Commit Graph

68 Commits

Author SHA1 Message Date
Andrew Gierth 44e95b5728 Fix array size allocation for HashAggregate hash keys.
When there were duplicate columns in the hash key list, the array
sizes could be miscomputed, resulting in access off the end of the
array. Adjust the computation to ensure the array is always large
enough.

(I considered whether the duplicates could be removed in planning, but
I can't rule out the possibility that duplicate columns might have
different hash functions assigned. Simpler to just make sure it works
at execution time regardless.)

Bug apparently introduced in fc4b3dea2 as part of narrowing down the
tuples stored in the hashtable. Reported by Colm McHugh of Salesforce,
though I didn't use their patch. Backpatch back to version 10 where
the bug was introduced.

Discussion: https://postgr.es/m/CAFeeJoKKu0u+A_A9R9316djW-YW3-+Gtgvy3ju655qRHR3jtdA@mail.gmail.com
2019-05-23 15:26:01 +01:00
Andres Freund 2657283256 Minimally fix partial aggregation for aggregates that don't have one argument.
For partial aggregation combine steps,
AggStatePerTrans->numTransInputs was set to the transition function's
number of inputs, rather than the combine function's number of
inputs (always 1).

That lead to partial aggregates with strict combine functions to
wrongly check for NOT NULL input as required by strictness. When the
aggregate wasn't exactly passed one argument, the strictness check was
either omitted (in the 0 args case) or too many arguments were
checked. In the latter case we'd read beyond the end of
FunctionCallInfoData->args (only in master).

AggStatePerTrans->numTransInputs actually has been wrong since since
9.6, where partial aggregates were added. But it turns out to not be
an active problem in 9.6 and 10, because numTransInputs wasn't used at
all for combine functions: Before c253b722f6 there simply was no NULL
check for the input to strict trans functions, and after that the
check was simply hardcoded for the right offset in fcinfo, as it's
done by code specific to combine functions.

In bf6c614a2f (11) the strictness check was generalized, with common
code doing the strictness checks for both plain and combine transition
functions, based on numTransInputs. For combine functions this lead to
not emitting an expression step to check for strict input in the 0
arguments case, and in the > 1 arguments case, we'd check too many
arguments.Due to the fact that the relevant fcinfo->isnull[2..] was
always zero-initialized (more or less by accident, by being part of
the AggStatePerTrans struct, which is palloc0'ed), there was no
observable damage in the latter case before a9c35cf85c, we just
checked too many array elements.

Due to the changes in a9c35cf85c, > 1 argument bug became visible,
because these days fcinfo is a) dynamically allocated without being
zeroed b) exactly the length required for the number of specified
arguments (hardcoded to 2 in this case).

This commit only contains a fairly minimal fix, setting numTransInputs
to a hardcoded 1 when building a pertrans for a combine function. It
seems likely that we'll want to clean this up further (e.g. the
arguments build_pertrans_for_aggref() aren't particularly meaningful
for combine functions). But the wrap date for 12 beta1 is coming up
fast, so it seems good to have a minimal fix in place.

Backpatch to 11. While AggStatePerTrans->numTransInputs was set
wrongly before that, the value was not used for combine functions.

Reported-By: Rajkumar Raghuwanshi
Diagnosed-By: Kyotaro Horiguchi, Jeevan Chalke, Andres Freund, David Rowley
Author: David Rowley, Kyotaro Horiguchi, Andres Freund
Discussion: https://postgr.es/m/CAKcux6=uZEyWyLw0N7HtR9OBc-sWEFeByEZC7t-KDf15FKxVew@mail.gmail.com
2019-05-19 18:01:06 -07:00
Andrew Gierth 02ddd49932 Change floating-point output format for improved performance.
Previously, floating-point output was done by rounding to a specific
decimal precision; by default, to 6 or 15 decimal digits (losing
information) or as requested using extra_float_digits. Drivers that
wanted exact float values, and applications like pg_dump that must
preserve values exactly, set extra_float_digits=3 (or sometimes 2 for
historical reasons, though this isn't enough for float4).

Unfortunately, decimal rounded output is slow enough to become a
noticable bottleneck when dealing with large result sets or COPY of
large tables when many floating-point values are involved.

Floating-point output can be done much faster when the output is not
rounded to a specific decimal length, but rather is chosen as the
shortest decimal representation that is closer to the original float
value than to any other value representable in the same precision. The
recently published Ryu algorithm by Ulf Adams is both relatively
simple and remarkably fast.

Accordingly, change float4out/float8out to output shortest decimal
representations if extra_float_digits is greater than 0, and make that
the new default. Applications that need rounded output can set
extra_float_digits back to 0 or below, and take the resulting
performance hit.

We make one concession to portability for systems with buggy
floating-point input: we do not output decimal values that fall
exactly halfway between adjacent representable binary values (which
would rely on the reader doing round-to-nearest-even correctly). This
is known to be a problem at least for VS2013 on Windows.

Our version of the Ryu code originates from
https://github.com/ulfjack/ryu/ at commit c9c3fb1979, but with the
following (significant) modifications:

 - Output format is changed to use fixed-point notation for small
   exponents, as printf would, and also to use lowercase 'e', a
   minimum of 2 exponent digits, and a mandatory sign on the exponent,
   to keep the formatting as close as possible to previous output.

 - The output of exact midpoint values is disabled as noted above.

 - The integer fast-path code is changed somewhat (since we have
   fixed-point output and the upstream did not).

 - Our project style has been largely applied to the code with the
   exception of C99 declaration-after-statement, which has been
   retained as an exception to our present policy.

