Commit Graph

118 Commits

Author SHA1 Message Date
Bruce Momjian 29275b1d17 Update copyright for 2024
Reported-by: Michael Paquier

Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz

Backpatch-through: 12
2024-01-03 20:49:05 -05:00
Amit Langote d060e921ea Remove obsolete executor cleanup code
This commit removes unnecessary ExecExprFreeContext() calls in
ExecEnd* routines because the actual cleanup is managed by
FreeExecutorState(). With no callers remaining for
ExecExprFreeContext(), this commit also removes the function.

This commit also drops redundant ExecClearTuple() calls, because
ExecResetTupleTable() in ExecEndPlan() already takes care of
resetting and dropping all TupleTableSlots initialized with
ExecInitScanTupleSlot() and ExecInitExtraTupleSlot().

After these modifications, the ExecEnd*() routines for ValuesScan,
NamedTuplestoreScan, and WorkTableScan became redundant. So, this
commit removes them.

Reviewed-by: Robert Haas
Discussion: https://postgr.es/m/CA+HiwqFGkMSge6TgC9KQzde0ohpAycLQuV7ooitEEpbKB0O_mg@mail.gmail.com
2023-09-28 09:44:39 +09:00
Peter Eisentraut aa69541046 Remove useless casts to (void *) in arguments of some system functions
The affected functions are: bsearch, memcmp, memcpy, memset, memmove,
qsort, repalloc

Reviewed-by: Corey Huinker <corey.huinker@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/fd9adf5d-b1aa-e82f-e4c7-263c30145807%40enterprisedb.com
2023-02-07 06:57:59 +01:00
Bruce Momjian c8e1ba736b Update copyright for 2023
Backpatch-through: 11
2023-01-02 15:00:37 -05:00
Tom Lane 13d53aa7a8 Doc/improve confusing, inefficient tests to locate CTID variable.
The IsCTIDVar() tests in nodeTidscan.c and nodeTidrangescan.c
look buggy at first sight: they aren't checking that the varno
matches the table to be scanned.  Actually they're safe because
any Var in a scan-level qual must be for the correct table ...
but if we're depending on that, it's pretty pointless to verify
varlevelsup.  (Besides which, varlevelsup is *always* zero at
execution, since we've flattened the rangetable long since.)

Remove the useless varlevelsup check, and instead add some
commentary explaining why we don't need to check varno.

Noted while fooling with a planner change that causes the order
of "t1.ctid = t2.ctid" to change in some tidscan.sql tests;
I was briefly fooled into thinking there was a live bug here.
2022-10-25 17:35:19 -04:00
Peter Eisentraut d746021de1 Add construct_array_builtin, deconstruct_array_builtin
There were many calls to construct_array() and deconstruct_array() for
built-in types, for example, when dealing with system catalog columns.
These all hardcoded the type attributes necessary to pass to these
functions.

To simplify this a bit, add construct_array_builtin(),
deconstruct_array_builtin() as wrappers that centralize this hardcoded
knowledge.  This simplifies many call sites and reduces the amount of
hardcoded stuff that is spread around.

Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://www.postgresql.org/message-id/flat/2914356f-9e5f-8c59-2995-5997fc48bcba%40enterprisedb.com
2022-07-01 11:23:15 +02:00
Bruce Momjian 27b77ecf9f Update copyright for 2022
Backpatch-through: 10
2022-01-07 19:04:57 -05:00
Bruce Momjian ca3b37487b Update copyright for 2021
Backpatch-through: 9.5
2021-01-02 13:06:25 -05:00
Tom Lane 5cbfce562f Initial pgindent and pgperltidy run for v13.
Includes some manual cleanup of places that pgindent messed up,
most of which weren't per project style anyway.

Notably, it seems some people didn't absorb the style rules of
commit c9d297751, because there were a bunch of new occurrences
of function calls with a newline just after the left paren, all
with faulty expectations about how the rest of the call would get
indented.
2020-05-14 13:06:50 -04:00
Tom Lane 3ed2005ff5 Introduce macros for typalign and typstorage constants.
Our usual practice for "poor man's enum" catalog columns is to define
macros for the possible values and use those, not literal constants,
in C code.  But for some reason lost in the mists of time, this was
never done for typalign/attalign or typstorage/attstorage.  It's never
too late to make it better though, so let's do that.

