postgresql/src/backend/executor/nodeGather.c

455 lines
13 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* nodeGather.c
* Support routines for scanning a plan via multiple workers.
*
2017-01-03 19:48:53 +01:00
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* A Gather executor launches parallel workers to run multiple copies of a
* plan. It can also run the plan itself, if the workers are not available
* or have not started up yet. It then merges all of the results it produces
* and the results from the workers into a single output stream. Therefore,
* it will normally be used with a plan where running multiple copies of the
* same plan does not produce duplicate output, such as parallel-aware
* SeqScan.
*
* Alternatively, a Gather node can be configured to use just one worker
* and the single-copy flag can be set. In this case, the Gather node will
* run the plan in one worker and will not execute the plan itself. In
* this case, it simply returns whatever tuples were returned by the worker.
* If a worker cannot be obtained, then it will run the plan itself and
* return the results. Therefore, a plan used with a single-copy Gather
* node need not be parallel-aware.
*
* IDENTIFICATION
* src/backend/executor/nodeGather.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/relscan.h"
#include "access/xact.h"
#include "executor/execdebug.h"
#include "executor/execParallel.h"
#include "executor/nodeGather.h"
#include "executor/nodeSubplan.h"
#include "executor/tqueue.h"
2015-11-06 22:58:45 +01:00
#include "miscadmin.h"
#include "optimizer/planmain.h"
#include "pgstat.h"
#include "utils/memutils.h"
#include "utils/rel.h"
static TupleTableSlot *ExecGather(PlanState *pstate);
static TupleTableSlot *gather_getnext(GatherState *gatherstate);
2015-11-06 22:58:45 +01:00
static HeapTuple gather_readnext(GatherState *gatherstate);
static void ExecShutdownGatherWorkers(GatherState *node);
/* ----------------------------------------------------------------
* ExecInitGather
* ----------------------------------------------------------------
*/
GatherState *
ExecInitGather(Gather *node, EState *estate, int eflags)
{
GatherState *gatherstate;
Plan *outerNode;
bool hasoid;
TupleDesc tupDesc;
/* Gather node doesn't have innerPlan node. */
Assert(innerPlan(node) == NULL);
/*
* create state structure
*/
gatherstate = makeNode(GatherState);
gatherstate->ps.plan = (Plan *) node;
gatherstate->ps.state = estate;
gatherstate->ps.ExecProcNode = ExecGather;
gatherstate->initialized = false;
gatherstate->need_to_scan_locally =
!node->single_copy && parallel_leader_participation;
gatherstate->tuples_needed = -1;
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &gatherstate->ps);
/*
* Gather doesn't support checking a qual (it's always more efficient to
* do it in the child node).
*/
Assert(!node->plan.qual);
/*
* tuple table initialization
*/
gatherstate->funnel_slot = ExecInitExtraTupleSlot(estate);
ExecInitResultTupleSlot(estate, &gatherstate->ps);
/*
* now initialize outer plan
*/
outerNode = outerPlan(node);
outerPlanState(gatherstate) = ExecInitNode(outerNode, estate, eflags);
/*
* Initialize result tuple type and projection info.
*/
ExecAssignResultTypeFromTL(&gatherstate->ps);
ExecAssignProjectionInfo(&gatherstate->ps, NULL);
/*
* Initialize funnel slot to same tuple descriptor as outer plan.
*/
if (!ExecContextForcesOids(&gatherstate->ps, &hasoid))
hasoid = false;
tupDesc = ExecTypeFromTL(outerNode->targetlist, hasoid);
ExecSetSlotDescriptor(gatherstate->funnel_slot, tupDesc);
return gatherstate;
}
/* ----------------------------------------------------------------
* ExecGather(node)
*
* Scans the relation via multiple workers and returns
* the next qualifying tuple.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecGather(PlanState *pstate)
{
GatherState *node = castNode(GatherState, pstate);
2015-11-06 22:58:45 +01:00
TupleTableSlot *fslot = node->funnel_slot;
TupleTableSlot *slot;
ExprContext *econtext;
CHECK_FOR_INTERRUPTS();
/*
* Initialize the parallel context and workers on first execution. We do
* this on first execution rather than during node initialization, as it
* needs to allocate a large dynamic segment, so it is better to do it
* only if it is really needed.