 - Most of upstream's debugging and conditionals are removed, and we
   use our own configure tests to determine things like uint128
   availability.

Changing the float output format obviously affects a number of
regression tests. This patch uses an explicit setting of
extra_float_digits=0 for test output that is not expected to be
exactly reproducible (e.g. due to numerical instability or differing
algorithms for transcendental functions).

Conversions from floats to numeric are unchanged by this patch. These
may appear in index expressions and it is not yet clear whether any
change should be made, so that can be left for another day.

This patch assumes that the only supported floating point format is
now IEEE format, and the documentation is updated to reflect that.

Code by me, adapting the work of Ulf Adams and other contributors.

References:
https://dl.acm.org/citation.cfm?id=3192369

Reviewed-by: Tom Lane, Andres Freund, Donald Dong
Discussion: https://postgr.es/m/87r2el1bx6.fsf@news-spur.riddles.org.uk
2019-02-13 15:20:33 +00:00
Andrew Gierth d16d453870 Postpone aggregate checks until after collation is assigned.
Previously, parseCheckAggregates was run before
assign_query_collations, but this causes problems if any expression
has already had a collation assigned by some transform function (e.g.
transformCaseExpr) before parseCheckAggregates runs. The differing
collations would cause expressions not to be recognized as equal to
the ones in the GROUP BY clause, leading to spurious errors about
unaggregated column references.

The result was that CASE expr WHEN val ... would fail when "expr"
contained a GROUPING() expression or matched one of the group by
expressions, and where collatable types were involved; whereas the
supposedly identical CASE WHEN expr = val ... would succeed.

Backpatch all the way; this appears to have been wrong ever since
collations were introduced.

Per report from Guillaume Lelarge, analysis and patch by me.

Discussion: https://postgr.es/m/CAECtzeVSO_US8C2Khgfv54ZMUOBR4sWq+6_bLrETnWExHT=rFg@mail.gmail.com
Discussion: https://postgr.es/m/87muo0k0c7.fsf@news-spur.riddles.org.uk
2019-01-17 06:46:10 +00:00
Andres Freund 4c640f4f38 Fix STRICT check for strict aggregates with NULL ORDER BY columns.
I (Andres) broke this unintentionally in 69c3936a14, by checking
strictness for all input expressions computed for an aggregate, rather
than just the input for the aggregate transition function.

Reported-By: Ondřej Bouda
Bisected-By: Tom Lane
Diagnosed-By: Andrew Gierth
Discussion: https://postgr.es/m/2a505161-2727-2473-7c46-591ed108ac52@email.cz
Backpatch: 11-, like 69c3936a14
2018-11-03 14:48:42 -07:00
Dean Rasheed e954a727f0 Improve the accuracy of floating point statistical aggregates.
When computing statistical aggregates like variance, the common
schoolbook algorithm which computes the sum of the squares of the
values and subtracts the square of the mean can lead to a large loss
of precision when using floating point arithmetic, because the
difference between the two terms is often very small relative to the
terms themselves.

To avoid this, re-work these aggregates to use the Youngs-Cramer
algorithm, which is a proven, numerically stable algorithm that
directly aggregates the sum of the squares of the differences of the
values from the mean in a single pass over the data.

While at it, improve the test coverage to test the aggregate combine
functions used during parallel aggregation.

Per report and suggested algorithm from Erich Schubert.

Patch by me, reviewed by Madeleine Thompson.

Discussion: https://postgr.es/m/153313051300.1397.9594490737341194671@wrigleys.postgresql.org
2018-10-06 11:20:09 +01:00
Andres Freund 3522d0eaba Deduplicate "invalid input syntax" messages for various types.
Previously a lot of the error messages referenced the type in the
error message itself. That requires that the message is translated
separately for each type.

Note that currently a few smallint cases continue to reference the
integer, rather than smallint, type. A later patch will create a
separate routine for 16bit input.

Author: Andres Freund
Discussion: https://postgr.es/m/20180707200158.wpqkd7rjr4jxq5g7@alap3.anarazel.de
2018-07-22 14:58:01 -07:00
Andres Freund 249126e761 Use context with correct lifetime in hypothetical_dense_rank_final.
The query lifetime expression context created in
hypothetical_dense_rank_final() was buggily allocated in the calling
memory context. I (Andres) broke that in bf6c614a2f.

Reported-By: Rajkumar Raghuwanshi
Author: Amit Langote
Discussion:  https://postgr.es/m/CAKcux6kmzWmur5HhA_aU6gYVFu0RLQdgJJ+aC9SLdcOvBSrpfA@mail.gmail.com
Backpatch: 11-
2018-07-04 17:36:01 -07:00
Tom Lane ec4719cd15 Fix partial aggregation for variance(int4) and related aggregates.
A typo in numeric_poly_combine caused bogus results for queries using
it, but of course would only manifest if parallel aggregation is
performed.  Reported by Rajkumar Raghuwanshi.

David Rowley did the diagnosis and the fix; I editorialized rather
heavily on his regression test additions.

Back-patch to v10 where the breakage was introduced (by 9cca11c91).

Discussion: https://postgr.es/m/CAKcux6nU4E2x8nkSBpLOT2DPvQ5LviJ3SGyAN6Sz7qDH4G4+Pw@mail.gmail.com
2018-06-21 16:18:39 -04:00
Tom Lane fb8697b31a Avoid unnecessary use of pg_strcasecmp for already-downcased identifiers.
We have a lot of code in which option names, which from the user's
viewpoint are logically keywords, are passed through the grammar as plain
identifiers, and then matched to string literals during command execution.
This approach avoids making words into lexer keywords unnecessarily.  Some
places matched these strings using plain strcmp, some using pg_strcasecmp.
But the latter should be unnecessary since identifiers would have been
downcased on their way through the parser.  Aside from any efficiency
concerns (probably not a big factor), the lack of consistency in this area
creates a hazard of subtle bugs due to different places coming to different
conclusions about whether two option names are the same or different.
Hence, standardize on using strcmp() to match any option names that are
expected to have been fed through the parser.

