postgresql/src/include/nodes/relation.h

1318 lines
56 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* relation.h
* Definitions for planner's internal data structures.
*
*
2009-01-01 18:24:05 +01:00
* Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/nodes/relation.h,v 1.170 2009/03/05 23:06:45 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#ifndef RELATION_H
#define RELATION_H
#include "access/sdir.h"
#include "nodes/bitmapset.h"
#include "nodes/params.h"
#include "nodes/parsenodes.h"
#include "storage/block.h"
/*
1999-02-18 01:49:48 +01:00
* Relids
* Set of relation identifiers (indexes into the rangetable).
*/
typedef Bitmapset *Relids;
/*
* When looking for a "cheapest path", this enum specifies whether we want
* cheapest startup cost or cheapest total cost.
*/
typedef enum CostSelector
{
STARTUP_COST, TOTAL_COST
} CostSelector;
/*
* The cost estimate produced by cost_qual_eval() includes both a one-time
* (startup) cost, and a per-tuple cost.
*/
typedef struct QualCost
{
Cost startup; /* one-time cost */
Cost per_tuple; /* per-evaluation cost */
} QualCost;
/*----------
* PlannerGlobal
* Global information for planning/optimization
*
* PlannerGlobal holds state for an entire planner invocation; this state
* is shared across all levels of sub-Queries that exist in the command being
* planned.
*----------
*/
typedef struct PlannerGlobal
{
NodeTag type;
ParamListInfo boundParams; /* Param values provided to planner() */
List *paramlist; /* to keep track of cross-level Params */
List *subplans; /* Plans for SubPlan nodes */
List *subrtables; /* Rangetables for SubPlan nodes */
Bitmapset *rewindPlanIDs; /* indices of subplans that require REWIND */
List *finalrtable; /* "flat" rangetable for executor */
List *relationOids; /* OIDs of relations the plan depends on */
List *invalItems; /* other dependencies, as PlanInvalItems */
Index lastPHId; /* highest PlaceHolderVar ID assigned */
bool transientPlan; /* redo plan when TransactionXmin changes? */
} PlannerGlobal;
/* macro for fetching the Plan associated with a SubPlan node */
#define planner_subplan_get_plan(root, subplan) \
((Plan *) list_nth((root)->glob->subplans, (subplan)->plan_id - 1))
/*----------
* PlannerInfo
* Per-query information for planning/optimization
*
* This struct is conventionally called "root" in all the planner routines.
* It holds links to all of the planner's working state, in addition to the
2006-10-04 02:30:14 +02:00
* original Query. Note that at present the planner extensively modifies
* the passed-in Query data structure; someday that should stop.
*----------
*/
typedef struct PlannerInfo
{
NodeTag type;
Query *parse; /* the Query being planned */
PlannerGlobal *glob; /* global info for current planner run */
Index query_level; /* 1 at the outermost Query */
struct PlannerInfo *parent_root; /* NULL at outermost Query */
/*
* simple_rel_array holds pointers to "base rels" and "other rels" (see
2005-10-15 04:49:52 +02:00
* comments for RelOptInfo for more info). It is indexed by rangetable
* index (so entry 0 is always wasted). Entries can be NULL when an RTE
* does not correspond to a base relation, such as a join RTE or an
* unreferenced view RTE; or if the RelOptInfo hasn't been made yet.
*/
struct RelOptInfo **simple_rel_array; /* All 1-rel RelOptInfos */
2006-10-04 02:30:14 +02:00
int simple_rel_array_size; /* allocated size of array */
/*
* simple_rte_array is the same length as simple_rel_array and holds
* pointers to the associated rangetable entries. This lets us avoid
* rt_fetch(), which can be a bit slow once large inheritance sets have
* been expanded.
*/
2007-11-15 22:14:46 +01:00
RangeTblEntry **simple_rte_array; /* rangetable as an array */
/*
* join_rel_list is a list of all join-relation RelOptInfos we have
2005-10-15 04:49:52 +02:00
* considered in this planning run. For small problems we just scan the
* list to do lookups, but when there are many join relations we build a
* hash table for faster lookups. The hash table is present and valid
* when join_rel_hash is not NULL. Note that we still maintain the list
* even when using the hash table for lookups; this simplifies life for
* GEQO.
*/
List *join_rel_list; /* list of join-relation RelOptInfos */
2005-10-15 04:49:52 +02:00
struct HTAB *join_rel_hash; /* optional hashtable for join relations */
List *resultRelations; /* integer list of RT indexes, or NIL */
2007-11-15 22:14:46 +01:00
List *returningLists; /* list of lists of TargetEntry, or NIL */
List *init_plans; /* init SubPlans for query */
List *cte_plan_ids; /* per-CTE-item list of subplan IDs */
2007-11-15 22:14:46 +01:00
List *eq_classes; /* list of active EquivalenceClasses */
2007-11-15 22:14:46 +01:00
List *canon_pathkeys; /* list of "canonical" PathKeys */
List *left_join_clauses; /* list of RestrictInfos for
* mergejoinable outer join clauses
* w/nonnullable var on left */
List *right_join_clauses; /* list of RestrictInfos for
* mergejoinable outer join clauses
* w/nonnullable var on right */
List *full_join_clauses; /* list of RestrictInfos for
* mergejoinable full join clauses */
List *join_info_list; /* list of SpecialJoinInfos */
2006-10-04 02:30:14 +02:00
List *append_rel_list; /* list of AppendRelInfos */
List *placeholder_list; /* list of PlaceHolderInfos */
2005-10-15 04:49:52 +02:00
List *query_pathkeys; /* desired pathkeys for query_planner(), and
* actual pathkeys afterwards */
List *group_pathkeys; /* groupClause pathkeys, if any */
List *window_pathkeys; /* pathkeys of bottom window, if any */
List *distinct_pathkeys; /* distinctClause pathkeys, if any */
List *sort_pathkeys; /* sortClause pathkeys, if any */
List *initial_rels; /* RelOptInfos we are now trying to join */
MemoryContext planner_cxt; /* context holding PlannerInfo */
2006-10-04 02:30:14 +02:00
double total_table_pages; /* # of pages in all tables of query */
2005-10-15 04:49:52 +02:00
double tuple_fraction; /* tuple_fraction passed to query_planner */
bool hasJoinRTEs; /* true if any RTEs are RTE_JOIN kind */
bool hasHavingQual; /* true if havingQual was non-null */
2006-10-04 02:30:14 +02:00
bool hasPseudoConstantQuals; /* true if any RestrictInfo has
* pseudoconstant = true */
bool hasRecursion; /* true if planning a recursive WITH item */
/* These fields are used only when hasRecursion is true: */
int wt_param_id; /* PARAM_EXEC ID for the work table */
struct Plan *non_recursive_plan; /* plan for non-recursive term */
} PlannerInfo;
/*
* In places where it's known that simple_rte_array[] must have been prepared
* already, we just index into it to fetch RTEs. In code that might be
* executed before or after entering query_planner(), use this macro.
*/
#define planner_rt_fetch(rti, root) \
((root)->simple_rte_array ? (root)->simple_rte_array[rti] : \
rt_fetch(rti, (root)->parse->rtable))
/*----------
1998-07-18 06:22:52 +02:00
* RelOptInfo
* Per-relation information for planning/optimization
*
* For planning purposes, a "base rel" is either a plain relation (a table)
* or the output of a sub-SELECT or function that appears in the range table.
* In either case it is uniquely identified by an RT index. A "joinrel"
* is the joining of two or more base rels. A joinrel is identified by
* the set of RT indexes for its component baserels. We create RelOptInfo
* nodes for each baserel and joinrel, and store them in the PlannerInfo's
* simple_rel_array and join_rel_list respectively.
*
* Note that there is only one joinrel for any given set of component
* baserels, no matter what order we assemble them in; so an unordered
* set is the right datatype to identify it with.
*
* We also have "other rels", which are like base rels in that they refer to
* single RT indexes; but they are not part of the join tree, and are given
* a different RelOptKind to identify them.
*
* Currently the only kind of otherrels are those made for member relations
* of an "append relation", that is an inheritance set or UNION ALL subquery.
* An append relation has a parent RTE that is a base rel, which represents
2006-10-04 02:30:14 +02:00
* the entire append relation. The member RTEs are otherrels. The parent
* is present in the query join tree but the members are not. The member
* RTEs and otherrels are used to plan the scans of the individual tables or
* subqueries of the append set; then the parent baserel is given an Append
* plan comprising the best plans for the individual member rels. (See
* comments for AppendRelInfo for more information.)