*/
if (!node->initialized)
{
EState *estate = node->ps.state;
Gather *gather = (Gather *) node->ps.plan;
/*
2016-06-10 00:02:36 +02:00
* Sometimes we might have to run without parallelism; but if parallel
* mode is active then we can try to fire up some workers.
*/
if (gather->num_workers > 0 && estate->es_use_parallel_mode)
{
2015-11-06 22:58:45 +01:00
ParallelContext *pcxt;
/* Initialize, or re-initialize, shared state needed by workers. */
if (!node->pei)
node->pei = ExecInitParallelPlan(node->ps.lefttree,
estate,
gather->num_workers,
node->tuples_needed);
else
ExecParallelReinitialize(node->ps.lefttree,
node->pei);
/*
* Register backend workers. We might not get as many as we
* requested, or indeed any at all.
*/
2015-11-06 22:58:45 +01:00
pcxt = node->pei->pcxt;
LaunchParallelWorkers(pcxt);
/* We save # workers launched for the benefit of EXPLAIN */
node->nworkers_launched = pcxt->nworkers_launched;
2015-11-06 22:58:45 +01:00
/* Set up tuple queue readers to read the results. */
if (pcxt->nworkers_launched > 0)
{
ExecParallelCreateReaders(node->pei);
/* Make a working array showing the active readers */
node->nreaders = pcxt->nworkers_launched;
node->reader = (TupleQueueReader **)
palloc(node->nreaders * sizeof(TupleQueueReader *));
memcpy(node->reader, node->pei->reader,
node->nreaders * sizeof(TupleQueueReader *));
}
else
{
2016-06-10 00:02:36 +02:00
/* No workers? Then never mind. */
node->nreaders = 0;
node->reader = NULL;
}
node->nextreader = 0;
}
/* Run plan locally if no workers or enabled and not single-copy. */
node->need_to_scan_locally = (node->nreaders == 0)
|| (!gather->single_copy && parallel_leader_participation);
node->initialized = true;
}
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous tuple cycle. This will also clear
* any previous tuple returned by a TupleQueueReader; to make sure we
* don't leave a dangling pointer around, clear the working slot first.
*/
ExecClearTuple(fslot);
econtext = node->ps.ps_ExprContext;
ResetExprContext(econtext);
/*
* Get next tuple, either from one of our workers, or by running the plan
* ourselves.
*/
slot = gather_getnext(node);
if (TupIsNull(slot))
return NULL;
/*
* Form the result tuple using ExecProject(), and return it.
*/
econtext->ecxt_outertuple = slot;
return ExecProject(node->ps.ps_ProjInfo);
}
/* ----------------------------------------------------------------
* ExecEndGather
*
* frees any storage allocated through C routines.
* ----------------------------------------------------------------
*/
void
ExecEndGather(GatherState *node)
{
ExecEndNode(outerPlanState(node)); /* let children clean up first */
ExecShutdownGather(node);
ExecFreeExprContext(&node->ps);
ExecClearTuple(node->ps.ps_ResultTupleSlot);
}
/*
2015-11-06 22:58:45 +01:00
* Read the next tuple. We might fetch a tuple from one of the tuple queues
* using gather_readnext, or if no tuple queue contains a tuple and the
* single_copy flag is not set, we might generate one locally instead.