This does create a user-visible behavioral change, which is that while
formerly all of these would work:
	alter table foo set (fillfactor = 50);
	alter table foo set (FillFactor = 50);
	alter table foo set ("fillfactor" = 50);
	alter table foo set ("FillFactor" = 50);
now the last case will fail because that double-quoted identifier is
different from the others.  However, none of our documentation says that
you can use a quoted identifier in such contexts at all, and we should
discourage doing so since it would break if we ever decide to parse such
constructs as true lexer keywords rather than poor man's substitutes.
So this shouldn't create a significant compatibility issue for users.

Daniel Gustafsson, reviewed by Michael Paquier, small changes by me

Discussion: https://postgr.es/m/29405B24-564E-476B-98C0-677A29805B84@yesql.se
2018-01-26 18:25:14 -05:00
Tom Lane e842791b0f Fix unstable regression test added by commits 59b71c6fe et al.
The query didn't really have a preferred index, leading to platform-
specific choices of which one to use.  Adjust it to make sure tenk1_hundred
is always chosen.

Per buildfarm.
2017-11-24 00:29:20 -05:00
Andres Freund 59b71c6fe6 Fix handling of NULLs returned by aggregate combine functions.
When strict aggregate combine functions, used in multi-stage/parallel
aggregation, returned NULL, we didn't check for that, invoking the
combine function with NULL the next round, despite it being strict.

The equivalent code invoking normal transition functions has a check
for that situation, which did not get copied in a7de3dc5c3. Fix the
bug by adding the equivalent check.

Based on a quick look I could not find any strict combine functions in
core actually returning NULL, and it doesn't seem very likely external
users have done so. So this isn't likely to have caused issues in
practice.

Add tests verifying transition / combine functions returning NULL is
tested.

Reported-By: Andres Freund
Author: Andres Freund
Discussion: https://postgr.es/m/20171121033642.7xvmjqrl4jdaaat3@alap3.anarazel.de
Backpatch: 9.6, where parallel aggregation was introduced
2017-11-23 17:15:27 -08:00
Tom Lane be0ebb65f5 Allow the built-in ordered-set aggregates to share transition state.
The built-in OSAs all share the same transition function, so they can
share transition state as long as the final functions cooperate to not
do the sort step more than once.  To avoid running the tuplesort object
in randomAccess mode unnecessarily, add a bit of infrastructure to
nodeAgg.c to let the aggregate functions find out whether the transition
state is actually being shared or not.

This doesn't work for the hypothetical aggregates, since those inject
a hypothetical row that isn't traceable to the shared input state.
So they remain marked aggfinalmodify = 'w'.

Discussion: https://postgr.es/m/CAB4ELO5RZhOamuT9Xsf72ozbenDLLXZKSk07FiSVsuJNZB861A@mail.gmail.com
2017-10-16 15:51:23 -04:00
Tom Lane c3dfe0fec0 Repair breakage of aggregate FILTER option.
An aggregate's input expression(s) are not supposed to be evaluated
at all for a row where its FILTER test fails ... but commit 8ed3f11bb
overlooked that requirement.  Reshuffle so that aggregates having a
filter clause evaluate their arguments separately from those without.
This still gets the benefit of doing only one ExecProject in the
common case of multiple Aggrefs, none of which have filters.

While at it, arrange for filter clauses to be included in the common
ExecProject evaluation, thus perhaps buying a little bit even when
there are filters.

Back-patch to v10 where the bug was introduced.

Discussion: https://postgr.es/m/30065.1508161354@sss.pgh.pa.us
2017-10-16 15:24:36 -04:00
Tom Lane 52328727be Prevent sharing transition states between ordered-set aggregates.
This ought to work, but the built-in OSAs are not capable of coping,
because their final-functions destructively modify their transition
state (specifically, the contained tuplesort object).  That was fine
when those functions were written, but commit 804163bc2 moved the
goalposts without telling orderedsetaggs.c.

We should fix the built-in OSAs to support this, but it will take
a little work, especially if we don't want to sacrifice performance
in the normal non-shared-state case.  Given that it took a year after
9.6 release for anyone to notice this bug, we should not prioritize
sharable-state over nonsharable-state performance.  And a proper fix
is likely to be more complicated than we'd want to back-patch, too.

Therefore, let's just put in this stop-gap patch to prevent nodeAgg.c
from choosing to use shared state for OSAs.  We can revert it in HEAD
when we get a better fix.

Report from Lukas Eder, diagnosis by me, patch by David Rowley.
Back-patch to 9.6 where the problem was introduced.

Discussion: https://postgr.es/m/CAB4ELO5RZhOamuT9Xsf72ozbenDLLXZKSk07FiSVsuJNZB861A@mail.gmail.com
2017-10-11 22:18:10 -04:00
Tom Lane 9c7f5229ad Optimize joins when the inner relation can be proven unique.
If there can certainly be no more than one matching inner row for a given
outer row, then the executor can move on to the next outer row as soon as
it's found one match; there's no need to continue scanning the inner
relation for this outer row.  This saves useless scanning in nestloop
and hash joins.  In merge joins, it offers the opportunity to skip
mark/restore processing, because we know we have not advanced past the
first possible match for the next outer row.