*
* At one time we also made otherrels to represent join RTEs, for use in
* handling join alias Vars. Currently this is not needed because all join
* alias Vars are expanded to non-aliased form during preprocess_expression.
*
* Parts of this data structure are specific to various scan and join
2002-09-04 22:31:48 +02:00
* mechanisms. It didn't seem worth creating new node types for them.
*
* relids - Set of base-relation identifiers; it is a base relation
* if there is just one, a join relation if more than one
* rows - estimated number of tuples in the relation after restriction
* clauses have been applied (ie, output rows of a plan for it)
* width - avg. number of bytes per tuple in the relation after the
* appropriate projections have been done (ie, output width)
* reltargetlist - List of Var and PlaceHolderVar nodes for the values
* we need to output from this relation.
* List is in no particular order, but all rels of an
* appendrel set must use corresponding orders.
* NOTE: in a child relation, may contain RowExpr or
* ConvertRowtypeExpr representing a whole-row Var.
* pathlist - List of Path nodes, one for each potentially useful
* method of generating the relation
* cheapest_startup_path - the pathlist member with lowest startup cost
* (regardless of its ordering)
* cheapest_total_path - the pathlist member with lowest total cost
* (regardless of its ordering)
* cheapest_unique_path - for caching cheapest path to produce unique
* (no duplicates) output from relation
*
* If the relation is a base relation it will have these fields set:
*
* relid - RTE index (this is redundant with the relids field, but
* is provided for convenience of access)
* rtekind - distinguishes plain relation, subquery, or function RTE
* min_attr, max_attr - range of valid AttrNumbers for rel
* attr_needed - array of bitmapsets indicating the highest joinrel
* in which each attribute is needed; if bit 0 is set then
* the attribute is needed as part of final targetlist
* attr_widths - cache space for per-attribute width estimates;
* zero means not computed yet
* indexlist - list of IndexOptInfo nodes for relation's indexes
* (always NIL if it's not a table)
* pages - number of disk pages in relation (zero if not a table)
* tuples - number of tuples in relation (not considering restrictions)
* subplan - plan for subquery (NULL if it's not a subquery)
* subrtable - rangetable for subquery (NIL if it's not a subquery)
*
* Note: for a subquery, tuples and subplan are not set immediately
* upon creation of the RelOptInfo object; they are filled in when
* set_base_rel_pathlist processes the object.
*
* For otherrels that are appendrel members, these fields are filled
* in just as for a baserel.
*
* The presence of the remaining fields depends on the restrictions
* and joins that the relation participates in:
*
* baserestrictinfo - List of RestrictInfo nodes, containing info about
* each non-join qualification clause in which this relation
* participates (only used for base rels)
* baserestrictcost - Estimated cost of evaluating the baserestrictinfo
* clauses at a single tuple (only used for base rels)
* joininfo - List of RestrictInfo nodes, containing info about each
* join clause in which this relation participates (but
* note this excludes clauses that might be derivable from
* EquivalenceClasses)
* has_eclass_joins - flag that EquivalenceClass joins are possible
* index_outer_relids - only used for base rels; set of outer relids
* that participate in indexable joinclauses for this rel
* index_inner_paths - only used for base rels; list of InnerIndexscanInfo
* nodes showing best indexpaths for various subsets of
* index_outer_relids.
*
* Note: Keeping a restrictinfo list in the RelOptInfo is useful only for
* base rels, because for a join rel the set of clauses that are treated as
* restrict clauses varies depending on which sub-relations we choose to join.
* (For example, in a 3-base-rel join, a clause relating rels 1 and 2 must be
* treated as a restrictclause if we join {1} and {2 3} to make {1 2 3}; but
* if we join {1 2} and {3} then that clause will be a restrictclause in {1 2}
* and should not be processed again at the level of {1 2 3}.) Therefore,
* the restrictinfo list in the join case appears in individual JoinPaths
* (field joinrestrictinfo), not in the parent relation. But it's OK for
* the RelOptInfo to store the joininfo list, because that is the same
* for a given rel no matter how we form it.
*
* We store baserestrictcost in the RelOptInfo (for base relations) because
* we know we will need it at least once (to price the sequential scan)
* and may need it multiple times to price index scans.
*----------
*/
typedef enum RelOptKind
{
RELOPT_BASEREL,
RELOPT_JOINREL,
RELOPT_OTHER_MEMBER_REL
} RelOptKind;
1998-07-18 06:22:52 +02:00
typedef struct RelOptInfo
{
NodeTag type;
RelOptKind reloptkind;
/* all relations included in this RelOptInfo */
Relids relids; /* set of base relids (rangetable indexes) */
/* size estimates generated by planner */
double rows; /* estimated number of result tuples */
int width; /* estimated avg width of result tuples */
/* materialization information */
List *reltargetlist; /* Vars to be output by scan of relation */
List *pathlist; /* Path structures */
struct Path *cheapest_startup_path;
struct Path *cheapest_total_path;
struct Path *cheapest_unique_path;
/* information about a base rel (not set for join rels!) */
Index relid;
RTEKind rtekind; /* RELATION, SUBQUERY, or FUNCTION */
AttrNumber min_attr; /* smallest attrno of rel (often <0) */
AttrNumber max_attr; /* largest attrno of rel */
Relids *attr_needed; /* array indexed [min_attr .. max_attr] */
int32 *attr_widths; /* array indexed [min_attr .. max_attr] */
List *indexlist; /* list of IndexOptInfo */
2005-10-15 04:49:52 +02:00
BlockNumber pages;
double tuples;
struct Plan *subplan; /* if subquery */
List *subrtable; /* if subquery */
/* used by various scans and joins: */
2005-10-15 04:49:52 +02:00
List *baserestrictinfo; /* RestrictInfo structures (if base
* rel) */
QualCost baserestrictcost; /* cost of evaluating the above */
List *joininfo; /* RestrictInfo structures for join clauses
* involving this rel */
bool has_eclass_joins; /* T means joininfo is incomplete */
/* cached info about inner indexscan paths for relation: */
Relids index_outer_relids; /* other relids in indexable join
* clauses */
List *index_inner_paths; /* InnerIndexscanInfo nodes */
2003-08-04 02:43:34 +02:00
/*
2003-08-04 02:43:34 +02:00
* Inner indexscans are not in the main pathlist because they are not
2005-10-15 04:49:52 +02:00
* usable except in specific join contexts. We use the index_inner_paths
* list just to avoid recomputing the best inner indexscan repeatedly for
* similar outer relations. See comments for InnerIndexscanInfo.
*/
1999-05-26 00:43:53 +02:00
} RelOptInfo;
/*
* IndexOptInfo
* Per-index information for planning/optimization
*
* Prior to Postgres 7.0, RelOptInfo was used to describe both relations
* and indexes, but that created confusion without actually doing anything
* useful. So now we have a separate IndexOptInfo struct for indexes.
*
* opfamily[], indexkeys[], opcintype[], fwdsortop[], revsortop[],
* and nulls_first[] each have ncolumns entries.
* Note: for historical reasons, the opfamily array has an extra entry
* that is always zero. Some code scans until it sees a zero entry,
* rather than looking at ncolumns.
*
* Zeroes in the indexkeys[] array indicate index columns that are
* expressions; there is one element in indexprs for each such column.
*
2007-11-15 22:14:46 +01:00
* For an unordered index, the sortop arrays contains zeroes. Note that
* fwdsortop[] and nulls_first[] describe the sort ordering of a forward
* indexscan; we can also consider a backward indexscan, which will
* generate sort order described by revsortop/!nulls_first.
*
* The indexprs and indpred expressions have been run through
* prepqual.c and eval_const_expressions() for ease of matching to
* WHERE clauses. indpred is in implicit-AND form.
