postgresql/src/include/utils/selfuncs.h

210 lines
7.4 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* selfuncs.h
* Selectivity functions and index cost estimation functions for
* standard operators and index access methods.
*
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
2010-09-20 22:08:53 +02:00
* src/include/utils/selfuncs.h
*
*-------------------------------------------------------------------------
*/
#ifndef SELFUNCS_H
#define SELFUNCS_H
#include "fmgr.h"
#include "access/htup.h"
#include "nodes/relation.h"
/*
* Note: the default selectivity estimates are not chosen entirely at random.
* We want them to be small enough to ensure that indexscans will be used if
* available, for typical table densities of ~100 tuples/page. Thus, for
* example, 0.01 is not quite small enough, since that makes it appear that
* nearly all pages will be hit anyway. Also, since we sometimes estimate
* eqsel as 1/num_distinct, we probably want DEFAULT_NUM_DISTINCT to equal
* 1/DEFAULT_EQ_SEL.
*/
/* default selectivity estimate for equalities such as "A = b" */
#define DEFAULT_EQ_SEL 0.005
/* default selectivity estimate for inequalities such as "A < b" */
#define DEFAULT_INEQ_SEL 0.3333333333333333
/* default selectivity estimate for range inequalities "A > b AND A < c" */
2005-10-15 04:49:52 +02:00
#define DEFAULT_RANGE_INEQ_SEL 0.005
/* default selectivity estimate for pattern-match operators such as LIKE */
#define DEFAULT_MATCH_SEL 0.005
/* default number of distinct values in a table */
#define DEFAULT_NUM_DISTINCT 200
/* default selectivity estimate for boolean and null test nodes */
#define DEFAULT_UNK_SEL 0.005
#define DEFAULT_NOT_UNK_SEL (1.0 - DEFAULT_UNK_SEL)
/*
* Clamp a computed probability estimate (which may suffer from roundoff or
* estimation errors) to valid range. Argument must be a float variable.
*/
#define CLAMP_PROBABILITY(p) \
do { \
if (p < 0.0) \
p = 0.0; \
else if (p > 1.0) \
p = 1.0; \
} while (0)
/* Return data from examine_variable and friends */
typedef struct VariableStatData
{
Node *var; /* the Var or expression tree */
RelOptInfo *rel; /* Relation, or NULL if not identifiable */
HeapTuple statsTuple; /* pg_statistic tuple, or NULL if none */
/* NB: if statsTuple!=NULL, it must be freed when caller is done */
void (*freefunc) (HeapTuple tuple); /* how to free statsTuple */
Oid vartype; /* exposed type of expression */
Oid atttype; /* type to pass to get_attstatsslot */
int32 atttypmod; /* typmod to pass to get_attstatsslot */
bool isunique; /* matches unique index or DISTINCT clause */
} VariableStatData;
#define ReleaseVariableStats(vardata) \
do { \
if (HeapTupleIsValid((vardata).statsTuple)) \
(* (vardata).freefunc) ((vardata).statsTuple); \
} while(0)
typedef enum
{
Pattern_Type_Like, Pattern_Type_Like_IC,
Pattern_Type_Regex, Pattern_Type_Regex_IC
} Pattern_Type;
typedef enum
{
Pattern_Prefix_None, Pattern_Prefix_Partial, Pattern_Prefix_Exact
} Pattern_Prefix_Status;
/* Hooks for plugins to get control when we ask for stats */
typedef bool (*get_relation_stats_hook_type) (PlannerInfo *root,
RangeTblEntry *rte,
AttrNumber attnum,
VariableStatData *vardata);
extern PGDLLIMPORT get_relation_stats_hook_type get_relation_stats_hook;
typedef bool (*get_index_stats_hook_type) (PlannerInfo *root,
Oid indexOid,
AttrNumber indexattnum,
VariableStatData *vardata);
extern PGDLLIMPORT get_index_stats_hook_type get_index_stats_hook;
/* Functions in selfuncs.c */
extern void examine_variable(PlannerInfo *root, Node *node, int varRelid,
2006-10-04 02:30:14 +02:00
VariableStatData *vardata);
extern bool get_restriction_variable(PlannerInfo *root, List *args,
2006-10-04 02:30:14 +02:00
int varRelid,
VariableStatData *vardata, Node **other,
bool *varonleft);
extern void get_join_variables(PlannerInfo *root, List *args,
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
SpecialJoinInfo *sjinfo,
2006-10-04 02:30:14 +02:00
VariableStatData *vardata1,
