postgresql/src/backend/utils/adt/selfuncs.c

1967 lines
49 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* selfuncs.c
* Selectivity functions and index cost estimation functions for
* standard operators and index access methods.
*
* Selectivity routines are registered in the pg_operator catalog
* in the "oprrest" and "oprjoin" attributes.
*
* Index cost functions are registered in the pg_am catalog
* in the "amcostestimate" attribute.
*
* Portions Copyright (c) 1996-2000, PostgreSQL, Inc
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/utils/adt/selfuncs.c,v 1.72 2000/06/14 18:17:45 petere Exp $
*
*-------------------------------------------------------------------------
*/
1996-11-03 07:54:38 +01:00
#include "postgres.h"
#include <ctype.h>
#include <math.h>
1999-07-16 07:00:38 +02:00
#include "access/heapam.h"
#include "catalog/catname.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_statistic.h"
#include "catalog/pg_type.h"
#include "mb/pg_wchar.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "parser/parse_func.h"
#include "parser/parse_oper.h"
1999-07-16 07:00:38 +02:00
#include "utils/builtins.h"
#include "utils/int8.h"
1999-07-16 07:00:38 +02:00
#include "utils/lsyscache.h"
#include "utils/syscache.h"
/* N is not a valid var/constant or relation id */
#define NONVALUE(N) ((N) == 0)
/* default selectivity estimate for equalities such as "A = b" */
#define DEFAULT_EQ_SEL 0.01
/* default selectivity estimate for inequalities such as "A < b" */
#define DEFAULT_INEQ_SEL (1.0 / 3.0)
/* default selectivity estimate for pattern-match operators such as LIKE */
#define DEFAULT_MATCH_SEL 0.01
/* "fudge factor" for estimating frequency of not-most-common values */
#define NOT_MOST_COMMON_RATIO 0.1
static bool convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
Datum lobound, Datum hibound, Oid boundstypid,
double *scaledlobound, double *scaledhibound);
static double convert_numeric_to_scalar(Datum value, Oid typid);
static void convert_string_to_scalar(unsigned char *value,
double *scaledvalue,
unsigned char *lobound,
double *scaledlobound,
unsigned char *hibound,
double *scaledhibound);
static double convert_one_string_to_scalar(unsigned char *value,
int rangelo, int rangehi);
static unsigned char * convert_string_datum(Datum value, Oid typid);
static double convert_timevalue_to_scalar(Datum value, Oid typid);
static void getattproperties(Oid relid, AttrNumber attnum,
Oid *typid,
int *typlen,
bool *typbyval,
int32 *typmod);
static bool getattstatistics(Oid relid, AttrNumber attnum,
Oid typid, int32 typmod,
double *nullfrac,
double *commonfrac,
Datum *commonval,
Datum *loval,
Datum *hival);
static Selectivity prefix_selectivity(char *prefix,
Oid relid,
AttrNumber attno,
Oid datatype);
static Selectivity pattern_selectivity(char *patt, Pattern_Type ptype);
static bool string_lessthan(const char *str1, const char *str2,
Oid datatype);
static Oid find_operator(const char *opname, Oid datatype);
static Datum string_to_datum(const char *str, Oid datatype);
/*
* eqsel - Selectivity of "=" for any data types.
*
* Note: this routine is also used to estimate selectivity for some
* operators that are not "=" but have comparable selectivity behavior,
* such as "~=" (geometric approximate-match). Even for "=", we must
* keep in mind that the left and right datatypes may differ, so the type
* of the given constant "value" may be different from the type of the
* attribute.
*/
Datum
eqsel(PG_FUNCTION_ARGS)
{
Oid opid = PG_GETARG_OID(0);
Oid relid = PG_GETARG_OID(1);
AttrNumber attno = PG_GETARG_INT16(2);
Datum value = PG_GETARG_DATUM(3);
int32 flag = PG_GETARG_INT32(4);
float8 result;
if (NONVALUE(attno) || NONVALUE(relid))
result = DEFAULT_EQ_SEL;
else
{
Oid typid;
int typlen;
bool typbyval;
int32 typmod;
double nullfrac;
double commonfrac;
Datum commonval;
double selec;
/* get info about the attribute */
getattproperties(relid, attno,
&typid, &typlen, &typbyval, &typmod);
/* get stats for the attribute, if available */
if (getattstatistics(relid, attno, typid, typmod,
&nullfrac, &commonfrac, &commonval,
NULL, NULL))
{
if (flag & SEL_CONSTANT)
{
/*
* Is the constant "=" to the column's most common value?
* (Although the operator may not really be "=", we will
* assume that seeing whether it returns TRUE for the most
* common value is useful information. If you don't like
* it, maybe you shouldn't be using eqsel for your
* operator...)
*/
RegProcedure eqproc = get_opcode(opid);
bool mostcommon;
if (eqproc == (RegProcedure) NULL)
elog(ERROR, "eqsel: no procedure for operator %u",
opid);
/* be careful to apply operator right way 'round */
if (flag & SEL_RIGHT)
mostcommon = DatumGetBool(OidFunctionCall2(eqproc,
commonval,
value));
else
mostcommon = DatumGetBool(OidFunctionCall2(eqproc,
value,
commonval));
if (mostcommon)
{
/*
* Constant is "=" to the most common value. We know
* selectivity exactly (or as exactly as VACUUM could
* calculate it, anyway).
*/
selec = commonfrac;
}
else
{
/*
* Comparison is against a constant that is neither
* the most common value nor null. Its selectivity
* cannot be more than this:
*/
selec = 1.0 - commonfrac - nullfrac;
if (selec > commonfrac)
selec = commonfrac;
/*
* and in fact it's probably less, so we should apply
* a fudge factor. The only case where we don't is
* for a boolean column, where indeed we have
* estimated the less-common value's frequency
* exactly!
*/
if (typid != BOOLOID)
selec *= NOT_MOST_COMMON_RATIO;
}
}
else
{
/*
* Search is for a value that we do not know a priori, but
* we will assume it is not NULL. Selectivity cannot be
* more than this:
*/
selec = 1.0 - nullfrac;
if (selec > commonfrac)
selec = commonfrac;
/*
* and in fact it's probably less, so apply a fudge
* factor.
*/
selec *= NOT_MOST_COMMON_RATIO;
}
/* result should be in range, but make sure... */
if (selec < 0.0)
selec = 0.0;
else if (selec > 1.0)
selec = 1.0;
if (!typbyval)
pfree(DatumGetPointer(commonval));
}
else
{
/*
* No VACUUM ANALYZE stats available, so make a guess using
* the disbursion stat (if we have that, which is unlikely for
* a normal attribute; but for a system attribute we may be
* able to estimate it).