The reason I got interested in this right now is the need to duplicate
some uses of the TYPSTORAGE constants in an upcoming ALTER TYPE patch.
But in general, this sort of change aids greppability and readability,
so it's a good idea even without any specific motivation.

I may have missed a few places that could be converted, and it's even
more likely that pending patches will re-introduce some hard-coded
references.  But that's not fatal --- there's no expectation that
we'd actually change any of these values.  We can clean up stragglers
over time.

Discussion: https://postgr.es/m/16457.1583189537@sss.pgh.pa.us
2020-03-04 10:34:25 -05:00
Fujii Masao cb5b28613d Fix bug in Tid scan.
Commit 147e3722f7 changed Tid scan so that it calls table_beginscan()
and uses the scan option for seq scan. This change caused two issues.

(1) The change caused Tid scan to take a predicate lock on the entire
       relation in serializable transaction even when relation-level
       lock is not necessary. This could lead to an unexpected
       serialization error.

(2) The change caused Tid scan to increment the number of seq_scan
       in pg_stat_*_tables views even though it's not seq scan. This
       could confuse the users.

This commit adds the scan option for Tid scan and makes Tid scan
use it, to avoid those issues.

Back-patch to v12, where the bug was introduced.

Author: Tatsuhito Kasahara
Reviewed-by: Kyotaro Horiguchi, Masahiko Sawada, Fujii Masao
Discussion: https://postgr.es/m/CAP0=ZVKy+gTbFmB6X_UW0pP3WaeJ-fkUWHoD-pExS=at3CY76g@mail.gmail.com
2020-02-07 22:06:31 +09:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Thomas Munro 7815e7efdb Add reusable routine for making arrays unique.
Introduce qunique() and qunique_arg(), which can be used after qsort()
and qsort_arg() respectively to remove duplicate values.  Use it where
appropriate.

Author: Thomas Munro
Reviewed-by: Tom Lane (in an earlier version)
Discussion: https://postgr.es/m/CAEepm%3D2vmFTNpAmwbGGD2WaryM6T3hSDVKQPfUwjdD_5XY6vAA%40mail.gmail.com
2019-11-07 17:00:48 +13:00
Michael Paquier c96581abe4 Fix inconsistencies and typos in the tree, take 11
This fixes various typos in docs and comments, and removes some orphaned
definitions.

Author: Alexander Lakhin
Discussion: https://postgr.es/m/5da8e325-c665-da95-21e0-c8a99ea61fbf@gmail.com
2019-08-19 16:21:39 +09:00
Andres Freund 73b8c3bd28 tableam: Rename wrapper functions to match callback names.
Some of the wrapper functions didn't match the callback names. Many of
them due to staying "consistent" with historic naming of the wrapped
functionality. We decided that for most cases it's more important to
be for tableam to be consistent going forward, than with the past.

The one exception is beginscan/endscan/...  because it'd have looked
odd to have systable_beginscan/endscan/... with a different naming
scheme, and changing the systable_* APIs would have caused way too
much churn (including breaking a lot of external users).

Author: Ashwin Agrawal, with some small additions by Andres Freund
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CALfoeiugyrXZfX7n0ORCa4L-m834dzmaE8eFdbNR6PMpetU4Ww@mail.gmail.com
2019-05-23 16:32:36 -07:00
Andres Freund 147e3722f7 tableam: Avoid relying on relation size to determine validity of tids.
Instead add a tableam callback to do so. To avoid adding per
validation overhead, pass a scan to tuple_tid_valid. In heap's case
we'd otherwise incurred a RelationGetNumberOfBlocks() call for each
tid - which'd have added noticable overhead to nodeTidscan.c.

