postgresql/src/backend/optimizer/path/indxpath.c

2071 lines
62 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* indxpath.c
* Routines to determine which indices are usable for scanning a
* given relation, and create IndexPaths accordingly.
*
* Portions Copyright (c) 1996-2000, PostgreSQL, Inc
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/indxpath.c,v 1.93 2000/08/13 02:50:04 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include "access/heapam.h"
#include "access/nbtree.h"
#include "catalog/catname.h"
#include "catalog/pg_amop.h"
#include "catalog/pg_operator.h"
#include "executor/executor.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
1999-07-16 07:00:38 +02:00
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
1999-07-16 07:00:38 +02:00
#include "optimizer/restrictinfo.h"
#include "optimizer/var.h"
1999-07-16 07:00:38 +02:00
#include "parser/parse_coerce.h"
1999-07-16 05:14:30 +02:00
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "utils/builtins.h"
#include "utils/fmgroids.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
/*
* DoneMatchingIndexKeys() - MACRO
*
* Determine whether we should continue matching index keys in a clause.
* Depends on if there are more to match or if this is a functional index.
* In the latter case we stop after the first match since the there can
* be only key (i.e. the function's return value) and the attributes in
* keys list represent the arguments to the function. -mer 3 Oct. 1991
*/
#define DoneMatchingIndexKeys(indexkeys, index) \
(indexkeys[0] == 0 || \
(index->indproc != InvalidOid))
#define is_indexable_operator(clause,opclass,relam,indexkey_on_left) \
(indexable_operator(clause,opclass,relam,indexkey_on_left) != InvalidOid)
static void match_index_orclauses(RelOptInfo *rel, IndexOptInfo *index,
List *restrictinfo_list);
static List *match_index_orclause(RelOptInfo *rel, IndexOptInfo *index,
List *or_clauses,
List *other_matching_indices);
static bool match_or_subclause_to_indexkey(RelOptInfo *rel,
IndexOptInfo *index,
Expr *clause);
static List *group_clauses_by_indexkey(RelOptInfo *rel, IndexOptInfo *index,
int *indexkeys, Oid *classes,
List *restrictinfo_list);
static List *group_clauses_by_ikey_for_joins(RelOptInfo *rel,
IndexOptInfo *index,
int *indexkeys, Oid *classes,
List *join_cinfo_list,
List *restr_cinfo_list);
static bool match_clause_to_indexkey(RelOptInfo *rel, IndexOptInfo *index,
int indexkey, Oid opclass,
Expr *clause, bool join);
static bool pred_test(List *predicate_list, List *restrictinfo_list,
List *joininfo_list);
static bool one_pred_test(Expr *predicate, List *restrictinfo_list);
static bool one_pred_clause_expr_test(Expr *predicate, Node *clause);
static bool one_pred_clause_test(Expr *predicate, Node *clause);
static bool clause_pred_clause_test(Expr *predicate, Node *clause);
static void indexable_joinclauses(RelOptInfo *rel, IndexOptInfo *index,
List *joininfo_list, List *restrictinfo_list,
List **clausegroups, List **outerrelids);
static List *index_innerjoin(Query *root, RelOptInfo *rel, IndexOptInfo *index,
List *clausegroup_list, List *outerrelids_list);
static bool useful_for_mergejoin(RelOptInfo *rel, IndexOptInfo *index,
List *joininfo_list);
static bool useful_for_ordering(Query *root, RelOptInfo *rel,
IndexOptInfo *index,
ScanDirection scandir);
static bool match_index_to_operand(int indexkey, Var *operand,
RelOptInfo *rel, IndexOptInfo *index);
static bool function_index_operand(Expr *funcOpnd, RelOptInfo *rel,
IndexOptInfo *index);
static bool match_special_index_operator(Expr *clause, Oid opclass, Oid relam,
bool indexkey_on_left);
static List *prefix_quals(Var *leftop, Oid expr_op,
char *prefix, Pattern_Prefix_Status pstatus);
static Oid find_operator(const char *opname, Oid datatype);
static Datum string_to_datum(const char *str, Oid datatype);
static Const *string_to_const(const char *str, Oid datatype);
/*
* create_index_paths()
* Generate all interesting index paths for the given relation.
* Candidate paths are added to the rel's pathlist (using add_path).
* Additional IndexPath nodes may also be added to rel's innerjoin list.
*
* To be considered for an index scan, an index must match one or more
* restriction clauses or join clauses from the query's qual condition,
* or match the query's ORDER BY condition.
*
* There are two basic kinds of index scans. A "plain" index scan uses
* only restriction clauses (possibly none at all) in its indexqual,
* so it can be applied in any context. An "innerjoin" index scan uses
* join clauses (plus restriction clauses, if available) in its indexqual.
* Therefore it can only be used as the inner relation of a nestloop
* join against an outer rel that includes all the other rels mentioned
* in its join clauses. In that context, values for the other rels'
* attributes are available and fixed during any one scan of the indexpath.
*
* An IndexPath is generated and submitted to add_path() for each index
* this routine deems potentially interesting for the current query
* (at most one IndexPath per index on the given relation). An innerjoin
* path is also generated for each interesting combination of outer join
* relations. The innerjoin paths are *not* passed to add_path(), but are
* appended to the "innerjoin" list of the relation for later consideration
* in nested-loop joins.
*
* 'rel' is the relation for which we want to generate index paths
* 'indices' is a list of available indexes for 'rel'
* 'restrictinfo_list' is a list of restrictinfo nodes for 'rel'
* 'joininfo_list' is a list of joininfo nodes for 'rel'
*/
void
1999-02-15 06:28:10 +01:00
create_index_paths(Query *root,
1999-05-26 00:43:53 +02:00
RelOptInfo *rel,
1999-05-25 18:15:34 +02:00
List *indices,
List *restrictinfo_list,
List *joininfo_list)
{
1998-08-02 00:12:13 +02:00
List *ilist;
1998-08-02 00:12:13 +02:00
foreach(ilist, indices)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
List *restrictclauses;
List *joinclausegroups;
List *joinouterrelids;
/*
* If this is a partial index, we can only use it if it passes the
* predicate test.
*/
1998-08-02 00:12:13 +02:00
if (index->indpred != NIL)
if (!pred_test(index->indpred, restrictinfo_list, joininfo_list))
1998-08-02 00:12:13 +02:00
continue;
1998-08-02 00:12:13 +02:00
/*
* 1. Try matching the index against subclauses of restriction
* 'or' clauses (ie, 'or' clauses that reference only this
* relation). The restrictinfo nodes for the 'or' clauses are
* marked with lists of the matching indices. No paths are
* actually created now; that will be done in orindxpath.c after
* all indexes for the rel have been examined. (We need to do it
* that way because we can potentially use a different index for
* each subclause of an 'or', so we can't build a path for an 'or'
* clause until all indexes have been matched against it.)
*
* We don't even think about special handling of 'or' clauses that
* involve more than one relation (ie, are join clauses). Can we
* do anything useful with those?
1998-08-02 00:12:13 +02:00
*/
match_index_orclauses(rel, index, restrictinfo_list);
1998-08-02 00:12:13 +02:00
/*
* 2. If the keys of this index match any of the available
* non-'or' restriction clauses, then create a path using those
* clauses as indexquals.
1998-08-02 00:12:13 +02:00
*/
restrictclauses = group_clauses_by_indexkey(rel,
index,
index->indexkeys,
index->classlist,
restrictinfo_list);
if (restrictclauses != NIL)
add_path(rel, (Path *) create_index_path(root, rel, index,
restrictclauses,
NoMovementScanDirection));
1998-08-02 00:12:13 +02:00
/*
* 3. If this index can be used for a mergejoin, then create an
* index path for it even if there were no restriction clauses.
