postgresql/src/include/access/hash.h

373 lines
14 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* hash.h
* header file for postgres hash access method implementation
*
*
* Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
2010-09-20 22:08:53 +02:00
* src/include/access/hash.h
*
* NOTES
* modeled after Margo Seltzer's hash implementation for unix.
*
*-------------------------------------------------------------------------
*/
#ifndef HASH_H
#define HASH_H
#include "access/amapi.h"
#include "access/itup.h"
1999-07-16 19:07:40 +02:00
#include "access/sdir.h"
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
#include "access/xlogreader.h"
#include "fmgr.h"
#include "lib/stringinfo.h"
#include "storage/bufmgr.h"
#include "storage/lockdefs.h"
#include "utils/relcache.h"
/*
* Mapping from hash bucket number to physical block number of bucket's
* starting page. Beware of multiple evaluations of argument!
*/
typedef uint32 Bucket;
#define BUCKET_TO_BLKNO(metap,B) \
((BlockNumber) ((B) + ((B) ? (metap)->hashm_spares[_hash_log2((B)+1)-1] : 0)) + 1)
/*
* Special space for hash index pages.
*
* hasho_flag tells us which type of page we're looking at. For
* example, knowing overflow pages from bucket pages is necessary
* information when you're deleting tuples from a page. If all the
* tuples are deleted from an overflow page, the overflow is made
* available to other buckets by calling _hash_freeovflpage(). If all
* the tuples are deleted from a bucket page, no additional action is
* necessary.
*/
#define LH_UNUSED_PAGE (0)
#define LH_OVERFLOW_PAGE (1 << 0)
#define LH_BUCKET_PAGE (1 << 1)
#define LH_BITMAP_PAGE (1 << 2)
#define LH_META_PAGE (1 << 3)
typedef struct HashPageOpaqueData
{
BlockNumber hasho_prevblkno; /* previous ovfl (or bucket) blkno */
BlockNumber hasho_nextblkno; /* next ovfl blkno */
Bucket hasho_bucket; /* bucket number this pg belongs to */
uint16 hasho_flag; /* page type code, see above */
uint16 hasho_page_id; /* for identification of hash indexes */
} HashPageOpaqueData;
typedef HashPageOpaqueData *HashPageOpaque;
/*
* The page ID is for the convenience of pg_filedump and similar utilities,
* which otherwise would have a hard time telling pages of different index
* types apart. It should be the last 2 bytes on the page. This is more or
* less "free" due to alignment considerations.
*/
#define HASHO_PAGE_ID 0xFF80
/*
* HashScanOpaqueData is private state for a hash index scan.
*/
typedef struct HashScanOpaqueData
{
/* Hash value of the scan key, ie, the hash key we seek */
uint32 hashso_sk_hash;
/*
2004-08-29 07:07:03 +02:00
* By definition, a hash scan should be examining only one bucket. We
* record the bucket number here as soon as it is known.
*/
Bucket hashso_bucket;
bool hashso_bucket_valid;
2004-08-29 07:07:03 +02:00
/*
* If we have a share lock on the bucket, we record it here. When
* hashso_bucket_blkno is zero, we have no such lock.
*/
2004-08-29 07:07:03 +02:00
BlockNumber hashso_bucket_blkno;
/*
* We also want to remember which buffer we're currently examining in the
* scan. We keep the buffer pinned (but not locked) across hashgettuple
2005-10-15 04:49:52 +02:00
* calls, in order to avoid doing a ReadBuffer() for every tuple in the
* index.
*/
Buffer hashso_curbuf;
/* Current position of the scan, as an index TID */
ItemPointerData hashso_curpos;
/* Current position of the scan, as a heap TID */
ItemPointerData hashso_heappos;
} HashScanOpaqueData;
typedef HashScanOpaqueData *HashScanOpaque;
/*
* Definitions for metapage.
*/
#define HASH_METAPAGE 0 /* metapage is always block 0 */
#define HASH_MAGIC 0x6440640
#define HASH_VERSION 2 /* 2 signifies only hash key value is stored */
/*
* Spares[] holds the number of overflow pages currently allocated at or
* before a certain splitpoint. For example, if spares[3] = 7 then there are
* 7 ovflpages before splitpoint 3 (compare BUCKET_TO_BLKNO macro). The
* value in spares[ovflpoint] increases as overflow pages are added at the
* end of the index. Once ovflpoint increases (ie, we have actually allocated
* the bucket pages belonging to that splitpoint) the number of spares at the
* prior splitpoint cannot change anymore.