Of course, the devil is in the details: the proof of uniqueness must
depend only on joinquals (not otherquals), and if we want to skip
mergejoin mark/restore then it must depend only on merge clauses.
To avoid adding more planning overhead than absolutely necessary,
the present patch errs in the conservative direction: there are cases
where inner_unique or skip_mark_restore processing could be used, but
it will not do so because it's not sure that the uniqueness proof
depended only on "safe" clauses.  This could be improved later.

David Rowley, reviewed and rather heavily editorialized on by me

Discussion: https://postgr.es/m/CAApHDvqF6Sw-TK98bW48TdtFJ+3a7D2mFyZ7++=D-RyPsL76gw@mail.gmail.com
2017-04-07 22:20:13 -04:00
Andres Freund 69f4b9c85f Move targetlist SRF handling from expression evaluation to new executor node.
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT
generate_series(1,5)) so far was done in the expression evaluation (i.e.
ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code.

This meant that most executor nodes performing projection, and most
expression evaluation functions, had to deal with the possibility that an
evaluated expression could return a set of return values.

That's bad because it leads to repeated code in a lot of places. It also,
and that's my (Andres's) motivation, made it a lot harder to implement a
more efficient way of doing expression evaluation.

To fix this, introduce a new executor node (ProjectSet) that can evaluate
targetlists containing one or more SRFs. To avoid the complexity of the old
way of handling nested expressions returning sets (e.g. having to pass up
ExprDoneCond, and dealing with arguments to functions returning sets etc.),
those SRFs can only be at the top level of the node's targetlist.  The
planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is
only necessary in ProjectSet nodes and that SRFs are only present at the
top level of the node's targetlist. If there are nested SRFs the planner
creates multiple stacked ProjectSet nodes.  The ProjectSet nodes always get
input from an underlying node.

We also discussed and prototyped evaluating targetlist SRFs using ROWS
FROM(), but that turned out to be more complicated than we'd hoped.

While moving SRF evaluation to ProjectSet would allow to retain the old
"least common multiple" behavior when multiple SRFs are present in one
targetlist (i.e.  continue returning rows until all SRFs are at the end of
their input at the same time), we decided to instead only return rows till
all SRFs are exhausted, returning NULL for already exhausted ones.  We
deemed the previous behavior to be too confusing, unexpected and actually
not particularly useful.

As a side effect, the previously prohibited case of multiple set returning
arguments to a function, is now allowed. Not because it's particularly
desirable, but because it ends up working and there seems to be no argument
for adding code to prohibit it.

Currently the behavior for COALESCE and CASE containing SRFs has changed,
returning multiple rows from the expression, even when the SRF containing
"arm" of the expression is not evaluated. That's because the SRFs are
evaluated in a separate ProjectSet node.  As that's quite confusing, we're
likely to instead prohibit SRFs in those places.  But that's still being
discussed, and the code would reside in places not touched here, so that's
a task for later.

There's a lot of, now superfluous, code dealing with set return expressions
around. But as the changes to get rid of those are verbose largely boring,
it seems better for readability to keep the cleanup as a separate commit.

Author: Tom Lane and Andres Freund
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-18 13:40:27 -08:00
Heikki Linnakangas db80acfc9d Fix sharing Agg transition state of DISTINCT or ordered aggs.
If a query contained two aggregates that could share the transition value,
we would correctly collect the input into a tuplesort only once, but
incorrectly run the transition function over the accumulated input twice,
in finalize_aggregates(). That caused a crash, when we tried to call
tuplesort_performsort() on an already-freed NULL tuplestore.

Backport to 9.6, where sharing of transition state and this bug were
introduced.

Analysis by Tom Lane.

Discussion: https://www.postgresql.org/message-id/ac5b0b69-744c-9114-6218-8300ac920e61@iki.fi
2016-12-20 09:20:17 +02:00
Tom Lane 2c00fad286 Fix improper repetition of previous results from a hashed aggregate.
ExecReScanAgg's check for whether it could re-use a previously calculated
hashtable neglected the possibility that the Agg node might reference
PARAM_EXEC Params that are not referenced by its input plan node.  That's
okay if the Params are in upper tlist or qual expressions; but if one
appears in aggregate input expressions, then the hashtable contents need
to be recomputed when the Param's value changes.

To avoid unnecessary performance degradation in the case of a Param that
isn't within an aggregate input, add logic to the planner to determine
which Params are within aggregate inputs.  This requires a new field in
struct Agg, but fortunately we never write plans to disk, so this isn't
an initdb-forcing change.

Per report from Jeevan Chalke.  This has been broken since forever,
so back-patch to all supported branches.

Andrew Gierth, with minor adjustments by me

Report: <CAM2+6=VY8ykfLT5Q8vb9B6EbeBk-NGuLbT6seaQ+Fq4zXvrDcA@mail.gmail.com>
2016-08-24 14:38:12 -04:00
Robert Haas 5ce5e4a12e Set consider_parallel correctly for upper planner rels.
Commit 3fc6e2d7f5 introduced new "upper"
RelOptInfo structures but didn't set consider_parallel for them
correctly, a point I completely missed when reviewing it.  Later,
commit e06a38965b made the situation
worse by doing it incorrectly for the grouping relation.  Try to
straighten all of that out.  Along the way, get rid of the annoying
wholePlanParallelSafe flag, which was only necessarily because of
the fact that upper planning stages didn't use paths at the time
that code was written.

The most important immediate impact of these changes is that
force_parallel_mode will provide useful test coverage in quite a few
more scenarios than it did previously, but it's also necessary
preparation for fixing some problems related to subqueries.