*/
static TupleTableSlot *
gather_getnext(GatherState *gatherstate)
{
PlanState *outerPlan = outerPlanState(gatherstate);
TupleTableSlot *outerTupleSlot;
TupleTableSlot *fslot = gatherstate->funnel_slot;
MemoryContext tupleContext = gatherstate->ps.ps_ExprContext->ecxt_per_tuple_memory;
HeapTuple tup;
while (gatherstate->nreaders > 0 || gatherstate->need_to_scan_locally)
{
CHECK_FOR_INTERRUPTS();
if (gatherstate->nreaders > 0)
{
MemoryContext oldContext;
/* Run TupleQueueReaders in per-tuple context */
oldContext = MemoryContextSwitchTo(tupleContext);
2015-11-06 22:58:45 +01:00
tup = gather_readnext(gatherstate);
MemoryContextSwitchTo(oldContext);
if (HeapTupleIsValid(tup))
{
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
ExecStoreTuple(tup, /* tuple to store */
fslot, /* slot in which to store the tuple */
InvalidBuffer, /* buffer associated with this
* tuple */
false); /* slot should not pfree tuple */
return fslot;
}
}
if (gatherstate->need_to_scan_locally)
{
outerTupleSlot = ExecProcNode(outerPlan);
if (!TupIsNull(outerTupleSlot))
return outerTupleSlot;
gatherstate->need_to_scan_locally = false;
}
}
return ExecClearTuple(fslot);
}
2015-11-06 22:58:45 +01:00
/*
* Attempt to read a tuple from one of our parallel workers.
*/
static HeapTuple
gather_readnext(GatherState *gatherstate)
{
int nvisited = 0;
2015-11-06 22:58:45 +01:00
for (;;)
{
TupleQueueReader *reader;
HeapTuple tup;
bool readerdone;
/* Check for async events, particularly messages from workers. */
CHECK_FOR_INTERRUPTS();
2015-11-06 22:58:45 +01:00
/* Attempt to read a tuple, but don't block if none is available. */
Assert(gatherstate->nextreader < gatherstate->nreaders);
2015-11-06 22:58:45 +01:00
reader = gatherstate->reader[gatherstate->nextreader];
tup = TupleQueueReaderNext(reader, true, &readerdone);
/*
* If this reader is done, remove it from our working array of active
* readers. If all readers are done, we're outta here.
2015-11-06 22:58:45 +01:00
*/
if (readerdone)
{
Assert(!tup);
2015-11-06 22:58:45 +01:00
--gatherstate->nreaders;
if (gatherstate->nreaders == 0)
return NULL;
memmove(&gatherstate->reader[gatherstate->nextreader],
&gatherstate->reader[gatherstate->nextreader + 1],
sizeof(TupleQueueReader *)
* (gatherstate->nreaders - gatherstate->nextreader));
if (gatherstate->nextreader >= gatherstate->nreaders)
gatherstate->nextreader = 0;
2015-11-06 22:58:45 +01:00
continue;
}
/* If we got a tuple, return it. */
if (tup)
return tup;
/*
* Advance nextreader pointer in round-robin fashion. Note that we
* only reach this code if we weren't able to get a tuple from the
* current worker. We used to advance the nextreader pointer after
* every tuple, but it turns out to be much more efficient to keep
* reading from the same queue until that would require blocking.
*/
gatherstate->nextreader++;
if (gatherstate->nextreader >= gatherstate->nreaders)
gatherstate->nextreader = 0;
/* Have we visited every (surviving) TupleQueueReader? */
nvisited++;
if (nvisited >= gatherstate->nreaders)
2015-11-06 22:58:45 +01:00
{
/*
* If (still) running plan locally, return NULL so caller can
* generate another tuple from the local copy of the plan.
*/
if (gatherstate->need_to_scan_locally)
return NULL;
/* Nothing to do except wait for developments. */
WaitLatch(MyLatch, WL_LATCH_SET, 0, WAIT_EVENT_EXECUTE_GATHER);
2015-11-06 22:58:45 +01:00
ResetLatch(MyLatch);
nvisited = 0;
2015-11-06 22:58:45 +01:00
}
}
}
/* ----------------------------------------------------------------
* ExecShutdownGatherWorkers
*
* Stop all the parallel workers.
* ----------------------------------------------------------------
*/
static void
ExecShutdownGatherWorkers(GatherState *node)
{
if (node->pei != NULL)
ExecParallelFinish(node->pei);
/* Flush local copy of reader array */
if (node->reader)
pfree(node->reader);
node->reader = NULL;
}
/* ----------------------------------------------------------------
* ExecShutdownGather
*
* Destroy the setup for parallel workers including parallel context.