*/
typedef struct IndexOptInfo
{
NodeTag type;
Oid indexoid; /* OID of the index relation */
RelOptInfo *rel; /* back-link to index's table */
/* statistics from pg_class */
2005-10-15 04:49:52 +02:00
BlockNumber pages; /* number of disk pages in index */
double tuples; /* number of index tuples in index */
/* index descriptor information */
int ncolumns; /* number of columns in index */
Oid *opfamily; /* OIDs of operator families for columns */
int *indexkeys; /* column numbers of index's keys, or 0 */
Oid *opcintype; /* OIDs of opclass declared input data types */
Oid *fwdsortop; /* OIDs of sort operators for each column */
Oid *revsortop; /* OIDs of sort operators for backward scan */
bool *nulls_first; /* do NULLs come first in the sort order? */
Oid relam; /* OID of the access method (in pg_am) */
RegProcedure amcostestimate; /* OID of the access method's cost fcn */
2005-10-15 04:49:52 +02:00
List *indexprs; /* expressions for non-simple index columns */
List *indpred; /* predicate if a partial index, else NIL */
bool predOK; /* true if predicate matches query */
bool unique; /* true if a unique index */
bool amoptionalkey; /* can query omit key for the first column? */
bool amsearchnulls; /* can AM search for NULL index entries? */
bool amhasgettuple; /* does AM have amgettuple interface? */
bool amhasgetbitmap; /* does AM have amgetbitmap interface? */
} IndexOptInfo;
/*
* EquivalenceClasses
*
* Whenever we can determine that a mergejoinable equality clause A = B is
* not delayed by any outer join, we create an EquivalenceClass containing
* the expressions A and B to record this knowledge. If we later find another
* equivalence B = C, we add C to the existing EquivalenceClass; this may
* require merging two existing EquivalenceClasses. At the end of the qual
* distribution process, we have sets of values that are known all transitively
* equal to each other, where "equal" is according to the rules of the btree
* operator family(s) shown in ec_opfamilies. (We restrict an EC to contain
* only equalities whose operators belong to the same set of opfamilies. This
* could probably be relaxed, but for now it's not worth the trouble, since
* nearly all equality operators belong to only one btree opclass anyway.)
*
* We also use EquivalenceClasses as the base structure for PathKeys, letting
* us represent knowledge about different sort orderings being equivalent.
* Since every PathKey must reference an EquivalenceClass, we will end up
* with single-member EquivalenceClasses whenever a sort key expression has
2007-11-15 22:14:46 +01:00
* not been equivalenced to anything else. It is also possible that such an
* EquivalenceClass will contain a volatile expression ("ORDER BY random()"),
* which is a case that can't arise otherwise since clauses containing
* volatile functions are never considered mergejoinable. We mark such
* EquivalenceClasses specially to prevent them from being merged with
* ordinary EquivalenceClasses. Also, for volatile expressions we have
* to be careful to match the EquivalenceClass to the correct targetlist
* entry: consider SELECT random() AS a, random() AS b ... ORDER BY b,a.
* So we record the SortGroupRef of the originating sort clause.
*
* We allow equality clauses appearing below the nullable side of an outer join
* to form EquivalenceClasses, but these have a slightly different meaning:
* the included values might be all NULL rather than all the same non-null
2007-11-15 22:14:46 +01:00
* values. See src/backend/optimizer/README for more on that point.
*
* NB: if ec_merged isn't NULL, this class has been merged into another, and
* should be ignored in favor of using the pointed-to class.
*/
typedef struct EquivalenceClass
{
NodeTag type;
2007-11-15 22:14:46 +01:00
List *ec_opfamilies; /* btree operator family OIDs */
List *ec_members; /* list of EquivalenceMembers */
List *ec_sources; /* list of generating RestrictInfos */
List *ec_derives; /* list of derived RestrictInfos */
Relids ec_relids; /* all relids appearing in ec_members */
bool ec_has_const; /* any pseudoconstants in ec_members? */
bool ec_has_volatile; /* the (sole) member is a volatile expr */
bool ec_below_outer_join; /* equivalence applies below an OJ */
2007-11-15 22:14:46 +01:00
bool ec_broken; /* failed to generate needed clauses? */
Index ec_sortref; /* originating sortclause label, or 0 */
struct EquivalenceClass *ec_merged; /* set if merged into another EC */
} EquivalenceClass;
Fix some planner issues found while investigating Kevin Grittner's report of poorer planning in 8.3 than 8.2: 1. After pushing a constant across an outer join --- ie, given "a LEFT JOIN b ON (a.x = b.y) WHERE a.x = 42", we can deduce that b.y is sort of equal to 42, in the sense that we needn't fetch any b rows where it isn't 42 --- loop to see if any additional deductions can be made. Previous releases did that by recursing, but I had mistakenly thought that this was no longer necessary given the EquivalenceClass machinery. 2. Allow pushing constants across outer join conditions even if the condition is outerjoin_delayed due to a lower outer join. This is safe as long as the condition is strict and we re-test it at the upper join. 3. Keep the outer-join clause even if we successfully push a constant across it. This is *necessary* in the outerjoin_delayed case, but even in the simple case, it seems better to do this to ensure that the join search order heuristics will consider the join as reasonable to make. Mark such a clause as having selectivity 1.0, though, since it's not going to eliminate very many rows after application of the constant condition. 4. Tweak have_relevant_eclass_joinclause to report that two relations are joinable when they have vars that are equated to the same constant. We won't actually generate any joinclause from such an EquivalenceClass, but again it seems that in such a case it's a good idea to consider the join as worth costing out. 5. Fix a bug in select_mergejoin_clauses that was exposed by these changes: we have to reject candidate mergejoin clauses if either side was equated to a constant, because we can't construct a canonical pathkey list for such a clause. This is an implementation restriction that might be worth fixing someday, but it doesn't seem critical to get it done for 8.3.
2008-01-09 21:42:29 +01:00
/*
* If an EC contains a const and isn't below-outer-join, any PathKey depending
* on it must be redundant, since there's only one possible value of the key.
*/
#define EC_MUST_BE_REDUNDANT(eclass) \
((eclass)->ec_has_const && !(eclass)->ec_below_outer_join)
/*
* EquivalenceMember - one member expression of an EquivalenceClass
*
* em_is_child signifies that this element was built by transposing a member
* for an inheritance parent relation to represent the corresponding expression
* on an inheritance child. The element should be ignored for all purposes
* except constructing inner-indexscan paths for the child relation. (Other
* types of join are driven from transposed joininfo-list entries.) Note
* that the EC's ec_relids field does NOT include the child relation.
*
* em_datatype is usually the same as exprType(em_expr), but can be
* different when dealing with a binary-compatible opfamily; in particular
2007-11-15 22:14:46 +01:00
* anyarray_ops would never work without this. Use em_datatype when
* looking up a specific btree operator to work with this expression.
*/
typedef struct EquivalenceMember
{
NodeTag type;
Expr *em_expr; /* the expression represented */
Relids em_relids; /* all relids appearing in em_expr */
bool em_is_const; /* expression is pseudoconstant? */
bool em_is_child; /* derived version for a child relation? */
Oid em_datatype; /* the "nominal type" used by the opfamily */
} EquivalenceMember;
/*
* PathKeys
*
* The sort ordering of a path is represented by a list of PathKey nodes.
* An empty list implies no known ordering. Otherwise the first item
* represents the primary sort key, the second the first secondary sort key,
* etc. The value being sorted is represented by linking to an
* EquivalenceClass containing that value and including pk_opfamily among its
* ec_opfamilies. This is a convenient method because it makes it trivial
2007-11-15 22:14:46 +01:00
* to detect equivalent and closely-related orderings. (See optimizer/README
* for more information.)
*
* Note: pk_strategy is either BTLessStrategyNumber (for ASC) or
2007-11-15 22:14:46 +01:00
* BTGreaterStrategyNumber (for DESC). We assume that all ordering-capable
* index types will use btree-compatible strategy numbers.
*/
typedef struct PathKey
{
NodeTag type;
EquivalenceClass *pk_eclass; /* the value that is ordered */
2007-11-15 22:14:46 +01:00
Oid pk_opfamily; /* btree opfamily defining the ordering */
int pk_strategy; /* sort direction (ASC or DESC) */
bool pk_nulls_first; /* do NULLs come before normal values? */
} PathKey;
/*
* Type "Path" is used as-is for sequential-scan paths, as well as some other
* simple plan types that we don't need any extra information in the path for.
* For other path types it is the first component of a larger struct.
2002-11-27 21:52:04 +01:00
*
* Note: "pathtype" is the NodeTag of the Plan node we could build from this
* Path. It is partially redundant with the Path's NodeTag, but allows us
* to use the same Path type for multiple Plan types where there is no need
* to distinguish the Plan type during path processing.
*/
typedef struct Path
{
NodeTag type;
NodeTag pathtype; /* tag identifying scan/join method */
RelOptInfo *parent; /* the relation this path can build */
/* estimated execution costs for path (see costsize.c for more info) */
2005-10-15 04:49:52 +02:00
Cost startup_cost; /* cost expended before fetching any tuples */
Cost total_cost; /* total cost (assuming all tuples fetched) */
List *pathkeys; /* sort ordering of path's output */
/* pathkeys is a List of PathKey nodes; see above */
} Path;
/*----------
* IndexPath represents an index scan over a single index.