Patch by me, reviewed by Tom Lane.
2016-07-01 11:52:56 -04:00
Tom Lane c12f02ffc9 Don't apply sortgroupref labels to a tlist that might not match.
If we need to use a gating Result node for pseudoconstant quals,
create_scan_plan() intentionally suppresses use_physical_tlist's checks
on whether there are matches for sortgroupref labels, on the grounds that
we don't need matches because we can label the Result's projection output
properly.  However, it then called apply_pathtarget_labeling_to_tlist
anyway.  This oversight was harmless when written, but in commit aeb9ae645
I made that function throw an error if there was no match.  Thus, the
combination of a table scan, pseudoconstant quals, and a non-simple-Var
sortgroupref column threw the dreaded "ORDER/GROUP BY expression not found
in targetlist" error.  To fix, just skip applying the labeling in this
case.  Per report from Rushabh Lathia.

Report: <CAGPqQf2iLB8t6t-XrL-zR233DFTXxEsfVZ4WSqaYfLupEoDxXA@mail.gmail.com>
2016-06-28 10:43:11 -04:00
Tom Lane f9aefcb91f Support using index-only scans with partial indexes in more cases.
Previously, the planner would reject an index-only scan if any restriction
clause for its table used a column not available from the index, even
if that restriction clause would later be dropped from the plan entirely
because it's implied by the index's predicate.  This is a fairly common
situation for partial indexes because predicates using columns not included
in the index are often the most useful kind of predicate, and we have to
duplicate (or at least imply) the predicate in the WHERE clause in order
to get the index to be considered at all.  So index-only scans were
essentially unavailable with such partial indexes.

To fix, we have to do detection of implied-by-predicate clauses much
earlier in the planner.  This patch puts it in check_index_predicates
(nee check_partial_indexes), meaning it gets done for every partial index,
whereas we previously only considered this issue at createplan time,
so that the work was only done for an index actually selected for use.
That could result in a noticeable planning slowdown for queries against
tables with many partial indexes.  However, testing suggested that there
isn't really a significant cost, especially not with reasonable numbers
of partial indexes.  We do get a small additional benefit, which is that
cost_index is more accurate since it correctly discounts the evaluation
cost of clauses that will be removed.  We can also avoid considering such
clauses as potential indexquals, which saves useless matching cycles in
the case where the predicate columns aren't in the index, and prevents
generating bogus plans that double-count the clause's selectivity when
the columns are in the index.

Tomas Vondra and Kyotaro Horiguchi, reviewed by Kevin Grittner and
Konstantin Knizhnik, and whacked around a little by me
2016-03-31 14:49:10 -04:00
Tom Lane 3fc6e2d7f5 Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is.  This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps.  Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step.  We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.

In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan.  It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation.  (A couple of regression test outputs change in consequence of
that.  However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)

There is a great deal left to do here.  This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations.  (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.)  I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.

Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
Tom Lane d4c3a156cb Remove GROUP BY columns that are functionally dependent on other columns.
If a GROUP BY clause includes all columns of a non-deferred primary key,
as well as other columns of the same relation, those other columns are
redundant and can be dropped from the grouping; the pkey is enough to
ensure that each row of the table corresponds to a separate group.
Getting rid of the excess columns will reduce the cost of the sorting or
hashing needed to implement GROUP BY, and can indeed remove the need for
a sort step altogether.

This seems worth testing for since many query authors are not aware of
the GROUP-BY-primary-key exception to the rule about queries not being
allowed to reference non-grouped-by columns in their targetlists or
HAVING clauses.  Thus, redundant GROUP BY items are not uncommon.  Also,
we can make the test pretty cheap in most queries where it won't help
by not looking up a rel's primary key until we've found that at least
two of its columns are in GROUP BY.

David Rowley, reviewed by Julien Rouhaud
2016-02-11 17:34:59 -05:00
Heikki Linnakangas 804163bc25 Share transition state between different aggregates when possible.
If there are two different aggregates in the query with same inputs, and
the aggregates have the same initial condition and transition function,
only calculate the state value once, and only call the final functions
separately. For example, AVG(x) and SUM(x) aggregates have the same
transition function, which accumulates the sum and number of input tuples.
For a query like "SELECT AVG(x), SUM(x) FROM x", we can therefore
accumulate the state function only once, which gives a nice speedup.

David Rowley, reviewed and edited by me.
2015-08-04 17:53:10 +03:00
Tom Lane 20af53d719 Show sort ordering options in EXPLAIN output.
Up to now, EXPLAIN has contented itself with printing the sort expressions
in a Sort or Merge Append plan node.  This patch improves that by
annotating the sort keys with COLLATE, DESC, USING, and/or NULLS FIRST/LAST
whenever nondefault sort ordering options are used.  The output is now a
reasonably close approximation of an ORDER BY clause equivalent to the
plan's ordering.

Marius Timmer, Lukas Kreft, and Arne Scheffer; reviewed by Mike Blackwell.
Some additional hacking by me.
2015-01-16 18:19:00 -05:00
Tom Lane b0f479113a Repair corner-case bug in array version of percentile_cont().
The code for advancing through the input rows overlooked the case that we
might already be past the first row of the row pair now being considered,
in case the previous percentile also fell between the same two input rows.

Report and patch by Andrew Gierth; logic rewritten a bit for clarity by me.
2014-12-13 11:49:41 -05:00
Tom Lane 8d65da1f01 Support ordered-set (WITHIN GROUP) aggregates.
This patch introduces generic support for ordered-set and hypothetical-set
aggregate functions, as well as implementations of the instances defined in
SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(),
percent_rank(), cume_dist()).  We also added mode() though it is not in the
spec, as well as versions of percentile_cont() and percentile_disc() that
can compute multiple percentile values in one pass over the data.