*
* ovflpages that have been recycled for reuse can be found by looking at
* bitmaps that are stored within ovflpages dedicated for the purpose.
* The blknos of these bitmap pages are kept in bitmaps[]; nmaps is the
* number of currently existing bitmaps.
*
* The limitation on the size of spares[] comes from the fact that there's
* no point in having more than 2^32 buckets with only uint32 hashcodes.
* There is no particular upper limit on the size of mapp[], other than
* needing to fit into the metapage. (With 8K block size, 128 bitmaps
* limit us to 64 Gb of overflow space...)
*/
#define HASH_MAX_SPLITPOINTS 32
#define HASH_MAX_BITMAPS 128
typedef struct HashMetaPageData
{
uint32 hashm_magic; /* magic no. for hash tables */
uint32 hashm_version; /* version ID */
double hashm_ntuples; /* number of tuples stored in the table */
uint16 hashm_ffactor; /* target fill factor (tuples/bucket) */
uint16 hashm_bsize; /* index page size (bytes) */
2005-10-15 04:49:52 +02:00
uint16 hashm_bmsize; /* bitmap array size (bytes) - must be a power
* of 2 */
uint16 hashm_bmshift; /* log2(bitmap array size in BITS) */
uint32 hashm_maxbucket; /* ID of maximum bucket in use */
uint32 hashm_highmask; /* mask to modulo into entire table */
uint32 hashm_lowmask; /* mask to modulo into lower half of table */
uint32 hashm_ovflpoint;/* splitpoint from which ovflpgs being
* allocated */
uint32 hashm_firstfree; /* lowest-number free ovflpage (bit#) */
uint32 hashm_nmaps; /* number of bitmap pages */
RegProcedure hashm_procid; /* hash procedure id from pg_proc */
2004-08-29 07:07:03 +02:00
uint32 hashm_spares[HASH_MAX_SPLITPOINTS]; /* spare pages before
* each splitpoint */
BlockNumber hashm_mapp[HASH_MAX_BITMAPS]; /* blknos of ovfl bitmaps */
} HashMetaPageData;
typedef HashMetaPageData *HashMetaPage;
/*
* Maximum size of a hash index item (it's okay to have only one per page)
*/
#define HashMaxItemSize(page) \
MAXALIGN_DOWN(PageGetPageSize(page) - \
SizeOfPageHeaderData - \
sizeof(ItemIdData) - \
MAXALIGN(sizeof(HashPageOpaqueData)))
#define HASH_MIN_FILLFACTOR 10
#define HASH_DEFAULT_FILLFACTOR 75
/*
* Constants
*/
#define BYTE_TO_BIT 3 /* 2^3 bits/byte */
#define ALL_SET ((uint32) ~0)
/*
* Bitmap pages do not contain tuples. They do contain the standard
* page headers and trailers; however, everything in between is a
* giant bit array. The number of bits that fit on a page obviously
* depends on the page size and the header/trailer overhead. We require
* the number of bits per page to be a power of 2.
*/
#define BMPGSZ_BYTE(metap) ((metap)->hashm_bmsize)
#define BMPGSZ_BIT(metap) ((metap)->hashm_bmsize << BYTE_TO_BIT)
#define BMPG_SHIFT(metap) ((metap)->hashm_bmshift)
#define BMPG_MASK(metap) (BMPGSZ_BIT(metap) - 1)
#define HashPageGetBitmap(page) \
((uint32 *) PageGetContents(page))
#define HashGetMaxBitmapSize(page) \
(PageGetPageSize((Page) page) - \
(MAXALIGN(SizeOfPageHeaderData) + MAXALIGN(sizeof(HashPageOpaqueData))))
#define HashPageGetMeta(page) \
((HashMetaPage) PageGetContents(page))
/*
* The number of bits in an ovflpage bitmap word.
*/
#define BITS_PER_MAP 32 /* Number of bits in uint32 */
/* Given the address of the beginning of a bit map, clear/set the nth bit */
#define CLRBIT(A, N) ((A)[(N)/BITS_PER_MAP] &= ~(1<<((N)%BITS_PER_MAP)))
#define SETBIT(A, N) ((A)[(N)/BITS_PER_MAP] |= (1<<((N)%BITS_PER_MAP)))
#define ISSET(A, N) ((A)[(N)/BITS_PER_MAP] & (1<<((N)%BITS_PER_MAP)))
/*
* page-level and high-level locking modes (see README)
*/
#define HASH_READ BUFFER_LOCK_SHARE
#define HASH_WRITE BUFFER_LOCK_EXCLUSIVE
#define HASH_NOLOCK (-1)
#define HASH_SHARE ShareLock
#define HASH_EXCLUSIVE ExclusiveLock
/*
* Strategy number. There's only one valid strategy for hashing: equality.
