data);
pfree(ct);
--cache->cc_ntup;
--CacheHdr->ch_ntup;
}
/*
* CatalogCacheIdInvalidate
*
* Invalidate entries in the specified cache, given a hash value and
* item pointer. Positive entries are deleted if they match the item
* pointer. Negative entries must be deleted if they match the hash
* value (since we do not have the exact key of the tuple that's being
* inserted). But this should only rarely result in loss of a cache
* entry that could have been kept.
*
* Note that it's not very relevant whether the tuple identified by
* the item pointer is being inserted or deleted. We don't expect to
* find matching positive entries in the one case, and we don't expect
* to find matching negative entries in the other; but we will do the
* right things in any case.
*
* This routine is only quasi-public: it should only be used by inval.c.
*/
void
CatalogCacheIdInvalidate(int cacheId,
uint32 hashValue,
ItemPointer pointer)
{
CatCache *ccp;
/*
2001-03-22 05:01:46 +01:00
* sanity checks
*/
Assert(ItemPointerIsValid(pointer));
CACHE1_elog(DEBUG1, "CatalogCacheIdInvalidate: called");
/*
2001-03-22 05:01:46 +01:00
* inspect caches to find the proper cache
*/
for (ccp = CacheHdr->ch_caches; ccp; ccp = ccp->cc_next)
{
Index hashIndex;
Dlelem *elt,
*nextelt;
if (cacheId != ccp->id)
continue;
2001-03-22 05:01:46 +01:00
/*
* We don't bother to check whether the cache has finished
* initialization yet; if not, there will be no entries in it
* so no problem.
*/
/*
* inspect the proper hash bucket for matches
*/
hashIndex = HASH_INDEX(hashValue, ccp->cc_nbuckets);
for (elt = DLGetHead(&ccp->cc_bucket[hashIndex]); elt; elt = nextelt)
{
CatCTup *ct = (CatCTup *) DLE_VAL(elt);
nextelt = DLGetSucc(elt);
if (hashValue != ct->hash_value)
continue; /* ignore non-matching hash values */
if (ct->negative ||
ItemPointerEquals(pointer, &ct->tuple.t_self))
{
if (ct->refcount > 0)
ct->dead = true;
else
CatCacheRemoveCTup(ccp, ct);
CACHE1_elog(DEBUG1, "CatalogCacheIdInvalidate: invalidated");
#ifdef CATCACHE_STATS
ccp->cc_invals++;
#endif
/* could be multiple matches, so keep looking! */
}
}
break; /* need only search this one cache */
}
}
/* ----------------------------------------------------------------
* public functions
* ----------------------------------------------------------------
*/
/*
* Standard routine for creating cache context if it doesn't exist yet
*
* There are a lot of places (probably far more than necessary) that check
* whether CacheMemoryContext exists yet and want to create it if not.
* We centralize knowledge of exactly how to create it here.
*/
void
CreateCacheMemoryContext(void)
{
/*
* Purely for paranoia, check that context doesn't exist; caller
* probably did so already.
*/
if (!CacheMemoryContext)
CacheMemoryContext = AllocSetContextCreate(TopMemoryContext,
"CacheMemoryContext",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
}
/*
* AtEOXact_CatCache
*
* Clean up catcaches at end of transaction (either commit or abort)
*
* We scan the caches to reset refcounts to zero. This is of course
* necessary in the abort case, since elog() may have interrupted routines.
* In the commit case, any nonzero counts indicate failure to call
* ReleaseSysCache, so we put out a notice for debugging purposes.
*/
void
AtEOXact_CatCache(bool isCommit)
{
Dlelem *elt,
*nextelt;
for (elt = DLGetHead(&CacheHdr->ch_lrulist); elt; elt = nextelt)
{
CatCTup *ct = (CatCTup *) DLE_VAL(elt);
nextelt = DLGetSucc(elt);
if (ct->refcount != 0)
{
if (isCommit)
elog(WARNING, "Cache reference leak: cache %s (%d), tuple %u has count %d",
ct->my_cache->cc_relname, ct->my_cache->id,
ct->tuple.t_data->t_oid,
ct->refcount);
ct->refcount = 0;
}
/* Clean up any now-deletable dead entries */
if (ct->dead)
CatCacheRemoveCTup(ct->my_cache, ct);
}
}
/*
* ResetCatalogCache
*
* Reset one catalog cache to empty.
