Commit Graph

94 Commits

Author SHA1 Message Date
Andres Freund 2a96909a4a tableam: Support for an index build's initial table scan(s).
To support building indexes over tables of different AMs, the scans to
do so need to be routed through the table AM.  While moving a fair
amount of code, nearly all the changes are just moving code to below a
callback.

Currently the range based interface wouldn't make much sense for non
block based table AMs. But that seems aceptable for now.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-27 19:59:06 -07:00
Andres Freund 558a9165e0 Compute XID horizon for page level index vacuum on primary.
Previously the xid horizon was only computed during WAL replay. That
had two major problems:
1) It relied on knowing what the table pointed to looks like. That was
   easy enough before the introducing of tableam (we knew it had to be
   heap, although some trickery around logging the heap relfilenodes
   was required). But to properly handle table AMs we need
   per-database catalog access to look up the AM handler, which
   recovery doesn't allow.
2) Not knowing the xid horizon also makes it hard to support logical
   decoding on standbys. When on a catalog table, we need to be able
   to conflict with slots that have an xid horizon that's too old. But
   computing the horizon by visiting the heap only works once
   consistency is reached, but we always need to be able to detect
   conflicts.

There's also a secondary problem, in that the current method performs
redundant work on every standby. But that's counterbalanced by
potentially computing the value when not necessary (either because
there's no standby, or because there's no connected backends).

Solve 1) and 2) by moving computation of the xid horizon to the
primary and by involving tableam in the computation of the horizon.

To address the potentially increased overhead, increase the efficiency
of the xid horizon computation for heap by sorting the tids, and
eliminating redundant buffer accesses. When prefetching is available,
additionally perform prefetching of buffers.  As this is more of a
maintenance task, rather than something routinely done in every read
only query, we add an arbitrary 10 to the effective concurrency -
thereby using IO concurrency, when not globally enabled.  That's
possibly not the perfect formula, but seems good enough for now.

Bumps WAL format, as latestRemovedXid is now part of the records, and
the heap's relfilenode isn't anymore.

Author: Andres Freund, Amit Khandekar, Robert Haas
Reviewed-By: Robert Haas
Discussion:
    https://postgr.es/m/20181212204154.nsxf3gzqv3gesl32@alap3.anarazel.de
    https://postgr.es/m/20181214014235.dal5ogljs3bmlq44@alap3.anarazel.de
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-26 16:52:54 -07:00
Andres Freund 5db6df0c01 tableam: Add tuple_{insert, delete, update, lock} and use.
This adds new, required, table AM callbacks for insert/delete/update
and lock_tuple. To be able to reasonably use those, the EvalPlanQual
mechanism had to be adapted, moving more logic into the AM.

Previously both delete/update/lock call-sites and the EPQ mechanism had
to have awareness of the specific tuple format to be able to fetch the
latest version of a tuple. Obviously that needs to be abstracted
away. To do so, move the logic that find the latest row version into
the AM. lock_tuple has a new flag argument,
TUPLE_LOCK_FLAG_FIND_LAST_VERSION, that forces it to lock the last
version, rather than the current one.  It'd have been possible to do
so via a separate callback as well, but finding the last version
usually also necessitates locking the newest version, making it
sensible to combine the two. This replaces the previous use of
EvalPlanQualFetch().  Additionally HeapTupleUpdated, which previously
signaled either a concurrent update or delete, is now split into two,
to avoid callers needing AM specific knowledge to differentiate.

The move of finding the latest row version into tuple_lock means that
encountering a row concurrently moved into another partition will now
raise an error about "tuple to be locked" rather than "tuple to be
updated/deleted" - which is accurate, as that always happens when
locking rows. While possible slightly less helpful for users, it seems
like an acceptable trade-off.

As part of this commit HTSU_Result has been renamed to TM_Result, and
its members been expanded to differentiated between updating and
deleting. HeapUpdateFailureData has been renamed to TM_FailureData.

The interface to speculative insertion is changed so nodeModifyTable.c
does not have to set the speculative token itself anymore. Instead
there's a version of tuple_insert, tuple_insert_speculative, that
performs the speculative insertion (without requiring a flag to signal
that fact), and the speculative insertion is either made permanent
with table_complete_speculative(succeeded = true) or aborted with
succeeded = false).

Note that multi_insert is not yet routed through tableam, nor is
COPY. Changing multi_insert requires changes to copy.c that are large
enough to better be done separately.

Similarly, although simpler, CREATE TABLE AS and CREATE MATERIALIZED
VIEW are also only going to be adjusted in a later commit.

Author: Andres Freund and Haribabu Kommi
Discussion:
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
    https://postgr.es/m/20190313003903.nwvrxi7rw3ywhdel@alap3.anarazel.de
    https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-23 19:55:57 -07:00
Michael Paquier ed308d7837 Add options to enable and disable checksums in pg_checksums
An offline cluster can now work with more modes in pg_checksums:
- --enable enables checksums in a cluster, updating all blocks with a
correct checksum, and updating the control file at the end.
- --disable disables checksums in a cluster, updating only the control
file.
- --check is an extra option able to verify checksums for a cluster, and
the default used if no mode is specified.

When running --enable or --disable, the data folder gets fsync'd for
durability, and then it is followed by a control file update and flush
to keep the operation consistent should the tool be interrupted, killed
or the host unplugged.  If no mode is specified in the options, then
--check is used for compatibility with older versions of pg_checksums
(named pg_verify_checksums in v11 where it was introduced).

Author: Michael Banck, Michael Paquier
Reviewed-by: Fabien Coelho, Magnus Hagander, Sergei Kornilov
Discussion: https://postgr.es/m/20181221201616.GD4974@nighthawk.caipicrew.dd-dns.de
2019-03-23 08:12:55 +09:00
Alexander Korotkov 72b6460336 Partial implementation of SQL/JSON path language
SQL 2016 standards among other things contains set of SQL/JSON features for
JSON processing inside of relational database.  The core of SQL/JSON is JSON
path language, allowing access parts of JSON documents and make computations
over them.  This commit implements partial support JSON path language as
separate datatype called "jsonpath".  The implementation is partial because
it's lacking datetime support and suppression of numeric errors.  Missing
features will be added later by separate commits.

