postgresql/src/common/md5_common.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

174 lines
4.1 KiB
C
Raw Normal View History

Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
/*-------------------------------------------------------------------------
*
* md5_common.c
* Routines shared between all MD5 implementations used for encrypted
* passwords.
*
* Sverre H. Huseby <sverrehu@online.no>
*
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/common/md5_common.c
*
*-------------------------------------------------------------------------
*/
#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif
#include "common/cryptohash.h"
#include "common/md5.h"
static void
bytesToHex(uint8 b[16], char *s)
{
static const char *hex = "0123456789abcdef";
int q,
w;
for (q = 0, w = 0; q < 16; q++)
{
s[w++] = hex[(b[q] >> 4) & 0x0F];
s[w++] = hex[b[q] & 0x0F];
}
s[w] = '\0';
}
/*
* pg_md5_hash
*
* Calculates the MD5 sum of the bytes in a buffer.
*
* SYNOPSIS #include "md5.h"
* bool pg_md5_hash(const void *buff, size_t len, char *hexsum,
* const char **errstr)
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
*
* INPUT buff the buffer containing the bytes that you want
* the MD5 sum of.
* len number of bytes in the buffer.
*
* OUTPUT hexsum the MD5 sum as a '\0'-terminated string of
* hexadecimal digits. an MD5 sum is 16 bytes long.
* each byte is represented by two hexadecimal
* characters. you thus need to provide an array
* of 33 characters, including the trailing '\0'.
*
* errstr filled with a constant-string error message
* on failure return; NULL on success.
*
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
* RETURNS false on failure (out of memory for internal buffers
* or MD5 computation failure) or true on success.
*
* STANDARDS MD5 is described in RFC 1321.
*
* AUTHOR Sverre H. Huseby <sverrehu@online.no>
*
*/
bool
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
pg_md5_hash(const void *buff, size_t len, char *hexsum, const char **errstr)
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
{
uint8 sum[MD5_DIGEST_LENGTH];
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
pg_cryptohash_ctx *ctx;
*errstr = NULL;
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
ctx = pg_cryptohash_create(PG_MD5);
if (ctx == NULL)
{
*errstr = pg_cryptohash_error(NULL); /* returns OOM */
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
return false;
}
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
if (pg_cryptohash_init(ctx) < 0 ||
pg_cryptohash_update(ctx, buff, len) < 0 ||
pg_cryptohash_final(ctx, sum, sizeof(sum)) < 0)
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
{
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
*errstr = pg_cryptohash_error(ctx);
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
pg_cryptohash_free(ctx);
return false;
}
bytesToHex(sum, hexsum);
pg_cryptohash_free(ctx);
return true;
}
/*
* pg_md5_binary
*
* As above, except that the MD5 digest is returned as a binary string
* (of size MD5_DIGEST_LENGTH) rather than being converted to ASCII hex.
*/
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
bool
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
pg_md5_binary(const void *buff, size_t len, void *outbuf, const char **errstr)
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
{
pg_cryptohash_ctx *ctx;
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
*errstr = NULL;
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
ctx = pg_cryptohash_create(PG_MD5);
if (ctx == NULL)
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
{
*errstr = pg_cryptohash_error(NULL); /* returns OOM */
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
return false;
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
}
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
if (pg_cryptohash_init(ctx) < 0 ||
pg_cryptohash_update(ctx, buff, len) < 0 ||
pg_cryptohash_final(ctx, outbuf, MD5_DIGEST_LENGTH) < 0)
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
{
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
*errstr = pg_cryptohash_error(ctx);
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
pg_cryptohash_free(ctx);
return false;
}
pg_cryptohash_free(ctx);
return true;
}
/*
* Computes MD5 checksum of "passwd" (a null-terminated string) followed
* by "salt" (which need not be null-terminated).
*
* Output format is "md5" followed by a 32-hex-digit MD5 checksum.
* Hence, the output buffer "buf" must be at least 36 bytes long.
*
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
* Returns true if okay, false on error with *errstr providing some
* error context.