*
* This is not very efficient if the target cache is nearly empty.
* However, it shouldn't need to be efficient; we don't invoke it often.
*/
static void
ResetCatalogCache(CatCache *cache)
{
int i;
/* Remove each tuple in this cache, or at least mark it dead */
for (i = 0; i < cache->cc_nbuckets; i++)
{
Dlelem *elt,
*nextelt;
for (elt = DLGetHead(&cache->cc_bucket[i]); elt; elt = nextelt)
{
CatCTup *ct = (CatCTup *) DLE_VAL(elt);
nextelt = DLGetSucc(elt);
if (ct->refcount > 0)
ct->dead = true;
else
CatCacheRemoveCTup(cache, ct);
#ifdef CATCACHE_STATS
cache->cc_invals++;
#endif
}
}
}
/*
* ResetCatalogCaches
*
* Reset all caches when a shared cache inval event forces it
*/
void
ResetCatalogCaches(void)
{
CatCache *cache;
CACHE1_elog(DEBUG1, "ResetCatalogCaches called");
for (cache = CacheHdr->ch_caches; cache; cache = cache->cc_next)
ResetCatalogCache(cache);
CACHE1_elog(DEBUG1, "end of ResetCatalogCaches call");
}
/*
* CatalogCacheFlushRelation
*
* This is called by RelationFlushRelation() to clear out cached information
* about a relation being dropped. (This could be a DROP TABLE command,
* or a temp table being dropped at end of transaction, or a table created
* during the current transaction that is being dropped because of abort.)
* Remove all cache entries relevant to the specified relation OID.
*
* A special case occurs when relId is itself one of the cacheable system
* tables --- although those'll never be dropped, they can get flushed from
* the relcache (VACUUM causes this, for example). In that case we need
* to flush all cache entries that came from that table. (At one point we
* also tried to force re-execution of CatalogCacheInitializeCache for
* the cache(s) on that table. This is a bad idea since it leads to all
* kinds of trouble if a cache flush occurs while loading cache entries.
* We now avoid the need to do it by copying cc_tupdesc out of the relcache,
* rather than relying on the relcache to keep a tupdesc for us. Of course
* this assumes the tupdesc of a cachable system table will not change...)
*/
void
CatalogCacheFlushRelation(Oid relId)
{
CatCache *cache;
CACHE2_elog(DEBUG1, "CatalogCacheFlushRelation called for %u", relId);
for (cache = CacheHdr->ch_caches; cache; cache = cache->cc_next)
{
int i;
/* We can ignore uninitialized caches, since they must be empty */
if (cache->cc_tupdesc == NULL)
continue;
/* Does this cache store tuples of the target relation itself? */
if (cache->cc_tupdesc->attrs[0]->attrelid == relId)
{
/* Yes, so flush all its contents */
ResetCatalogCache(cache);
continue;
}
/* Does this cache store tuples associated with relations at all? */
if (cache->cc_reloidattr == 0)
continue; /* nope, leave it alone */
/* Yes, scan the tuples and remove those related to relId */
for (i = 0; i < cache->cc_nbuckets; i++)
{
Dlelem *elt,
*nextelt;
for (elt = DLGetHead(&cache->cc_bucket[i]); elt; elt = nextelt)
{
CatCTup *ct = (CatCTup *) DLE_VAL(elt);
Oid tupRelid;
nextelt = DLGetSucc(elt);
/*
* Negative entries are never considered related to a rel,
* even if the rel is part of their lookup key.