Clean up the loose ends in selectivity estimation left by my patch for semi and anti joins. To do this, pass the SpecialJoinInfo struct for the current join as an additional optional argument to operator join selectivity estimation functions. This allows the estimator to tell not only what kind of join is being formed, but which variable is on which side of the join; a requirement long recognized but not dealt with till now. This also leaves the door open for future improvements in the estimators, such as accounting for the null-insertion effects of lower outer joins. I didn't do anything about that in the current patch but the information is in principle deducible from what's passed. The patch also clarifies the definition of join selectivity for semi/anti joins: it's the fraction of the left input that has (at least one) match in the right input. This allows getting rid of some very fuzzy thinking that I had committed in the original 7.4-era IN-optimization patch. There's probably room to estimate this better than the present patch does, but at least we know what to estimate. Since I had to touch CREATE OPERATOR anyway to allow a variant signature for join estimator functions, I took the opportunity to add a couple of additional checks that were missing, per my recent message to -hackers: * Check that estimator functions return float8; * Require execute permission at the time of CREATE OPERATOR on the operator's function as well as the estimator functions; * Require ownership of any pre-existing operator that's modified by the command. I also moved the lookup of the functions out of OperatorCreate() and into operatorcmds.c, since that seemed more consistent with most of the other catalog object creation processes, eg CREATE TYPE.
2008-08-16 02:01:38 +02:00
VariableStatData *vardata2,
bool *join_is_reversed);
extern double get_variable_numdistinct(VariableStatData *vardata,
bool *isdefault);
extern double mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
2006-10-04 02:30:14 +02:00
Datum constval, bool varonleft,
double *sumcommonp);
extern double histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
2006-10-04 02:30:14 +02:00
Datum constval, bool varonleft,
int min_hist_size, int n_skip,
int *hist_size);
extern Pattern_Prefix_Status pattern_fixed_prefix(Const *patt,
Pattern_Type ptype,
Oid collation,
Const **prefix,
Refactor pattern_fixed_prefix() to avoid dealing in incomplete patterns. Previously, pattern_fixed_prefix() was defined to return whatever fixed prefix it could extract from the pattern, plus the "rest" of the pattern. That definition was sensible for LIKE patterns, but not so much for regexes, where reconstituting a valid pattern minus the prefix could be quite tricky (certainly the existing code wasn't doing that correctly). Since the only thing that callers ever did with the "rest" of the pattern was to pass it to like_selectivity() or regex_selectivity(), let's cut out the middle-man and just have pattern_fixed_prefix's subroutines do this directly. Then pattern_fixed_prefix can return a simple selectivity number, and the question of how to cope with partial patterns is removed from its API specification. While at it, adjust the API spec so that callers who don't actually care about the pattern's selectivity (which is a lot of them) can pass NULL for the selectivity pointer to skip doing the work of computing a selectivity estimate. This patch is only an API refactoring that doesn't actually change any processing, other than allowing a little bit of useless work to be skipped. However, it's necessary infrastructure for my upcoming fix to regex prefix extraction, because after that change there won't be any simple way to identify the "rest" of the regex, not even to the low level of fidelity needed by regex_selectivity. We can cope with that if regex_fixed_prefix and regex_selectivity communicate directly, but not if we have to work within the old API. Hence, back-patch to all active branches.