* (If there were, there is no need to make another index path.)
* This will allow the index to be considered as a base for a
* mergejoin in later processing. Similarly, if the index matches
* the ordering that is needed for the overall query result, make
* an index path for it even if there is no other reason to do so.
*/
if (restrictclauses == NIL)
{
if (useful_for_mergejoin(rel, index, joininfo_list) ||
useful_for_ordering(root, rel, index, ForwardScanDirection))
add_path(rel, (Path *)
create_index_path(root, rel, index,
restrictclauses,
ForwardScanDirection));
}
/*
* Currently, backwards scan is never considered except for the
* case of matching a query result ordering. Possibly should
* consider it in other places?
*/
if (useful_for_ordering(root, rel, index, BackwardScanDirection))
add_path(rel, (Path *)
create_index_path(root, rel, index,
restrictclauses,
BackwardScanDirection));
/*
* 4. Create an innerjoin index path for each combination of other
* rels used in available join clauses. These paths will be
* considered as the inner side of nestloop joins against those
* sets of other rels. indexable_joinclauses() finds sets of
* clauses that can be used with each combination of outer rels,
* and index_innerjoin builds the paths themselves. We add the
* paths to the rel's innerjoin list, NOT to the result list.
1998-08-02 00:12:13 +02:00
*/
indexable_joinclauses(rel, index,
joininfo_list, restrictinfo_list,
&joinclausegroups,
&joinouterrelids);
1998-08-02 00:12:13 +02:00
if (joinclausegroups != NIL)
{
rel->innerjoin = nconc(rel->innerjoin,
index_innerjoin(root, rel, index,
joinclausegroups,
joinouterrelids));
1998-08-02 00:12:13 +02:00
}
}
}
/****************************************************************************
* ---- ROUTINES TO PROCESS 'OR' CLAUSES ----
****************************************************************************/
/*
* match_index_orclauses
* Attempt to match an index against subclauses within 'or' clauses.
* Each subclause that does match is marked with the index's node.
*
* Essentially, this adds 'index' to the list of subclause indices in
* the RestrictInfo field of each of the 'or' clauses where it matches.
* NOTE: we can use storage in the RestrictInfo for this purpose because
* this processing is only done on single-relation restriction clauses.
* Therefore, we will never have indexes for more than one relation
* mentioned in the same RestrictInfo node's list.
*
* 'rel' is the node of the relation on which the index is defined.
* 'index' is the index node.
* 'restrictinfo_list' is the list of available restriction clauses.
*/
static void
1999-05-26 00:43:53 +02:00
match_index_orclauses(RelOptInfo *rel,
IndexOptInfo *index,
List *restrictinfo_list)
{
List *i;
foreach(i, restrictinfo_list)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(i);
if (restriction_is_or_clause(restrictinfo))
{
/*
* Add this index to the subclause index list for each
* subclause that it matches.
*/
restrictinfo->subclauseindices =
match_index_orclause(rel, index,
restrictinfo->clause->args,
restrictinfo->subclauseindices);
}
}
}
/*
* match_index_orclause
* Attempts to match an index against the subclauses of an 'or' clause.
*
* A match means that:
* (1) the operator within the subclause can be used with the
* index's specified operator class, and
* (2) one operand of the subclause matches the index key.
*
* If a subclause is an 'and' clause, then it matches if any of its
* subclauses is an opclause that matches.
*
* 'or_clauses' is the list of subclauses within the 'or' clause
* 'other_matching_indices' is the list of information on other indices
* that have already been matched to subclauses within this
* particular 'or' clause (i.e., a list previously generated by
* this routine), or NIL if this routine has not previously been
* run for this 'or' clause.
*
* Returns a list of the form ((a b c) (d e f) nil (g h) ...) where
* a,b,c are nodes of indices that match the first subclause in
* 'or-clauses', d,e,f match the second subclause, no indices
* match the third, g,h match the fourth, etc.
*/
static List *
1999-05-26 00:43:53 +02:00
match_index_orclause(RelOptInfo *rel,
IndexOptInfo *index,
List *or_clauses,
List *other_matching_indices)
{
List *matching_indices;
List *index_list;
List *clist;
/*
* first time through, we create list of same length as OR clause,
* containing an empty sublist for each subclause.
*/
1998-08-03 07:49:24 +02:00
if (!other_matching_indices)
{
matching_indices = NIL;
1998-08-03 07:49:24 +02:00
foreach(clist, or_clauses)
matching_indices = lcons(NIL, matching_indices);
}
else
matching_indices = other_matching_indices;
1998-08-03 07:49:24 +02:00
index_list = matching_indices;
1998-08-02 00:12:13 +02:00
foreach(clist, or_clauses)
{
Expr *clause = lfirst(clist);
if (match_or_subclause_to_indexkey(rel, index, clause))
{
/* OK to add this index to sublist for this subclause */
lfirst(matching_indices) = lcons(index,
lfirst(matching_indices));
}
1998-08-02 00:12:13 +02:00
1998-08-03 07:49:24 +02:00
matching_indices = lnext(matching_indices);
}
return index_list;
}
/*
* See if a subclause of an OR clause matches an index.
*
* We accept the subclause if it is an operator clause that matches the
* index, or if it is an AND clause any of whose members is an opclause
* that matches the index.
*
* For multi-key indexes, we only look for matches to the first key;
* without such a match the index is useless. If the clause is an AND
* then we may be able to extract additional subclauses to use with the
* later indexkeys, but we need not worry about that until
* extract_or_indexqual_conditions() is called (if it ever is).
*/
static bool
match_or_subclause_to_indexkey(RelOptInfo *rel,
IndexOptInfo *index,
Expr *clause)
{
int indexkey = index->indexkeys[0];
Oid opclass = index->classlist[0];
if (and_clause((Node *) clause))
{
List *item;
foreach(item, clause->args)
{
if (match_clause_to_indexkey(rel, index, indexkey, opclass,
lfirst(item), false))
return true;
}
return false;
}
else
return match_clause_to_indexkey(rel, index, indexkey, opclass,
clause, false);
}
/*
* Given an OR subclause that has previously been determined to match
* the specified index, extract a list of specific opclauses that can be
* used as indexquals.
*
* In the simplest case this just means making a one-element list of the
* given opclause. However, if the OR subclause is an AND, we have to
* scan it to find the opclause(s) that match the index. (There should
* be at least one, if match_or_subclause_to_indexkey succeeded, but there
* could be more.) Also, we apply expand_indexqual_conditions() to convert
* any special matching opclauses to indexable operators.
*
* The passed-in clause is not changed.
*/
List *
extract_or_indexqual_conditions(RelOptInfo *rel,
IndexOptInfo *index,
Expr *orsubclause)
{
List *quals = NIL;
if (and_clause((Node *) orsubclause))
{
/*
* Extract relevant sub-subclauses in indexkey order. This is just
* like group_clauses_by_indexkey() except that the input and output
* are lists of bare clauses, not of RestrictInfo nodes.
*/
int *indexkeys = index->indexkeys;
Oid *classes = index->classlist;
do
{
int curIndxKey = indexkeys[0];
Oid curClass = classes[0];
List *clausegroup = NIL;
List *item;
foreach(item, orsubclause->args)
{
if (match_clause_to_indexkey(rel, index,
curIndxKey, curClass,
lfirst(item), false))
clausegroup = lappend(clausegroup, lfirst(item));
}
/*
* If no clauses match this key, we're done; we don't want to look
* at keys to its right.