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
*/
bool
pg_md5_encrypt(const char *passwd, const char *salt, size_t salt_len,
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
char *buf, const char **errstr)
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
{
size_t passwd_len = strlen(passwd);
/* +1 here is just to avoid risk of unportable malloc(0) */
char *crypt_buf = malloc(passwd_len + salt_len + 1);
bool ret;
if (!crypt_buf)
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
{
*errstr = _("out of memory");
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
return false;
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
}
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
/*
* Place salt at the end because it may be known by users trying to crack
* the MD5 output.
*/
memcpy(crypt_buf, passwd, passwd_len);
memcpy(crypt_buf + passwd_len, salt, salt_len);
strcpy(buf, "md5");
Improve error handling of cryptohash computations The existing cryptohash facility was causing problems in some code paths related to MD5 (frontend and backend) that relied on the fact that the only type of error that could happen would be an OOM, as the MD5 implementation used in PostgreSQL ~13 (the in-core implementation is used when compiling with or without OpenSSL in those older versions), could fail only under this circumstance. The new cryptohash facilities can fail for reasons other than OOMs, like attempting MD5 when FIPS is enabled (upstream OpenSSL allows that up to 1.0.2, Fedora and Photon patch OpenSSL 1.1.1 to allow that), so this would cause incorrect reports to show up. This commit extends the cryptohash APIs so as callers of those routines can fetch more context when an error happens, by using a new routine called pg_cryptohash_error(). The error states are stored within each implementation's internal context data, so as it is possible to extend the logic depending on what's suited for an implementation. The default implementation requires few error states, but OpenSSL could report various issues depending on its internal state so more is needed in cryptohash_openssl.c, and the code is shaped so as we are always able to grab the necessary information. The core code is changed to adapt to the new error routine, painting more "const" across the call stack where the static errors are stored, particularly in authentication code paths on variables that provide log details. This way, any future changes would warn if attempting to free these strings. The MD5 authentication code was also a bit blurry about the handling of "logdetail" (LOG sent to the postmaster), so improve the comments related that, while on it. The origin of the problem is 87ae969, that introduced the centralized cryptohash facility. Extra changes are done for pgcrypto in v14 for the non-OpenSSL code path to cope with the improvements done by this commit. Reported-by: Michael Mühlbeyer Author: Michael Paquier Reviewed-by: Tom Lane Discussion: https://postgr.es/m/89B7F072-5BBE-4C92-903E-D83E865D9367@trivadis.com Backpatch-through: 14
2022-01-11 01:55:16 +01:00
ret = pg_md5_hash(crypt_buf, passwd_len + salt_len, buf + 3, errstr);
Refactor MD5 implementations according to new cryptohash infrastructure This commit heavily reorganizes the MD5 implementations that exist in the tree in various aspects. First, MD5 is added to the list of options available in cryptohash.c and cryptohash_openssl.c. This means that if building with OpenSSL, EVP is used for MD5 instead of the fallback implementation that Postgres had for ages. With the recent refactoring work for cryptohash functions, this change is straight-forward. If not building with OpenSSL, a fallback implementation internal to src/common/ is used. Second, this reduces the number of MD5 implementations present in the tree from two to one, by moving the KAME implementation from pgcrypto to src/common/, and by removing the implementation that existed in src/common/. KAME was already structured with an init/update/final set of routines by pgcrypto (see original pgcrypto/md5.h) for compatibility with OpenSSL, so moving it to src/common/ has proved to be a straight-forward move, requiring no actual manipulation of the internals of each routine. Some benchmarking has not shown any performance gap between both implementations. Similarly to the fallback implementation used for SHA2, the fallback implementation of MD5 is moved to src/common/md5.c with an internal header called md5_int.h for the init, update and final routines. This gets then consumed by cryptohash.c. The original routines used for MD5-hashed passwords are moved to a separate file called md5_common.c, also in src/common/, aimed at being shared between all MD5 implementations as utility routines to keep compatibility with any code relying on them. Like the SHA2 changes, this commit had its round of tests on both Linux and Windows, across all versions of OpenSSL supported on HEAD, with and even without OpenSSL. Author: Michael Paquier Reviewed-by: Daniel Gustafsson Discussion: https://postgr.es/m/20201106073434.GA4961@paquier.xyz
2020-12-10 03:59:10 +01:00
free(crypt_buf);
return ret;
}