Support of SQL/JSON features requires implementation of separate nodes, and it
will be considered in subsequent patches.  This commit includes following
set of plain functions, allowing to execute jsonpath over jsonb values:

 * jsonb_path_exists(jsonb, jsonpath[, jsonb, bool]),
 * jsonb_path_match(jsonb, jsonpath[, jsonb, bool]),
 * jsonb_path_query(jsonb, jsonpath[, jsonb, bool]),
 * jsonb_path_query_array(jsonb, jsonpath[, jsonb, bool]).
 * jsonb_path_query_first(jsonb, jsonpath[, jsonb, bool]).

This commit also implements "jsonb @? jsonpath" and "jsonb @@ jsonpath", which
are wrappers over jsonpath_exists(jsonb, jsonpath) and jsonpath_predicate(jsonb,
jsonpath) correspondingly.  These operators will have an index support
(implemented in subsequent patches).

Catversion bumped, to add new functions and operators.

Code was written by Nikita Glukhov and Teodor Sigaev, revised by me.
Documentation was written by Oleg Bartunov and Liudmila Mantrova.  The work
was inspired by Oleg Bartunov.

Discussion: https://postgr.es/m/fcc6fc6a-b497-f39a-923d-aa34d0c588e8%402ndQuadrant.com
Author: Nikita Glukhov, Teodor Sigaev, Alexander Korotkov, Oleg Bartunov, Liudmila Mantrova
Reviewed-by: Tomas Vondra, Andrew Dunstan, Pavel Stehule, Alexander Korotkov
2019-03-16 12:16:48 +03:00
Andres Freund c2fe139c20 tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:

1) Heap scans need to be generalized into table scans. Do this by
   introducing TableScanDesc, which will be the "base class" for
   individual AMs. This contains the AM independent fields from
   HeapScanDesc.

   The previous heap_{beginscan,rescan,endscan} et al. have been
   replaced with a table_ version.

   There's no direct replacement for heap_getnext(), as that returned
   a HeapTuple, which is undesirable for a other AMs. Instead there's
   table_scan_getnextslot().  But note that heap_getnext() lives on,
   it's still used widely to access catalog tables.

   This is achieved by new scan_begin, scan_end, scan_rescan,
   scan_getnextslot callbacks.

2) The portion of parallel scans that's shared between backends need
   to be able to do so without the user doing per-AM work. To achieve
   that new parallelscan_{estimate, initialize, reinitialize}
   callbacks are introduced, which operate on a new
   ParallelTableScanDesc, which again can be subclassed by AMs.

   As it is likely that several AMs are going to be block oriented,
   block oriented callbacks that can be shared between such AMs are
   provided and used by heap. table_block_parallelscan_{estimate,
   intiialize, reinitialize} as callbacks, and
   table_block_parallelscan_{nextpage, init} for use in AMs. These
   operate on a ParallelBlockTableScanDesc.

3) Index scans need to be able to access tables to return a tuple, and
   there needs to be state across individual accesses to the heap to
   store state like buffers. That's now handled by introducing a
   sort-of-scan IndexFetchTable, which again is intended to be
   subclassed by individual AMs (for heap IndexFetchHeap).

   The relevant callbacks for an AM are index_fetch_{end, begin,
   reset} to create the necessary state, and index_fetch_tuple to
   retrieve an indexed tuple.  Note that index_fetch_tuple
   implementations need to be smarter than just blindly fetching the
   tuples for AMs that have optimizations similar to heap's HOT - the
   currently alive tuple in the update chain needs to be fetched if
   appropriate.

   Similar to table_scan_getnextslot(), it's undesirable to continue
   to return HeapTuples. Thus index_fetch_heap (might want to rename
   that later) now accepts a slot as an argument. Core code doesn't
   have a lot of call sites performing index scans without going
   through the systable_* API (in contrast to loads of heap_getnext
   calls and working directly with HeapTuples).

   Index scans now store the result of a search in
   IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
   target is not generally a HeapTuple anymore that seems cleaner.

To be able to sensible adapt code to use the above, two further
callbacks have been introduced:

a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
   slots capable of holding a tuple of the AMs
   type. table_slot_callbacks() and table_slot_create() are based
   upon that, but have additional logic to deal with views, foreign
   tables, etc.

   While this change could have been done separately, nearly all the
   call sites that needed to be adapted for the rest of this commit
   also would have been needed to be adapted for
   table_slot_callbacks(), making separation not worthwhile.

b) tuple_satisfies_snapshot checks whether the tuple in a slot is
   currently visible according to a snapshot. That's required as a few
   places now don't have a buffer + HeapTuple around, but a
   slot (which in heap's case internally has that information).

Additionally a few infrastructure changes were needed:

I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
   internally uses a slot to keep track of tuples. While
   systable_getnext() still returns HeapTuples, and will so for the
   foreseeable future, the index API (see 1) above) now only deals with
   slots.

The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.

Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
    https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-11 12:46:41 -07:00
Andres Freund 8586bf7ed8 tableam: introduce table AM infrastructure.
This introduces the concept of table access methods, i.e. CREATE
  ACCESS METHOD ... TYPE TABLE and
  CREATE TABLE ... USING (storage-engine).
No table access functionality is delegated to table AMs as of this
commit, that'll be done in following commits.

Subsequent commits will incrementally abstract table access
functionality to be routed through table access methods. That change
is too large to be reviewed & committed at once, so it'll be done
incrementally.

Docs will be updated at the end, as adding them incrementally would
likely make them less coherent, and definitely is a lot more work,
without a lot of benefit.