*/
if (ct->negative)
continue;
if (cache->cc_reloidattr == ObjectIdAttributeNumber)
tupRelid = ct->tuple.t_data->t_oid;
else
{
bool isNull;
tupRelid =
DatumGetObjectId(fastgetattr(&ct->tuple,
cache->cc_reloidattr,
cache->cc_tupdesc,
&isNull));
Assert(!isNull);
}
if (tupRelid == relId)
{
if (ct->refcount > 0)
ct->dead = true;
else
CatCacheRemoveCTup(cache, ct);
#ifdef CATCACHE_STATS
cache->cc_invals++;
#endif
}
}
}
}
CACHE1_elog(DEBUG1, "end of CatalogCacheFlushRelation call");
}
/*
* InitCatCache
*
* This allocates and initializes a cache for a system catalog relation.
* Actually, the cache is only partially initialized to avoid opening the
* relation. The relation will be opened and the rest of the cache
* structure initialized on the first access.
*/
#ifdef CACHEDEBUG
#define InitCatCache_DEBUG1 \
do { \
elog(DEBUG1, "InitCatCache: rel=%s id=%d nkeys=%d size=%d\n", \
cp->cc_relname, cp->id, cp->cc_nkeys, cp->cc_nbuckets); \
} while(0)
#else
#define InitCatCache_DEBUG1
#endif
CatCache *
InitCatCache(int id,
const char *relname,
const char *indname,
int reloidattr,
int nkeys,
const int *key)
{
CatCache *cp;
MemoryContext oldcxt;
int i;
/*
2001-03-22 05:01:46 +01:00
* first switch to the cache context so our allocations do not vanish
* at the end of a transaction
*/
if (!CacheMemoryContext)
CreateCacheMemoryContext();
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
/*
* if first time through, initialize the cache group header, including
* global LRU list header
*/
if (CacheHdr == NULL)
{
CacheHdr = (CatCacheHeader *) palloc(sizeof(CatCacheHeader));
CacheHdr->ch_caches = NULL;
CacheHdr->ch_ntup = 0;
CacheHdr->ch_maxtup = MAXCCTUPLES;
DLInitList(&CacheHdr->ch_lrulist);
#ifdef CATCACHE_STATS
on_proc_exit(CatCachePrintStats, 0);
#endif
}
/*
* allocate a new cache structure
*
* Note: we assume zeroing initializes the bucket headers correctly
*/
cp = (CatCache *) palloc(sizeof(CatCache) + NCCBUCKETS * sizeof(Dllist));
MemSet((char *) cp, 0, sizeof(CatCache) + NCCBUCKETS * sizeof(Dllist));
/*
2001-03-22 05:01:46 +01:00
* initialize the cache's relation information for the relation
* corresponding to this cache, and initialize some of the new cache's
* other internal fields. But don't open the relation yet.
*/
cp->id = id;
cp->cc_relname = relname;
cp->cc_indname = indname;
cp->cc_reloid = InvalidOid; /* temporary */
cp->cc_relisshared = false; /* temporary */
cp->cc_tupdesc = (TupleDesc) NULL;
cp->cc_reloidattr = reloidattr;
cp->cc_ntup = 0;
cp->cc_nbuckets = NCCBUCKETS;
cp->cc_nkeys = nkeys;
for (i = 0; i < nkeys; ++i)
cp->cc_key[i] = key[i];
/*
* new cache is initialized as far as we can go for now. print some
* debugging information, if appropriate.
*/
InitCatCache_DEBUG1;
/*
* add completed cache to top of group header's list
*/
cp->cc_next = CacheHdr->ch_caches;
CacheHdr->ch_caches = cp;
/*
2001-03-22 05:01:46 +01:00
* back to the old context before we return...
*/
MemoryContextSwitchTo(oldcxt);
1998-09-01 05:29:17 +02:00
return cp;
}
/*
* CatalogCacheInitializeCache
*
* This function does final initialization of a catcache: obtain the tuple
* descriptor and set up the hash and equality function links. We assume
* that the relcache entry can be opened at this point!