*/
if (clausegroup == NIL)
break;
quals = nconc(quals, clausegroup);
indexkeys++;
classes++;
} while (!DoneMatchingIndexKeys(indexkeys, index));
if (quals == NIL)
elog(ERROR, "extract_or_indexqual_conditions: no matching clause");
}
else
{
/* we assume the caller passed a valid indexable qual */
quals = lcons(orsubclause, NIL);
}
return expand_indexqual_conditions(quals);
}
/****************************************************************************
* ---- ROUTINES TO CHECK RESTRICTIONS ----
****************************************************************************/
/*
* group_clauses_by_indexkey
* Generates a list of restriction clauses that can be used with an index.
*
* 'rel' is the node of the relation itself.
* 'index' is a index on 'rel'.
* 'indexkeys' are the index keys to be matched.
* 'classes' are the classes of the index operators on those keys.
* 'restrictinfo_list' is the list of available restriction clauses for 'rel'.
*
* Returns a list of all the RestrictInfo nodes for clauses that can be
* used with this index.
*
2000-07-25 06:30:42 +02:00
* The list is ordered by index key. (This is not depended on by any part
* of the planner, as far as I can tell; but some parts of the executor
* do assume that the indxqual list ultimately delivered to the executor
* is so ordered. One such place is _bt_orderkeys() in the btree support.
* Perhaps that ought to be fixed someday --- tgl 7/00)
*
* Note that in a multi-key index, we stop if we find a key that cannot be
* used with any clause. For example, given an index on (A,B,C), we might
* return (C1 C2 C3 C4) if we find that clauses C1 and C2 use column A,
* clauses C3 and C4 use column B, and no clauses use column C. But if
* no clauses match B we will return (C1 C2), whether or not there are
* clauses matching column C, because the executor couldn't use them anyway.
*/
static List *
1999-05-26 00:43:53 +02:00
group_clauses_by_indexkey(RelOptInfo *rel,
IndexOptInfo *index,
int *indexkeys,
Oid *classes,
List *restrictinfo_list)
{
List *clausegroup_list = NIL;
if (restrictinfo_list == NIL || indexkeys[0] == 0)
return NIL;
do
{
int curIndxKey = indexkeys[0];
Oid curClass = classes[0];
List *clausegroup = NIL;
List *curCinfo;
foreach(curCinfo, restrictinfo_list)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(curCinfo);
if (match_clause_to_indexkey(rel,
index,
curIndxKey,
curClass,
rinfo->clause,
false))
clausegroup = lappend(clausegroup, rinfo);
}
/*
* If no clauses match this key, we're done; we don't want to look
* at keys to its right.
*/
if (clausegroup == NIL)
break;
clausegroup_list = nconc(clausegroup_list, clausegroup);
indexkeys++;
classes++;
} while (!DoneMatchingIndexKeys(indexkeys, index));
/* clausegroup_list holds all matched clauses ordered by indexkeys */
return clausegroup_list;
}
/*
* group_clauses_by_ikey_for_joins
* Generates a list of join clauses that can be used with an index
* to scan the inner side of a nestloop join.
*
* This is much like group_clauses_by_indexkey(), but we consider both
* join and restriction clauses. For each indexkey in the index, we
* accept both join and restriction clauses that match it, since both
* will make useful indexquals if the index is being used to scan the
* inner side of a nestloop join. But there must be at least one matching
* join clause, or we return NIL indicating that this index isn't useful
* for nestloop joining.
*/
static List *
1999-05-26 00:43:53 +02:00
group_clauses_by_ikey_for_joins(RelOptInfo *rel,
IndexOptInfo *index,
int *indexkeys,
Oid *classes,
List *join_cinfo_list,
List *restr_cinfo_list)
{
List *clausegroup_list = NIL;
bool jfound = false;
if (join_cinfo_list == NIL || indexkeys[0] == 0)
return NIL;
do
{
int curIndxKey = indexkeys[0];
Oid curClass = classes[0];
List *clausegroup = NIL;
List *curCinfo;
foreach(curCinfo, join_cinfo_list)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(curCinfo);
if (match_clause_to_indexkey(rel,
index,
curIndxKey,
curClass,
rinfo->clause,
true))
{
clausegroup = lappend(clausegroup, rinfo);
jfound = true;
}
}
foreach(curCinfo, restr_cinfo_list)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(curCinfo);
if (match_clause_to_indexkey(rel,
index,
curIndxKey,
curClass,
rinfo->clause,
false))
clausegroup = lappend(clausegroup, rinfo);
}
/*
* If no clauses match this key, we're done; we don't want to look
* at keys to its right.
*/
if (clausegroup == NIL)
break;
clausegroup_list = nconc(clausegroup_list, clausegroup);
indexkeys++;
classes++;
} while (!DoneMatchingIndexKeys(indexkeys, index));
/*
* if no join clause was matched then there ain't clauses for joins at
* all.
*/
if (!jfound)
{
freeList(clausegroup_list);
return NIL;
}
/* clausegroup_list holds all matched clauses ordered by indexkeys */
return clausegroup_list;
}
/*
* match_clause_to_indexkey()
* Determines whether a restriction or join clause matches
* a key of an index.
*
* To match, the clause:
*
* (1a) for a restriction clause: must be in the form (indexkey op const)
* or (const op indexkey), or
* (1b) for a join clause: must be in the form (indexkey op others)
* or (others op indexkey), where others is an expression involving
* only vars of the other relation(s); and
* (2) must contain an operator which is in the same class as the index
* operator for this key, or is a "special" operator as recognized
* by match_special_index_operator().
*
* Presently, the executor can only deal with indexquals that have the
* indexkey on the left, so we can only use clauses that have the indexkey
* on the right if we can commute the clause to put the key on the left.
* We do not actually do the commuting here, but we check whether a
* suitable commutator operator is available.
*
* Note that in the join case, we already know that the clause as a
* whole uses vars from the interesting set of relations. But we need
* to defend against expressions like (a.f1 OP (b.f2 OP a.f3)); that's
* not processable by an indexscan nestloop join, whereas
* (a.f1 OP (b.f2 OP c.f3)) is.
*
* 'rel' is the relation of interest.
* 'index' is an index on 'rel'.
* 'indexkey' is a key of 'index'.
* 'opclass' is the corresponding operator class.
* 'clause' is the clause to be tested.
* 'join' is true if we are considering this clause for joins.
*
* Returns true if the clause can be used with this index key.
*
* NOTE: returns false if clause is an OR or AND clause; it is the
* responsibility of higher-level routines to cope with those.
*/
static bool
1999-05-26 00:43:53 +02:00
match_clause_to_indexkey(RelOptInfo *rel,
IndexOptInfo *index,
int indexkey,
Oid opclass,
Expr *clause,
bool join)
{
Var *leftop,
*rightop;
/* Clause must be a binary opclause. */
if (!is_opclause((Node *) clause))
return false;
leftop = get_leftop(clause);
rightop = get_rightop(clause);
if (!leftop || !rightop)
return false;
if (!join)
{
/*
* Not considering joins, so check for clauses of the form:
* (indexkey operator constant) or (constant operator indexkey).
* Anything that is a "pseudo constant" expression will do.
*/
1999-05-25 18:15:34 +02:00
if (match_index_to_operand(indexkey, leftop, rel, index) &&
is_pseudo_constant_clause((Node *) rightop))
{
if (is_indexable_operator(clause, opclass, index->relam, true))
return true;
/*
* If we didn't find a member of the index's opclass, see
* whether it is a "special" indexable operator.
*/
if (match_special_index_operator(clause, opclass, index->relam,
true))
return true;
return false;
}
if (match_index_to_operand(indexkey, rightop, rel, index) &&
is_pseudo_constant_clause((Node *) leftop))
{
if (is_indexable_operator(clause, opclass, index->relam, false))
return true;
/*
* If we didn't find a member of the index's opclass, see
* whether it is a "special" indexable operator.
*/
if (match_special_index_operator(clause, opclass, index->relam,
false))
return true;
return false;
}
}
else
{
/*
* Check for an indexqual that could be handled by a nestloop
* join. We need the index key to be compared against an
* expression that uses none of the indexed relation's vars
* and contains no non-cachable functions.