Table access methods are specified similar to index access methods,
i.e. pg_am.amhandler returns, as INTERNAL, a pointer to a struct with
callbacks. In contrast to index AMs that struct needs to live as long
as a backend, typically that's achieved by just returning a pointer to
a constant struct.

Psql's \d+ now displays a table's access method. That can be disabled
with HIDE_TABLEAM=true, which is mainly useful so regression tests can
be run against different AMs.  It's quite possible that this behaviour
still needs to be fine tuned.

For now it's not allowed to set a table AM for a partitioned table, as
we've not resolved how partitions would inherit that. Disallowing
allows us to introduce, if we decide that's the way forward, such a
behaviour without a compatibility break.

Catversion bumped, to add the heap table AM and references to it.

Author: Haribabu Kommi, Andres Freund, Alvaro Herrera, Dimitri Golgov and others
Discussion:
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
    https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
    https://postgr.es/m/20190107235616.6lur25ph22u5u5av@alap3.anarazel.de
    https://postgr.es/m/20190304234700.w5tmhducs5wxgzls@alap3.anarazel.de
2019-03-06 09:54:38 -08:00
Andres Freund a9c35cf85c Change function call information to be variable length.
Before this change FunctionCallInfoData, the struct arguments etc for
V1 function calls are stored in, always had space for
FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two
arrays.  For nearly every function call 100 arguments is far more than
needed, therefore wasting memory. Arg and argnull being two separate
arrays also guarantees that to access a single argument, two
cachelines have to be touched.

Change the layout so there's a single variable-length array with pairs
of value / isnull. That drastically reduces memory consumption for
most function calls (on x86-64 a two argument function now uses
64bytes, previously 936 bytes), and makes it very likely that argument
value and its nullness are on the same cacheline.

Arguments are stored in a new NullableDatum struct, which, due to
padding, needs more memory per argument than before. But as usually
far fewer arguments are stored, and individual arguments are cheaper
to access, that's still a clear win.  It's likely that there's other
places where conversion to NullableDatum arrays would make sense,
e.g. TupleTableSlots, but that's for another commit.

Because the function call information is now variable-length
allocations have to take the number of arguments into account. For
heap allocations that can be done with SizeForFunctionCallInfoData(),
for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro
that helps to allocate an appropriately sized and aligned variable.

Some places with stack allocation function call information don't know
the number of arguments at compile time, and currently variably sized
stack allocations aren't allowed in postgres. Therefore allow for
FUNC_MAX_ARGS space in these cases. They're not that common, so for
now that seems acceptable.

Because of the need to allocate FunctionCallInfo of the appropriate
size, older extensions may need to update their code. To avoid subtle
breakages, the FunctionCallInfoData struct has been renamed to
FunctionCallInfoBaseData. Most code only references FunctionCallInfo,
so that shouldn't cause much collateral damage.

This change is also a prerequisite for more efficient expression JIT
compilation (by allocating the function call information on the stack,
allowing LLVM to optimize it away); previously the size of the call
information caused problems inside LLVM's optimizer.

Author: Andres Freund
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de
2019-01-26 14:17:52 -08:00
Andres Freund 63746189b2 Change snapshot type to be determined by enum rather than callback.
This is in preparation for allowing the same snapshot be used for
different table AMs. With the current callback based approach we would
need one callback for each supported AM, which clearly would not be
extensible.  Thus add a new Snapshot->snapshot_type field, and move
the dispatch into HeapTupleSatisfiesVisibility() (which is now a
function). Later work will then dispatch calls to
HeapTupleSatisfiesVisibility() and other AMs visibility functions
depending on the type of the table.  The central SnapshotType enum
also seems like a good location to centralize documentation about the
intended behaviour of various types of snapshots.

As tqual.h isn't included by bufmgr.h any more (as HeapTupleSatisfies*
isn't referenced by TestForOldSnapshot() anymore) a few files now need
to include it directly.

Author: Andres Freund, loosely based on earlier work by Haribabu Kommi
Discussion:
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
    https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-01-21 17:03:15 -08:00
Michael Paquier 9ebe0572ce Refactor cluster_rel() to handle more options
This extends cluster_rel() in such a way that more options can be added
in the future, which will reduce the amount of chunk code for an
upcoming SKIP_LOCKED aimed for VACUUM.  As VACUUM FULL is a different
flavor of CLUSTER, we want to make that extensible to ease integration.

This only reworks the API and its callers, without providing anything
user-facing.  Two options are present now: verbose mode and relation
recheck when doing the cluster command work across multiple
transactions.  This could be used as well as a base to extend the
grammar of CLUSTER later on.

Author: Michael Paquier
Reviewed-by: Nathan Bossart
Discussion: https://postgr.es/m/20180723031058.GE2854@paquier.xyz
2018-07-24 11:37:32 +09:00
Robert Haas 32df1c9afa Add subtransaction handling for table synchronization workers.
Since the old logic was completely unaware of subtransactions, a
change made in a subsequently-aborted subtransaction would still cause
workers to be stopped at toplevel transaction commit.  Fix that by
managing a stack of worker lists rather than just one.

Amit Khandekar and Robert Haas

Discussion: http://postgr.es/m/CAJ3gD9eaG_mWqiOTA2LfAug-VRNn1hrhf50Xi1YroxL37QkZNg@mail.gmail.com
2018-07-16 17:33:22 -04:00
Andrew Dunstan 2c64d20048 Update typedefs list 2018-06-30 12:07:27 -04:00
Tom Lane f83bf385c1 Preliminary work for pgindent run.
Update typedefs.list from current buildfarm results.  Adjust pgindent's
typedef blacklist to block some more unfortunate typedef names that have
snuck in since last time.  Manually tweak a few places where I didn't
like the initial results of pgindent'ing.
2018-04-26 14:45:04 -04:00
Simon Riggs 08ea7a2291 Revert MERGE patch
This reverts commits d204ef6377,
83454e3c2b and a few more commits thereafter
(complete list at the end) related to MERGE feature.