*/
#ifdef CACHEDEBUG
#define CatalogCacheInitializeCache_DEBUG1 \
elog(DEBUG1, "CatalogCacheInitializeCache: cache @%p %s", cache, \
cache->cc_relname)
#define CatalogCacheInitializeCache_DEBUG2 \
do { \
if (cache->cc_key[i] > 0) { \
elog(DEBUG1, "CatalogCacheInitializeCache: load %d/%d w/%d, %u", \
i+1, cache->cc_nkeys, cache->cc_key[i], \
tupdesc->attrs[cache->cc_key[i] - 1]->atttypid); \
} else { \
elog(DEBUG1, "CatalogCacheInitializeCache: load %d/%d w/%d", \
i+1, cache->cc_nkeys, cache->cc_key[i]); \
} \
} while(0)
#else
#define CatalogCacheInitializeCache_DEBUG1
#define CatalogCacheInitializeCache_DEBUG2
#endif
static void
CatalogCacheInitializeCache(CatCache *cache)
{
Relation relation;
MemoryContext oldcxt;
TupleDesc tupdesc;
int i;
CatalogCacheInitializeCache_DEBUG1;
/*
* Open the relation without locking --- we only need the tupdesc,
* which we assume will never change ...
*/
relation = heap_openr(cache->cc_relname, NoLock);
Assert(RelationIsValid(relation));
/*
* switch to the cache context so our allocations do not vanish at the
* end of a transaction
*/
Assert(CacheMemoryContext != NULL);
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
/*
* copy the relcache's tuple descriptor to permanent cache storage
*/
tupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation));
/*
* get the relation's OID and relisshared flag, too
*/
cache->cc_reloid = RelationGetRelid(relation);
cache->cc_relisshared = RelationGetForm(relation)->relisshared;
/*
* return to the caller's memory context and close the rel
*/
MemoryContextSwitchTo(oldcxt);
heap_close(relation, NoLock);
CACHE3_elog(DEBUG1, "CatalogCacheInitializeCache: %s, %d keys",
cache->cc_relname, cache->cc_nkeys);
/*
* initialize cache's key information
*/
for (i = 0; i < cache->cc_nkeys; ++i)
{
Oid keytype;
CatalogCacheInitializeCache_DEBUG2;
if (cache->cc_key[i] > 0)
keytype = tupdesc->attrs[cache->cc_key[i] - 1]->atttypid;
else
{
if (cache->cc_key[i] != ObjectIdAttributeNumber)
elog(FATAL, "CatalogCacheInit: only sys attr supported is OID");
keytype = OIDOID;
}
cache->cc_hashfunc[i] = GetCCHashFunc(keytype);
cache->cc_isname[i] = (keytype == NAMEOID);
/*
* If GetCCHashFunc liked the type, safe to index into eqproc[]
*/
cache->cc_skey[i].sk_procedure = EQPROC(keytype);
/* Do function lookup */
fmgr_info_cxt(cache->cc_skey[i].sk_procedure,
&cache->cc_skey[i].sk_func,
CacheMemoryContext);
/* Initialize sk_attno suitably for HeapKeyTest() and heap scans */
cache->cc_skey[i].sk_attno = cache->cc_key[i];
CACHE4_elog(DEBUG1, "CatalogCacheInit %s %d %p",
cache->cc_relname,
i,
cache);
}
/*
* mark this cache fully initialized
*/
cache->cc_tupdesc = tupdesc;
}
/*
* InitCatCachePhase2 -- external interface for CatalogCacheInitializeCache
*
* The only reason to call this routine is to ensure that the relcache
* has created entries for all the catalogs and indexes referenced by
* catcaches. Therefore, open the index too. An exception is the indexes
* on pg_am, which we don't use (cf. IndexScanOK).
*/
void
InitCatCachePhase2(CatCache *cache)
{
if (cache->cc_tupdesc == NULL)
CatalogCacheInitializeCache(cache);
if (cache->id != AMOID &&
cache->id != AMNAME)
{
Relation idesc;
idesc = index_openr(cache->cc_indname);
index_close(idesc);
}
}
/*
* IndexScanOK
*
* This function checks for tuples that will be fetched by
* IndexSupportInitialize() during relcache initialization for
* certain system indexes that support critical syscaches.
* We can't use an indexscan to fetch these, else we'll get into
* infinite recursion. A plain heap scan will work, however.