*/
if (match_index_to_operand(indexkey, leftop, rel, index))
{
List *othervarnos = pull_varnos((Node *) rightop);
bool isIndexable;
isIndexable =
!intMember(lfirsti(rel->relids), othervarnos) &&
!contain_noncachable_functions((Node *) rightop) &&
is_indexable_operator(clause, opclass, index->relam, true);
freeList(othervarnos);
return isIndexable;
}
else if (match_index_to_operand(indexkey, rightop, rel, index))
{
List *othervarnos = pull_varnos((Node *) leftop);
bool isIndexable;
isIndexable =
!intMember(lfirsti(rel->relids), othervarnos) &&
!contain_noncachable_functions((Node *) leftop) &&
is_indexable_operator(clause, opclass, index->relam, false);
freeList(othervarnos);
return isIndexable;
}
}
return false;
}
/*
* indexable_operator
* Does a binary opclause contain an operator matching the index's
* access method?
*
* If the indexkey is on the right, what we actually want to know
* is whether the operator has a commutator operator that matches
* the index's access method.
*
* We try both the straightforward match and matches that rely on
* recognizing binary-compatible datatypes. For example, if we have
* an expression like "oid = 123", the operator will be oideqint4,
* which we need to replace with oideq in order to recognize it as
* matching an oid_ops index on the oid field. A variant case is where
* the expression is like "oid::int4 = 123", where the given operator
* will be int4eq and again we need to intuit that we want to use oideq.
*
* Returns the OID of the matching operator, or InvalidOid if no match.
* Note that the returned OID will be different from the one in the given
* expression if we used a binary-compatible substitution. Also note that
* if indexkey_on_left is FALSE (meaning we need to commute), the returned
* OID is *not* commuted; it can be plugged directly into the given clause.
*/
Oid
indexable_operator(Expr *clause, Oid opclass, Oid relam,
bool indexkey_on_left)
{
Oid expr_op = ((Oper *) clause->oper)->opno;
Oid commuted_op;
Operator oldop,
newop;
Form_pg_operator oldopform;
char *opname;
Oid ltype,
rtype,
indexkeytype;
/* Get the commuted operator if necessary */
if (indexkey_on_left)
commuted_op = expr_op;
else
commuted_op = get_commutator(expr_op);
if (commuted_op == InvalidOid)
return InvalidOid;
/* Done if the (commuted) operator is a member of the index's AM */
if (op_class(commuted_op, opclass, relam))
return expr_op;
/*
* Maybe the index uses a binary-compatible operator set.
*
* Get the nominal input types of the given operator and the actual
* type (before binary-compatible relabeling) of the index key.
*/
oldop = get_operator_tuple(expr_op);
if (! HeapTupleIsValid(oldop))
return InvalidOid; /* probably can't happen */
oldopform = (Form_pg_operator) GETSTRUCT(oldop);
opname = NameStr(oldopform->oprname);
ltype = oldopform->oprleft;
rtype = oldopform->oprright;
if (indexkey_on_left)
{
Node *leftop = (Node *) get_leftop(clause);
if (leftop && IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
indexkeytype = exprType(leftop);
}
else
{
Node *rightop = (Node *) get_rightop(clause);
if (rightop && IsA(rightop, RelabelType))
rightop = ((RelabelType *) rightop)->arg;
indexkeytype = exprType(rightop);
}
/*
* Make sure we have different but binary-compatible types.
*/
if (ltype == indexkeytype && rtype == indexkeytype)
return InvalidOid; /* no chance for a different operator */
if (ltype != indexkeytype && !IS_BINARY_COMPATIBLE(ltype, indexkeytype))
return InvalidOid;
if (rtype != indexkeytype && !IS_BINARY_COMPATIBLE(rtype, indexkeytype))
return InvalidOid;
/*
* OK, look for operator of the same name with the indexkey's data type.
* (In theory this might find a non-semantically-comparable operator,
* but in practice that seems pretty unlikely for binary-compatible types.)
*/
newop = oper(opname, indexkeytype, indexkeytype, TRUE);
if (HeapTupleIsValid(newop))
{
Oid new_expr_op = oprid(newop);
if (new_expr_op != expr_op)
{
/*
* OK, we found a binary-compatible operator of the same
* name; now does it match the index?
*/
if (indexkey_on_left)
commuted_op = new_expr_op;
else
commuted_op = get_commutator(new_expr_op);
if (commuted_op == InvalidOid)
return InvalidOid;
if (op_class(commuted_op, opclass, relam))
return new_expr_op;
}
}
return InvalidOid;
}
/*
* useful_for_mergejoin
* Determine whether the given index can support a mergejoin based
* on any available join clause.
*
* We look to see whether the first indexkey of the index matches the
* left or right sides of any of the mergejoinable clauses and provides
* the ordering needed for that side. If so, the index is useful.
* Matching a second or later indexkey is not useful unless there is
* also a mergeclause for the first indexkey, so we need not consider
* secondary indexkeys at this stage.
*
* 'rel' is the relation for which 'index' is defined
* 'joininfo_list' is the list of JoinInfo nodes for 'rel'
*/
static bool
useful_for_mergejoin(RelOptInfo *rel,
IndexOptInfo *index,
List *joininfo_list)
{
int *indexkeys = index->indexkeys;
Oid *ordering = index->ordering;
List *i;
if (!indexkeys || indexkeys[0] == 0 ||
!ordering || ordering[0] == InvalidOid)
return false; /* unordered index is not useful */
foreach(i, joininfo_list)
{
JoinInfo *joininfo = (JoinInfo *) lfirst(i);
List *j;
foreach(j, joininfo->jinfo_restrictinfo)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(j);
if (restrictinfo->mergejoinoperator)
{
if (restrictinfo->left_sortop == ordering[0] &&
match_index_to_operand(indexkeys[0],
get_leftop(restrictinfo->clause),
rel, index))
return true;
if (restrictinfo->right_sortop == ordering[0] &&
match_index_to_operand(indexkeys[0],
get_rightop(restrictinfo->clause),
rel, index))
return true;
}
}
}
return false;
}
/*
* useful_for_ordering
* Determine whether the given index can produce an ordering matching
* the order that is wanted for the query result.
*
* 'rel' is the relation for which 'index' is defined
* 'scandir' is the contemplated scan direction
*/
static bool
useful_for_ordering(Query *root,
RelOptInfo *rel,
IndexOptInfo *index,
ScanDirection scandir)
{
List *index_pathkeys;
if (root->query_pathkeys == NIL)
return false; /* no special ordering requested */
index_pathkeys = build_index_pathkeys(root, rel, index, scandir);
if (index_pathkeys == NIL)
return false; /* unordered index */
return pathkeys_contained_in(root->query_pathkeys, index_pathkeys);
}
/****************************************************************************
* ---- ROUTINES TO DO PARTIAL INDEX PREDICATE TESTS ----
****************************************************************************/
/*
* pred_test
* Does the "predicate inclusion test" for partial indexes.
*
* Recursively checks whether the clauses in restrictinfo_list imply
* that the given predicate is true.