*
* 'indexinfo' is the index to be scanned.
*
* 'indexclauses' is a list of index qualification clauses, with implicit
* AND semantics across the list. Each clause is a RestrictInfo node from
* the query's WHERE or JOIN conditions.
*
* 'indexquals' has the same structure as 'indexclauses', but it contains
* the actual indexqual conditions that can be used with the index.
* In simple cases this is identical to 'indexclauses', but when special
* indexable operators appear in 'indexclauses', they are replaced by the
* derived indexscannable conditions in 'indexquals'.
*
* 'isjoininner' is TRUE if the path is a nestloop inner scan (that is,
* some of the index conditions are join rather than restriction clauses).
* Note that the path costs will be calculated differently from a plain
* indexscan in this case, and in addition there's a special 'rows' value
* different from the parent RelOptInfo's (see below).
*
* 'indexscandir' is one of:
* ForwardScanDirection: forward scan of an ordered index
* BackwardScanDirection: backward scan of an ordered index
* NoMovementScanDirection: scan of an unordered index, or don't care
* (The executor doesn't care whether it gets ForwardScanDirection or
* NoMovementScanDirection for an indexscan, but the planner wants to
* distinguish ordered from unordered indexes for building pathkeys.)
*
* 'indextotalcost' and 'indexselectivity' are saved in the IndexPath so that
* we need not recompute them when considering using the same index in a
* bitmap index/heap scan (see BitmapHeapPath). The costs of the IndexPath
* itself represent the costs of an IndexScan plan type.
*
* 'rows' is the estimated result tuple count for the indexscan. This
* is the same as path.parent->rows for a simple indexscan, but it is
* different for a nestloop inner scan, because the additional indexquals
* coming from join clauses make the scan more selective than the parent
* rel's restrict clauses alone would do.
*----------
*/
typedef struct IndexPath
{
Path path;
IndexOptInfo *indexinfo;
List *indexclauses;
List *indexquals;
bool isjoininner;
ScanDirection indexscandir;
Cost indextotalcost;
Selectivity indexselectivity;
double rows; /* estimated number of result tuples */
} IndexPath;
/*
* BitmapHeapPath represents one or more indexscans that generate TID bitmaps
* instead of directly accessing the heap, followed by AND/OR combinations
* to produce a single bitmap, followed by a heap scan that uses the bitmap.
* Note that the output is always considered unordered, since it will come
* out in physical heap order no matter what the underlying indexes did.
*
* The individual indexscans are represented by IndexPath nodes, and any
* logic on top of them is represented by a tree of BitmapAndPath and
2005-10-15 04:49:52 +02:00
* BitmapOrPath nodes. Notice that we can use the same IndexPath node both
* to represent a regular IndexScan plan, and as the child of a BitmapHeapPath
* that represents scanning the same index using a BitmapIndexScan. The
* startup_cost and total_cost figures of an IndexPath always represent the
2005-10-15 04:49:52 +02:00
* costs to use it as a regular IndexScan. The costs of a BitmapIndexScan
* can be computed using the IndexPath's indextotalcost and indexselectivity.
*
* BitmapHeapPaths can be nestloop inner indexscans. The isjoininner and
* rows fields serve the same purpose as for plain IndexPaths.
*/
typedef struct BitmapHeapPath
{
Path path;
Path *bitmapqual; /* IndexPath, BitmapAndPath, BitmapOrPath */
bool isjoininner; /* T if it's a nestloop inner scan */
double rows; /* estimated number of result tuples */
} BitmapHeapPath;
/*
* BitmapAndPath represents a BitmapAnd plan node; it can only appear as
* part of the substructure of a BitmapHeapPath. The Path structure is
* a bit more heavyweight than we really need for this, but for simplicity
* we make it a derivative of Path anyway.
*/
typedef struct BitmapAndPath
{
Path path;
2005-10-15 04:49:52 +02:00
List *bitmapquals; /* IndexPaths and BitmapOrPaths */
Selectivity bitmapselectivity;
} BitmapAndPath;
/*
* BitmapOrPath represents a BitmapOr plan node; it can only appear as
* part of the substructure of a BitmapHeapPath. The Path structure is
* a bit more heavyweight than we really need for this, but for simplicity
* we make it a derivative of Path anyway.
*/
typedef struct BitmapOrPath
{
Path path;
2005-10-15 04:49:52 +02:00
List *bitmapquals; /* IndexPaths and BitmapAndPaths */
Selectivity bitmapselectivity;
} BitmapOrPath;
/*
* TidPath represents a scan by TID
*
* tidquals is an implicitly OR'ed list of qual expressions of the form
* "CTID = pseudoconstant" or "CTID = ANY(pseudoconstant_array)".
* Note they are bare expressions, not RestrictInfos.
*/
typedef struct TidPath
{
Path path;
List *tidquals; /* qual(s) involving CTID = something */
} TidPath;
/*
* AppendPath represents an Append plan, ie, successive execution of
* several member plans.
*
* Note: it is possible for "subpaths" to contain only one, or even no,
* elements. These cases are optimized during create_append_plan.
* In particular, an AppendPath with no subpaths is a "dummy" path that
* is created to represent the case that a relation is provably empty.
*/
typedef struct AppendPath
{
Path path;
List *subpaths; /* list of component Paths */
} AppendPath;
#define IS_DUMMY_PATH(p) \
(IsA((p), AppendPath) && ((AppendPath *) (p))->subpaths == NIL)
/*
* ResultPath represents use of a Result plan node to compute a variable-free
* targetlist with no underlying tables (a "SELECT expressions" query).
* The query could have a WHERE clause, too, represented by "quals".
*
* Note that quals is a list of bare clauses, not RestrictInfos.
*/
typedef struct ResultPath
{
Path path;
List *quals;
} ResultPath;
/*
* MaterialPath represents use of a Material plan node, i.e., caching of
* the output of its subpath. This is used when the subpath is expensive
* and needs to be scanned repeatedly, or when we need mark/restore ability
* and the subpath doesn't have it.
*/
typedef struct MaterialPath
{
Path path;
Path *subpath;
} MaterialPath;
/*
* UniquePath represents elimination of distinct rows from the output of
* its subpath.
*
* This is unlike the other Path nodes in that it can actually generate
* different plans: either hash-based or sort-based implementation, or a
2004-08-29 07:07:03 +02:00
* no-op if the input path can be proven distinct already. The decision
* is sufficiently localized that it's not worth having separate Path node
* types. (Note: in the no-op case, we could eliminate the UniquePath node
* entirely and just return the subpath; but it's convenient to have a
* UniquePath in the path tree to signal upper-level routines that the input
* is known distinct.)
*/
typedef enum
{
UNIQUE_PATH_NOOP, /* input is known unique already */
UNIQUE_PATH_HASH, /* use hashing */
UNIQUE_PATH_SORT /* use sorting */
} UniquePathMethod;
typedef struct UniquePath
{
Path path;
Path *subpath;
UniquePathMethod umethod;
List *in_operators; /* equality operators of the IN clause */
List *uniq_exprs; /* expressions to be made unique */
double rows; /* estimated number of result tuples */
} UniquePath;
/*
* All join-type paths share these fields.
*/
typedef struct JoinPath
{
Path path;
JoinType jointype;
Path *outerjoinpath; /* path for the outer side of the join */
Path *innerjoinpath; /* path for the inner side of the join */
List *joinrestrictinfo; /* RestrictInfos to apply to join */
/*
* See the notes for RelOptInfo to understand why joinrestrictinfo is
* needed in JoinPath, and can't be merged into the parent RelOptInfo.
*/
} JoinPath;
/*
* A nested-loop path needs no special fields.
*/
typedef JoinPath NestPath;
/*
* A mergejoin path has these fields.
*
* path_mergeclauses lists the clauses (in the form of RestrictInfos)
* that will be used in the merge.
*
* Note that the mergeclauses are a subset of the parent relation's
* restriction-clause list. Any join clauses that are not mergejoinable
* appear only in the parent's restrict list, and must be checked by a
* qpqual at execution time.
*
* outersortkeys (resp. innersortkeys) is NIL if the outer path
* (resp. inner path) is already ordered appropriately for the
* mergejoin. If it is not NIL then it is a PathKeys list describing
* the ordering that must be created by an explicit sort step.