*/
selec = get_attdisbursion(relid, attno, 0.01);
}
result = (float8) selec;
}
PG_RETURN_FLOAT8(result);
}
/*
* neqsel - Selectivity of "!=" for any data types.
*
* This routine is also used for some operators that are not "!="
* but have comparable selectivity behavior. See above comments
* for eqsel().
*/
Datum
neqsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(eqsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* scalarltsel - Selectivity of "<" (also "<=") for scalars.
*
* This routine works for any datatype (or pair of datatypes) known to
* convert_to_scalar(). If it is applied to some other datatype,
* it will return a default estimate.
*/
Datum
scalarltsel(PG_FUNCTION_ARGS)
{
Oid opid = PG_GETARG_OID(0);
Oid relid = PG_GETARG_OID(1);
AttrNumber attno = PG_GETARG_INT16(2);
Datum value = PG_GETARG_DATUM(3);
int32 flag = PG_GETARG_INT32(4);
float8 result;
if (!(flag & SEL_CONSTANT) || NONVALUE(attno) || NONVALUE(relid))
result = DEFAULT_INEQ_SEL;
else
{
HeapTuple oprtuple;
Oid ltype,
rtype,
contype;
Oid typid;
int typlen;
bool typbyval;
int32 typmod;
Datum hival,
loval;
double val,
high,
low,
numerator,
denominator;
/*
* Get left and right datatypes of the operator so we know what
* type the constant is.
*/
oprtuple = get_operator_tuple(opid);
if (!HeapTupleIsValid(oprtuple))
elog(ERROR, "scalarltsel: no tuple for operator %u", opid);
ltype = ((Form_pg_operator) GETSTRUCT(oprtuple))->oprleft;
rtype = ((Form_pg_operator) GETSTRUCT(oprtuple))->oprright;
contype = (flag & SEL_RIGHT) ? rtype : ltype;
/* Now get info and stats about the attribute */
getattproperties(relid, attno,
&typid, &typlen, &typbyval, &typmod);
if (!getattstatistics(relid, attno, typid, typmod,
NULL, NULL, NULL,
&loval, &hival))
{
/* no stats available, so default result */
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
/* Convert the values to a uniform comparison scale. */
if (!convert_to_scalar(value, contype, &val,
loval, hival, typid,
&low, &high))
{
/*
* Ideally we'd produce an error here, on the grounds that the
* given operator shouldn't have scalarltsel registered as its
* selectivity func unless we can deal with its operand types.
* But currently, all manner of stuff is invoking scalarltsel,
* so give a default estimate until that can be fixed.
*/
if (!typbyval)
{
pfree(DatumGetPointer(hival));
pfree(DatumGetPointer(loval));
}
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
/* release temp storage if needed */
if (!typbyval)
{
pfree(DatumGetPointer(hival));
pfree(DatumGetPointer(loval));
}
if (high <= low)
{
/*
* If we trusted the stats fully, we could return a small or
* large selec depending on which side of the single data
* point the constant is on. But it seems better to assume
* that the stats are wrong and return a default...
*/
result = DEFAULT_INEQ_SEL;
}
else if (val < low || val > high)
{
/*
* If given value is outside the statistical range, return a
* small or large value; but not 0.0/1.0 since there is a
* chance the stats are out of date.
*/
if (flag & SEL_RIGHT)
result = (val < low) ? 0.001 : 0.999;
else
result = (val < low) ? 0.999 : 0.001;
}
else
{
denominator = high - low;
if (flag & SEL_RIGHT)
numerator = val - low;
else
numerator = high - val;
result = numerator / denominator;
}
}
PG_RETURN_FLOAT8(result);
}
/*
* scalargtsel - Selectivity of ">" (also ">=") for integers.
*
* See above comments for scalarltsel.
*/
Datum
scalargtsel(PG_FUNCTION_ARGS)
{
float8 result;
/*
* Compute selectivity of "<", then invert --- but only if we were
* able to produce a non-default estimate.
*/
result = DatumGetFloat8(scalarltsel(fcinfo));
if (result != DEFAULT_INEQ_SEL)
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* patternsel - Generic code for pattern-match selectivity.
*/
static Datum
patternsel(PG_FUNCTION_ARGS, Pattern_Type ptype)
{
Oid opid = PG_GETARG_OID(0);
Oid relid = PG_GETARG_OID(1);
AttrNumber attno = PG_GETARG_INT16(2);
Datum value = PG_GETARG_DATUM(3);
int32 flag = PG_GETARG_INT32(4);
float8 result;
/* Must have a constant for the pattern, or cannot learn anything */
if ((flag & (SEL_CONSTANT | SEL_RIGHT)) != (SEL_CONSTANT | SEL_RIGHT))
result = DEFAULT_MATCH_SEL;
else
{
HeapTuple oprtuple;
Oid ltype,
rtype;
char *patt;
Pattern_Prefix_Status pstatus;
char *prefix;
char *rest;
/*
* Get left and right datatypes of the operator so we know what
* type the attribute is.
*/
oprtuple = get_operator_tuple(opid);
if (!HeapTupleIsValid(oprtuple))
elog(ERROR, "patternsel: no tuple for operator %u", opid);
ltype = ((Form_pg_operator) GETSTRUCT(oprtuple))->oprleft;
rtype = ((Form_pg_operator) GETSTRUCT(oprtuple))->oprright;
/* the right-hand const is type text for all supported operators */
Assert(rtype == TEXTOID);
patt = textout((text *) DatumGetPointer(value));
/* divide pattern into fixed prefix and remainder */
pstatus = pattern_fixed_prefix(patt, ptype, &prefix, &rest);
if (pstatus == Pattern_Prefix_Exact)
{
/* Pattern specifies an exact match, so pretend operator is '=' */
Oid eqopr = find_operator("=", ltype);
Datum eqcon;
if (eqopr == InvalidOid)
elog(ERROR, "patternsel: no = operator for type %u", ltype);
eqcon = string_to_datum(prefix, ltype);
result = DatumGetFloat8(DirectFunctionCall5(eqsel,
ObjectIdGetDatum(eqopr),
ObjectIdGetDatum(relid),
Int16GetDatum(attno),
eqcon,
Int32GetDatum(SEL_CONSTANT|SEL_RIGHT)));
pfree(DatumGetPointer(eqcon));
}
else
{
/*
* Not exact-match pattern. We estimate selectivity of the
* fixed prefix and remainder of pattern separately, then
* combine the two.