2012-07-10 05:22:55 +02:00
Selectivity *rest_selec);
extern Const *make_greater_string(const Const *str_const, FmgrInfo *ltproc,
2011-06-09 20:32:50 +02:00
Oid collation);
extern Datum eqsel(PG_FUNCTION_ARGS);
extern Datum neqsel(PG_FUNCTION_ARGS);
extern Datum scalarltsel(PG_FUNCTION_ARGS);
extern Datum scalargtsel(PG_FUNCTION_ARGS);
extern Datum regexeqsel(PG_FUNCTION_ARGS);
extern Datum icregexeqsel(PG_FUNCTION_ARGS);
extern Datum likesel(PG_FUNCTION_ARGS);
extern Datum iclikesel(PG_FUNCTION_ARGS);
extern Datum regexnesel(PG_FUNCTION_ARGS);
extern Datum icregexnesel(PG_FUNCTION_ARGS);
extern Datum nlikesel(PG_FUNCTION_ARGS);
extern Datum icnlikesel(PG_FUNCTION_ARGS);
extern Datum eqjoinsel(PG_FUNCTION_ARGS);
extern Datum neqjoinsel(PG_FUNCTION_ARGS);
extern Datum scalarltjoinsel(PG_FUNCTION_ARGS);
extern Datum scalargtjoinsel(PG_FUNCTION_ARGS);
extern Datum regexeqjoinsel(PG_FUNCTION_ARGS);
extern Datum icregexeqjoinsel(PG_FUNCTION_ARGS);
extern Datum likejoinsel(PG_FUNCTION_ARGS);
extern Datum iclikejoinsel(PG_FUNCTION_ARGS);
extern Datum regexnejoinsel(PG_FUNCTION_ARGS);
extern Datum icregexnejoinsel(PG_FUNCTION_ARGS);
extern Datum nlikejoinsel(PG_FUNCTION_ARGS);
extern Datum icnlikejoinsel(PG_FUNCTION_ARGS);
extern Selectivity booltestsel(PlannerInfo *root, BoolTestType booltesttype,
Node *arg, int varRelid,
JoinType jointype, SpecialJoinInfo *sjinfo);
extern Selectivity nulltestsel(PlannerInfo *root, NullTestType nulltesttype,
Node *arg, int varRelid,
JoinType jointype, SpecialJoinInfo *sjinfo);
extern Selectivity scalararraysel(PlannerInfo *root,
2006-10-04 02:30:14 +02:00
ScalarArrayOpExpr *clause,
bool is_join_clause,
int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo);
extern int estimate_array_length(Node *arrayexpr);
extern Selectivity rowcomparesel(PlannerInfo *root,
2006-10-04 02:30:14 +02:00
RowCompareExpr *clause,
int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo);
extern void mergejoinscansel(PlannerInfo *root, Node *clause,
Oid opfamily, int strategy, bool nulls_first,
Selectivity *leftstart, Selectivity *leftend,
Selectivity *rightstart, Selectivity *rightend);
extern double estimate_num_groups(PlannerInfo *root, List *groupExprs,
2015-05-24 03:35:49 +02:00
double input_rows, List **pgset);
extern Selectivity estimate_hash_bucketsize(PlannerInfo *root, Node *hashkey,
double nbuckets);
BRIN: Block Range Indexes BRIN is a new index access method intended to accelerate scans of very large tables, without the maintenance overhead of btrees or other traditional indexes. They work by maintaining "summary" data about block ranges. Bitmap index scans work by reading each summary tuple and comparing them with the query quals; all pages in the range are returned in a lossy TID bitmap if the quals are consistent with the values in the summary tuple, otherwise not. Normal index scans are not supported because these indexes do not store TIDs. As new tuples are added into the index, the summary information is updated (if the block range in which the tuple is added is already summarized) or not; in the latter case, a subsequent pass of VACUUM or the brin_summarize_new_values() function will create the summary information. For data types with natural 1-D sort orders, the summary info consists of the maximum and the minimum values of each indexed column within each page range. This type of operator class we call "Minmax", and we supply a bunch of them for most data types with B-tree opclasses. Since the BRIN code is generalized, other approaches are possible for things such as arrays, geometric types, ranges, etc; even for things such as enum types we could do something different than minmax with better results. In this commit I only include minmax. Catalog version bumped due to new builtin catalog entries. There's more that could be done here, but this is a good step forwards. Loosely based on ideas from Simon Riggs; code mostly by Álvaro Herrera, with contribution by Heikki Linnakangas. Patch reviewed by: Amit Kapila, Heikki Linnakangas, Robert Haas. Testing help from Jeff Janes, Erik Rijkers, Emanuel Calvo. PS: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318633.
2014-11-07 20:38:14 +01:00
extern Datum brincostestimate(PG_FUNCTION_ARGS);
extern Datum btcostestimate(PG_FUNCTION_ARGS);
extern Datum hashcostestimate(PG_FUNCTION_ARGS);
extern Datum gistcostestimate(PG_FUNCTION_ARGS);
extern Datum spgcostestimate(PG_FUNCTION_ARGS);
extern Datum gincostestimate(PG_FUNCTION_ARGS);
/* Functions in array_selfuncs.c */
extern Selectivity scalararraysel_containment(PlannerInfo *root,
Node *leftop, Node *rightop,
Oid elemtype, bool isEquality, bool useOr,
int varRelid);
extern Datum arraycontsel(PG_FUNCTION_ARGS);
extern Datum arraycontjoinsel(PG_FUNCTION_ARGS);
#endif /* SELFUNCS_H */