*/
1999-02-12 18:25:05 +01:00
typedef struct MergePath
{
1999-02-12 18:25:05 +01:00
JoinPath jpath;
2005-10-15 04:49:52 +02:00
List *path_mergeclauses; /* join clauses to be used for merge */
List *outersortkeys; /* keys for explicit sort, if any */
List *innersortkeys; /* keys for explicit sort, if any */
} MergePath;
1999-02-22 20:55:44 +01:00
/*
* A hashjoin path has these fields.
*
* The remarks above for mergeclauses apply for hashclauses as well.
*
* Hashjoin does not care what order its inputs appear in, so we have
* no need for sortkeys.
1999-02-22 20:55:44 +01:00
*/
typedef struct HashPath
{
JoinPath jpath;
List *path_hashclauses; /* join clauses used for hashing */
} HashPath;
1999-02-22 20:55:44 +01:00
/*
* Restriction clause info.
*
* We create one of these for each AND sub-clause of a restriction condition
* (WHERE or JOIN/ON clause). Since the restriction clauses are logically
* ANDed, we can use any one of them or any subset of them to filter out
* tuples, without having to evaluate the rest. The RestrictInfo node itself
* stores data used by the optimizer while choosing the best query plan.
*
* If a restriction clause references a single base relation, it will appear
* in the baserestrictinfo list of the RelOptInfo for that base rel.
*
* If a restriction clause references more than one base rel, it will
* appear in the joininfo list of every RelOptInfo that describes a strict
* subset of the base rels mentioned in the clause. The joininfo lists are
* used to drive join tree building by selecting plausible join candidates.
* The clause cannot actually be applied until we have built a join rel
* containing all the base rels it references, however.
*
* When we construct a join rel that includes all the base rels referenced
* in a multi-relation restriction clause, we place that clause into the
* joinrestrictinfo lists of paths for the join rel, if neither left nor
2001-03-22 05:01:46 +01:00
* right sub-path includes all base rels referenced in the clause. The clause
* will be applied at that join level, and will not propagate any further up
* the join tree. (Note: the "predicate migration" code was once intended to
* push restriction clauses up and down the plan tree based on evaluation
* costs, but it's dead code and is unlikely to be resurrected in the
* foreseeable future.)
*
* Note that in the presence of more than two rels, a multi-rel restriction
* might reach different heights in the join tree depending on the join
* sequence we use. So, these clauses cannot be associated directly with
* the join RelOptInfo, but must be kept track of on a per-join-path basis.
*
* RestrictInfos that represent equivalence conditions (i.e., mergejoinable
* equalities that are not outerjoin-delayed) are handled a bit differently.
* Initially we attach them to the EquivalenceClasses that are derived from
* them. When we construct a scan or join path, we look through all the
* EquivalenceClasses and generate derived RestrictInfos representing the
* minimal set of conditions that need to be checked for this particular scan
* or join to enforce that all members of each EquivalenceClass are in fact
* equal in all rows emitted by the scan or join.
*
* When dealing with outer joins we have to be very careful about pushing qual
* clauses up and down the tree. An outer join's own JOIN/ON conditions must
Fix some planner issues found while investigating Kevin Grittner's report of poorer planning in 8.3 than 8.2: 1. After pushing a constant across an outer join --- ie, given "a LEFT JOIN b ON (a.x = b.y) WHERE a.x = 42", we can deduce that b.y is sort of equal to 42, in the sense that we needn't fetch any b rows where it isn't 42 --- loop to see if any additional deductions can be made. Previous releases did that by recursing, but I had mistakenly thought that this was no longer necessary given the EquivalenceClass machinery. 2. Allow pushing constants across outer join conditions even if the condition is outerjoin_delayed due to a lower outer join. This is safe as long as the condition is strict and we re-test it at the upper join. 3. Keep the outer-join clause even if we successfully push a constant across it. This is *necessary* in the outerjoin_delayed case, but even in the simple case, it seems better to do this to ensure that the join search order heuristics will consider the join as reasonable to make. Mark such a clause as having selectivity 1.0, though, since it's not going to eliminate very many rows after application of the constant condition. 4. Tweak have_relevant_eclass_joinclause to report that two relations are joinable when they have vars that are equated to the same constant. We won't actually generate any joinclause from such an EquivalenceClass, but again it seems that in such a case it's a good idea to consider the join as worth costing out. 5. Fix a bug in select_mergejoin_clauses that was exposed by these changes: we have to reject candidate mergejoin clauses if either side was equated to a constant, because we can't construct a canonical pathkey list for such a clause. This is an implementation restriction that might be worth fixing someday, but it doesn't seem critical to get it done for 8.3.
2008-01-09 21:42:29 +01:00
* be evaluated exactly at that join node, unless they are "degenerate"
* conditions that reference only Vars from the nullable side of the join.
* Quals appearing in WHERE or in a JOIN above the outer join cannot be pushed
* down below the outer join, if they reference any nullable Vars.
* RestrictInfo nodes contain a flag to indicate whether a qual has been
* pushed down to a lower level than its original syntactic placement in the
* join tree would suggest. If an outer join prevents us from pushing a qual
* down to its "natural" semantic level (the level associated with just the
* base rels used in the qual) then we mark the qual with a "required_relids"
* value including more than just the base rels it actually uses. By
Fix some planner issues found while investigating Kevin Grittner's report of poorer planning in 8.3 than 8.2: 1. After pushing a constant across an outer join --- ie, given "a LEFT JOIN b ON (a.x = b.y) WHERE a.x = 42", we can deduce that b.y is sort of equal to 42, in the sense that we needn't fetch any b rows where it isn't 42 --- loop to see if any additional deductions can be made. Previous releases did that by recursing, but I had mistakenly thought that this was no longer necessary given the EquivalenceClass machinery. 2. Allow pushing constants across outer join conditions even if the condition is outerjoin_delayed due to a lower outer join. This is safe as long as the condition is strict and we re-test it at the upper join. 3. Keep the outer-join clause even if we successfully push a constant across it. This is *necessary* in the outerjoin_delayed case, but even in the simple case, it seems better to do this to ensure that the join search order heuristics will consider the join as reasonable to make. Mark such a clause as having selectivity 1.0, though, since it's not going to eliminate very many rows after application of the constant condition. 4. Tweak have_relevant_eclass_joinclause to report that two relations are joinable when they have vars that are equated to the same constant. We won't actually generate any joinclause from such an EquivalenceClass, but again it seems that in such a case it's a good idea to consider the join as worth costing out. 5. Fix a bug in select_mergejoin_clauses that was exposed by these changes: we have to reject candidate mergejoin clauses if either side was equated to a constant, because we can't construct a canonical pathkey list for such a clause. This is an implementation restriction that might be worth fixing someday, but it doesn't seem critical to get it done for 8.3.
2008-01-09 21:42:29 +01:00
* pretending that the qual references all the rels required to form the outer
* join, we prevent it from being evaluated below the outer join's joinrel.
* When we do form the outer join's joinrel, we still need to distinguish
* those quals that are actually in that join's JOIN/ON condition from those
* that appeared elsewhere in the tree and were pushed down to the join rel
* because they used no other rels. That's what the is_pushed_down flag is
* for; it tells us that a qual is not an OUTER JOIN qual for the set of base
2007-11-15 22:14:46 +01:00
* rels listed in required_relids. A clause that originally came from WHERE
* or an INNER JOIN condition will *always* have its is_pushed_down flag set.
* It's possible for an OUTER JOIN clause to be marked is_pushed_down too,
* if we decide that it can be pushed down into the nullable side of the join.
* In that case it acts as a plain filter qual for wherever it gets evaluated.
Fix some planner issues found while investigating Kevin Grittner's report of poorer planning in 8.3 than 8.2: 1. After pushing a constant across an outer join --- ie, given "a LEFT JOIN b ON (a.x = b.y) WHERE a.x = 42", we can deduce that b.y is sort of equal to 42, in the sense that we needn't fetch any b rows where it isn't 42 --- loop to see if any additional deductions can be made. Previous releases did that by recursing, but I had mistakenly thought that this was no longer necessary given the EquivalenceClass machinery. 2. Allow pushing constants across outer join conditions even if the condition is outerjoin_delayed due to a lower outer join. This is safe as long as the condition is strict and we re-test it at the upper join. 3. Keep the outer-join clause even if we successfully push a constant across it. This is *necessary* in the outerjoin_delayed case, but even in the simple case, it seems better to do this to ensure that the join search order heuristics will consider the join as reasonable to make. Mark such a clause as having selectivity 1.0, though, since it's not going to eliminate very many rows after application of the constant condition. 4. Tweak have_relevant_eclass_joinclause to report that two relations are joinable when they have vars that are equated to the same constant. We won't actually generate any joinclause from such an EquivalenceClass, but again it seems that in such a case it's a good idea to consider the join as worth costing out. 5. Fix a bug in select_mergejoin_clauses that was exposed by these changes: we have to reject candidate mergejoin clauses if either side was equated to a constant, because we can't construct a canonical pathkey list for such a clause. This is an implementation restriction that might be worth fixing someday, but it doesn't seem critical to get it done for 8.3.