*/
Selectivity prefixsel;
Selectivity restsel;
Selectivity selec;
if (pstatus == Pattern_Prefix_Partial)
prefixsel = prefix_selectivity(prefix, relid, attno, ltype);
else
prefixsel = 1.0;
restsel = pattern_selectivity(rest, ptype);
selec = prefixsel * restsel;
/* result should be in range, but make sure... */
if (selec < 0.0)
selec = 0.0;
else if (selec > 1.0)
selec = 1.0;
result = (float8) selec;
}
if (prefix)
pfree(prefix);
pfree(patt);
}
PG_RETURN_FLOAT8(result);
}
/*
* regexeqsel - Selectivity of regular-expression pattern match.
*/
Datum
regexeqsel(PG_FUNCTION_ARGS)
{
return patternsel(fcinfo, Pattern_Type_Regex);
}
/*
* icregexeqsel - Selectivity of case-insensitive regex match.
*/
Datum
icregexeqsel(PG_FUNCTION_ARGS)
{
return patternsel(fcinfo, Pattern_Type_Regex_IC);
}
/*
* likesel - Selectivity of LIKE pattern match.
*/
Datum
likesel(PG_FUNCTION_ARGS)
{
return patternsel(fcinfo, Pattern_Type_Like);
}
/*
* regexnesel - Selectivity of regular-expression pattern non-match.
*/
Datum
regexnesel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(patternsel(fcinfo, Pattern_Type_Regex));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* icregexnesel - Selectivity of case-insensitive regex non-match.
*/
Datum
icregexnesel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(patternsel(fcinfo, Pattern_Type_Regex_IC));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* nlikesel - Selectivity of LIKE pattern non-match.
*/
Datum
nlikesel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(patternsel(fcinfo, Pattern_Type_Like));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* eqjoinsel - Join selectivity of "="
*/
Datum
eqjoinsel(PG_FUNCTION_ARGS)
{
#ifdef NOT_USED
Oid opid = PG_GETARG_OID(0);
#endif
Oid relid1 = PG_GETARG_OID(1);
AttrNumber attno1 = PG_GETARG_INT16(2);
Oid relid2 = PG_GETARG_OID(3);
AttrNumber attno2 = PG_GETARG_INT16(4);
float8 result;
float8 num1,
num2,
min;
bool unknown1 = NONVALUE(relid1) || NONVALUE(attno1);
bool unknown2 = NONVALUE(relid2) || NONVALUE(attno2);
if (unknown1 && unknown2)
result = DEFAULT_EQ_SEL;
else
{
num1 = unknown1 ? 1.0 : get_attdisbursion(relid1, attno1, 0.01);
num2 = unknown2 ? 1.0 : get_attdisbursion(relid2, attno2, 0.01);
/*
* The join selectivity cannot be more than num2, since each tuple
* in table 1 could match no more than num2 fraction of tuples in
* table 2 (and that's only if the table-1 tuple matches the most
* common value in table 2, so probably it's less). By the same
* reasoning it is not more than num1. The min is therefore an
* upper bound.
*
* If we know the disbursion of only one side, use it; the reasoning
* above still works.
*
* XXX can we make a better estimate here? Using the nullfrac
* statistic might be helpful, for example. Assuming the operator
* is strict (does not succeed for null inputs) then the
* selectivity couldn't be more than (1-nullfrac1)*(1-nullfrac2),
* which might be usefully small if there are many nulls. How
* about applying the operator to the most common values?
*/
min = (num1 < num2) ? num1 : num2;
result = min;
}
PG_RETURN_FLOAT8(result);
}
/*
* neqjoinsel - Join selectivity of "!="
*/
Datum
neqjoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(eqjoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* scalarltjoinsel - Join selectivity of "<" and "<=" for scalars
*/
Datum
scalarltjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
/*
* scalargtjoinsel - Join selectivity of ">" and ">=" for scalars
*/
Datum
scalargtjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}
/*
* regexeqjoinsel - Join selectivity of regular-expression pattern match.
*/
Datum
regexeqjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
}
/*
* icregexeqjoinsel - Join selectivity of case-insensitive regex match.
*/
Datum
icregexeqjoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
}
/*
* likejoinsel - Join selectivity of LIKE pattern match.
*/
Datum
likejoinsel(PG_FUNCTION_ARGS)
{
PG_RETURN_FLOAT8(DEFAULT_MATCH_SEL);
}
/*
* regexnejoinsel - Join selectivity of regex non-match.
*/
Datum
regexnejoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(regexeqjoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* icregexnejoinsel - Join selectivity of case-insensitive regex non-match.
*/
Datum
icregexnejoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(icregexeqjoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* nlikejoinsel - Join selectivity of LIKE pattern non-match.
*/
Datum
nlikejoinsel(PG_FUNCTION_ARGS)
{
float8 result;
result = DatumGetFloat8(likejoinsel(fcinfo));
result = 1.0 - result;
PG_RETURN_FLOAT8(result);
}
/*
* convert_to_scalar
* Convert non-NULL values of the indicated types to the comparison
* scale needed by scalarltsel()/scalargtsel().
* Returns "true" if successful.
*
* All numeric datatypes are simply converted to their equivalent
* "double" values.
*
* String datatypes are converted by convert_string_to_scalar(),
* which is explained below. The reason why this routine deals with
* three values at a time, not just one, is that we need it for strings.
*
* The several datatypes representing absolute times are all converted
* to Timestamp, which is actually a double, and then we just use that
* double value. Note this will give bad results for the various "special"
* values of Timestamp --- what can we do with those?
*
* The several datatypes representing relative times (intervals) are all
* converted to measurements expressed in seconds.
*/
static bool
convert_to_scalar(Datum value, Oid valuetypid, double *scaledvalue,
Datum lobound, Datum hibound, Oid boundstypid,
double *scaledlobound, double *scaledhibound)
{
switch (valuetypid)
{
/*
* Built-in numeric types
*/
case BOOLOID:
case INT2OID:
case INT4OID:
case INT8OID:
case FLOAT4OID:
case FLOAT8OID:
case NUMERICOID:
case OIDOID:
case REGPROCOID:
*scaledvalue = convert_numeric_to_scalar(value, valuetypid);
*scaledlobound = convert_numeric_to_scalar(lobound, boundstypid);
*scaledhibound = convert_numeric_to_scalar(hibound, boundstypid);
return true;
/*
* Built-in string types
*/
case CHAROID:
case BPCHAROID:
case VARCHAROID:
case TEXTOID:
case NAMEOID:
{
unsigned char *valstr = convert_string_datum(value, valuetypid);
unsigned char *lostr = convert_string_datum(lobound, boundstypid);
unsigned char *histr = convert_string_datum(hibound, boundstypid);
convert_string_to_scalar(valstr, scaledvalue,
lostr, scaledlobound,
histr, scaledhibound);
pfree(valstr);
pfree(lostr);
pfree(histr);
return true;
}
/*
* Built-in time types
*/
case TIMESTAMPOID:
case ABSTIMEOID:
case DATEOID:
case INTERVALOID:
case RELTIMEOID:
case TINTERVALOID:
case TIMEOID:
*scaledvalue = convert_timevalue_to_scalar(value, valuetypid);
*scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid);
*scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid);
return true;
}
/* Don't know how to convert */
return false;
}
/*
* Do convert_to_scalar()'s work for any numeric data type.