*
* This routine (together with the routines it calls) iterates over
* ANDs in the predicate first, then reduces the qualification
* clauses down to their constituent terms, and iterates over ORs
* in the predicate last. This order is important to make the test
* succeed whenever possible (assuming the predicate has been
* successfully cnfify()-ed). --Nels, Jan '93
*/
static bool
pred_test(List *predicate_list, List *restrictinfo_list, List *joininfo_list)
{
List *pred,
*items,
*item;
/*
* Note: if Postgres tried to optimize queries by forming equivalence
* classes over equi-joined attributes (i.e., if it recognized that a
* qualification such as "where a.b=c.d and a.b=5" could make use of
* an index on c.d), then we could use that equivalence class info
* here with joininfo_list to do more complete tests for the usability
* of a partial index. For now, the test only uses restriction
* clauses (those in restrictinfo_list). --Nels, Dec '92
*/
if (predicate_list == NULL)
return true; /* no predicate: the index is usable */
if (restrictinfo_list == NULL)
return false; /* no restriction clauses: the test must
* fail */
foreach(pred, predicate_list)
{
/*
* if any clause is not implied, the whole predicate is not
* implied
*/
if (and_clause(lfirst(pred)))
{
items = ((Expr *) lfirst(pred))->args;
foreach(item, items)
{
if (!one_pred_test(lfirst(item), restrictinfo_list))
return false;
}
}
else if (!one_pred_test(lfirst(pred), restrictinfo_list))
return false;
}
return true;
}
/*
* one_pred_test
* Does the "predicate inclusion test" for one conjunct of a predicate
* expression.
*/
static bool
one_pred_test(Expr *predicate, List *restrictinfo_list)
{
RestrictInfo *restrictinfo;
List *item;
Assert(predicate != NULL);
foreach(item, restrictinfo_list)
{
restrictinfo = (RestrictInfo *) lfirst(item);
/* if any clause implies the predicate, return true */
if (one_pred_clause_expr_test(predicate, (Node *) restrictinfo->clause))
return true;
}
return false;
}
/*
* one_pred_clause_expr_test
* Does the "predicate inclusion test" for a general restriction-clause
* expression.
*/
static bool
one_pred_clause_expr_test(Expr *predicate, Node *clause)
{
List *items,
*item;
if (is_opclause(clause))
return one_pred_clause_test(predicate, clause);
else if (or_clause(clause))
{
items = ((Expr *) clause)->args;
foreach(item, items)
{
/* if any OR item doesn't imply the predicate, clause doesn't */
if (!one_pred_clause_expr_test(predicate, lfirst(item)))
return false;
}
return true;
}
else if (and_clause(clause))
{
items = ((Expr *) clause)->args;
foreach(item, items)
{
/*
* if any AND item implies the predicate, the whole clause
* does
*/
if (one_pred_clause_expr_test(predicate, lfirst(item)))
return true;
}
return false;
}
else
{
/* unknown clause type never implies the predicate */
return false;
}
}
/*
* one_pred_clause_test
* Does the "predicate inclusion test" for one conjunct of a predicate
* expression for a simple restriction clause.
*/
static bool
one_pred_clause_test(Expr *predicate, Node *clause)
{
List *items,
*item;
if (is_opclause((Node *) predicate))
return clause_pred_clause_test(predicate, clause);
else if (or_clause((Node *) predicate))
{
items = predicate->args;
foreach(item, items)
{
/* if any item is implied, the whole predicate is implied */
if (one_pred_clause_test(lfirst(item), clause))
return true;
}
return false;
}
else if (and_clause((Node *) predicate))
{
items = predicate->args;
foreach(item, items)
{
/*
* if any item is not implied, the whole predicate is not
* implied
*/
if (!one_pred_clause_test(lfirst(item), clause))
return false;
}
return true;
}
else
{
elog(DEBUG, "Unsupported predicate type, index will not be used");
return false;
}
}
/*
* Define an "operator implication table" for btree operators ("strategies").
* The "strategy numbers" are: (1) < (2) <= (3) = (4) >= (5) >
*
* The interpretation of:
*
* test_op = BT_implic_table[given_op-1][target_op-1]
*
* where test_op, given_op and target_op are strategy numbers (from 1 to 5)
* of btree operators, is as follows:
*
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
* want to determine whether "ATTR target_op CONST2" must also be true, then
* you can use "CONST1 test_op CONST2" as a test. If this test returns true,
* then the target expression must be true; if the test returns false, then
* the target expression may be false.
*
* An entry where test_op==0 means the implication cannot be determined, i.e.,
* this test should always be considered false.
*/
static const StrategyNumber
BT_implic_table[BTMaxStrategyNumber][BTMaxStrategyNumber] = {
{2, 2, 0, 0, 0},
{1, 2, 0, 0, 0},
{1, 2, 3, 4, 5},
{0, 0, 0, 4, 5},
{0, 0, 0, 4, 4}
};
/*
* clause_pred_clause_test
* Use operator class info to check whether clause implies predicate.
*
* Does the "predicate inclusion test" for a "simple clause" predicate
* for a single "simple clause" restriction. Currently, this only handles
* (binary boolean) operators that are in some btree operator class.
* Eventually, rtree operators could also be handled by defining an
* appropriate "RT_implic_table" array.
*/
static bool
clause_pred_clause_test(Expr *predicate, Node *clause)
{
Var *pred_var,
*clause_var;
Const *pred_const,
*clause_const;
Oid pred_op,
clause_op,
test_op;
Oid opclass_id;
StrategyNumber pred_strategy,
clause_strategy,
test_strategy;
Oper *test_oper;
Expr *test_expr;
bool test_result,
isNull;
Relation relation;
HeapScanDesc scan;
HeapTuple tuple;
ScanKeyData entry[3];
Form_pg_amop aform;
pred_var = (Var *) get_leftop(predicate);
pred_const = (Const *) get_rightop(predicate);
clause_var = (Var *) get_leftop((Expr *) clause);
clause_const = (Const *) get_rightop((Expr *) clause);
/* Check the basic form; for now, only allow the simplest case */
if (!is_opclause(clause) ||
!IsA(clause_var, Var) ||
clause_const == NULL ||
!IsA(clause_const, Const) ||
!IsA(predicate->oper, Oper) ||
!IsA(pred_var, Var) ||
!IsA(pred_const, Const))
return false;
/*
* The implication can't be determined unless the predicate and the
* clause refer to the same attribute.
*/
if (clause_var->varattno != pred_var->varattno)
return false;
/* Get the operators for the two clauses we're comparing */
pred_op = ((Oper *) ((Expr *) predicate)->oper)->opno;
clause_op = ((Oper *) ((Expr *) clause)->oper)->opno;
/*
* 1. Find a "btree" strategy number for the pred_op
*/
ScanKeyEntryInitialize(&entry[0], 0,
Anum_pg_amop_amopid,
F_OIDEQ,
1998-08-11 21:32:39 +02:00
ObjectIdGetDatum(BTREE_AM_OID));
ScanKeyEntryInitialize(&entry[1], 0,
Anum_pg_amop_amopopr,
F_OIDEQ,
ObjectIdGetDatum(pred_op));
relation = heap_openr(AccessMethodOperatorRelationName, AccessShareLock);
/*
* The following assumes that any given operator will only be in a
* single btree operator class. This is true at least for all the
* pre-defined operator classes. If it isn't true, then whichever
* operator class happens to be returned first for the given operator
* will be used to find the associated strategy numbers for the test.