2008-01-09 21:42:29 +01:00
* (In short, is_pushed_down is only false for non-degenerate outer join
* conditions. Possibly we should rename it to reflect that meaning?)
*
Fix some planner issues found while investigating Kevin Grittner's report of poorer planning in 8.3 than 8.2: 1. After pushing a constant across an outer join --- ie, given "a LEFT JOIN b ON (a.x = b.y) WHERE a.x = 42", we can deduce that b.y is sort of equal to 42, in the sense that we needn't fetch any b rows where it isn't 42 --- loop to see if any additional deductions can be made. Previous releases did that by recursing, but I had mistakenly thought that this was no longer necessary given the EquivalenceClass machinery. 2. Allow pushing constants across outer join conditions even if the condition is outerjoin_delayed due to a lower outer join. This is safe as long as the condition is strict and we re-test it at the upper join. 3. Keep the outer-join clause even if we successfully push a constant across it. This is *necessary* in the outerjoin_delayed case, but even in the simple case, it seems better to do this to ensure that the join search order heuristics will consider the join as reasonable to make. Mark such a clause as having selectivity 1.0, though, since it's not going to eliminate very many rows after application of the constant condition. 4. Tweak have_relevant_eclass_joinclause to report that two relations are joinable when they have vars that are equated to the same constant. We won't actually generate any joinclause from such an EquivalenceClass, but again it seems that in such a case it's a good idea to consider the join as worth costing out. 5. Fix a bug in select_mergejoin_clauses that was exposed by these changes: we have to reject candidate mergejoin clauses if either side was equated to a constant, because we can't construct a canonical pathkey list for such a clause. This is an implementation restriction that might be worth fixing someday, but it doesn't seem critical to get it done for 8.3.
2008-01-09 21:42:29 +01:00
* RestrictInfo nodes also contain an outerjoin_delayed flag, which is true
* if the clause's applicability must be delayed due to any outer joins
* appearing below its own syntactic level (ie, it references any Vars from
* the nullable side of any lower outer join).
*
* In general, the referenced clause might be arbitrarily complex. The
* kinds of clauses we can handle as indexscan quals, mergejoin clauses,
* or hashjoin clauses are limited (e.g., no volatile functions). The code
* for each kind of path is responsible for identifying the restrict clauses
* it can use and ignoring the rest. Clauses not implemented by an indexscan,
* mergejoin, or hashjoin will be placed in the plan qual or joinqual field
* of the finished Plan node, where they will be enforced by general-purpose
* qual-expression-evaluation code. (But we are still entitled to count
* their selectivity when estimating the result tuple count, if we
* can guess what it is...)
*
* When the referenced clause is an OR clause, we generate a modified copy
* in which additional RestrictInfo nodes are inserted below the top-level
* OR/AND structure. This is a convenience for OR indexscan processing:
* indexquals taken from either the top level or an OR subclause will have
* associated RestrictInfo nodes.
*
* The can_join flag is set true if the clause looks potentially useful as
* a merge or hash join clause, that is if it is a binary opclause with
* nonoverlapping sets of relids referenced in the left and right sides.
* (Whether the operator is actually merge or hash joinable isn't checked,
* however.)
*
* The pseudoconstant flag is set true if the clause contains no Vars of
* the current query level and no volatile functions. Such a clause can be
2006-10-04 02:30:14 +02:00
* pulled out and used as a one-time qual in a gating Result node. We keep
* pseudoconstant clauses in the same lists as other RestrictInfos so that
* the regular clause-pushing machinery can assign them to the correct join
* level, but they need to be treated specially for cost and selectivity
* estimates. Note that a pseudoconstant clause can never be an indexqual
* or merge or hash join clause, so it's of no interest to large parts of
* the planner.
*
* When join clauses are generated from EquivalenceClasses, there may be
* several equally valid ways to enforce join equivalence, of which we need
2007-11-15 22:14:46 +01:00
* apply only one. We mark clauses of this kind by setting parent_ec to
* point to the generating EquivalenceClass. Multiple clauses with the same
* parent_ec in the same join are redundant.
1999-02-22 20:55:44 +01:00
*/
typedef struct RestrictInfo
{
NodeTag type;
Expr *clause; /* the represented clause of WHERE or JOIN */
2004-08-29 07:07:03 +02:00
bool is_pushed_down; /* TRUE if clause was pushed down in level */
Fix some planner issues found while investigating Kevin Grittner's report of poorer planning in 8.3 than 8.2: 1. After pushing a constant across an outer join --- ie, given "a LEFT JOIN b ON (a.x = b.y) WHERE a.x = 42", we can deduce that b.y is sort of equal to 42, in the sense that we needn't fetch any b rows where it isn't 42 --- loop to see if any additional deductions can be made. Previous releases did that by recursing, but I had mistakenly thought that this was no longer necessary given the EquivalenceClass machinery. 2. Allow pushing constants across outer join conditions even if the condition is outerjoin_delayed due to a lower outer join. This is safe as long as the condition is strict and we re-test it at the upper join. 3. Keep the outer-join clause even if we successfully push a constant across it. This is *necessary* in the outerjoin_delayed case, but even in the simple case, it seems better to do this to ensure that the join search order heuristics will consider the join as reasonable to make. Mark such a clause as having selectivity 1.0, though, since it's not going to eliminate very many rows after application of the constant condition. 4. Tweak have_relevant_eclass_joinclause to report that two relations are joinable when they have vars that are equated to the same constant. We won't actually generate any joinclause from such an EquivalenceClass, but again it seems that in such a case it's a good idea to consider the join as worth costing out. 5. Fix a bug in select_mergejoin_clauses that was exposed by these changes: we have to reject candidate mergejoin clauses if either side was equated to a constant, because we can't construct a canonical pathkey list for such a clause. This is an implementation restriction that might be worth fixing someday, but it doesn't seem critical to get it done for 8.3.
2008-01-09 21:42:29 +01:00
bool outerjoin_delayed; /* TRUE if delayed by lower outer join */
bool can_join; /* see comment above */
2006-10-04 02:30:14 +02:00
bool pseudoconstant; /* see comment above */
/* The set of relids (varnos) actually referenced in the clause: */
Relids clause_relids;
/* The set of relids required to evaluate the clause: */
Relids required_relids;
/* These fields are set for any binary opclause: */
Relids left_relids; /* relids in left side of clause */
Relids right_relids; /* relids in right side of clause */
/* This field is NULL unless clause is an OR clause: */
Expr *orclause; /* modified clause with RestrictInfos */
/* This field is NULL unless clause is potentially redundant: */
EquivalenceClass *parent_ec; /* generating EquivalenceClass */
/* cache space for cost and selectivity */
QualCost eval_cost; /* eval cost of clause; -1 if not yet set */
Selectivity norm_selec; /* selectivity for "normal" (JOIN_INNER)
* semantics; -1 if not yet set; >1 means
* a redundant clause */
Selectivity outer_selec; /* selectivity for outer join semantics;
* -1 if not yet set */
/* valid if clause is mergejoinable, else NIL */
List *mergeopfamilies; /* opfamilies containing clause operator */
/* cache space for mergeclause processing; NULL if not yet set */
EquivalenceClass *left_ec; /* EquivalenceClass containing lefthand */
2007-11-15 22:14:46 +01:00
EquivalenceClass *right_ec; /* EquivalenceClass containing righthand */
EquivalenceMember *left_em; /* EquivalenceMember for lefthand */
EquivalenceMember *right_em; /* EquivalenceMember for righthand */
List *scansel_cache; /* list of MergeScanSelCache structs */
/* transient workspace for use while considering a specific join path */
bool outer_is_left; /* T = outer var on left, F = on right */
/* valid if clause is hashjoinable, else InvalidOid: */
Oid hashjoinoperator; /* copy of clause operator */
/* cache space for hashclause processing; -1 if not yet set */
Selectivity left_bucketsize; /* avg bucketsize of left side */
Selectivity right_bucketsize; /* avg bucketsize of right side */
} RestrictInfo;
/*
* Since mergejoinscansel() is a relatively expensive function, and would
* otherwise be invoked many times while planning a large join tree,
* we go out of our way to cache its results. Each mergejoinable
* RestrictInfo carries a list of the specific sort orderings that have
* been considered for use with it, and the resulting selectivities.