*/
static double
convert_numeric_to_scalar(Datum value, Oid typid)
{
switch (typid)
{
case BOOLOID:
return (double) DatumGetBool(value);
case INT2OID:
return (double) DatumGetInt16(value);
case INT4OID:
return (double) DatumGetInt32(value);
case INT8OID:
return (double) DatumGetInt64(value);
case FLOAT4OID:
return (double) DatumGetFloat4(value);
case FLOAT8OID:
return (double) DatumGetFloat8(value);
case NUMERICOID:
return (double) (*numeric_float8((Numeric) DatumGetPointer(value)));
case OIDOID:
case REGPROCOID:
/* we can treat OIDs as integers... */
return (double) DatumGetObjectId(value);
}
/* Can't get here unless someone tries to use scalarltsel/scalargtsel
* on an operator with one numeric and one non-numeric operand.
*/
elog(ERROR, "convert_numeric_to_scalar: unsupported type %u", typid);
return 0;
}
/*
* Do convert_to_scalar()'s work for any character-string data type.
*
* String datatypes are converted to a scale that ranges from 0 to 1,
* where we visualize the bytes of the string as fractional digits.
*
* We do not want the base to be 256, however, since that tends to
* generate inflated selectivity estimates; few databases will have
* occurrences of all 256 possible byte values at each position.
* Instead, use the smallest and largest byte values seen in the bounds
* as the estimated range for each byte, after some fudging to deal with
* the fact that we probably aren't going to see the full range that way.
*
* An additional refinement is that we discard any common prefix of the
* three strings before computing the scaled values. This allows us to
* "zoom in" when we encounter a narrow data range. An example is a phone
* number database where all the values begin with the same area code.
*/
static void
convert_string_to_scalar(unsigned char *value,
double *scaledvalue,
unsigned char *lobound,
double *scaledlobound,
unsigned char *hibound,
double *scaledhibound)
{
int rangelo,
rangehi;
unsigned char *sptr;
rangelo = rangehi = hibound[0];
for (sptr = lobound; *sptr; sptr++)
{
if (rangelo > *sptr)
rangelo = *sptr;
if (rangehi < *sptr)
rangehi = *sptr;
}
for (sptr = hibound; *sptr; sptr++)
{
if (rangelo > *sptr)
rangelo = *sptr;
if (rangehi < *sptr)
rangehi = *sptr;
}
/* If range includes any upper-case ASCII chars, make it include all */
if (rangelo <= 'Z' && rangehi >= 'A')
{
if (rangelo > 'A')
rangelo = 'A';
if (rangehi < 'Z')
rangehi = 'Z';
}
/* Ditto lower-case */
if (rangelo <= 'z' && rangehi >= 'a')
{
if (rangelo > 'a')
rangelo = 'a';
if (rangehi < 'z')
rangehi = 'z';
}
/* Ditto digits */
if (rangelo <= '9' && rangehi >= '0')
{
if (rangelo > '0')
rangelo = '0';
if (rangehi < '9')
rangehi = '9';
}
/* If range includes less than 10 chars, assume we have not got enough
* data, and make it include regular ASCII set.
*/
if (rangehi - rangelo < 9)
{
rangelo = ' ';
rangehi = 127;
}
/*
* Now strip any common prefix of the three strings.
*/
while (*lobound)
{
if (*lobound != *hibound || *lobound != *value)
break;
lobound++, hibound++, value++;
}
/*
* Now we can do the conversions.
*/
*scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi);
*scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi);
*scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi);
}
static double
convert_one_string_to_scalar(unsigned char *value, int rangelo, int rangehi)
{
int slen = strlen((char *) value);
double num,
denom,
base;
if (slen <= 0)
return 0.0; /* empty string has scalar value 0 */
/* Since base is at least 10, need not consider more than about 20 chars */
if (slen > 20)
slen = 20;
/* Convert initial characters to fraction */
base = rangehi - rangelo + 1;
num = 0.0;
denom = base;
while (slen-- > 0)
{
int ch = *value++;
if (ch < rangelo)
ch = rangelo-1;
else if (ch > rangehi)
ch = rangehi+1;
num += ((double) (ch - rangelo)) / denom;
denom *= base;
}
return num;
}
/*
* Convert a string-type Datum into a palloc'd, null-terminated string.
*
* If USE_LOCALE is defined, we must pass the string through strxfrm()
* before continuing, so as to generate correct locale-specific results.
*/
static unsigned char *
convert_string_datum(Datum value, Oid typid)
{
char *val;
#ifdef USE_LOCALE
char *xfrmstr;
size_t xfrmsize;
size_t xfrmlen;
#endif
switch (typid)
{
case CHAROID:
val = (char *) palloc(2);
val[0] = DatumGetChar(value);
val[1] = '\0';
break;
case BPCHAROID:
case VARCHAROID:
case TEXTOID:
{
char *str = (char *) VARDATA(DatumGetPointer(value));
int strlength = VARSIZE(DatumGetPointer(value)) - VARHDRSZ;
val = (char *) palloc(strlength+1);
memcpy(val, str, strlength);
val[strlength] = '\0';
break;
}
case NAMEOID:
{
NameData *nm = (NameData *) DatumGetPointer(value);
val = pstrdup(NameStr(*nm));
break;
}
default:
/* Can't get here unless someone tries to use scalarltsel
* on an operator with one string and one non-string operand.