Author: Andres Freund
Reviewed-By: Ashwin Agrawal
Discussion: https://postgr.es/m/20190515185447.gno2jtqxyktylyvs@alap3.anarazel.de
2019-05-17 18:56:55 -07:00
Andres Freund 2e3da03e9e tableam: Add table_get_latest_tid, to wrap heap_get_latest_tid.
This primarily is to allow WHERE CURRENT OF to continue to work as it
currently does. It's not clear to me that these semantics make sense
for every AM, but it works for the in-core heap, and the out of core
zheap. We can refine it further at a later point if necessary.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-25 17:14:48 -07:00
Andres Freund 9a8ee1dc65 tableam: Add and use table_fetch_row_version().
This is essentially the tableam version of heapam_fetch(),
i.e. fetching a tuple identified by a tid, performing visibility
checks.

Note that this different from table_index_fetch_tuple(), which is for
index lookups. It therefore has to handle a tid pointing to an earlier
version of a tuple if the AM uses an optimization like heap's HOT. Add
comments to that end.

This commit removes the stats_relation argument from heap_fetch, as
it's been unused for a long time.

Author: Andres Freund
Reviewed-By: Haribabu Kommi
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-25 00:17:59 -07:00
Andres Freund 5db6df0c01 tableam: Add tuple_{insert, delete, update, lock} and use.
This adds new, required, table AM callbacks for insert/delete/update
and lock_tuple. To be able to reasonably use those, the EvalPlanQual
mechanism had to be adapted, moving more logic into the AM.

Previously both delete/update/lock call-sites and the EPQ mechanism had
to have awareness of the specific tuple format to be able to fetch the
latest version of a tuple. Obviously that needs to be abstracted
away. To do so, move the logic that find the latest row version into
the AM. lock_tuple has a new flag argument,
TUPLE_LOCK_FLAG_FIND_LAST_VERSION, that forces it to lock the last
version, rather than the current one.  It'd have been possible to do
so via a separate callback as well, but finding the last version
usually also necessitates locking the newest version, making it
sensible to combine the two. This replaces the previous use of
EvalPlanQualFetch().  Additionally HeapTupleUpdated, which previously
signaled either a concurrent update or delete, is now split into two,
to avoid callers needing AM specific knowledge to differentiate.

The move of finding the latest row version into tuple_lock means that
encountering a row concurrently moved into another partition will now
raise an error about "tuple to be locked" rather than "tuple to be
updated/deleted" - which is accurate, as that always happens when
locking rows. While possible slightly less helpful for users, it seems
like an acceptable trade-off.

As part of this commit HTSU_Result has been renamed to TM_Result, and
its members been expanded to differentiated between updating and
deleting. HeapUpdateFailureData has been renamed to TM_FailureData.

The interface to speculative insertion is changed so nodeModifyTable.c
does not have to set the speculative token itself anymore. Instead
there's a version of tuple_insert, tuple_insert_speculative, that
performs the speculative insertion (without requiring a flag to signal
that fact), and the speculative insertion is either made permanent
with table_complete_speculative(succeeded = true) or aborted with
succeeded = false).

Note that multi_insert is not yet routed through tableam, nor is
COPY. Changing multi_insert requires changes to copy.c that are large
enough to better be done separately.

Similarly, although simpler, CREATE TABLE AS and CREATE MATERIALIZED
VIEW are also only going to be adjusted in a later commit.

Author: Andres Freund and Haribabu Kommi
Discussion:
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
    https://postgr.es/m/20190313003903.nwvrxi7rw3ywhdel@alap3.anarazel.de
    https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-23 19:55:57 -07:00
Andres Freund c2fe139c20 tableam: Add and use scan APIs.
Too allow table accesses to be not directly dependent on heap, several
new abstractions are needed. Specifically:

1) Heap scans need to be generalized into table scans. Do this by
   introducing TableScanDesc, which will be the "base class" for
   individual AMs. This contains the AM independent fields from
   HeapScanDesc.

   The previous heap_{beginscan,rescan,endscan} et al. have been
   replaced with a table_ version.

   There's no direct replacement for heap_getnext(), as that returned
   a HeapTuple, which is undesirable for a other AMs. Instead there's
   table_scan_getnextslot().  But note that heap_getnext() lives on,
   it's still used widely to access catalog tables.

   This is achieved by new scan_begin, scan_end, scan_rescan,
   scan_getnextslot callbacks.