*/
typedef struct MergeScanSelCache
{
/* Ordering details (cache lookup key) */
Oid opfamily; /* btree opfamily defining the ordering */
int strategy; /* sort direction (ASC or DESC) */
bool nulls_first; /* do NULLs come before normal values? */
/* Results */
Selectivity leftstartsel; /* first-join fraction for clause left side */
Selectivity leftendsel; /* last-join fraction for clause left side */
Selectivity rightstartsel; /* first-join fraction for clause right side */
Selectivity rightendsel; /* last-join fraction for clause right side */
} MergeScanSelCache;
/*
* Inner indexscan info.
*
* An inner indexscan is one that uses one or more joinclauses as index
* conditions (perhaps in addition to plain restriction clauses). So it
* can only be used as the inner path of a nestloop join where the outer
* relation includes all other relids appearing in those joinclauses.
* The set of usable joinclauses, and thus the best inner indexscan,
* thus varies depending on which outer relation we consider; so we have
* to recompute the best such paths for every join. To avoid lots of
* redundant computation, we cache the results of such searches. For
* each relation we compute the set of possible otherrelids (all relids
* appearing in joinquals that could become indexquals for this table).
* Two outer relations whose relids have the same intersection with this
* set will have the same set of available joinclauses and thus the same
* best inner indexscans for the inner relation. By taking the intersection
* before scanning the cache, we avoid recomputing when considering
* join rels that differ only by the inclusion of irrelevant other rels.
*
* The search key also includes a bool showing whether the join being
* considered is an outer join. Since we constrain the join order for
* outer joins, I believe that this bool can only have one possible value
* for any particular lookup key; but store it anyway to avoid confusion.
*/
typedef struct InnerIndexscanInfo
{
NodeTag type;
/* The lookup key: */
Relids other_relids; /* a set of relevant other relids */
bool isouterjoin; /* true if join is outer */
/* Best paths for this lookup key (NULL if no available indexscans): */
2007-11-15 22:14:46 +01:00
Path *cheapest_startup_innerpath; /* cheapest startup cost */
Path *cheapest_total_innerpath; /* cheapest total cost */
} InnerIndexscanInfo;
/*
* Placeholder node for an expression to be evaluated below the top level
* of a plan tree. This is used during planning to represent the contained
* expression. At the end of the planning process it is replaced by either
* the contained expression or a Var referring to a lower-level evaluation of
* the contained expression. Typically the evaluation occurs below an outer
* join, and Var references above the outer join might thereby yield NULL
* instead of the expression value.
*
* Although the planner treats this as an expression node type, it is not
* recognized by the parser or executor, so we declare it here rather than
* in primnodes.h.
*/
typedef struct PlaceHolderVar
{
Expr xpr;
Expr *phexpr; /* the represented expression */
Relids phrels; /* base relids syntactically within expr src */
Index phid; /* ID for PHV (unique within planner run) */
Index phlevelsup; /* > 0 if PHV belongs to outer query */
} PlaceHolderVar;
/*
* "Special join" info.
*
* One-sided outer joins constrain the order of joining partially but not
2006-10-04 02:30:14 +02:00
* completely. We flatten such joins into the planner's top-level list of
* relations to join, but record information about each outer join in a
* SpecialJoinInfo struct. These structs are kept in the PlannerInfo node's
* join_info_list.
*
* Similarly, semijoins and antijoins created by flattening IN (subselect)
* and EXISTS(subselect) clauses create partial constraints on join order.
* These are likewise recorded in SpecialJoinInfo structs.
*
* We make SpecialJoinInfos for FULL JOINs even though there is no flexibility
* of planning for them, because this simplifies make_join_rel()'s API.
*
* min_lefthand and min_righthand are the sets of base relids that must be
* available on each side when performing the special join. lhs_strict is
* true if the special join's condition cannot succeed when the LHS variables
* are all NULL (this means that an outer join can commute with upper-level
* outer joins even if it appears in their RHS). We don't bother to set
* lhs_strict for FULL JOINs, however.
*
* It is not valid for either min_lefthand or min_righthand to be empty sets;
* if they were, this would break the logic that enforces join order.
*
Rewrite make_outerjoininfo's construction of min_lefthand and min_righthand sets for outer joins, in the light of bug #3588 and additional thought and experimentation. The original methodology was fatally flawed for nests of more than two outer joins: it got the relationships between adjacent joins right, but didn't always come to the right conclusions about whether a join could be interchanged with one two or more levels below it. This was largely caused by a mistaken idea that we should use the min_lefthand + min_righthand sets of a sub-join as the minimum left or right input set of an upper join when we conclude that the sub-join can't commute with the upper one. If there's a still-lower join that the sub-join *can* commute with, this method led us to think that that one could commute with the topmost join; which it can't. Another problem (not directly connected to bug #3588) was that make_outerjoininfo's processing-order-dependent method for enforcing outer join identity #3 didn't work right: if we decided that join A could safely commute with lower join B, we dropped all information about sub-joins under B that join A could perhaps not safely commute with, because we removed B's entire min_righthand from A's. To fix, make an explicit computation of all inner join combinations that occur below an outer join, and add to that the full syntactic relsets of any lower outer joins that we determine it can't commute with. This method gives much more direct enforcement of the outer join rearrangement identities, and it turns out not to cost a lot of additional bookkeeping. Thanks to Richard Harris for the bug report and test case.
2007-08-31 03:44:06 +02:00
* syn_lefthand and syn_righthand are the sets of base relids that are
* syntactically below this special join. (These are needed to help compute
* min_lefthand and min_righthand for higher joins.)
Rewrite make_outerjoininfo's construction of min_lefthand and min_righthand sets for outer joins, in the light of bug #3588 and additional thought and experimentation. The original methodology was fatally flawed for nests of more than two outer joins: it got the relationships between adjacent joins right, but didn't always come to the right conclusions about whether a join could be interchanged with one two or more levels below it. This was largely caused by a mistaken idea that we should use the min_lefthand + min_righthand sets of a sub-join as the minimum left or right input set of an upper join when we conclude that the sub-join can't commute with the upper one. If there's a still-lower join that the sub-join *can* commute with, this method led us to think that that one could commute with the topmost join; which it can't. Another problem (not directly connected to bug #3588) was that make_outerjoininfo's processing-order-dependent method for enforcing outer join identity #3 didn't work right: if we decided that join A could safely commute with lower join B, we dropped all information about sub-joins under B that join A could perhaps not safely commute with, because we removed B's entire min_righthand from A's. To fix, make an explicit computation of all inner join combinations that occur below an outer join, and add to that the full syntactic relsets of any lower outer joins that we determine it can't commute with. This method gives much more direct enforcement of the outer join rearrangement identities, and it turns out not to cost a lot of additional bookkeeping. Thanks to Richard Harris for the bug report and test case.
2007-08-31 03:44:06 +02:00
*
* delay_upper_joins is set TRUE if we detect a pushed-down clause that has
* to be evaluated after this join is formed (because it references the RHS).
* Any outer joins that have such a clause and this join in their RHS cannot
* commute with this join, because that would leave noplace to check the
2007-11-15 22:14:46 +01:00
* pushed-down clause. (We don't track this for FULL JOINs, either.)
*
* join_quals is an implicit-AND list of the quals syntactically associated
* with the join (they may or may not end up being applied at the join level).
* This is just a side list and does not drive actual application of quals.
* For JOIN_SEMI joins, this is cleared to NIL in create_unique_path() if
* the join is found not to be suitable for a uniqueify-the-RHS plan.
*
* jointype is never JOIN_RIGHT; a RIGHT JOIN is handled by switching
* the inputs to make it a LEFT JOIN. So the allowed values of jointype
* in a join_info_list member are only LEFT, FULL, SEMI, or ANTI.