While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.

Thanks again to all reviewers and bug reporters.

List of commits reverted, in reverse chronological order:

 f1464c5380 Improve parse representation for MERGE
 ddb4158579 MERGE syntax diagram correction
 530e69e59b Allow cpluspluscheck to pass by renaming variable
 01b88b4df5 MERGE minor errata
 3af7b2b0d4 MERGE fix variable warning in non-assert builds
 a5d86181ec MERGE INSERT allows only one VALUES clause
 4b2d44031f MERGE post-commit review
 4923550c20 Tab completion for MERGE
 aa3faa3c7a WITH support in MERGE
 83454e3c2b New files for MERGE
 d204ef6377 MERGE SQL Command following SQL:2016

Author: Pavan Deolasee
Reviewed-by: Michael Paquier
2018-04-12 11:22:56 +01:00
Simon Riggs d204ef6377 MERGE SQL Command following SQL:2016
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.

MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
  UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
  DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
  INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
  DO NOTHING;

MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.

MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.

MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.

Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.

This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.

Various issues reported via sqlsmith by Andreas Seltenreich

Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs

Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
2018-04-03 09:28:16 +01:00
Simon Riggs 7cf8a5c302 Revert "Modified files for MERGE"
This reverts commit 354f13855e.
2018-04-02 21:34:15 +01:00
Simon Riggs 354f13855e Modified files for MERGE 2018-04-02 21:12:47 +01:00
Andres Freund 51bc271790 Add Bloom filter implementation.
A Bloom filter is a space-efficient, probabilistic data structure that
can be used to test set membership.  Callers will sometimes incur false
positives, but never false negatives.  The rate of false positives is a
function of the total number of elements and the amount of memory
available for the Bloom filter.

Two classic applications of Bloom filters are cache filtering, and data
synchronization testing.  Any user of Bloom filters must accept the
possibility of false positives as a cost worth paying for the benefit in
space efficiency.

This commit adds a test harness extension module, test_bloomfilter.  It
can be used to get a sense of how the Bloom filter implementation
performs under varying conditions.

This is infrastructure for the upcoming "heapallindexed" amcheck patch,
which verifies the consistency of a heap relation against one of its
indexes.

Author: Peter Geoghegan
Reviewed-By: Andrey Borodin, Michael Paquier, Thomas Munro, Andres Freund
Discussion: https://postgr.es/m/CAH2-Wzm5VmG7cu1N-H=nnS57wZThoSDQU+F5dewx3o84M+jY=g@mail.gmail.com
2018-03-31 17:49:41 -07:00
Andres Freund 2a0faed9d7 Add expression compilation support to LLVM JIT provider.
In addition to the interpretation of expressions (which back
evaluation of WHERE clauses, target list projection, aggregates
transition values etc) support compiling expressions to native code,
using the infrastructure added in earlier commits.

To avoid duplicating a lot of code, only support emitting code for
cases that are likely to be performance critical. For expression steps
that aren't deemed that, use the existing interpreter.

The generated code isn't great - some architectural changes are
required to address that. But this already yields a significant
speedup for some analytics queries, particularly with WHERE clauses
filtering a lot, or computing multiple aggregates.

Author: Andres Freund
Tested-By: Thomas Munro
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de

Disable JITing for VALUES() nodes.

VALUES() nodes are only ever executed once. This is primarily helpful
for debugging, when forcing JITing even for cheap queries.

Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-22 14:45:59 -07:00
Andres Freund 7ec0d80c05 Add helpers for emitting LLVM IR.
These basically just help to make code a bit more concise and pgindent
proof.

Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-22 11:51:58 -07:00
Andres Freund b96d550eb0 Support for optimizing and emitting code in LLVM JIT provider.
This commit introduces the ability to actually generate code using
LLVM. In particular, this adds:

- Ability to emit code both in heavily optimized and largely
  unoptimized fashion
- Batching facility to allow functions to be defined in small
  increments, but optimized and emitted in executable form in larger
  batches (for performance and memory efficiency)
- Type and function declaration synchronization between runtime
  generated code and normal postgres code. This is critical to be able
  to access struct fields etc.
- Developer oriented jit_dump_bitcode GUC, for inspecting / debugging
  the generated code.
- per JitContext statistics of number of functions, time spent
  generating code, optimizing, and emitting it.  This will later be
  employed for EXPLAIN support.

This commit doesn't yet contain any code actually generating
functions. That'll follow in later commits.

Documentation for GUCs added, and for JIT in general, will be added in
later commits.

Author: Andres Freund, with contributions by Pierre Ducroquet
Testing-By: Thomas Munro, Peter Eisentraut
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-22 11:05:22 -07:00
Robert Haas e2f1eb0ee3 Implement partition-wise grouping/aggregation.
If the partition keys of input relation are part of the GROUP BY
clause, all the rows belonging to a given group come from a single
partition.  This allows aggregation/grouping over a partitioned
relation to be broken down * into aggregation/grouping on each
partition.  This should be no worse, and often better, than the normal
approach.

If the GROUP BY clause does not contain all the partition keys, we can
still perform partial aggregation for each partition and then finalize
aggregation after appending the partial results.  This is less certain
to be a win, but it's still useful.

Jeevan Chalke, Ashutosh Bapat, Robert Haas.  The larger patch series
of which this patch is a part was also reviewed and tested by Antonin
Houska, Rajkumar Raghuwanshi, David Rowley, Dilip Kumar, Konstantin
Knizhnik, Pascal Legrand, and Rafia Sabih.