*/
elog(ERROR, "convert_string_datum: unsupported type %u", typid);
return NULL;
}
#ifdef USE_LOCALE
/* Guess that transformed string is not much bigger than original */
xfrmsize = strlen(val) + 32; /* arbitrary pad value here... */
xfrmstr = (char *) palloc(xfrmsize);
xfrmlen = strxfrm(xfrmstr, val, xfrmsize);
if (xfrmlen >= xfrmsize)
{
/* Oops, didn't make it */
pfree(xfrmstr);
xfrmstr = (char *) palloc(xfrmlen + 1);
xfrmlen = strxfrm(xfrmstr, val, xfrmlen + 1);
}
pfree(val);
val = xfrmstr;
#endif
return (unsigned char *) val;
}
/*
* Do convert_to_scalar()'s work for any timevalue data type.
*/
static double
convert_timevalue_to_scalar(Datum value, Oid typid)
{
switch (typid)
{
case TIMESTAMPOID:
return DatumGetTimestamp(value);
case ABSTIMEOID:
return DatumGetTimestamp(DirectFunctionCall1(abstime_timestamp,
value));
case DATEOID:
return DatumGetTimestamp(DirectFunctionCall1(date_timestamp,
value));
case INTERVALOID:
{
Interval *interval = DatumGetIntervalP(value);
/*
* Convert the month part of Interval to days using
* assumed average month length of 365.25/12.0 days. Not
* too accurate, but plenty good enough for our purposes.
*/
return interval->time +
interval->month * (365.25 / 12.0 * 24.0 * 60.0 * 60.0);
}
case RELTIMEOID:
return DatumGetRelativeTime(value);
case TINTERVALOID:
{
TimeInterval interval = DatumGetTimeInterval(value);
if (interval->status != 0)
return interval->data[1] - interval->data[0];
return 0; /* for lack of a better idea */
}
case TIMEOID:
return DatumGetTimeADT(value);
}
/* Can't get here unless someone tries to use scalarltsel/scalargtsel
* on an operator with one timevalue and one non-timevalue operand.
*/
elog(ERROR, "convert_timevalue_to_scalar: unsupported type %u", typid);
return 0;
}
/*
* getattproperties
* Retrieve pg_attribute properties for an attribute,
* including type OID, type len, type byval flag, typmod.
*/
static void
getattproperties(Oid relid, AttrNumber attnum,
Oid *typid, int *typlen, bool *typbyval, int32 *typmod)
{
HeapTuple atp;
Form_pg_attribute att_tup;
atp = SearchSysCacheTuple(ATTNUM,
ObjectIdGetDatum(relid),
Int16GetDatum(attnum),
0, 0);
if (!HeapTupleIsValid(atp))
elog(ERROR, "getattproperties: no attribute tuple %u %d",
relid, (int) attnum);
att_tup = (Form_pg_attribute) GETSTRUCT(atp);
*typid = att_tup->atttypid;
*typlen = att_tup->attlen;
*typbyval = att_tup->attbyval;
*typmod = att_tup->atttypmod;
}
/*
* getattstatistics
* Retrieve the pg_statistic data for an attribute.
* Returns 'false' if no stats are available.
*
* Inputs:
* 'relid' and 'attnum' are the relation and attribute number.
* 'typid' and 'typmod' are the type and typmod of the column,
* which the caller must already have looked up.
*
* Outputs:
* The available stats are nullfrac, commonfrac, commonval, loval, hival.
* The caller need not retrieve all five --- pass NULL pointers for the
* unwanted values.
*
* commonval, loval, hival are returned as Datums holding the internal
* representation of the values. (Note that these should be pfree'd
* after use if the data type is not by-value.)
*/
static bool
getattstatistics(Oid relid,
AttrNumber attnum,
Oid typid,
1999-11-25 01:21:34 +01:00
int32 typmod,
double *nullfrac,
double *commonfrac,
Datum *commonval,
Datum *loval,
Datum *hival)
{
HeapTuple tuple;
HeapTuple typeTuple;
FmgrInfo inputproc;
Oid typelem;
bool isnull;
/*
* We assume that there will only be one entry in pg_statistic for the
* given rel/att, so we search WITHOUT considering the staop column.
* Someday, VACUUM might store more than one entry per rel/att,
* corresponding to more than one possible sort ordering defined for
* the column type. However, to make that work we will need to figure
* out which staop to search for --- it's not necessarily the one we
* have at hand! (For example, we might have a '>' operator rather
* than the '<' operator that will appear in staop.)
*/
1999-11-25 01:15:57 +01:00
tuple = SearchSysCacheTuple(STATRELID,
ObjectIdGetDatum(relid),
Int16GetDatum((int16) attnum),
0,
0);
if (!HeapTupleIsValid(tuple))
{
/* no such stats entry */
return false;
}
if (nullfrac)
*nullfrac = ((Form_pg_statistic) GETSTRUCT(tuple))->stanullfrac;
if (commonfrac)
*commonfrac = ((Form_pg_statistic) GETSTRUCT(tuple))->stacommonfrac;
/* Get the type input proc for the column datatype */
typeTuple = SearchSysCacheTuple(TYPEOID,
ObjectIdGetDatum(typid),
0, 0, 0);
if (!HeapTupleIsValid(typeTuple))
elog(ERROR, "getattstatistics: Cache lookup failed for type %u",
typid);
fmgr_info(((Form_pg_type) GETSTRUCT(typeTuple))->typinput, &inputproc);
typelem = ((Form_pg_type) GETSTRUCT(typeTuple))->typelem;
/*
* Values are variable-length fields, so cannot access as struct
* fields. Must do it the hard way with SysCacheGetAttr.
*/
if (commonval)
{
text *val = (text *) SysCacheGetAttr(STATRELID, tuple,
Anum_pg_statistic_stacommonval,
&isnull);
if (isnull)
{
elog(DEBUG, "getattstatistics: stacommonval is null");
*commonval = PointerGetDatum(NULL);
}
else
{
char *strval = textout(val);
*commonval = FunctionCall3(&inputproc,
CStringGetDatum(strval),
ObjectIdGetDatum(typelem),
Int32GetDatum(typmod));
pfree(strval);
}
}
if (loval)
{
text *val = (text *) SysCacheGetAttr(STATRELID, tuple,
Anum_pg_statistic_staloval,
&isnull);
if (isnull)
{
elog(DEBUG, "getattstatistics: staloval is null");
*loval = PointerGetDatum(NULL);
}
else
{
char *strval = textout(val);
*loval = FunctionCall3(&inputproc,
CStringGetDatum(strval),
ObjectIdGetDatum(typelem),
Int32GetDatum(typmod));
pfree(strval);
}
}
if (hival)
{
text *val = (text *) SysCacheGetAttr(STATRELID, tuple,
Anum_pg_statistic_stahival,
&isnull);
if (isnull)
{
elog(DEBUG, "getattstatistics: stahival is null");
*hival = PointerGetDatum(NULL);
}
else
{
char *strval = textout(val);
*hival = FunctionCall3(&inputproc,
CStringGetDatum(strval),
ObjectIdGetDatum(typelem),
Int32GetDatum(typmod));
pfree(strval);
}
}
return true;
}
/*-------------------------------------------------------------------------
*
* Pattern analysis functions
*
* These routines support analysis of LIKE and regular-expression patterns
* by the planner/optimizer. It's important that they agree with the
* regular-expression code in backend/regex/ and the LIKE code in
* backend/utils/adt/like.c.