* --Nels, Jan '93
*/
1998-07-27 21:38:40 +02:00
scan = heap_beginscan(relation, false, SnapshotNow, 2, entry);
tuple = heap_getnext(scan, 0);
if (!HeapTupleIsValid(tuple))
{
elog(DEBUG, "clause_pred_clause_test: unknown pred_op");
heap_endscan(scan);
heap_close(relation, AccessShareLock);
return false;
}
aform = (Form_pg_amop) GETSTRUCT(tuple);
/* Get the predicate operator's strategy number (1 to 5) */
pred_strategy = (StrategyNumber) aform->amopstrategy;
/* Remember which operator class this strategy number came from */
opclass_id = aform->amopclaid;
heap_endscan(scan);
/*
* 2. From the same opclass, find a strategy num for the clause_op
*/
ScanKeyEntryInitialize(&entry[1], 0,
Anum_pg_amop_amopclaid,
F_OIDEQ,
ObjectIdGetDatum(opclass_id));
ScanKeyEntryInitialize(&entry[2], 0,
Anum_pg_amop_amopopr,
F_OIDEQ,
ObjectIdGetDatum(clause_op));
1998-07-27 21:38:40 +02:00
scan = heap_beginscan(relation, false, SnapshotNow, 3, entry);
tuple = heap_getnext(scan, 0);
if (!HeapTupleIsValid(tuple))
{
elog(DEBUG, "clause_pred_clause_test: unknown clause_op");
heap_endscan(scan);
heap_close(relation, AccessShareLock);
return false;
}
aform = (Form_pg_amop) GETSTRUCT(tuple);
/* Get the restriction clause operator's strategy number (1 to 5) */
clause_strategy = (StrategyNumber) aform->amopstrategy;
heap_endscan(scan);
/*
* 3. Look up the "test" strategy number in the implication table
*/
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
if (test_strategy == 0)
{
heap_close(relation, AccessShareLock);
return false; /* the implication cannot be determined */
}
/*
* 4. From the same opclass, find the operator for the test strategy
*/
ScanKeyEntryInitialize(&entry[2], 0,
Anum_pg_amop_amopstrategy,
F_INT2EQ,
Int16GetDatum(test_strategy));
1998-07-27 21:38:40 +02:00
scan = heap_beginscan(relation, false, SnapshotNow, 3, entry);
tuple = heap_getnext(scan, 0);
if (!HeapTupleIsValid(tuple))
{
elog(DEBUG, "clause_pred_clause_test: unknown test_op");
heap_endscan(scan);
heap_close(relation, AccessShareLock);
return false;
}
aform = (Form_pg_amop) GETSTRUCT(tuple);
/* Get the test operator */
test_op = aform->amopopr;
heap_endscan(scan);
heap_close(relation, AccessShareLock);
/*
* 5. Evaluate the test
*/
test_oper = makeOper(test_op, /* opno */
InvalidOid, /* opid */
BOOLOID); /* opresulttype */
replace_opid(test_oper);
test_expr = make_opclause(test_oper,
copyObject(clause_const),
copyObject(pred_const));
#ifndef OMIT_PARTIAL_INDEX
test_result = ExecEvalExpr((Node *) test_expr, NULL, &isNull, NULL);
#endif /* OMIT_PARTIAL_INDEX */
if (isNull)
{
elog(DEBUG, "clause_pred_clause_test: null test result");
return false;
}
return test_result;
}
/****************************************************************************
* ---- ROUTINES TO CHECK JOIN CLAUSES ----
****************************************************************************/
/*
* indexable_joinclauses
* Finds all groups of join clauses from among 'joininfo_list' that can
* be used in conjunction with 'index' for the inner scan of a nestjoin.
*
* Each clause group comes from a single joininfo node plus the current
* rel's restrictinfo list. Therefore, every clause in the group references
* the current rel plus the same set of other rels (except for the restrict
* clauses, which only reference the current rel). Therefore, this set
* of clauses could be used as an indexqual if the relation is scanned
* as the inner side of a nestloop join when the outer side contains
* (at least) all those "other rels".
*
* XXX Actually, given that we are considering a join that requires an
* outer rel set (A,B,C), we should use all qual clauses that reference
* any subset of these rels, not just the full set or none. This is
* doable with a doubly nested loop over joininfo_list; is it worth it?
*
* Returns two parallel lists of the same length: the clause groups,
* and the required outer rel set for each one.
*
* 'rel' is the relation for which 'index' is defined
* 'joininfo_list' is the list of JoinInfo nodes for 'rel'
* 'restrictinfo_list' is the list of restriction clauses for 'rel'
* '*clausegroups' receives a list of clause sublists
* '*outerrelids' receives a list of relid lists
*/
static void
indexable_joinclauses(RelOptInfo *rel, IndexOptInfo *index,
List *joininfo_list, List *restrictinfo_list,
List **clausegroups, List **outerrelids)
{
List *cg_list = NIL;
List *relid_list = NIL;
List *i;
foreach(i, joininfo_list)
{
JoinInfo *joininfo = (JoinInfo *) lfirst(i);
List *clausegroup;
clausegroup = group_clauses_by_ikey_for_joins(rel,
index,
index->indexkeys,
index->classlist,
joininfo->jinfo_restrictinfo,
restrictinfo_list);
if (clausegroup != NIL)
{
cg_list = lappend(cg_list, clausegroup);
relid_list = lappend(relid_list, joininfo->unjoined_relids);
}
}
*clausegroups = cg_list;
*outerrelids = relid_list;
}
/****************************************************************************
* ---- PATH CREATION UTILITIES ----
****************************************************************************/
/*
* index_innerjoin
* Creates index path nodes corresponding to paths to be used as inner
* relations in nestloop joins.
*
* 'rel' is the relation for which 'index' is defined
* 'clausegroup_list' is a list of lists of restrictinfo nodes which can use
* 'index'. Each sublist refers to the same set of outer rels.
* 'outerrelids_list' is a list of the required outer rels for each sublist
* of join clauses.
*
* Returns a list of index pathnodes.
*/
static List *
index_innerjoin(Query *root, RelOptInfo *rel, IndexOptInfo *index,
List *clausegroup_list, List *outerrelids_list)
{
List *path_list = NIL;
List *i;
foreach(i, clausegroup_list)
{
List *clausegroup = lfirst(i);
IndexPath *pathnode = makeNode(IndexPath);
List *indexquals;
/* XXX this code ought to be merged with create_index_path? */
1998-09-21 17:41:28 +02:00
pathnode->path.pathtype = T_IndexScan;
pathnode->path.parent = rel;
/*
* There's no point in marking the path with any pathkeys, since
* it will only ever be used as the inner path of a nestloop, and
* so its ordering does not matter.
*/
pathnode->path.pathkeys = NIL;
1998-09-21 17:41:28 +02:00
indexquals = get_actual_clauses(clausegroup);
/* expand special operators to indexquals the executor can handle */
indexquals = expand_indexqual_conditions(indexquals);
/*
* Note that we are making a pathnode for a single-scan indexscan;
* therefore, both indexid and indexqual should be single-element
* lists.
*/
pathnode->indexid = lconsi(index->indexoid, NIL);
pathnode->indexqual = lcons(indexquals, NIL);
/* We don't actually care what order the index scans in ... */
pathnode->indexscandir = NoMovementScanDirection;
/* joinrelids saves the rels needed on the outer side of the join */
pathnode->joinrelids = lfirst(outerrelids_list);
/*
* We must compute the estimated number of output rows for the
* indexscan. This is less than rel->rows because of the
* additional selectivity of the join clauses. Since clausegroup
* may contain both restriction and join clauses, we have to do a
* set union to get the full set of clauses that must be
* considered to compute the correct selectivity. (We can't just
* nconc the two lists; then we might have some restriction
* clauses appearing twice, which'd mislead
* restrictlist_selectivity into double-counting their
* selectivity.)
*/
pathnode->rows = rel->tuples *
restrictlist_selectivity(root,
LispUnion(rel->baserestrictinfo,
clausegroup),
lfirsti(rel->relids));
/* Like costsize.c, force estimate to be at least one row */
if (pathnode->rows < 1.0)
pathnode->rows = 1.0;
cost_index(&pathnode->path, root, rel, index, indexquals, true);
path_list = lappend(path_list, pathnode);
outerrelids_list = lnext(outerrelids_list);
}
return path_list;
}
/****************************************************************************
* ---- ROUTINES TO CHECK OPERANDS ----
****************************************************************************/
/*
* match_index_to_operand()
* Generalized test for a match between an index's key
* and the operand on one side of a restriction or join clause.
* Now check for functional indices as well.