Unlike the original submission, this patch puts full control of the sorting
process in the hands of the aggregate's support functions.  To allow the
support functions to find out how they're supposed to sort, a new API
function AggGetAggref() is added to nodeAgg.c.  This allows retrieval of
the aggregate call's Aggref node, which may have other uses beyond the
immediate need.  There is also support for ordered-set aggregates to
install cleanup callback functions, so that they can be sure that
infrastructure such as tuplesort objects gets cleaned up.

In passing, make some fixes in the recently-added support for variadic
aggregates, and make some editorial adjustments in the recent FILTER
additions for aggregates.  Also, simplify use of IsBinaryCoercible() by
allowing it to succeed whenever the target type is ANY or ANYELEMENT.
It was inconsistent that it dealt with other polymorphic target types
but not these.

Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing,
and rather heavily editorialized upon by Tom Lane
2013-12-23 16:11:35 -05:00
Tom Lane f26099057a Improve EXPLAIN to print the grouping columns in Agg and Group nodes.
Per request from Kevin Grittner.
2013-12-12 11:24:38 -05:00
Tom Lane b5e0a2a384 Tweak placement of explicit ANALYZE commands in the regression tests.
Make the COPY test, which loads most of the large static tables used in
the tests, also explicitly ANALYZE those tables.  This allows us to get
rid of various ad-hoc, and rather redundant, ANALYZE commands that had
gotten stuck into various test scripts over time to ensure we got
consistent plan choices.  (We could have done a database-wide ANALYZE,
but that would cause stats to get attached to the small static tables
too, which results in plan changes compared to the historical behavior.
I'm not sure that's a good idea, so not going that far for now.)

Back-patch to 9.0, since 9.0 and 9.1 are currently sometimes failing
regression tests for lack of an "ANALYZE tenk1" in the subselect test.
There's no need for this in 8.4 since we didn't print any plans back
then.
2013-12-11 15:09:15 -05:00
Tom Lane 69c8fbac20 Improve performance of numeric sum(), avg(), stddev(), variance(), etc.
This patch improves performance of most built-in aggregates that formerly
used a NUMERIC or NUMERIC array as their transition type; this includes
not only aggregates on numeric inputs, but some aggregates on integer
inputs where overflow of an int8 value is a possibility.  The code now
uses a special-purpose data structure to avoid array construction and
deconstruction overhead, as well as packing and unpacking overhead for
numeric values.

These aggregates' transition type is now declared as INTERNAL, since
it doesn't correspond to any SQL data type.  To keep the planner from
thinking that that means a lot of storage will be used, we make use
of the just-added pg_aggregate.aggtransspace feature.  The space estimate
is set to 128 bytes, which is at least in the right ballpark.

Hadi Moshayedi, reviewed by Pavel Stehule and Tomas Vondra
2013-11-16 18:46:34 -05:00
Tom Lane 0b7e660d6c Fix ruleutils pretty-printing to not generate trailing whitespace.
The pretty-printing logic in ruleutils.c operates by inserting a newline
and some indentation whitespace into strings that are already valid SQL.
This naturally results in leaving some trailing whitespace before the
newline in many cases; which can be annoying when processing the output
with other tools, as complained of by Joe Abbate.  We can fix that in
a pretty localized fashion by deleting any trailing whitespace before
we append a pretty-printing newline.  In addition, we have to modify the
code inserted by commit 2f582f76b1 so that
we also delete trailing whitespace when transposing items from temporary
buffers into the main result string, when a temporary item starts with a
newline.

This results in rather voluminous changes to the regression test results,
but it's easily verified that they are only removal of trailing whitespace.

Back-patch to 9.3, because the aforementioned commit resulted in many
more cases of trailing whitespace than had occurred in earlier branches.
2013-11-11 13:36:38 -05:00
Tom Lane 0d3f4406df Allow aggregate functions to be VARIADIC.
There's no inherent reason why an aggregate function can't be variadic
(even VARIADIC ANY) if its transition function can handle the case.
Indeed, this patch to add the feature touches none of the planner or
executor, and little of the parser; the main missing stuff was DDL and
pg_dump support.

It is true that variadic aggregates can create the same sort of ambiguity
about parameters versus ORDER BY keys that was complained of when we
(briefly) had both one- and two-argument forms of string_agg().  However,
the policy formed in response to that discussion only said that we'd not
create any built-in aggregates with varying numbers of arguments, not that
we shouldn't allow users to do it.  So the logical extension of that is
we can allow users to make variadic aggregates as long as we're wary about
shipping any such in core.

In passing, this patch allows aggregate function arguments to be named, to
the extent of remembering the names in pg_proc and dumping them in pg_dump.
You can't yet call an aggregate using named-parameter notation.  That seems
like a likely future extension, but it'll take some work, and it's not what
this patch is really about.  Likewise, there's still some work needed to
make window functions handle VARIADIC fully, but I left that for another
day.

initdb forced because of new aggvariadic field in Aggref parse nodes.
2013-09-03 17:08:46 -04:00
Noah Misch b560ec1b0d Implement the FILTER clause for aggregate function calls.
This is SQL-standard with a few extensions, namely support for
subqueries and outer references in clause expressions.

catversion bump due to change in Aggref and WindowFunc.

David Fetter, reviewed by Dean Rasheed.
2013-07-16 20:15:36 -04:00
Tom Lane 62e666400d Perform line wrapping and indenting by default in ruleutils.c.
This patch changes pg_get_viewdef() and allied functions so that
PRETTY_INDENT processing is always enabled.  Per discussion, only the
PRETTY_PAREN processing (that is, stripping of "unnecessary" parentheses)
poses any real forward-compatibility risk, so we may as well make dump
output look as nice as we safely can.