*
* Once we have completed relcache initialization (signaled by
* criticalRelcachesBuilt), we don't have to worry anymore.
*/
static bool
IndexScanOK(CatCache *cache, ScanKey cur_skey)
{
if (cache->id == INDEXRELID)
{
/*
* Since the OIDs of indexes aren't hardwired, it's painful to
* figure out which is which. Just force all pg_index searches
* to be heap scans while building the relcaches.
*/
if (!criticalRelcachesBuilt)
return false;
}
else if (cache->id == AMOID ||
cache->id == AMNAME)
{
/*
* Always do heap scans in pg_am, because it's so small there's
* not much point in an indexscan anyway. We *must* do this when
* initially building critical relcache entries, but we might as
* well just always do it.
*/
return false;
}
else if (cache->id == OPEROID)
{
if (!criticalRelcachesBuilt)
{
/* Looking for an OID comparison function? */
Oid lookup_oid = DatumGetObjectId(cur_skey[0].sk_argument);
if (lookup_oid >= MIN_OIDCMP && lookup_oid <= MAX_OIDCMP)
return false;
}
}
/* Normal case, allow index scan */
return true;
}
/*
* SearchCatCache
*
* This call searches a system cache for a tuple, opening the relation
* if necessary (on the first access to a particular cache).
*
* The result is NULL if not found, or a pointer to a HeapTuple in
* the cache. The caller must not modify the tuple, and must call
* ReleaseCatCache() when done with it.
*
* The search key values should be expressed as Datums of the key columns'
* datatype(s). (Pass zeroes for any unused parameters.) As a special
* exception, the passed-in key for a NAME column can be just a C string;
* the caller need not go to the trouble of converting it to a fully
* null-padded NAME.
*/
HeapTuple
SearchCatCache(CatCache *cache,
Datum v1,
Datum v2,
Datum v3,
Datum v4)
{
ScanKeyData cur_skey[4];
uint32 hashValue;
Index hashIndex;
Dlelem *elt;
CatCTup *ct;
Relation relation;
HeapTuple ntp;
int i;
MemoryContext oldcxt;
/*
* one-time startup overhead for each cache
*/
if (cache->cc_tupdesc == NULL)
CatalogCacheInitializeCache(cache);
#ifdef CATCACHE_STATS
cache->cc_searches++;
#endif
/*
2001-03-22 05:01:46 +01:00
* initialize the search key information
*/
memcpy(cur_skey, cache->cc_skey, sizeof(cur_skey));
cur_skey[0].sk_argument = v1;
cur_skey[1].sk_argument = v2;
cur_skey[2].sk_argument = v3;
cur_skey[3].sk_argument = v4;
/*
2001-03-22 05:01:46 +01:00
* find the hash bucket in which to look for the tuple
*/
hashValue = CatalogCacheComputeHashValue(cache, cur_skey);
hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
/*
2001-03-22 05:01:46 +01:00
* scan the hash bucket until we find a match or exhaust our tuples
*/
for (elt = DLGetHead(&cache->cc_bucket[hashIndex]);
elt;
elt = DLGetSucc(elt))
{
bool res;
ct = (CatCTup *) DLE_VAL(elt);
if (ct->dead)
continue; /* ignore dead entries */
if (ct->hash_value != hashValue)
continue; /* quickly skip entry if wrong hash val */
/*
* see if the cached tuple matches our key.
*/
HeapKeyTest(&ct->tuple,
cache->cc_tupdesc,
cache->cc_nkeys,
cur_skey,
res);
2001-03-22 05:01:46 +01:00
if (!res)
continue;
/*
* we found a match in the cache: move it to the front of the global
* LRU list. We also move it to the front of the list for its
* hashbucket, in order to speed subsequent searches. (The most
* frequently accessed elements in any hashbucket will tend to be
* near the front of the hashbucket's list.)
*/
DLMoveToFront(&ct->lrulist_elem);
DLMoveToFront(&ct->cache_elem);
/*
* If it's a positive entry, bump its refcount and return it.
* If it's negative, we can report failure to the caller.