* ----------------------------------------------------------------
*/
void
ExecShutdownGather(GatherState *node)
{
ExecShutdownGatherWorkers(node);
/* Now destroy the parallel context. */
if (node->pei != NULL)
{
ExecParallelCleanup(node->pei);
node->pei = NULL;
}
}
/* ----------------------------------------------------------------
* Join Support
* ----------------------------------------------------------------
*/
/* ----------------------------------------------------------------
* ExecReScanGather
*
* Prepare to re-scan the result of a Gather.
* ----------------------------------------------------------------
*/
void
ExecReScanGather(GatherState *node)
{
Force rescanning of parallel-aware scan nodes below a Gather[Merge]. The ExecReScan machinery contains various optimizations for postponing or skipping rescans of plan subtrees; for example a HashAgg node may conclude that it can re-use the table it built before, instead of re-reading its input subtree. But that is wrong if the input contains a parallel-aware table scan node, since the portion of the table scanned by the leader process is likely to vary from one rescan to the next. This explains the timing-dependent buildfarm failures we saw after commit a2b70c89c. The established mechanism for showing that a plan node's output is potentially variable is to mark it as depending on some runtime Param. Hence, to fix this, invent a dummy Param (one that has a PARAM_EXEC parameter number, but carries no actual value) associated with each Gather or GatherMerge node, mark parallel-aware nodes below that node as dependent on that Param, and arrange for ExecReScanGather[Merge] to flag that Param as changed whenever the Gather[Merge] node is rescanned. This solution breaks an undocumented assumption made by the parallel executor logic, namely that all rescans of nodes below a Gather[Merge] will happen synchronously during the ReScan of the top node itself. But that's fundamentally contrary to the design of the ExecReScan code, and so was doomed to fail someday anyway (even if you want to argue that the bug being fixed here wasn't a failure of that assumption). A follow-on patch will address that issue. In the meantime, the worst that's expected to happen is that given very bad timing luck, the leader might have to do all the work during a rescan, because workers think they have nothing to do, if they are able to start up before the eventual ReScan of the leader's parallel-aware table scan node has reset the shared scan state. Although this problem exists in 9.6, there does not seem to be any way for it to manifest there. Without GatherMerge, it seems that a plan tree that has a rescan-short-circuiting node below Gather will always also have one above it that will short-circuit in the same cases, preventing the Gather from being rescanned. Hence we won't take the risk of back-patching this change into 9.6. But v10 needs it. Discussion: https://postgr.es/m/CAA4eK1JkByysFJNh9M349u_nNjqETuEnY_y1VUc_kJiU0bxtaQ@mail.gmail.com
2017-08-30 15:29:55 +02:00
Gather *gather = (Gather *) node->ps.plan;
PlanState *outerPlan = outerPlanState(node);
/* Make sure any existing workers are gracefully shut down */
ExecShutdownGatherWorkers(node);
/* Mark node so that shared state will be rebuilt at next call */
node->initialized = false;
Force rescanning of parallel-aware scan nodes below a Gather[Merge]. The ExecReScan machinery contains various optimizations for postponing or skipping rescans of plan subtrees; for example a HashAgg node may conclude that it can re-use the table it built before, instead of re-reading its input subtree. But that is wrong if the input contains a parallel-aware table scan node, since the portion of the table scanned by the leader process is likely to vary from one rescan to the next. This explains the timing-dependent buildfarm failures we saw after commit a2b70c89c. The established mechanism for showing that a plan node's output is potentially variable is to mark it as depending on some runtime Param. Hence, to fix this, invent a dummy Param (one that has a PARAM_EXEC parameter number, but carries no actual value) associated with each Gather or GatherMerge node, mark parallel-aware nodes below that node as dependent on that Param, and arrange for ExecReScanGather[Merge] to flag that Param as changed whenever the Gather[Merge] node is rescanned. This solution breaks an undocumented assumption made by the parallel executor logic, namely that all rescans of nodes below a Gather[Merge] will happen synchronously during the ReScan of