*/
#define HTEqualStrategyNumber 1
#define HTMaxStrategyNumber 1
/*
* When a new operator class is declared, we require that the user supply
* us with an amproc procudure for hashing a key of the new type.
* Since we only have one such proc in amproc, it's number 1.
*/
#define HASHPROC 1
#define HASHNProcs 1
/* public routines */
extern Datum hashhandler(PG_FUNCTION_ARGS);
extern IndexBuildResult *hashbuild(Relation heap, Relation index,
struct IndexInfo *indexInfo);
extern void hashbuildempty(Relation index);
extern bool hashinsert(Relation rel, Datum *values, bool *isnull,
ItemPointer ht_ctid, Relation heapRel,
IndexUniqueCheck checkUnique);
extern bool hashgettuple(IndexScanDesc scan, ScanDirection dir);
extern int64 hashgetbitmap(IndexScanDesc scan, TIDBitmap *tbm);
extern IndexScanDesc hashbeginscan(Relation rel, int nkeys, int norderbys);
extern void hashrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
ScanKey orderbys, int norderbys);
extern void hashendscan(IndexScanDesc scan);
extern IndexBulkDeleteResult *hashbulkdelete(IndexVacuumInfo *info,
IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback,
void *callback_state);
extern IndexBulkDeleteResult *hashvacuumcleanup(IndexVacuumInfo *info,
IndexBulkDeleteResult *stats);
extern bytea *hashoptions(Datum reloptions, bool validate);
extern bool hashvalidate(Oid opclassoid);
/*
* Datatype-specific hash functions in hashfunc.c.
*
* These support both hash indexes and hash joins.
*
* NOTE: some of these are also used by catcache operations, without
* any direct connection to hash indexes. Also, the common hash_any
* routine is also used by dynahash tables.
*/
extern Datum hashchar(PG_FUNCTION_ARGS);
extern Datum hashint2(PG_FUNCTION_ARGS);
extern Datum hashint4(PG_FUNCTION_ARGS);
extern Datum hashint8(PG_FUNCTION_ARGS);
extern Datum hashoid(PG_FUNCTION_ARGS);
extern Datum hashenum(PG_FUNCTION_ARGS);
extern Datum hashfloat4(PG_FUNCTION_ARGS);
extern Datum hashfloat8(PG_FUNCTION_ARGS);
extern Datum hashoidvector(PG_FUNCTION_ARGS);
extern Datum hashint2vector(PG_FUNCTION_ARGS);
extern Datum hashname(PG_FUNCTION_ARGS);
extern Datum hashtext(PG_FUNCTION_ARGS);
extern Datum hashvarlena(PG_FUNCTION_ARGS);
extern Datum hash_any(register const unsigned char *k, register int keylen);
extern Datum hash_uint32(uint32 k);
/* private routines */
/* hashinsert.c */
extern void _hash_doinsert(Relation rel, IndexTuple itup);
extern OffsetNumber _hash_pgaddtup(Relation rel, Buffer buf,
Size itemsize, IndexTuple itup);
/* hashovfl.c */
extern Buffer _hash_addovflpage(Relation rel, Buffer metabuf, Buffer buf);
extern BlockNumber _hash_freeovflpage(Relation rel, Buffer ovflbuf,
2007-11-15 22:14:46 +01:00
BufferAccessStrategy bstrategy);
extern void _hash_initbitmap(Relation rel, HashMetaPage metap,
BlockNumber blkno, ForkNumber forkNum);
extern void _hash_squeezebucket(Relation rel,
2007-11-15 22:14:46 +01:00
Bucket bucket, BlockNumber bucket_blkno,
BufferAccessStrategy bstrategy);
/* hashpage.c */
extern void _hash_getlock(Relation rel, BlockNumber whichlock, int access);
extern bool _hash_try_getlock(Relation rel, BlockNumber whichlock, int access);
extern void _hash_droplock(Relation rel, BlockNumber whichlock, int access);
extern Buffer _hash_getbuf(Relation rel, BlockNumber blkno,
2007-11-15 22:14:46 +01:00
int access, int flags);
extern Buffer _hash_getinitbuf(Relation rel, BlockNumber blkno);
extern Buffer _hash_getnewbuf(Relation rel, BlockNumber blkno,
ForkNumber forkNum);
extern Buffer _hash_getbuf_with_strategy(Relation rel, BlockNumber blkno,
2007-11-15 22:14:46 +01:00
int access, int flags,
BufferAccessStrategy bstrategy);
extern void _hash_relbuf(Relation rel, Buffer buf);
extern void _hash_dropbuf(Relation rel, Buffer buf);
extern void _hash_wrtbuf(Relation rel, Buffer buf);