Discussion: http://postgr.es/m/CAM2+6=V64_xhstVHie0Rz=KPEQnLJMZt_e314P0jaT_oJ9MR8A@mail.gmail.com
2018-03-22 12:49:48 -04:00
Andres Freund 432bb9e04d Basic JIT provider and error handling infrastructure.
This commit introduces:

1) JIT provider abstraction, which allows JIT functionality to be
   implemented in separate shared libraries. That's desirable because
   it allows to install JIT support as a separate package, and because
   it allows experimentation with different forms of JITing.
2) JITContexts which can be, using functions introduced in follow up
   commits, used to emit JITed functions, and have them be cleaned up
   on error.
3) The outline of a LLVM JIT provider, which will be fleshed out in
   subsequent commits.

Documentation for GUCs added, and for JIT in general, will be added in
later commits.

Author: Andres Freund, with architectural input from Jeff Davis
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-03-21 19:28:28 -07:00
Robert Haas 9da0cc3528 Support parallel btree index builds.
To make this work, tuplesort.c and logtape.c must also support
parallelism, so this patch adds that infrastructure and then applies
it to the particular case of parallel btree index builds.  Testing
to date shows that this can often be 2-3x faster than a serial
index build.

The model for deciding how many workers to use is fairly primitive
at present, but it's better than not having the feature.  We can
refine it as we get more experience.

Peter Geoghegan with some help from Rushabh Lathia.  While Heikki
Linnakangas is not an author of this patch, he wrote other patches
without which this feature would not have been possible, and
therefore the release notes should possibly credit him as an author
of this feature.  Reviewed by Claudio Freire, Heikki Linnakangas,
Thomas Munro, Tels, Amit Kapila, me.

Discussion: http://postgr.es/m/CAM3SWZQKM=Pzc=CAHzRixKjp2eO5Q0Jg1SoFQqeXFQ647JiwqQ@mail.gmail.com
Discussion: http://postgr.es/m/CAH2-Wz=AxWqDoVvGU7dq856S4r6sJAj6DBn7VMtigkB33N5eyg@mail.gmail.com
2018-02-02 13:32:44 -05:00
Robert Haas 2f17844104 Allow UPDATE to move rows between partitions.
When an UPDATE causes a row to no longer match the partition
constraint, try to move it to a different partition where it does
match the partition constraint.  In essence, the UPDATE is split into
a DELETE from the old partition and an INSERT into the new one.  This
can lead to surprising behavior in concurrency scenarios because
EvalPlanQual rechecks won't work as they normally did; the known
problems are documented.  (There is a pending patch to improve the
situation further, but it needs more review.)

Amit Khandekar, reviewed and tested by Amit Langote, David Rowley,
Rajkumar Raghuwanshi, Dilip Kumar, Amul Sul, Thomas Munro, Álvaro
Herrera, Amit Kapila, and me.  A few final revisions by me.

Discussion: http://postgr.es/m/CAJ3gD9do9o2ccQ7j7+tSgiE1REY65XRiMb=yJO3u3QhyP8EEPQ@mail.gmail.com
2018-01-19 15:33:06 -05:00
Andres Freund 69c3936a14 Expression evaluation based aggregate transition invocation.
Previously aggregate transition and combination functions were invoked
by special case code in nodeAgg.c, evaluating input and filters
separately using the expression evaluation machinery. That turns out
to not be great for performance for several reasons:

- repeated expression evaluations have some cost
- the transition functions invocations are poorly predicted, as
  commonly there are multiple aggregates in a query, resulting in the
  same call-stack invoking different functions.
- filter and input computation had to be done separately
- the special case code made it hard to implement JITing of the whole
  transition function invocation

Address this by building one large expression that computes input,
evaluates filters, and invokes transition functions.

This leads to moderate speedups in queries bottlenecked by aggregate
computations, and enables large speedups for similar cases once JITing
is done.

There's potential for further improvement:
- It'd be nice if we could simplify the somewhat expensive
  aggstate->all_pergroups lookups.
- right now there's still an advance_transition_function invocation in
  nodeAgg.c, leading to some code duplication.

Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
2018-01-09 13:25:38 -08:00
Andres Freund 1804284042 Add parallel-aware hash joins.
Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel
Hash Join with Parallel Hash.  While hash joins could already appear in
parallel queries, they were previously always parallel-oblivious and had a
partial subplan only on the outer side, meaning that the work of the inner
subplan was duplicated in every worker.

After this commit, the planner will consider using a partial subplan on the
inner side too, using the Parallel Hash node to divide the work over the
available CPU cores and combine its results in shared memory.  If the join
needs to be split into multiple batches in order to respect work_mem, then
workers process different batches as much as possible and then work together
on the remaining batches.

The advantages of a parallel-aware hash join over a parallel-oblivious hash
join used in a parallel query are that it:

 * avoids wasting memory on duplicated hash tables
 * avoids wasting disk space on duplicated batch files
 * divides the work of building the hash table over the CPUs

One disadvantage is that there is some communication between the participating
CPUs which might outweigh the benefits of parallelism in the case of small
hash tables.  This is avoided by the planner's existing reluctance to supply
partial plans for small scans, but it may be necessary to estimate
synchronization costs in future if that situation changes.  Another is that
outer batch 0 must be written to disk if multiple batches are required.

A potential future advantage of parallel-aware hash joins is that right and
full outer joins could be supported, since there is a single set of matched
bits for each hashtable, but that is not yet implemented.

A new GUC enable_parallel_hash is defined to control the feature, defaulting
to on.

Author: Thomas Munro
Reviewed-By: Andres Freund, Robert Haas
Tested-By: Rafia Sabih, Prabhat Sahu
Discussion:
    https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com
    https://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
2017-12-21 00:43:41 -08:00
Andres Freund ab9e0e718a Add shared tuplestores.
SharedTuplestore allows multiple participants to write into it and
then read the tuples back from it in parallel.  Each reader receives
partial results.

For now it always uses disk files, but other buffering policies and
other kinds of scans (ie each reader receives complete results) may be
useful in future.

The upcoming parallel hash join feature will use this facility.