*
* Note that the prefix-analysis functions are called from
* backend/optimizer/path/indxpath.c as well as from routines in this file.
*
*-------------------------------------------------------------------------
*/
/*
* Extract the fixed prefix, if any, for a pattern.
* *prefix is set to a palloc'd prefix string,
* or to NULL if no fixed prefix exists for the pattern.
* *rest is set to point to the remainder of the pattern after the
* portion describing the fixed prefix.
* The return value distinguishes no fixed prefix, a partial prefix,
* or an exact-match-only pattern.
*/
static Pattern_Prefix_Status
like_fixed_prefix(char *patt, char **prefix, char **rest)
{
char *match;
int pos,
match_pos;
*prefix = match = palloc(strlen(patt) + 1);
match_pos = 0;
for (pos = 0; patt[pos]; pos++)
{
/* % and _ are wildcard characters in LIKE */
if (patt[pos] == '%' ||
patt[pos] == '_')
break;
/* Backslash quotes the next character */
if (patt[pos] == '\\')
{
pos++;
if (patt[pos] == '\0')
break;
}
/*
* NOTE: this code used to think that %% meant a literal %, but
* textlike() itself does not think that, and the SQL92 spec
* doesn't say any such thing either.
*/
match[match_pos++] = patt[pos];
}
match[match_pos] = '\0';
*rest = &patt[pos];
/* in LIKE, an empty pattern is an exact match! */
if (patt[pos] == '\0')
return Pattern_Prefix_Exact; /* reached end of pattern, so exact */
if (match_pos > 0)
return Pattern_Prefix_Partial;
pfree(match);
*prefix = NULL;
return Pattern_Prefix_None;
}
static Pattern_Prefix_Status
regex_fixed_prefix(char *patt, bool case_insensitive,
char **prefix, char **rest)
{
char *match;
int pos,
match_pos,
paren_depth;
/* Pattern must be anchored left */
if (patt[0] != '^')
{
*prefix = NULL;
*rest = patt;
return Pattern_Prefix_None;
}
/* If unquoted | is present at paren level 0 in pattern, then there
* are multiple alternatives for the start of the string.
*/
paren_depth = 0;
for (pos = 1; patt[pos]; pos++)
{
if (patt[pos] == '|' && paren_depth == 0)
{
*prefix = NULL;
*rest = patt;
return Pattern_Prefix_None;
}
else if (patt[pos] == '(')
paren_depth++;
else if (patt[pos] == ')' && paren_depth > 0)
paren_depth--;
else if (patt[pos] == '\\')
{
/* backslash quotes the next character */
pos++;
if (patt[pos] == '\0')
break;
}
}
/* OK, allocate space for pattern */
*prefix = match = palloc(strlen(patt) + 1);
match_pos = 0;
/* note start at pos 1 to skip leading ^ */
for (pos = 1; patt[pos]; pos++)
{
/*
* Check for characters that indicate multiple possible matches here.
* XXX I suspect isalpha() is not an adequately locale-sensitive
* test for characters that can vary under case folding?
*/
if (patt[pos] == '.' ||
patt[pos] == '(' ||
patt[pos] == '[' ||
patt[pos] == '$' ||
(case_insensitive && isalpha((int) patt[pos])))
break;
/*
* Check for quantifiers. Except for +, this means the preceding
* character is optional, so we must remove it from the prefix too!
*/
if (patt[pos] == '*' ||
patt[pos] == '?' ||
patt[pos] == '{')
{
if (match_pos > 0)
match_pos--;
pos--;
break;
}
if (patt[pos] == '+')
{
pos--;
break;
}
if (patt[pos] == '\\')
{
/* backslash quotes the next character */
pos++;
if (patt[pos] == '\0')
break;
}
match[match_pos++] = patt[pos];
}
match[match_pos] = '\0';
*rest = &patt[pos];
if (patt[pos] == '$' && patt[pos + 1] == '\0')
{
*rest = &patt[pos + 1];
return Pattern_Prefix_Exact; /* pattern specifies exact match */
}
if (match_pos > 0)
return Pattern_Prefix_Partial;
pfree(match);
*prefix = NULL;
return Pattern_Prefix_None;
}
Pattern_Prefix_Status
pattern_fixed_prefix(char *patt, Pattern_Type ptype,
char **prefix, char **rest)
{
Pattern_Prefix_Status result;
switch (ptype)
{
case Pattern_Type_Like:
result = like_fixed_prefix(patt, prefix, rest);
break;
case Pattern_Type_Regex:
result = regex_fixed_prefix(patt, false, prefix, rest);
break;
case Pattern_Type_Regex_IC:
result = regex_fixed_prefix(patt, true, prefix, rest);
break;
default:
elog(ERROR, "pattern_fixed_prefix: bogus ptype");
result = Pattern_Prefix_None; /* keep compiler quiet */
break;
}
return result;
}
/*
* Estimate the selectivity of a fixed prefix for a pattern match.
*
* A fixed prefix "foo" is estimated as the selectivity of the expression
* "var >= 'foo' AND var < 'fop'" (see also indxqual.c).
*/
static Selectivity
prefix_selectivity(char *prefix,
Oid relid,
AttrNumber attno,
Oid datatype)
{
Selectivity prefixsel;
Oid cmpopr;
Datum prefixcon;
char *greaterstr;
cmpopr = find_operator(">=", datatype);
if (cmpopr == InvalidOid)
elog(ERROR, "prefix_selectivity: no >= operator for type %u",
datatype);
prefixcon = string_to_datum(prefix, datatype);
/* Assume scalargtsel is appropriate for all supported types */
prefixsel = DatumGetFloat8(DirectFunctionCall5(scalargtsel,
ObjectIdGetDatum(cmpopr),
ObjectIdGetDatum(relid),
Int16GetDatum(attno),
prefixcon,
Int32GetDatum(SEL_CONSTANT|SEL_RIGHT)));
pfree(DatumGetPointer(prefixcon));
/*
* If we can create a string larger than the prefix,
* say "x < greaterstr".