extern void _hash_chgbufaccess(Relation rel, Buffer buf, int from_access,
int to_access);
extern uint32 _hash_metapinit(Relation rel, double num_tuples,
ForkNumber forkNum);
extern void _hash_pageinit(Page page, Size size);
extern void _hash_expandtable(Relation rel, Buffer metabuf);
/* hashscan.c */
extern void _hash_regscan(IndexScanDesc scan);
extern void _hash_dropscan(IndexScanDesc scan);
extern bool _hash_has_active_scan(Relation rel, Bucket bucket);
extern void ReleaseResources_hash(void);
/* hashsearch.c */
extern bool _hash_next(IndexScanDesc scan, ScanDirection dir);
extern bool _hash_first(IndexScanDesc scan, ScanDirection dir);
extern bool _hash_step(IndexScanDesc scan, Buffer *bufP, ScanDirection dir);
/* hashsort.c */
typedef struct HSpool HSpool; /* opaque struct in hashsort.c */
extern HSpool *_h_spoolinit(Relation heap, Relation index, uint32 num_buckets);
extern void _h_spooldestroy(HSpool *hspool);
extern void _h_spool(HSpool *hspool, ItemPointer self,
2015-05-24 03:35:49 +02:00
Datum *values, bool *isnull);
extern void _h_indexbuild(HSpool *hspool);
/* hashutil.c */
extern bool _hash_checkqual(IndexScanDesc scan, IndexTuple itup);
extern uint32 _hash_datum2hashkey(Relation rel, Datum key);
extern uint32 _hash_datum2hashkey_type(Relation rel, Datum key, Oid keytype);
extern Bucket _hash_hashkey2bucket(uint32 hashkey, uint32 maxbucket,
2004-08-29 07:07:03 +02:00
uint32 highmask, uint32 lowmask);
extern uint32 _hash_log2(uint32 num);
extern void _hash_checkpage(Relation rel, Buffer buf, int flags);
extern uint32 _hash_get_indextuple_hashkey(IndexTuple itup);
extern IndexTuple _hash_form_tuple(Relation index,
Datum *values, bool *isnull);
extern OffsetNumber _hash_binsearch(Page page, uint32 hash_value);
extern OffsetNumber _hash_binsearch_last(Page page, uint32 hash_value);
/* hash.c */
Revamp the WAL record format. Each WAL record now carries information about the modified relation and block(s) in a standardized format. That makes it easier to write tools that need that information, like pg_rewind, prefetching the blocks to speed up recovery, etc. There's a whole new API for building WAL records, replacing the XLogRecData chains used previously. The new API consists of XLogRegister* functions, which are called for each buffer and chunk of data that is added to the record. The new API also gives more control over when a full-page image is written, by passing flags to the XLogRegisterBuffer function. This also simplifies the XLogReadBufferForRedo() calls. The function can dig the relation and block number from the WAL record, so they no longer need to be passed as arguments. For the convenience of redo routines, XLogReader now disects each WAL record after reading it, copying the main data part and the per-block data into MAXALIGNed buffers. The data chunks are not aligned within the WAL record, but the redo routines can assume that the pointers returned by XLogRecGet* functions are. Redo routines are now passed the XLogReaderState, which contains the record in the already-disected format, instead of the plain XLogRecord. The new record format also makes the fixed size XLogRecord header smaller, by removing the xl_len field. The length of the "main data" portion is now stored at the end of the WAL record, and there's a separate header after XLogRecord for it. The alignment padding at the end of XLogRecord is also removed. This compansates for the fact that the new format would otherwise be more bulky than the old format. Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera, Fujii Masao.
2014-11-20 16:56:26 +01:00
extern void hash_redo(XLogReaderState *record);
extern void hash_desc(StringInfo buf, XLogReaderState *record);
extern const char *hash_identify(uint8 info);
#endif /* HASH_H */