Also, set the default wrap length to zero (i.e, wrap after each SELECT
or FROM list item), since there's no very principled argument for the
former default of 80-column wrapping, and most people seem to agree this
way looks better.

Marko Tiikkaja, reviewed by Jeevan Chalke, further hacking by Tom Lane
2013-02-03 15:56:45 -05:00
Tom Lane d3237e04ca Fix SELECT DISTINCT with index-optimized MIN/MAX on inheritance trees.
In a query such as "SELECT DISTINCT min(x) FROM tab", the DISTINCT is
pretty useless (there being only one output row), but nonetheless it
shouldn't fail.  But it could fail if "tab" is an inheritance parent,
because planagg.c's code for fixing up equivalence classes after making the
index-optimized MIN/MAX transformation wasn't prepared to find child-table
versions of the aggregate expression.  The least ugly fix seems to be
to add an option to mutate_eclass_expressions() to skip child-table
equivalence class members, which aren't used anymore at this stage of
planning so it's not really necessary to fix them.  Since child members
are ignored in many cases already, it seems plausible for
mutate_eclass_expressions() to have an option to ignore them too.

Per bug #7703 from Maxim Boguk.

Back-patch to 9.1.  Although the same code exists before that, it cannot
encounter child-table aggregates AFAICS, because the index optimization
transformation cannot succeed on inheritance trees before 9.1 (for lack
of MergeAppend).
2012-11-26 12:57:58 -05:00
Tom Lane 11e131854f Improve ruleutils.c's heuristics for dealing with rangetable aliases.
The previous scheme had bugs in some corner cases involving tables that had
been renamed since a view was made.  This could result in dumped views that
failed to reload or reloaded incorrectly, as seen in bug #7553 from Lloyd
Albin, as well as in some pgsql-hackers discussion back in January.  Also,
its behavior for printing EXPLAIN plans was sometimes confusing because of
willingness to use the same alias for multiple RTEs (it was Ashutosh
Bapat's complaint about that aspect that started the January thread).

To fix, ensure that each RTE in the query has a unique unqualified alias,
by modifying the alias if necessary (we add "_" and digits as needed to
create a non-conflicting name).  Then we can just print its variables with
that alias, avoiding the confusing and bug-prone scheme of sometimes
schema-qualifying variable names.  In EXPLAIN, it proves to be expedient to
take the further step of only assigning such aliases to RTEs that are
actually referenced in the query, since the planner has a habit of
generating extra RTEs with the same alias in situations such as
inheritance-tree expansion.

Although this fixes a bug of very long standing, I'm hesitant to back-patch
such a noticeable behavioral change.  My experiments while creating a
regression test convinced me that actually incorrect output (as opposed to
confusing output) occurs only in very narrow cases, which is backed up by
the lack of previous complaints from the field.  So we may be better off
living with it in released branches; and in any case it'd be smart to let
this ripen awhile in HEAD before we consider back-patching it.
2012-09-21 19:03:10 -04:00
Tom Lane eaccfded98 Centralize the logic for detecting misplaced aggregates, window funcs, etc.
Formerly we relied on checking after-the-fact to see if an expression
contained aggregates, window functions, or sub-selects when it shouldn't.
This is grotty, easily forgotten (indeed, we had forgotten to teach
DefineIndex about rejecting window functions), and none too efficient
since it requires extra traversals of the parse tree.  To improve matters,
define an enum type that classifies all SQL sub-expressions, store it in
ParseState to show what kind of expression we are currently parsing, and
make transformAggregateCall, transformWindowFuncCall, and transformSubLink
check the expression type and throw error if the type indicates the
construct is disallowed.  This allows removal of a large number of ad-hoc
checks scattered around the code base.  The enum type is sufficiently
fine-grained that we can still produce error messages of at least the
same specificity as before.

Bringing these error checks together revealed that we'd been none too
consistent about phrasing of the error messages, so standardize the wording
a bit.

Also, rewrite checking of aggregate arguments so that it requires only one
traversal of the arguments, rather than up to three as before.

In passing, clean up some more comments left over from add_missing_from
support, and annotate some tests that I think are dead code now that that's
gone.  (I didn't risk actually removing said dead code, though.)
2012-08-10 11:36:15 -04:00
Peter Eisentraut c0cc526e8b Rename bytea_agg to string_agg and add delimiter argument
Per mailing list discussion, we would like to keep the bytea functions
parallel to the text functions, so rename bytea_agg to string_agg,
which already exists for text.

Also, to satisfy the rule that we don't want aggregate functions of
the same name with a different number of arguments, add a delimiter
argument, just like string_agg for text already has.
2012-04-13 21:36:59 +03:00
Robert Haas d5448c7d31 Add bytea_agg, parallel to string_agg.
Pavel Stehule
2011-12-23 08:40:25 -05:00
Tom Lane a2822fb933 Support index-only scans using the visibility map to avoid heap fetches.
When a btree index contains all columns required by the query, and the
visibility map shows that all tuples on a target heap page are
visible-to-all, we don't need to fetch that heap page.  This patch depends
on the previous patches that made the visibility map reliable.

There's a fair amount left to do here, notably trying to figure out a less
chintzy way of estimating the cost of an index-only scan, but the core
functionality seems ready to commit.