*/
greaterstr = make_greater_string(prefix, datatype);
if (greaterstr)
{
Selectivity topsel;
cmpopr = find_operator("<", datatype);
if (cmpopr == InvalidOid)
elog(ERROR, "prefix_selectivity: no < operator for type %u",
datatype);
prefixcon = string_to_datum(greaterstr, datatype);
/* Assume scalarltsel is appropriate for all supported types */
topsel = DatumGetFloat8(DirectFunctionCall5(scalarltsel,
ObjectIdGetDatum(cmpopr),
ObjectIdGetDatum(relid),
Int16GetDatum(attno),
prefixcon,
Int32GetDatum(SEL_CONSTANT|SEL_RIGHT)));
pfree(DatumGetPointer(prefixcon));
pfree(greaterstr);
/*
* Merge the two selectivities in the same way as for
* a range query (see clauselist_selectivity()).
*/
prefixsel = topsel + prefixsel - 1.0;
/*
* A zero or slightly negative prefixsel should be converted into a
* small positive value; we probably are dealing with a very
* tight range and got a bogus result due to roundoff errors.
* However, if prefixsel is very negative, then we probably have
* default selectivity estimates on one or both sides of the
* range. In that case, insert a not-so-wildly-optimistic
* default estimate.
*/
if (prefixsel <= 0.0)
{
if (prefixsel < -0.01)
{
/*
* No data available --- use a default estimate that
* is small, but not real small.
*/
prefixsel = 0.01;
}
else
{
/*
* It's just roundoff error; use a small positive value
*/
prefixsel = 1.0e-10;
}
}
}
return prefixsel;
}
/*
* Estimate the selectivity of a pattern of the specified type.
* Note that any fixed prefix of the pattern will have been removed already.
*
* For now, we use a very simplistic approach: fixed characters reduce the
* selectivity a good deal, character ranges reduce it a little,
* wildcards (such as % for LIKE or .* for regex) increase it.
*/
#define FIXED_CHAR_SEL 0.04 /* about 1/25 */
#define CHAR_RANGE_SEL 0.25
#define ANY_CHAR_SEL 0.9 /* not 1, since it won't match end-of-string */
#define FULL_WILDCARD_SEL 5.0
#define PARTIAL_WILDCARD_SEL 2.0
static Selectivity
like_selectivity(char *patt)
{
Selectivity sel = 1.0;
int pos;
/* Skip any leading %; it's already factored into initial sel */
pos = (*patt == '%') ? 1 : 0;
for (; patt[pos]; pos++)
{
/* % and _ are wildcard characters in LIKE */
if (patt[pos] == '%')
sel *= FULL_WILDCARD_SEL;
else if (patt[pos] == '_')
sel *= ANY_CHAR_SEL;
else if (patt[pos] == '\\')
{
/* Backslash quotes the next character */
pos++;
if (patt[pos] == '\0')
break;
sel *= FIXED_CHAR_SEL;
}
else
sel *= FIXED_CHAR_SEL;
}
/* Could get sel > 1 if multiple wildcards */
if (sel > 1.0)
sel = 1.0;
return sel;
}
static Selectivity
regex_selectivity_sub(char *patt, int pattlen, bool case_insensitive)
{
Selectivity sel = 1.0;
int paren_depth = 0;
int paren_pos = 0; /* dummy init to keep compiler quiet */
int pos;
for (pos = 0; pos < pattlen; pos++)
{
if (patt[pos] == '(')
{
if (paren_depth == 0)
paren_pos = pos; /* remember start of parenthesized item */
paren_depth++;
}
else if (patt[pos] == ')' && paren_depth > 0)
{
paren_depth--;
if (paren_depth == 0)
sel *= regex_selectivity_sub(patt + (paren_pos + 1),
pos - (paren_pos + 1),
case_insensitive);
}
else if (patt[pos] == '|' && paren_depth == 0)
{
/*
* If unquoted | is present at paren level 0 in pattern,
* we have multiple alternatives; sum their probabilities.
*/
sel += regex_selectivity_sub(patt + (pos + 1),
pattlen - (pos + 1),
case_insensitive);
break; /* rest of pattern is now processed */
}
else if (patt[pos] == '[')
{
bool negclass = false;
if (patt[++pos] == '^')
{
negclass = true;
pos++;
}
if (patt[pos] == ']') /* ']' at start of class is not special */
pos++;
while (pos < pattlen && patt[pos] != ']')
pos++;
if (paren_depth == 0)
sel *= (negclass ? (1.0-CHAR_RANGE_SEL) : CHAR_RANGE_SEL);
}
else if (patt[pos] == '.')
{
if (paren_depth == 0)
sel *= ANY_CHAR_SEL;
}
else if (patt[pos] == '*' ||
patt[pos] == '?' ||
patt[pos] == '+')
{
/* Ought to be smarter about quantifiers... */
if (paren_depth == 0)
sel *= PARTIAL_WILDCARD_SEL;
}
else if (patt[pos] == '{')
{
while (pos < pattlen && patt[pos] != '}')
pos++;
if (paren_depth == 0)
sel *= PARTIAL_WILDCARD_SEL;
}
else if (patt[pos] == '\\')
{
/* backslash quotes the next character */
pos++;
if (pos >= pattlen)
break;
if (paren_depth == 0)
sel *= FIXED_CHAR_SEL;
}
else
{
if (paren_depth == 0)
sel *= FIXED_CHAR_SEL;
}
}
/* Could get sel > 1 if multiple wildcards */
if (sel > 1.0)
sel = 1.0;
return sel;
}
static Selectivity
regex_selectivity(char *patt, bool case_insensitive)
{
Selectivity sel;
int pattlen = strlen(patt);
/* If patt doesn't end with $, consider it to have a trailing wildcard */
if (pattlen > 0 && patt[pattlen-1] == '$' &&
(pattlen == 1 || patt[pattlen-2] != '\\'))
{
/* has trailing $ */
sel = regex_selectivity_sub(patt, pattlen-1, case_insensitive);
}
else
{
/* no trailing $ */
sel = regex_selectivity_sub(patt, pattlen, case_insensitive);
sel *= FULL_WILDCARD_SEL;
if (sel > 1.0)
sel = 1.0;
}
return sel;
}
static Selectivity
pattern_selectivity(char *patt, Pattern_Type ptype)
{
Selectivity result;
switch (ptype)
{
case Pattern_Type_Like:
result = like_selectivity(patt);
break;
case Pattern_Type_Regex:
result = regex_selectivity(patt, false);
break;
case Pattern_Type_Regex_IC:
result = regex_selectivity(patt, true);
break;
default:
elog(ERROR, "pattern_selectivity: bogus ptype");
result = 1.0; /* keep compiler quiet */
break;
}
return result;
}
/*
* Try to generate a string greater than the given string or any string it is
* a prefix of. If successful, return a palloc'd string; else return NULL.