2) The portion of parallel scans that's shared between backends need
   to be able to do so without the user doing per-AM work. To achieve
   that new parallelscan_{estimate, initialize, reinitialize}
   callbacks are introduced, which operate on a new
   ParallelTableScanDesc, which again can be subclassed by AMs.

   As it is likely that several AMs are going to be block oriented,
   block oriented callbacks that can be shared between such AMs are
   provided and used by heap. table_block_parallelscan_{estimate,
   intiialize, reinitialize} as callbacks, and
   table_block_parallelscan_{nextpage, init} for use in AMs. These
   operate on a ParallelBlockTableScanDesc.

3) Index scans need to be able to access tables to return a tuple, and
   there needs to be state across individual accesses to the heap to
   store state like buffers. That's now handled by introducing a
   sort-of-scan IndexFetchTable, which again is intended to be
   subclassed by individual AMs (for heap IndexFetchHeap).

   The relevant callbacks for an AM are index_fetch_{end, begin,
   reset} to create the necessary state, and index_fetch_tuple to
   retrieve an indexed tuple.  Note that index_fetch_tuple
   implementations need to be smarter than just blindly fetching the
   tuples for AMs that have optimizations similar to heap's HOT - the
   currently alive tuple in the update chain needs to be fetched if
   appropriate.

   Similar to table_scan_getnextslot(), it's undesirable to continue
   to return HeapTuples. Thus index_fetch_heap (might want to rename
   that later) now accepts a slot as an argument. Core code doesn't
   have a lot of call sites performing index scans without going
   through the systable_* API (in contrast to loads of heap_getnext
   calls and working directly with HeapTuples).

   Index scans now store the result of a search in
   IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the
   target is not generally a HeapTuple anymore that seems cleaner.

To be able to sensible adapt code to use the above, two further
callbacks have been introduced:

a) slot_callbacks returns a TupleTableSlotOps* suitable for creating
   slots capable of holding a tuple of the AMs
   type. table_slot_callbacks() and table_slot_create() are based
   upon that, but have additional logic to deal with views, foreign
   tables, etc.

   While this change could have been done separately, nearly all the
   call sites that needed to be adapted for the rest of this commit
   also would have been needed to be adapted for
   table_slot_callbacks(), making separation not worthwhile.

b) tuple_satisfies_snapshot checks whether the tuple in a slot is
   currently visible according to a snapshot. That's required as a few
   places now don't have a buffer + HeapTuple around, but a
   slot (which in heap's case internally has that information).

Additionally a few infrastructure changes were needed:

I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now
   internally uses a slot to keep track of tuples. While
   systable_getnext() still returns HeapTuples, and will so for the
   foreseeable future, the index API (see 1) above) now only deals with
   slots.

The remainder, and largest part, of this commit is then adjusting all
scans in postgres to use the new APIs.

Author: Andres Freund, Haribabu Kommi, Alvaro Herrera
Discussion:
    https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
    https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
2019-03-11 12:46:41 -07:00
Andres Freund 8aa02b52db Add ExecStorePinnedBufferHeapTuple.
This allows to avoid an unnecessary pin/unpin cycle when storing a
tuple in an already pinned buffer into a slot, when the pin isn't
further needed at the call site.

Only a single caller for now (to ensure coverage), but upcoming
patches will increase use of the new function.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-02-26 17:59:01 -08:00
Tom Lane a1b8c41e99 Make some small planner API cleanups.
Move a few very simple node-creation and node-type-testing functions
from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs.
There's nothing planner-specific about them, as evidenced by the
number of other places that were using them.

While at it, rename and_clause() etc to is_andclause() etc, to clarify
that they are node-type-testing functions not node-creation functions.
And use "static inline" implementations for the shortest ones.