*/
if (!ct->negative)
{
ct->refcount++;
#ifdef CACHEDEBUG
CACHE3_elog(DEBUG1, "SearchCatCache(%s): found in bucket %d",
cache->cc_relname, hashIndex);
#endif /* CACHEDEBUG */
#ifdef CATCACHE_STATS
cache->cc_hits++;
#endif
return &ct->tuple;
}
else
{
#ifdef CACHEDEBUG
CACHE3_elog(DEBUG1, "SearchCatCache(%s): found neg entry in bucket %d",
cache->cc_relname, hashIndex);
#endif /* CACHEDEBUG */
#ifdef CATCACHE_STATS
cache->cc_neg_hits++;
#endif
return NULL;
}
}
/*
* Tuple was not found in cache, so we have to try to retrieve it
* directly from the relation. If found, we will add it to the
* cache; if not found, we will add a negative cache entry instead.
*
2001-03-22 05:01:46 +01:00
* NOTE: it is possible for recursive cache lookups to occur while
* reading the relation --- for example, due to shared-cache-inval
* messages being processed during heap_open(). This is OK. It's
* even possible for one of those lookups to find and enter the very
* same tuple we are trying to fetch here. If that happens, we will
* enter a second copy of the tuple into the cache. The first copy
* will never be referenced again, and will eventually age out of the
* cache, so there's no functional problem. This case is rare enough
* that it's not worth expending extra cycles to detect.
*/
/*
2001-03-22 05:01:46 +01:00
* open the relation associated with the cache
*/
relation = heap_open(cache->cc_reloid, AccessShareLock);
/*
* Pre-create cache entry header, and mark no tuple found.
*/
ct = (CatCTup *) MemoryContextAlloc(CacheMemoryContext, sizeof(CatCTup));
ct->negative = true;
/*
2001-03-22 05:01:46 +01:00
* Scan the relation to find the tuple. If there's an index, and if
* it's safe to do so, use the index. Else do a heap scan.
*/
if ((RelationGetForm(relation))->relhasindex &&
!IsIgnoringSystemIndexes() &&
IndexScanOK(cache, cur_skey))
{
Relation idesc;
IndexScanDesc isd;
RetrieveIndexResult indexRes;
HeapTupleData tuple;
Buffer buffer;
CACHE2_elog(DEBUG1, "SearchCatCache(%s): performing index scan",
cache->cc_relname);
/*
2001-03-22 05:01:46 +01:00
* For an index scan, sk_attno has to be set to the index
* attribute number(s), not the heap attribute numbers. We assume
* that the index corresponds exactly to the cache keys (or its
* first N keys do, anyway).
*/
for (i = 0; i < cache->cc_nkeys; ++i)
2001-03-22 05:01:46 +01:00
cur_skey[i].sk_attno = i + 1;
idesc = index_openr(cache->cc_indname);
isd = index_beginscan(idesc, false, cache->cc_nkeys, cur_skey);
tuple.t_datamcxt = CurrentMemoryContext;
tuple.t_data = NULL;
while ((indexRes = index_getnext(isd, ForwardScanDirection)))
{
tuple.t_self = indexRes->heap_iptr;
heap_fetch(relation, SnapshotNow, &tuple, &buffer, isd);
pfree(indexRes);
if (tuple.t_data != NULL)
{
/* Copy tuple into our context */
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
heap_copytuple_with_tuple(&tuple, &ct->tuple);
ct->negative = false;
MemoryContextSwitchTo(oldcxt);
ReleaseBuffer(buffer);
break;
}
}
index_endscan(isd);
index_close(idesc);
}
else
{
HeapScanDesc sd;
CACHE2_elog(DEBUG1, "SearchCatCache(%s): performing heap scan",
cache->cc_relname);
1998-07-27 21:38:40 +02:00
sd = heap_beginscan(relation, 0, SnapshotNow,
cache->cc_nkeys, cur_skey);
ntp = heap_getnext(sd, 0);
if (HeapTupleIsValid(ntp))
{
/* Copy tuple into our context */
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
heap_copytuple_with_tuple(ntp, &ct->tuple);
ct->negative = false;
MemoryContextSwitchTo(oldcxt);
/* We should not free the result of heap_getnext... */
}
heap_endscan(sd);
}
/*
2001-03-22 05:01:46 +01:00
* close the relation
*/
heap_close(relation, AccessShareLock);
/*
* scan is complete. If tuple was not found, we need to build
* a fake tuple for the negative cache entry. The fake tuple has
* the correct key columns, but nulls everywhere else.