*/
static bool
match_index_to_operand(int indexkey,
Var *operand,
RelOptInfo *rel,
IndexOptInfo *index)
{
/*
* Ignore any RelabelType node above the indexkey. This is needed to
* be able to apply indexscanning in binary-compatible-operator cases.
* Note: we can assume there is at most one RelabelType node;
* eval_const_expressions() will have simplified if more than one.
*/
if (operand && IsA(operand, RelabelType))
operand = (Var *) ((RelabelType *) operand)->arg;
if (index->indproc == InvalidOid)
{
/*
* Simple index.
*/
if (operand && IsA(operand, Var) &&
lfirsti(rel->relids) == operand->varno &&
indexkey == operand->varattno)
return true;
else
return false;
}
/*
* Functional index.
*/
return function_index_operand((Expr *) operand, rel, index);
}
static bool
function_index_operand(Expr *funcOpnd, RelOptInfo *rel, IndexOptInfo *index)
{
int relvarno = lfirsti(rel->relids);
Func *function;
List *funcargs;
int *indexKeys = index->indexkeys;
List *arg;
int i;
/*
* sanity check, make sure we know what we're dealing with here.
*/
if (funcOpnd == NULL || !IsA(funcOpnd, Expr) ||
funcOpnd->opType != FUNC_EXPR ||
funcOpnd->oper == NULL || indexKeys == NULL)
return false;
function = (Func *) funcOpnd->oper;
funcargs = funcOpnd->args;
if (function->funcid != index->indproc)
return false;
/*----------
* Check that the arguments correspond to the same arguments used to
* create the functional index. To do this we must check that
* 1. they refer to the right relation.
* 2. the args have the right attr. numbers in the right order.
* We must ignore RelabelType nodes above the argument Vars in order
* to recognize binary-compatible-function cases correctly.
*----------
*/
i = 0;
foreach(arg, funcargs)
{
Var *var = (Var *) lfirst(arg);
if (var && IsA(var, RelabelType))
var = (Var *) ((RelabelType *) var)->arg;
if (var == NULL || !IsA(var, Var))
return false;
if (indexKeys[i] == 0)
1998-09-01 05:29:17 +02:00
return false;
if (var->varno != relvarno || var->varattno != indexKeys[i])
1998-09-01 05:29:17 +02:00
return false;
i++;
}
if (indexKeys[i] != 0)
return false; /* not enough arguments */
return true;
}
/****************************************************************************
* ---- ROUTINES FOR "SPECIAL" INDEXABLE OPERATORS ----
****************************************************************************/
/*----------
* These routines handle special optimization of operators that can be
* used with index scans even though they are not known to the executor's
* indexscan machinery. The key idea is that these operators allow us
* to derive approximate indexscan qual clauses, such that any tuples
* that pass the operator clause itself must also satisfy the simpler
* indexscan condition(s). Then we can use the indexscan machinery
* to avoid scanning as much of the table as we'd otherwise have to,
* while applying the original operator as a qpqual condition to ensure
* we deliver only the tuples we want. (In essence, we're using a regular
* index as if it were a lossy index.)
*
* An example of what we're doing is
* textfield LIKE 'abc%'
* from which we can generate the indexscanable conditions
* textfield >= 'abc' AND textfield < 'abd'
* which allow efficient scanning of an index on textfield.
* (In reality, character set and collation issues make the transformation
* from LIKE to indexscan limits rather harder than one might think ...
* but that's the basic idea.)
*
* Two routines are provided here, match_special_index_operator() and
* expand_indexqual_conditions(). match_special_index_operator() is
* just an auxiliary function for match_clause_to_indexkey(); after
* the latter fails to recognize a restriction opclause's operator
* as a member of an index's opclass, it asks match_special_index_operator()
* whether the clause should be considered an indexqual anyway.
* expand_indexqual_conditions() converts a list of "raw" indexqual
* conditions (with implicit AND semantics across list elements) into
* a list that the executor can actually handle. For operators that
* are members of the index's opclass this transformation is a no-op,
* but operators recognized by match_special_index_operator() must be
* converted into one or more "regular" indexqual conditions.
*----------
*/
/*
* match_special_index_operator
* Recognize restriction clauses that can be used to generate
* additional indexscanable qualifications.
*
* The given clause is already known to be a binary opclause having
* the form (indexkey OP pseudoconst) or (pseudoconst OP indexkey),
* but the OP proved not to be one of the index's opclass operators.
* Return 'true' if we can do something with it anyway.
*/
static bool
match_special_index_operator(Expr *clause, Oid opclass, Oid relam,
bool indexkey_on_left)
{
bool isIndexable = false;
Var *leftop,
*rightop;
Oid expr_op;
Datum constvalue;
char *patt;
char *prefix;
char *rest;
/*
* Currently, all known special operators require the indexkey on the
* left, but this test could be pushed into the switch statement if
* some are added that do not...
*/
if (!indexkey_on_left)
return false;
/* we know these will succeed */
leftop = get_leftop(clause);
rightop = get_rightop(clause);
expr_op = ((Oper *) clause->oper)->opno;
/* again, required for all current special ops: */
if (!IsA(rightop, Const) ||
((Const *) rightop)->constisnull)
return false;
constvalue = ((Const *) rightop)->constvalue;
switch (expr_op)
{
case OID_TEXT_LIKE_OP:
case OID_BPCHAR_LIKE_OP:
case OID_VARCHAR_LIKE_OP:
case OID_NAME_LIKE_OP:
/* the right-hand const is type text for all of these */
patt = DatumGetCString(DirectFunctionCall1(textout,
constvalue));
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Like,
&prefix, &rest) != Pattern_Prefix_None;
if (prefix)
pfree(prefix);
pfree(patt);
break;
case OID_TEXT_REGEXEQ_OP:
case OID_BPCHAR_REGEXEQ_OP:
case OID_VARCHAR_REGEXEQ_OP:
case OID_NAME_REGEXEQ_OP:
/* the right-hand const is type text for all of these */
patt = DatumGetCString(DirectFunctionCall1(textout,
constvalue));
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Regex,
&prefix, &rest) != Pattern_Prefix_None;
if (prefix)
pfree(prefix);
pfree(patt);
break;
case OID_TEXT_ICREGEXEQ_OP:
case OID_BPCHAR_ICREGEXEQ_OP:
case OID_VARCHAR_ICREGEXEQ_OP:
case OID_NAME_ICREGEXEQ_OP:
/* the right-hand const is type text for all of these */
patt = DatumGetCString(DirectFunctionCall1(textout,
constvalue));
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Regex_IC,
&prefix, &rest) != Pattern_Prefix_None;
if (prefix)
pfree(prefix);
pfree(patt);
break;
}
/* done if the expression doesn't look indexable */
if (!isIndexable)
return false;
/*
* Must also check that index's opclass supports the operators we will
* want to apply. (A hash index, for example, will not support ">=".)
* We cheat a little by not checking for availability of "=" ... any
* index type should support "=", methinks.