the top node itself. But that's fundamentally contrary to the design of the ExecReScan code, and so was doomed to fail someday anyway (even if you want to argue that the bug being fixed here wasn't a failure of that assumption). A follow-on patch will address that issue. In the meantime, the worst that's expected to happen is that given very bad timing luck, the leader might have to do all the work during a rescan, because workers think they have nothing to do, if they are able to start up before the eventual ReScan of the leader's parallel-aware table scan node has reset the shared scan state. Although this problem exists in 9.6, there does not seem to be any way for it to manifest there. Without GatherMerge, it seems that a plan tree that has a rescan-short-circuiting node below Gather will always also have one above it that will short-circuit in the same cases, preventing the Gather from being rescanned. Hence we won't take the risk of back-patching this change into 9.6. But v10 needs it. Discussion: https://postgr.es/m/CAA4eK1JkByysFJNh9M349u_nNjqETuEnY_y1VUc_kJiU0bxtaQ@mail.gmail.com
2017-08-30 15:29:55 +02:00
/*
* Set child node's chgParam to tell it that the next scan might deliver a
* different set of rows within the leader process. (The overall rowset
* shouldn't change, but the leader process's subset might; hence nodes
* between here and the parallel table scan node mustn't optimize on the
* assumption of an unchanging rowset.)
*/
if (gather->rescan_param >= 0)
outerPlan->chgParam = bms_add_member(outerPlan->chgParam,
gather->rescan_param);
/*
* If chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode. Note: because this does nothing if we have a
* rescan_param, it's currently guaranteed that parallel-aware child nodes
* will not see a ReScan call until after they get a ReInitializeDSM call.
* That ordering might not be something to rely on, though. A good rule
* of thumb is that ReInitializeDSM should reset only shared state, ReScan
* should reset only local state, and anything that depends on both of
* those steps being finished must wait until the first ExecProcNode call.
Force rescanning of parallel-aware scan nodes below a Gather[Merge]. The ExecReScan machinery contains various optimizations for postponing or skipping rescans of plan subtrees; for example a HashAgg node may conclude that it can re-use the table it built before, instead of re-reading its input subtree. But that is wrong if the input contains a parallel-aware table scan node, since the portion of the table scanned by the leader process is likely to vary from one rescan to the next. This explains the timing-dependent buildfarm failures we saw after commit a2b70c89c. The established mechanism for showing that a plan node's output is potentially variable is to mark it as depending on some runtime Param. Hence, to fix this, invent a dummy Param (one that has a PARAM_EXEC parameter number, but carries no actual value) associated with each Gather or GatherMerge node, mark parallel-aware nodes below that node as dependent on that Param, and arrange for ExecReScanGather[Merge] to flag that Param as changed whenever the Gather[Merge] node is rescanned. This solution breaks an undocumented assumption made by the parallel executor logic, namely that all rescans of nodes below a Gather[Merge] will happen synchronously during the ReScan of the top node itself. But that's fundamentally contrary to the design of the ExecReScan code, and so was doomed to fail someday anyway (even if you want to argue that the bug being fixed here wasn't a failure of that assumption). A follow-on patch will address that issue. In the meantime, the worst that's expected to happen is that given very bad timing luck, the leader might have to do all the work during a rescan, because workers think they have nothing to do, if they are able to start up before the eventual ReScan of the leader's parallel-aware table scan node has reset the shared scan state. Although this problem exists in 9.6, there does not seem to be any way for it to manifest there. Without GatherMerge, it seems that a plan tree that has a rescan-short-circuiting node below Gather will always also have one above it that will short-circuit in the same cases, preventing the Gather from being rescanned. Hence we won't take the risk of back-patching this change into 9.6. But v10 needs it. Discussion: https://postgr.es/m/CAA4eK1JkByysFJNh9M349u_nNjqETuEnY_y1VUc_kJiU0bxtaQ@mail.gmail.com
2017-08-30 15:29:55 +02:00
*/
if (outerPlan->chgParam == NULL)
ExecReScan(outerPlan);
}