*
* For purposes of join selectivity estimation, we create transient
* SpecialJoinInfo structures for regular inner joins; so it is possible
* to have jointype == JOIN_INNER in such a structure, even though this is
* not allowed within join_info_list. We also create transient
* SpecialJoinInfos with jointype == JOIN_INNER for outer joins, since for
* cost estimation purposes it is sometimes useful to know the join size under
* plain innerjoin semantics. Note that lhs_strict, delay_upper_joins, and
* join_quals are not set meaningfully within such structs.
*/
typedef struct SpecialJoinInfo
{
NodeTag type;
Relids min_lefthand; /* base relids in minimum LHS for join */
Relids min_righthand; /* base relids in minimum RHS for join */
Rewrite make_outerjoininfo's construction of min_lefthand and min_righthand sets for outer joins, in the light of bug #3588 and additional thought and experimentation. The original methodology was fatally flawed for nests of more than two outer joins: it got the relationships between adjacent joins right, but didn't always come to the right conclusions about whether a join could be interchanged with one two or more levels below it. This was largely caused by a mistaken idea that we should use the min_lefthand + min_righthand sets of a sub-join as the minimum left or right input set of an upper join when we conclude that the sub-join can't commute with the upper one. If there's a still-lower join that the sub-join *can* commute with, this method led us to think that that one could commute with the topmost join; which it can't. Another problem (not directly connected to bug #3588) was that make_outerjoininfo's processing-order-dependent method for enforcing outer join identity #3 didn't work right: if we decided that join A could safely commute with lower join B, we dropped all information about sub-joins under B that join A could perhaps not safely commute with, because we removed B's entire min_righthand from A's. To fix, make an explicit computation of all inner join combinations that occur below an outer join, and add to that the full syntactic relsets of any lower outer joins that we determine it can't commute with. This method gives much more direct enforcement of the outer join rearrangement identities, and it turns out not to cost a lot of additional bookkeeping. Thanks to Richard Harris for the bug report and test case.
2007-08-31 03:44:06 +02:00
Relids syn_lefthand; /* base relids syntactically within LHS */
Relids syn_righthand; /* base relids syntactically within RHS */
JoinType jointype; /* always INNER, LEFT, FULL, SEMI, or ANTI */
bool lhs_strict; /* joinclause is strict for some LHS rel */
2007-11-15 22:14:46 +01:00
bool delay_upper_joins; /* can't commute with upper RHS */
List *join_quals; /* join quals, in implicit-AND list format */
} SpecialJoinInfo;
/*
* Append-relation info.
*
* When we expand an inheritable table or a UNION-ALL subselect into an
* "append relation" (essentially, a list of child RTEs), we build an
* AppendRelInfo for each child RTE. The list of AppendRelInfos indicates
* which child RTEs must be included when expanding the parent, and each
* node carries information needed to translate Vars referencing the parent
* into Vars referencing that child.
*
* These structs are kept in the PlannerInfo node's append_rel_list.
* Note that we just throw all the structs into one list, and scan the
* whole list when desiring to expand any one parent. We could have used
* a more complex data structure (eg, one list per parent), but this would
* be harder to update during operations such as pulling up subqueries,
* and not really any easier to scan. Considering that typical queries
* will not have many different append parents, it doesn't seem worthwhile
* to complicate things.
*
* Note: after completion of the planner prep phase, any given RTE is an
* append parent having entries in append_rel_list if and only if its
* "inh" flag is set. We clear "inh" for plain tables that turn out not
* to have inheritance children, and (in an abuse of the original meaning
* of the flag) we set "inh" for subquery RTEs that turn out to be
* flattenable UNION ALL queries. This lets us avoid useless searches
* of append_rel_list.
*
* Note: the data structure assumes that append-rel members are single
* baserels. This is OK for inheritance, but it prevents us from pulling
* up a UNION ALL member subquery if it contains a join. While that could
* be fixed with a more complex data structure, at present there's not much
* point because no improvement in the plan could result.
*/
typedef struct AppendRelInfo
{
NodeTag type;
2006-10-04 02:30:14 +02:00
/*
2006-10-04 02:30:14 +02:00
* These fields uniquely identify this append relationship. There can be
* (in fact, always should be) multiple AppendRelInfos for the same
* parent_relid, but never more than one per child_relid, since a given
* RTE cannot be a child of more than one append parent.
*/
Index parent_relid; /* RT index of append parent rel */
Index child_relid; /* RT index of append child rel */
2006-10-04 02:30:14 +02:00
/*
* For an inheritance appendrel, the parent and child are both regular
* relations, and we store their rowtype OIDs here for use in translating
2006-10-04 02:30:14 +02:00
* whole-row Vars. For a UNION-ALL appendrel, the parent and child are
* both subqueries with no named rowtype, and we store InvalidOid here.
*/
2006-10-04 02:30:14 +02:00
Oid parent_reltype; /* OID of parent's composite type */
Oid child_reltype; /* OID of child's composite type */
/*
2006-10-04 02:30:14 +02:00
* The N'th element of this list is a Var or expression representing the
* child column corresponding to the N'th column of the parent. This is
* used to translate Vars referencing the parent rel into references to
* the child. A list element is NULL if it corresponds to a dropped
* column of the parent (this is only possible for inheritance cases, not
* UNION ALL). The list elements are always simple Vars for inheritance
* cases, but can be arbitrary expressions in UNION ALL cases.
*
* Notice we only store entries for user columns (attno > 0). Whole-row
2006-10-04 02:30:14 +02:00
* Vars are special-cased, and system columns (attno < 0) need no special
* translation since their attnos are the same for all tables.
*
2006-10-04 02:30:14 +02:00
* Caution: the Vars have varlevelsup = 0. Be careful to adjust as needed
* when copying into a subquery.
*/
2006-10-04 02:30:14 +02:00
List *translated_vars; /* Expressions in the child's Vars */
/*
2006-10-04 02:30:14 +02:00
* We store the parent table's OID here for inheritance, or InvalidOid for
* UNION ALL. This is only needed to help in generating error messages if
* an attempt is made to reference a dropped parent column.
*/
Oid parent_reloid; /* OID of parent relation */
} AppendRelInfo;
/*
* For each distinct placeholder expression generated during planning, we
* store a PlaceHolderInfo node in the PlannerInfo node's placeholder_list.
* This stores info that is needed centrally rather than in each copy of the
* PlaceHolderVar. The phid fields identify which PlaceHolderInfo goes with
* each PlaceHolderVar. Note that phid is unique throughout a planner run,
* not just within a query level --- this is so that we need not reassign ID's
* when pulling a subquery into its parent.
*
* The idea is to evaluate the expression at (only) the ph_eval_at join level,
* then allow it to bubble up like a Var until the ph_needed join level.
* ph_needed has the same definition as attr_needed for a regular Var.
*
* We create a PlaceHolderInfo only after determining that the PlaceHolderVar
* is actually referenced in the plan tree.
*/
typedef struct PlaceHolderInfo
{
NodeTag type;
Index phid; /* ID for PH (unique within planner run) */
PlaceHolderVar *ph_var; /* copy of PlaceHolderVar tree */
Relids ph_eval_at; /* lowest level we can evaluate value at */
Relids ph_needed; /* highest level the value is needed at */
int32 ph_width; /* estimated attribute width */
} PlaceHolderInfo;
/*
* glob->paramlist keeps track of the PARAM_EXEC slots that we have decided
* we need for the query. At runtime these slots are used to pass values
* either down into subqueries (for outer references in subqueries) or up out
* of subqueries (for the results of a subplan). The n'th entry in the list
* (n counts from 0) corresponds to Param->paramid = n.
*
* Each paramlist item shows the absolute query level it is associated with,
* where the outermost query is level 1 and nested subqueries have higher
* numbers. The item the parameter slot represents can be one of three kinds:
*
* A Var: the slot represents a variable of that level that must be passed
* down because subqueries have outer references to it. The varlevelsup
* value in the Var will always be zero.
*
* An Aggref (with an expression tree representing its argument): the slot
* represents an aggregate expression that is an outer reference for some
* subquery. The Aggref itself has agglevelsup = 0, and its argument tree
* is adjusted to match in level.
*
* A Param: the slot holds the result of a subplan (it is a setParam item
* for that subplan). The absolute level shown for such items corresponds
* to the parent query of the subplan.
*
* Note: we detect duplicate Var parameters and coalesce them into one slot,
* but we do not do this for Aggref or Param slots.
*/
typedef struct PlannerParamItem
{
NodeTag type;
Node *item; /* the Var, Aggref, or Param */
Index abslevel; /* its absolute query level */
} PlannerParamItem;
#endif /* RELATION_H */