Robert Haas and Ibrar Ahmed, with some previous work by Heikki Linnakangas.
2011-10-07 20:14:13 -04:00
Tom Lane 5ec6b7f1b8 Improve generated column names for cases involving sub-SELECTs.
We'll now use "exists" for EXISTS(SELECT ...), "array" for ARRAY(SELECT
...), or the sub-select's own result column name for a simple expression
sub-select.  Previously, you usually got "?column?" in such cases.

Marti Raudsepp, reviewed by Kyotaro Horiugchi
2011-10-01 14:01:46 -04:00
Tom Lane 8df08c8489 Reimplement planner's handling of MIN/MAX aggregate optimization (again).
Instead of playing cute games with pathkeys, just build a direct
representation of the intended sub-select, and feed it through
query_planner to get a Path for the index access.  This is a bit slower
than 9.1's previous method, since we'll duplicate most of the overhead of
query_planner; but since the whole optimization only applies to rather
simple single-table queries, that probably won't be much of a problem in
practice.  The advantage is that we get to do the right thing when there's
a partial index that needs the implicit IS NOT NULL clause to be usable.
Also, although this makes planagg.c be a bit more closely tied to the
ordering of operations in grouping_planner, we can get rid of some coupling
to lower-level parts of the planner.  Per complaint from Marti Raudsepp.
2011-03-22 00:34:31 -04:00
Peter Eisentraut fc946c39ae Remove useless whitespace at end of lines 2010-11-23 22:34:55 +02:00
Tom Lane 034967bdcb Reimplement planner's handling of MIN/MAX aggregate optimization.
Per my recent proposal, get rid of all the direct inspection of indexes
and manual generation of paths in planagg.c.  Instead, set up
EquivalenceClasses for the aggregate argument expressions, and let the
regular path generation logic deal with creating paths that can satisfy
those sort orders.  This makes planagg.c a bit more visible to the rest
of the planner than it was originally, but the approach is basically a lot
cleaner than before.  A major advantage of doing it this way is that we get
MIN/MAX optimization on inheritance trees (using MergeAppend of indexscans)
practically for free, whereas in the old way we'd have had to add a whole
lot more duplicative logic.

One small disadvantage of this approach is that MIN/MAX aggregates can no
longer exploit partial indexes having an "x IS NOT NULL" predicate, unless
that restriction or something that implies it is specified in the query.
The previous implementation was able to use the added "x IS NOT NULL"
condition as an extra predicate proof condition, but in this version we
rely entirely on indexes that are considered usable by the main planning
process.  That seems a fair tradeoff for the simplicity and functionality
gained.
2010-11-04 12:01:17 -04:00
Tom Lane b0c451e145 Remove the single-argument form of string_agg(). It added nothing much in
functionality, while creating an ambiguity in usage with ORDER BY that at
least two people have already gotten seriously confused by.  Also, add an
opr_sanity test to check that we don't in future violate the newly minted
policy of not having built-in aggregates with the same name and different
numbers of parameters.  Per discussion of a complaint from Thom Brown.
2010-08-05 18:21:19 +00:00
Tom Lane fba999cb2c Allow ORDER BY/GROUP BY/etc items to match targetlist items regardless of
any implicit casting previously applied to the targetlist item.  This is
reasonable because the implicit cast, by definition, wasn't written by the
user; so we are preserving the expected behavior that ORDER BY items match
textually equivalent tlist items.  The case never arose before because there
couldn't be any implicit casting of a top-level SELECT item before we process
ORDER BY etc.  But now it can arise in the context of aggregates containing
ORDER BY clauses, since the "targetlist" is the already-casted list of
arguments for the aggregate.  The net effect is that the datatype used for
ORDER BY/DISTINCT purposes is the aggregate's declared input type, not that
of the original input column; which is a bit debatable but not horrendous,
and to do otherwise would require major rework that doesn't seem justified.

Per bug #5564 from Daniel Grace.  Back-patch to 9.0 where aggregate ORDER BY
was implemented.
2010-07-18 19:37:49 +00:00
Itagaki Takahiro 9ea9918e37 Add string_agg aggregate functions. The one argument version concatenates
the input values into a string. The two argument version also does the same
thing, but inserts delimiters between elements.

Original patch by Pavel Stehule, reviewed by David E. Wheeler and me.
2010-02-01 03:14:45 +00:00
Tom Lane 34d26872ed Support ORDER BY within aggregate function calls, at long last providing a
non-kluge method for controlling the order in which values are fed to an
aggregate function.  At the same time eliminate the old implementation
restriction that DISTINCT was only supported for single-argument aggregates.

Possibly release-notable behavioral change: formerly, agg(DISTINCT x)
dropped null values of x unconditionally.  Now, it does so only if the
agg transition function is strict; otherwise nulls are treated as DISTINCT
normally would, ie, you get one copy.

Andrew Gierth, reviewed by Hitoshi Harada
2009-12-15 17:57:48 +00:00
Tom Lane 20a3ddbbf9 Fix the handling of sub-SELECTs appearing in the arguments of an outer-level
aggregate function.  By definition, such a sub-SELECT cannot reference any
variables of query levels between itself and the aggregate's semantic level
(else the aggregate would've been assigned to that lower level instead).
So the correct, most efficient implementation is to treat the sub-SELECT as
being a sub-select of that outer query level, not the level the aggregate
syntactically appears in.  Not doing so also confuses the heck out of our
parameter-passing logic, as illustrated in bug report from Daniel Grace.

Fortunately, we were already copying the whole Aggref expression up to the
outer query level, so all that's needed is to delay SS_process_sublinks
processing of the sub-SELECT until control returns to the outer level.

This has been broken since we introduced spec-compliant treatment of
outer aggregates in 7.4; so patch all the way back.
2009-04-25 16:44:56 +00:00