Author: Thomas Munro
Reviewed-By: Peter Geoghegan, Andres Freund, Robert Haas
Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com
2017-12-18 14:23:19 -08:00
Andres Freund dc6c4c9dc2 Add infrastructure for sharing temporary files between backends.
SharedFileSet allows temporary files to be created by one backend and
then exported for read-only access by other backends, with clean-up
managed by reference counting associated with a DSM segment.  This
includes changes to fd.c and buffile.c to support the new kind of
temporary file.

This will be used by an upcoming patch adding support for parallel
hash joins.

Author: Thomas Munro
Reviewed-By: Peter Geoghegan, Andres Freund, Robert Haas, Rushabh Lathia
Discussion:
    https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com
    https://postgr.es/m/CAH2-WznJ_UgLux=_jTgCQ4yFz0iBntudsNKa1we3kN1BAG=88w@mail.gmail.com
2017-12-01 16:30:56 -08:00
Robert Haas eaedf0df71 Update typedefs.list and re-run pgindent
Discussion: http://postgr.es/m/CA+TgmoaA9=1RWKtBWpDaj+sF3Stgc8sHgf5z=KGtbjwPLQVDMA@mail.gmail.com
2017-11-29 09:24:24 -05:00
Andres Freund 7082e614c0 Provide DSM segment to ExecXXXInitializeWorker functions.
Previously, executor nodes running in parallel worker processes didn't
have access to the dsm_segment object used for parallel execution.  In
order to support resource management based on DSM segment lifetime,
they need that.  So create a ParallelWorkerContext object to hold it
and pass it to all InitializeWorker functions.

Author: Thomas Munro
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com
2017-11-16 17:39:18 -08:00
Robert Haas 1aba8e651a Add hash partitioning.
Hash partitioning is useful when you want to partition a growing data
set evenly.  This can be useful to keep table sizes reasonable, which
makes maintenance operations such as VACUUM faster, or to enable
partition-wise join.

At present, we still depend on constraint exclusion for partitioning
pruning, and the shape of the partition constraints for hash
partitioning is such that that doesn't work.  Work is underway to fix
that, which should both improve performance and make partitioning
pruning work with hash partitioning.

Amul Sul, reviewed and tested by Dilip Kumar, Ashutosh Bapat, Yugo
Nagata, Rajkumar Raghuwanshi, Jesper Pedersen, and by me.  A few
final tweaks also by me.

Discussion: http://postgr.es/m/CAAJ_b96fhpJAP=ALbETmeLk1Uni_GFZD938zgenhF49qgDTjaQ@mail.gmail.com
2017-11-09 18:07:44 -05:00
Andres Freund 141fd1b66c Improve sys/catcache performance.
The following are the individual improvements:
1) Avoidance of FunctionCallInfo based function calls, replaced by
   more efficient functions with a native C argument interface.
2) Don't extract columns from a cache entry's tuple whenever matching
   entries - instead store them as a Datum array. This also allows to
   get rid of having to build dummy tuples for negative & list
   entries, and of a hack for dealing with cstring vs. text weirdness.
3) Reorder members of catcache.h struct, so imortant entries are more
   likely to be on one cacheline.
4) Allowing the compiler to specialize critical SearchCatCache for a
   specific number of attributes allows to unroll loops and avoid
   other nkeys dependant initialization.
5) Only initializing the ScanKey when necessary, i.e. catcache misses,
   greatly reduces cache unnecessary cpu cache misses.
6) Split of the cache-miss case from the hash lookup, reducing stack
   allocations etc in the common case.
7) CatCTup and their corresponding heaptuple are allocated in one
   piece.

This results in making cache lookups themselves roughly three times as
fast - full-system benchmarks obviously improve less than that.

I've also evaluated further techniques:
- replace open coded hash with simplehash - the list walk right now
  shows up in profiles. Unfortunately it's not easy to do so safely as
  an entry's memory location can change at various times, which
  doesn't work well with the refcounting and cache invalidation.
- Cacheline-aligning CatCTup entries - helps some with performance,
  but the win isn't big and the code for it is ugly, because the
  tuples have to be freed as well.
- add more proper functions, rather than macros for
  SearchSysCacheCopyN etc., but right now they don't show up in
  profiles.

The reason the macro wrapper for syscache.c/h have to be changed,
rather than just catcache, is that doing otherwise would require
exposing the SysCache array to the outside.  That might be a good idea
anyway, but it's for another day.

Author: Andres Freund
Reviewed-By: Robert Haas
Discussion: https://postgr.es/m/20170914061207.zxotvyopetm7lrrp@alap3.anarazel.de
2017-10-13 14:22:41 -07:00
Andres Freund cc5f81366c Add support for coordinating record typmods among parallel workers.
Tuples can have type RECORDOID and a typmod number that identifies a blessed
TupleDesc in a backend-private cache.  To support the sharing of such tuples
through shared memory and temporary files, provide a typmod registry in
shared memory.

To achieve that, introduce per-session DSM segments, created on demand when a
backend first runs a parallel query.  The per-session DSM segment has a
table-of-contents just like the per-query DSM segment, and initially the
contents are a shared record typmod registry and a DSA area to provide the
space it needs to grow.

State relating to the current session is accessed via a Session object
reached through global variable CurrentSession that may require significant
redesign further down the road as we figure out what else needs to be shared
or remodelled.

Author: Thomas Munro
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CAEepm=0ZtQ-SpsgCyzzYpsXS6e=kZWqk3g5Ygn3MDV7A8dabUA@mail.gmail.com
2017-09-14 19:59:21 -07:00
Andres Freund 8c0d7bafad Hash tables backed by DSA shared memory.
Add general purpose chaining hash tables for DSA memory.  Unlike
DynaHash in shared memory mode, these hash tables can grow as
required, and cope with being mapped into different addresses in
different backends.

There is a wide range of potential users for such a hash table, though
it's very likely the interface will need to evolve as we come to
understand the needs of different kinds of users.  E.g support for
iterators and incremental resizing is planned for later commits and
the details of the callback signatures are likely to change.