*
* To work correctly in non-ASCII locales with weird collation orders,
* we cannot simply increment "foo" to "fop" --- we have to check whether
* we actually produced a string greater than the given one. If not,
* increment the righthand byte again and repeat. If we max out the righthand
* byte, truncate off the last character and start incrementing the next.
* For example, if "z" were the last character in the sort order, then we
* could produce "foo" as a string greater than "fonz".
*
* This could be rather slow in the worst case, but in most cases we won't
* have to try more than one or two strings before succeeding.
*
* XXX in a sufficiently weird locale, this might produce incorrect results?
* For example, in German I believe "ss" is treated specially --- if we are
* given "foos" and return "foot", will this actually be greater than "fooss"?
*/
char *
make_greater_string(const char *str, Oid datatype)
{
char *workstr;
int len;
/*
* Make a modifiable copy, which will be our return value if
* successful
*/
workstr = pstrdup((char *) str);
while ((len = strlen(workstr)) > 0)
{
unsigned char *lastchar = (unsigned char *) (workstr + len - 1);
/*
* Try to generate a larger string by incrementing the last byte.
*/
while (*lastchar < (unsigned char) 255)
{
(*lastchar)++;
if (string_lessthan(str, workstr, datatype))
return workstr; /* Success! */
}
/*
* Truncate off the last character, which might be more than 1
* byte in MULTIBYTE case.
*/
#ifdef MULTIBYTE
len = pg_mbcliplen((const unsigned char *) workstr, len, len - 1);
workstr[len] = '\0';
#else
*lastchar = '\0';
#endif
}
/* Failed... */
pfree(workstr);
return NULL;
}
/*
* Test whether two strings are "<" according to the rules of the given
* datatype. We do this the hard way, ie, actually calling the type's
* "<" operator function, to ensure we get the right result...
*/
static bool
string_lessthan(const char *str1, const char *str2, Oid datatype)
{
Datum datum1 = string_to_datum(str1, datatype);
Datum datum2 = string_to_datum(str2, datatype);
bool result;
switch (datatype)
{
case TEXTOID:
result = text_lt((text *) datum1, (text *) datum2);
break;
case BPCHAROID:
result = bpcharlt((char *) datum1, (char *) datum2);
break;
case VARCHAROID:
result = varcharlt((char *) datum1, (char *) datum2);
break;
case NAMEOID:
result = namelt((NameData *) datum1, (NameData *) datum2);
break;
default:
elog(ERROR, "string_lessthan: unexpected datatype %u", datatype);
result = false;
break;
}
pfree(DatumGetPointer(datum1));
pfree(DatumGetPointer(datum2));
return result;
}
/* See if there is a binary op of the given name for the given datatype */
static Oid
find_operator(const char *opname, Oid datatype)
{
HeapTuple optup;
optup = SearchSysCacheTuple(OPERNAME,
PointerGetDatum(opname),
ObjectIdGetDatum(datatype),
ObjectIdGetDatum(datatype),
CharGetDatum('b'));
if (!HeapTupleIsValid(optup))
return InvalidOid;
return optup->t_data->t_oid;
}
/*
* Generate a Datum of the appropriate type from a C string.
* Note that all of the supported types are pass-by-ref, so the
* returned value should be pfree'd if no longer needed.
*/
static Datum
string_to_datum(const char *str, Oid datatype)
{
/*
* We cheat a little by assuming that textin() will do for bpchar and
* varchar constants too...
*/
if (datatype == NAMEOID)
return PointerGetDatum(namein((char *) str));
else
return PointerGetDatum(textin((char *) str));
}
/*-------------------------------------------------------------------------
*
* Index cost estimation functions
*
* genericcostestimate is a general-purpose estimator for use when we
* don't have any better idea about how to estimate. Index-type-specific
* knowledge can be incorporated in the type-specific routines.
*
*-------------------------------------------------------------------------
*/
static Datum
genericcostestimate(PG_FUNCTION_ARGS)
{
Query *root = (Query *) PG_GETARG_POINTER(0);
RelOptInfo *rel = (RelOptInfo *) PG_GETARG_POINTER(1);
IndexOptInfo *index = (IndexOptInfo *) PG_GETARG_POINTER(2);
List *indexQuals = (List *) PG_GETARG_POINTER(3);
Cost *indexStartupCost = (Cost *) PG_GETARG_POINTER(4);
Cost *indexTotalCost = (Cost *) PG_GETARG_POINTER(5);
Selectivity *indexSelectivity = (Selectivity *) PG_GETARG_POINTER(6);
double numIndexTuples;
double numIndexPages;
/* Estimate the fraction of main-table tuples that will be visited */
*indexSelectivity = clauselist_selectivity(root, indexQuals,
lfirsti(rel->relids));
/* Estimate the number of index tuples that will be visited */
numIndexTuples = *indexSelectivity * index->tuples;
/* Estimate the number of index pages that will be retrieved */
numIndexPages = *indexSelectivity * index->pages;
/*
* Always estimate at least one tuple and page are touched, even when
* indexSelectivity estimate is tiny.
*/
if (numIndexTuples < 1.0)
numIndexTuples = 1.0;
if (numIndexPages < 1.0)
numIndexPages = 1.0;
/*
* Compute the index access cost.
*
* Our generic assumption is that the index pages will be read
* sequentially, so they have cost 1.0 each, not random_page_cost.
* Also, we charge for evaluation of the indexquals at each index
* tuple. All the costs are assumed to be paid incrementally during
* the scan.
*/
*indexStartupCost = 0;
*indexTotalCost = numIndexPages +
(cpu_index_tuple_cost + cost_qual_eval(indexQuals)) * numIndexTuples;
PG_RETURN_VOID();
}
/*
* For first cut, just use generic function for all index types.
*/
Datum
btcostestimate(PG_FUNCTION_ARGS)
{
return genericcostestimate(fcinfo);
}
Datum
rtcostestimate(PG_FUNCTION_ARGS)
{
return genericcostestimate(fcinfo);
}
Datum
hashcostestimate(PG_FUNCTION_ARGS)
{
return genericcostestimate(fcinfo);
}
Datum
gistcostestimate(PG_FUNCTION_ARGS)
{
return genericcostestimate(fcinfo);
}