*/
switch (expr_op)
{
case OID_TEXT_LIKE_OP:
case OID_TEXT_REGEXEQ_OP:
case OID_TEXT_ICREGEXEQ_OP:
if (!op_class(find_operator(">=", TEXTOID), opclass, relam) ||
!op_class(find_operator("<", TEXTOID), opclass, relam))
isIndexable = false;
break;
case OID_BPCHAR_LIKE_OP:
case OID_BPCHAR_REGEXEQ_OP:
case OID_BPCHAR_ICREGEXEQ_OP:
if (!op_class(find_operator(">=", BPCHAROID), opclass, relam) ||
!op_class(find_operator("<", BPCHAROID), opclass, relam))
isIndexable = false;
break;
case OID_VARCHAR_LIKE_OP:
case OID_VARCHAR_REGEXEQ_OP:
case OID_VARCHAR_ICREGEXEQ_OP:
if (!op_class(find_operator(">=", VARCHAROID), opclass, relam) ||
!op_class(find_operator("<", VARCHAROID), opclass, relam))
isIndexable = false;
break;
case OID_NAME_LIKE_OP:
case OID_NAME_REGEXEQ_OP:
case OID_NAME_ICREGEXEQ_OP:
if (!op_class(find_operator(">=", NAMEOID), opclass, relam) ||
!op_class(find_operator("<", NAMEOID), opclass, relam))
isIndexable = false;
break;
}
return isIndexable;
}
/*
* expand_indexqual_conditions
* Given a list of (implicitly ANDed) indexqual clauses,
* expand any "special" index operators into clauses that the indexscan
* machinery will know what to do with. Clauses that were not
* recognized by match_special_index_operator() must be passed through
* unchanged.
*/
List *
expand_indexqual_conditions(List *indexquals)
{
List *resultquals = NIL;
List *q;
foreach(q, indexquals)
{
Expr *clause = (Expr *) lfirst(q);
/* we know these will succeed */
Var *leftop = get_leftop(clause);
Var *rightop = get_rightop(clause);
Oid expr_op = ((Oper *) clause->oper)->opno;
Datum constvalue;
char *patt;
char *prefix;
char *rest;
Pattern_Prefix_Status pstatus;
switch (expr_op)
{
/*
* LIKE and regex operators are not members of any index
* opclass, so if we find one in an indexqual list we can
* assume that it was accepted by
* match_special_index_operator().
*/
case OID_TEXT_LIKE_OP:
case OID_BPCHAR_LIKE_OP:
case OID_VARCHAR_LIKE_OP:
case OID_NAME_LIKE_OP:
/* the right-hand const is type text for all of these */
constvalue = ((Const *) rightop)->constvalue;
patt = DatumGetCString(DirectFunctionCall1(textout,
constvalue));
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like,
&prefix, &rest);
resultquals = nconc(resultquals,
prefix_quals(leftop, expr_op,
prefix, pstatus));
if (prefix)
pfree(prefix);
pfree(patt);
break;
case OID_TEXT_REGEXEQ_OP:
case OID_BPCHAR_REGEXEQ_OP:
case OID_VARCHAR_REGEXEQ_OP:
case OID_NAME_REGEXEQ_OP:
/* the right-hand const is type text for all of these */
constvalue = ((Const *) rightop)->constvalue;
patt = DatumGetCString(DirectFunctionCall1(textout,
constvalue));
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex,
&prefix, &rest);
resultquals = nconc(resultquals,
prefix_quals(leftop, expr_op,
prefix, pstatus));
if (prefix)
pfree(prefix);
pfree(patt);
break;
case OID_TEXT_ICREGEXEQ_OP:
case OID_BPCHAR_ICREGEXEQ_OP:
case OID_VARCHAR_ICREGEXEQ_OP:
case OID_NAME_ICREGEXEQ_OP:
/* the right-hand const is type text for all of these */
constvalue = ((Const *) rightop)->constvalue;
patt = DatumGetCString(DirectFunctionCall1(textout,
constvalue));
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex_IC,
&prefix, &rest);
resultquals = nconc(resultquals,
prefix_quals(leftop, expr_op,
prefix, pstatus));
if (prefix)
pfree(prefix);
pfree(patt);
break;
default:
resultquals = lappend(resultquals, clause);
break;
}
}
return resultquals;
}
/*
* Given a fixed prefix that all the "leftop" values must have,
* generate suitable indexqual condition(s). expr_op is the original
* LIKE or regex operator; we use it to deduce the appropriate comparison
* operators.
*/
static List *
prefix_quals(Var *leftop, Oid expr_op,
char *prefix, Pattern_Prefix_Status pstatus)
{
List *result;
Oid datatype;
Oid oproid;
Const *con;
Oper *op;
Expr *expr;
char *greaterstr;
Assert(pstatus != Pattern_Prefix_None);
switch (expr_op)
{
case OID_TEXT_LIKE_OP:
case OID_TEXT_REGEXEQ_OP:
case OID_TEXT_ICREGEXEQ_OP:
datatype = TEXTOID;
break;
case OID_BPCHAR_LIKE_OP:
case OID_BPCHAR_REGEXEQ_OP:
case OID_BPCHAR_ICREGEXEQ_OP:
datatype = BPCHAROID;
break;
case OID_VARCHAR_LIKE_OP:
case OID_VARCHAR_REGEXEQ_OP:
case OID_VARCHAR_ICREGEXEQ_OP:
datatype = VARCHAROID;
break;
case OID_NAME_LIKE_OP:
case OID_NAME_REGEXEQ_OP:
case OID_NAME_ICREGEXEQ_OP:
datatype = NAMEOID;
break;
default:
elog(ERROR, "prefix_quals: unexpected operator %u", expr_op);
return NIL;
}
/*
* If we found an exact-match pattern, generate an "=" indexqual.
*/
if (pstatus == Pattern_Prefix_Exact)
{
oproid = find_operator("=", datatype);
if (oproid == InvalidOid)
elog(ERROR, "prefix_quals: no = operator for type %u", datatype);
con = string_to_const(prefix, datatype);
op = makeOper(oproid, InvalidOid, BOOLOID);
expr = make_opclause(op, leftop, (Var *) con);
result = lcons(expr, NIL);
return result;
}
/*
* Otherwise, we have a nonempty required prefix of the values.
*
* We can always say "x >= prefix".
*/
oproid = find_operator(">=", datatype);
if (oproid == InvalidOid)
elog(ERROR, "prefix_quals: no >= operator for type %u", datatype);
con = string_to_const(prefix, datatype);
op = makeOper(oproid, InvalidOid, BOOLOID);
expr = make_opclause(op, leftop, (Var *) con);
result = lcons(expr, NIL);
/*
* If we can create a string larger than the prefix, say "x <
* greaterstr".
*/
greaterstr = make_greater_string(prefix, datatype);
if (greaterstr)
{
oproid = find_operator("<", datatype);
if (oproid == InvalidOid)
elog(ERROR, "prefix_quals: no < operator for type %u", datatype);
con = string_to_const(greaterstr, datatype);
op = makeOper(oproid, InvalidOid, BOOLOID);
expr = make_opclause(op, leftop, (Var *) con);
result = lappend(result, expr);
pfree(greaterstr);
}
return result;
}
/*
* Handy subroutines for match_special_index_operator() and friends.
*/
/* See if there is a binary op of the given name for the given datatype */
static Oid
find_operator(const char *opname, Oid datatype)
{
HeapTuple optup;
optup = SearchSysCacheTuple(OPERNAME,
PointerGetDatum(opname),
ObjectIdGetDatum(datatype),
ObjectIdGetDatum(datatype),
CharGetDatum('b'));
if (!HeapTupleIsValid(optup))
return InvalidOid;
return optup->t_data->t_oid;
}
/*
* Generate a Datum of the appropriate type from a C string.
* Note that all of the supported types are pass-by-ref, so the
* returned value should be pfree'd if no longer needed.
*/
static Datum
string_to_datum(const char *str, Oid datatype)
{
/*
* We cheat a little by assuming that textin() will do for bpchar and
* varchar constants too...
*/
if (datatype == NAMEOID)
return DirectFunctionCall1(namein, CStringGetDatum(str));
else
return DirectFunctionCall1(textin, CStringGetDatum(str));
}
/*
* Generate a Const node of the appropriate type from a C string.
*/
static Const *
string_to_const(const char *str, Oid datatype)
{
Datum conval = string_to_datum(str, datatype);
return makeConst(datatype, ((datatype == NAMEOID) ? NAMEDATALEN : -1),
conval, false, false, false, false);
}