Author: Thomas Munro
Reviewed-By: John Gorman, Andres Freund, Dilip Kumar, Robert Haas
Discussion:
	https://postgr.es/m/CAEepm=3d8o8XdVwYT6O=bHKsKAM2pu2D6sV1S_=4d+jStVCE7w@mail.gmail.com
	https://postgr.es/m/CAEepm=0ZtQ-SpsgCyzzYpsXS6e=kZWqk3g5Ygn3MDV7A8dabUA@mail.gmail.com
2017-08-22 22:43:07 -07:00
Robert Haas 79ccd7cbd5 pg_prewarm: Add automatic prewarm feature.
Periodically while the server is running, and at shutdown, write out a
list of blocks in shared buffers.  When the server reaches consistency
-- unfortunatey, we can't do it before that point without breaking
things -- reload those blocks into any still-unused shared buffers.

Mithun Cy and Robert Haas, reviewed and tested by Beena Emerson,
Amit Kapila, Jim Nasby, and Rafia Sabih.

Discussion: http://postgr.es/m/CAD__OugubOs1Vy7kgF6xTjmEqTR4CrGAv8w+ZbaY_+MZeitukw@mail.gmail.com
2017-08-21 14:17:39 -04:00
Tom Lane 21d304dfed Final pgindent + perltidy run for v10. 2017-08-14 17:29:33 -04:00
Dean Rasheed d363d42bb9 Use MINVALUE/MAXVALUE instead of UNBOUNDED for range partition bounds.
Previously, UNBOUNDED meant no lower bound when used in the FROM list,
and no upper bound when used in the TO list, which was OK for
single-column range partitioning, but problematic with multiple
columns. For example, an upper bound of (10.0, UNBOUNDED) would not be
collocated with a lower bound of (10.0, UNBOUNDED), thus making it
difficult or impossible to define contiguous multi-column range
partitions in some cases.

Fix this by using MINVALUE and MAXVALUE instead of UNBOUNDED to
represent a partition column that is unbounded below or above
respectively. This syntax removes any ambiguity, and ensures that if
one partition's lower bound equals another partition's upper bound,
then the partitions are contiguous.

Also drop the constraint prohibiting finite values after an unbounded
column, and just document the fact that any values after MINVALUE or
MAXVALUE are ignored. Previously it was necessary to repeat UNBOUNDED
multiple times, which was needlessly verbose.

Note: Forces a post-PG 10 beta2 initdb.

Report by Amul Sul, original patch by Amit Langote with some
additional hacking by me.

Discussion: https://postgr.es/m/CAAJ_b947mowpLdxL3jo3YLKngRjrq9+Ej4ymduQTfYR+8=YAYQ@mail.gmail.com
2017-07-21 09:20:47 +01:00
Tom Lane 9ef2dbefc7 Final pgindent run with old pg_bsd_indent (version 1.3).
This is just to have a clean basis for comparison with the results of
the new version (which will indeed end up reverting some of these
changes...)

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 14:09:24 -04:00
Bruce Momjian 8a94332478 Update typedefs list in prep. for post-PG10 beta1 pgindent run 2017-05-17 15:52:16 -04:00
Andres Freund b8d7f053c5 Faster expression evaluation and targetlist projection.
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.

This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.

The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
  function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
  out operation metadata sequentially; including the avoidance of
  nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
  constant re-checks at evaluation time

Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.

The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
  overhead of expression evaluation, by caching state in prepared
  statements.  That'd be helpful in OLTPish scenarios where
  initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
  work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
  been made here too.

The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
  initialization, whereas previously they were done during
  execution. In edge cases this can lead to errors being raised that
  previously wouldn't have been, e.g. a NULL array being coerced to a
  different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
  during expression initialization, previously it was re-built
  every time a domain check was evaluated. For normal queries this
  doesn't change much, but e.g. for plpgsql functions, which caches
  ExprStates, the old set could stick around longer.  The behavior
  around might still change.

Author: Andres Freund, with significant changes by Tom Lane,
	changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-25 14:52:06 -07:00
Andres Freund 3717dc149e Add amcheck extension to contrib.
This is the beginning of a collection of SQL-callable functions to
verify the integrity of data files.  For now it only contains code to
verify B-Tree indexes.

This adds two SQL-callable functions, validating B-Tree consistency to
a varying degree.  Check the, extensive, docs for details.

The goal is to later extend the coverage of the module to further
access methods, possibly including the heap.  Once checks for
additional access methods exist, we'll likely add some "dispatch"
functions that cover multiple access methods.

Author: Peter Geoghegan, editorialized by Andres Freund
Reviewed-By: Andres Freund, Tomas Vondra, Thomas Munro,
   Anastasia Lubennikova, Robert Haas, Amit Langote
Discussion: CAM3SWZQzLMhMwmBqjzK+pRKXrNUZ4w90wYMUWfkeV8mZ3Debvw@mail.gmail.com
2017-03-09 16:33:02 -08:00
Robert Haas 355d3993c5 Add a Gather Merge executor node.
Like Gather, we spawn multiple workers and run the same plan in each
one; however, Gather Merge is used when each worker produces the same
output ordering and we want to preserve that output ordering while
merging together the streams of tuples from various workers.  (In a
way, Gather Merge is like a hybrid of Gather and MergeAppend.)

This works out to a win if it saves us from having to perform an
expensive Sort.  In cases where only a small amount of data would need
to be sorted, it may actually be faster to use a regular Gather node
and then sort the results afterward, because Gather Merge sometimes
needs to wait synchronously for tuples whereas a pure Gather generally
doesn't.  But if this avoids an expensive sort then it's a win.

Rushabh Lathia, reviewed and tested by Amit Kapila, Thomas Munro,
and Neha Sharma, and reviewed and revised by me.