*/
if (ct->negative)
{
TupleDesc tupDesc = cache->cc_tupdesc;
Datum *values;
char *nulls;
Oid negOid = InvalidOid;
values = (Datum *) palloc(tupDesc->natts * sizeof(Datum));
nulls = (char *) palloc(tupDesc->natts * sizeof(char));
memset(values, 0, tupDesc->natts * sizeof(Datum));
memset(nulls, 'n', tupDesc->natts * sizeof(char));
for (i = 0; i < cache->cc_nkeys; i++)
{
int attindex = cache->cc_key[i];
Datum keyval = cur_skey[i].sk_argument;
if (attindex > 0)
{
/*
* Here we must be careful in case the caller passed a
* C string where a NAME is wanted: convert the given
* argument to a correctly padded NAME. Otherwise the
* memcpy() done in heap_formtuple could fall off the
* end of memory.
*/
if (cache->cc_isname[i])
{
Name newval = (Name) palloc(NAMEDATALEN);
namestrcpy(newval, DatumGetCString(keyval));
keyval = NameGetDatum(newval);
}
values[attindex-1] = keyval;
nulls[attindex-1] = ' ';
}
else
{
Assert(attindex == ObjectIdAttributeNumber);
negOid = DatumGetObjectId(keyval);
}
}
ntp = heap_formtuple(tupDesc, values, nulls);
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
heap_copytuple_with_tuple(ntp, &ct->tuple);
ct->tuple.t_data->t_oid = negOid;
MemoryContextSwitchTo(oldcxt);
heap_freetuple(ntp);
for (i = 0; i < cache->cc_nkeys; i++)
{
if (cache->cc_isname[i])
pfree(DatumGetName(values[cache->cc_key[i]-1]));
}
pfree(values);
pfree(nulls);
}
/*
2001-03-22 05:01:46 +01:00
* Finish initializing the CatCTup header, and add it to the linked
* lists.
*/
ct->ct_magic = CT_MAGIC;
ct->my_cache = cache;
DLInitElem(&ct->lrulist_elem, (void *) ct);
DLInitElem(&ct->cache_elem, (void *) ct);
ct->refcount = 1; /* count this first reference */
ct->dead = false;
ct->hash_value = hashValue;
DLAddHead(&CacheHdr->ch_lrulist, &ct->lrulist_elem);
DLAddHead(&cache->cc_bucket[hashIndex], &ct->cache_elem);
/*
* If we've exceeded the desired size of the caches, try to throw away
* the least recently used entry. NB: the newly-built entry cannot
* get thrown away here, because it has positive refcount.
*/
++cache->cc_ntup;
if (++CacheHdr->ch_ntup > CacheHdr->ch_maxtup)
{
Dlelem *prevelt;
for (elt = DLGetTail(&CacheHdr->ch_lrulist); elt; elt = prevelt)
{
CatCTup *oldct = (CatCTup *) DLE_VAL(elt);
prevelt = DLGetPred(elt);
if (oldct->refcount == 0)
{
CACHE2_elog(DEBUG1, "SearchCatCache(%s): Overflow, LRU removal",
cache->cc_relname);
#ifdef CATCACHE_STATS
oldct->my_cache->cc_discards++;
#endif
CatCacheRemoveCTup(oldct->my_cache, oldct);
if (CacheHdr->ch_ntup <= CacheHdr->ch_maxtup)
break;
}
}
}
CACHE4_elog(DEBUG1, "SearchCatCache(%s): Contains %d/%d tuples",
cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup);
if (ct->negative)
{
CACHE3_elog(DEBUG1, "SearchCatCache(%s): put neg entry in bucket %d",
cache->cc_relname, hashIndex);
/*
* We are not returning the new entry to the caller, so reset its
* refcount. Note it would be uncool to set the refcount to 0
* before doing the extra-entry removal step above.