Discussion: http://postgr.es/m/CAGPqQf09oPX-cQRpBKS0Gq49Z+m6KBxgxd_p9gX8CKk_d75HoQ@mail.gmail.com
2017-03-09 07:49:29 -05:00
Peter Eisentraut 550214a4ef Add operator_with_argtypes grammar rule
This makes the handling of operators similar to that of functions and
aggregates.

Rename node FuncWithArgs to ObjectWithArgs, to reflect the expanded use.

Reviewed-by: Jim Nasby <Jim.Nasby@BlueTreble.com>
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
2017-03-06 13:31:47 -05:00
Andres Freund 7e3aa03b41 Reduce size of common allocation header.
The new slab allocator needs different per-allocation information than
the classical aset.c.  The definition in 58b25e981 wasn't sufficiently
careful on 32 platforms with 8 byte alignment, leading to buildfarm
failures.  That's not entirely easy to fix by just adjusting the
definition.

As slab.c doesn't actually need the size part(s) of the common header,
all chunks are equally sized after all, it seems better to instead
reduce the header to the part needed by all allocators, namely which
context an allocation belongs to. That has the advantage of reducing
the overhead of slab allocations, and also allows for more flexibility
in future allocators.

To avoid spreading the logic about accessing a chunk's context around,
centralize it in GetMemoryChunkContext(), which allows to delete a
good number of lines.

A followup commit will revise the mmgr/README portion about
StandardChunkHeader, and more.

Author: Andres Freund
Discussion: https://postgr.es/m/20170228074420.aazv4iw6k562mnxg@alap3.anarazel.de
2017-02-28 19:42:44 -08:00
Andres Freund 58b25e9810 Add "Slab" MemoryContext implementation for efficient equal-sized allocations.
The default general purpose aset.c style memory context is not a great
choice for allocations that are all going to be evenly sized,
especially when those objects aren't small, and have varying
lifetimes.  There tends to be a lot of fragmentation, larger
allocations always directly go to libc rather than have their cost
amortized over several pallocs.

These problems lead to the introduction of ad-hoc slab allocators in
reorderbuffer.c. But it turns out that the simplistic implementation
leads to problems when a lot of objects are allocated and freed, as
aset.c is still the underlying implementation. Especially freeing can
easily run into O(n^2) behavior in aset.c.

While the O(n^2) behavior in aset.c can, and probably will, be
addressed, custom allocators for this behavior are more efficient
both in space and time.

This allocator is for evenly sized allocations, and supports both
cheap allocations and freeing, without fragmenting significantly.  It
does so by allocating evenly sized blocks via malloc(), and carves
them into chunks that can be used for allocations.  In order to
release blocks to the OS as early as possible, chunks are allocated
from the fullest block that still has free objects, increasing the
likelihood of a block being entirely unused.

A subsequent commit uses this in reorderbuffer.c, but a further
allocator is needed to resolve the performance problems triggering
this work.

There likely are further potentialy uses of this allocator besides
reorderbuffer.c.

There's potential further optimizations of the new slab.c, in
particular the array of freelists could be replaced by a more
intelligent structure - but for now this looks more than good enough.

Author: Tomas Vondra, editorialized by Andres Freund
Reviewed-By: Andres Freund, Petr Jelinek, Robert Haas, Jim Nasby
Discussion: https://postgr.es/m/d15dff83-0b37-28ed-0809-95a5cc7292ad@2ndquadrant.com
2017-02-27 03:41:44 -08:00
Robert Haas 569174f1be btree: Support parallel index scans.
This isn't exposed to the optimizer or the executor yet; we'll add
support for those things in a separate patch.  But this puts the
basic mechanism in place: several processes can attach to a parallel
btree index scan, and each one will get a subset of the tuples that
would have been produced by a non-parallel scan.  Each index page
becomes the responsibility of a single worker, which then returns
all of the TIDs on that page.

Rahila Syed, Amit Kapila, Robert Haas, reviewed and tested by
Anastasia Lubennikova, Tushar Ahuja, and Haribabu Kommi.
2017-02-15 07:41:14 -05:00
Robert Haas 7b4ac19982 Extend index AM API for parallel index scans.
This patch doesn't actually make any index AM parallel-aware, but it
provides the necessary functions at the AM layer to do so.

Rahila Syed, Amit Kapila, Robert Haas
2017-01-24 16:42:58 -05:00
Robert Haas acddbe221b Update typedefs.list
So developers can more easily run pgindent locally
2016-12-13 10:51:32 -05:00
Robert Haas f0e44751d7 Implement table partitioning.
Table partitioning is like table inheritance and reuses much of the
existing infrastructure, but there are some important differences.
The parent is called a partitioned table and is always empty; it may
not have indexes or non-inherited constraints, since those make no
sense for a relation with no data of its own.  The children are called
partitions and contain all of the actual data.  Each partition has an
implicit partitioning constraint.  Multiple inheritance is not
allowed, and partitioning and inheritance can't be mixed.  Partitions
can't have extra columns and may not allow nulls unless the parent
does.  Tuples inserted into the parent are automatically routed to the
correct partition, so tuple-routing ON INSERT triggers are not needed.
Tuple routing isn't yet supported for partitions which are foreign
tables, and it doesn't handle updates that cross partition boundaries.

Currently, tables can be range-partitioned or list-partitioned.  List
partitioning is limited to a single column, but range partitioning can
involve multiple columns.  A partitioning "column" can be an
expression.

Because table partitioning is less general than table inheritance, it
is hoped that it will be easier to reason about properties of
partitions, and therefore that this will serve as a better foundation
for a variety of possible optimizations, including query planner
optimizations.  The tuple routing based which this patch does based on
the implicit partitioning constraints is an example of this, but it
seems likely that many other useful optimizations are also possible.

Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat,
Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova,
Rushabh Lathia, Erik Rijkers, among others.  Minor revisions by me.
2016-12-07 13:17:55 -05:00