*/
ct->refcount = 0; /* negative entries never have refs */
return NULL;
}
CACHE3_elog(DEBUG1, "SearchCatCache(%s): put in bucket %d",
cache->cc_relname, hashIndex);
#ifdef CATCACHE_STATS
cache->cc_newloads++;
#endif
return &ct->tuple;
}
/*
* ReleaseCatCache()
*
* Decrement the reference count of a catcache entry (releasing the
* hold grabbed by a successful SearchCatCache).
*
* NOTE: if compiled with -DCATCACHE_FORCE_RELEASE then catcache entries
* will be freed as soon as their refcount goes to zero. In combination
* with aset.c's CLOBBER_FREED_MEMORY option, this provides a good test
* to catch references to already-released catcache entries.
*/
void
ReleaseCatCache(HeapTuple tuple)
{
2001-03-22 05:01:46 +01:00
CatCTup *ct = (CatCTup *) (((char *) tuple) -
offsetof(CatCTup, tuple));
/* Safety checks to ensure we were handed a cache entry */
Assert(ct->ct_magic == CT_MAGIC);
Assert(ct->refcount > 0);
ct->refcount--;
if (ct->refcount == 0
#ifndef CATCACHE_FORCE_RELEASE
&& ct->dead
#endif
)
CatCacheRemoveCTup(ct->my_cache, ct);
}
/*
* PrepareToInvalidateCacheTuple()
*
* This is part of a rather subtle chain of events, so pay attention:
*
* When a tuple is inserted or deleted, it cannot be flushed from the
* catcaches immediately, for reasons explained at the top of cache/inval.c.
* Instead we have to add entry(s) for the tuple to a list of pending tuple
* invalidations that will be done at the end of the command or transaction.
*
* The lists of tuples that need to be flushed are kept by inval.c. This
* routine is a helper routine for inval.c. Given a tuple belonging to
* the specified relation, find all catcaches it could be in, compute the
* correct hash value for each such catcache, and call the specified function
* to record the cache id, hash value, and tuple ItemPointer in inval.c's
2001-03-22 05:01:46 +01:00
* lists. CatalogCacheIdInvalidate will be called later, if appropriate,
* using the recorded information.
*
* Note that it is irrelevant whether the given tuple is actually loaded
* into the catcache at the moment. Even if it's not there now, it might
* be by the end of the command, or there might be a matching negative entry
* to flush --- or other backends' caches might have such entries --- so
* we have to make list entries to flush it later.
*
* Also note that it's not an error if there are no catcaches for the
* specified relation. inval.c doesn't know exactly which rels have
* catcaches --- it will call this routine for any tuple that's in a
* system relation.
*/
void
PrepareToInvalidateCacheTuple(Relation relation,
HeapTuple tuple,
void (*function) (int, uint32, ItemPointer, Oid))
{
CatCache *ccp;
Oid reloid;
CACHE1_elog(DEBUG1, "PrepareToInvalidateCacheTuple: called");
/*
2001-03-22 05:01:46 +01:00
* sanity checks
*/
Assert(RelationIsValid(relation));
Assert(HeapTupleIsValid(tuple));
Assert(PointerIsValid(function));
Assert(CacheHdr != NULL);
reloid = RelationGetRelid(relation);
/* ----------------
* for each cache
* if the cache contains tuples from the specified relation
* compute the tuple's hash value in this cache,
* and call the passed function to register the information.
* ----------------
*/
for (ccp = CacheHdr->ch_caches; ccp; ccp = ccp->cc_next)
{
/* Just in case cache hasn't finished initialization yet... */
if (ccp->cc_tupdesc == NULL)
CatalogCacheInitializeCache(ccp);
if (ccp->cc_reloid != reloid)
continue;
(*function) (ccp->id,
CatalogCacheComputeTupleHashValue(ccp, tuple),
&tuple->t_self,
ccp->cc_relisshared ? (Oid) 0 : MyDatabaseId);
}
}