Also, modify flatten_join_alias_vars() and some subsidiary functions
to take a Query not a PlannerInfo to define the join structure that
Vars should be translated according to.  They were only using the
"parse" field of the PlannerInfo anyway, so this just requires removing
one level of indirection.  The advantage is that now parse_agg.c can
use flatten_join_alias_vars() without the horrid kluge of creating an
incomplete PlannerInfo, which will allow that file to be decoupled from
relation.h in a subsequent patch.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:26:44 -05:00
Andres Freund 4c850ecec6 Don't include heapam.h from others headers.
heapam.h previously was included in a number of widely used
headers (e.g. execnodes.h, indirectly in executor.h, ...). That's
problematic on its own, as heapam.h contains a lot of low-level
details that don't need to be exposed that widely, but becomes more
problematic with the upcoming introduction of pluggable table storage
- it seems inappropriate for heapam.h to be included that widely
afterwards.

heapam.h was largely only included in other headers to get the
HeapScanDesc typedef (which was defined in heapam.h, even though
HeapScanDescData is defined in relscan.h). The better solution here
seems to be to just use the underlying struct (forward declared where
necessary). Similar for BulkInsertState.

Another problem was that LockTupleMode was used in executor.h - parts
of the file tried to cope without heapam.h, but due to the fact that
it indirectly included it, several subsequent violations of that goal
were not not noticed. We could just reuse the approach of declaring
parameters as int, but it seems nicer to move LockTupleMode to
lockoptions.h - that's not a perfect location, but also doesn't seem
bad.

As a number of files relied on implicitly included heapam.h, a
significant number of files grew an explicit include. It's quite
probably that a few external projects will need to do the same.

Author: Andres Freund
Reviewed-By: Alvaro Herrera
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
2019-01-14 16:24:41 -08:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Andres Freund 4da597edf1 Make TupleTableSlots extensible, finish split of existing slot type.
This commit completes the work prepared in 1a0586de36, splitting the
old TupleTableSlot implementation (which could store buffer, heap,
minimal and virtual slots) into four different slot types.  As
described in the aforementioned commit, this is done with the goal of
making tuple table slots extensible, to allow for pluggable table
access methods.

To achieve runtime extensibility for TupleTableSlots, operations on
slots that can differ between types of slots are performed using the
TupleTableSlotOps struct provided at slot creation time.  That
includes information from the size of TupleTableSlot struct to be
allocated, initialization, deforming etc.  See the struct's definition
for more detailed information about callbacks TupleTableSlotOps.

I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and
ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more
consistent with other naming introduced in recent patches.

There's plenty optimization potential in the slot implementation, but
according to benchmarking the state after this commit has similar
performance characteristics to before this set of changes, which seems
sufficient.

There's a few changes in execReplication.c that currently need to poke
through the slot abstraction, that'll be repaired once the pluggable
storage patchset provides the necessary infrastructure.

Author: Andres Freund and  Ashutosh Bapat, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-16 16:35:15 -08:00
Andres Freund 1a0586de36 Introduce notion of different types of slots (without implementing them).
Upcoming work intends to allow pluggable ways to introduce new ways of
storing table data. Accessing those table access methods from the
executor requires TupleTableSlots to be carry tuples in the native
format of such storage methods; otherwise there'll be a significant
conversion overhead.

Different access methods will require different data to store tuples
efficiently (just like virtual, minimal, heap already require fields
in TupleTableSlot). To allow that without requiring additional pointer
indirections, we want to have different structs (embedding
TupleTableSlot) for different types of slots.  Thus different types of
slots are needed, which requires adapting creators of slots.

The slot that most efficiently can represent a type of tuple in an
executor node will often depend on the type of slot a child node
uses. Therefore we need to track the type of slot is returned by
nodes, so parent slots can create slots based on that.

Relatedly, JIT compilation of tuple deforming needs to know which type
of slot a certain expression refers to, so it can create an
appropriate deforming function for the type of tuple in the slot.

But not all nodes will only return one type of slot, e.g. an append
node will potentially return different types of slots for each of its
subplans.

Therefore add function that allows to query the type of a node's
result slot, and whether it'll always be the same type (whether it's
fixed). This can be queried using ExecGetResultSlotOps().

The scan, result, inner, outer type of slots are automatically
inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(),
left/right subtrees respectively. If that's not correct for a node,
that can be overwritten using new fields in PlanState.

This commit does not introduce the actually abstracted implementation
of different kind of TupleTableSlots, that will be left for a followup
commit.  The different types of slots introduced will, for now, still
use the same backing implementation.

While this already partially invalidates the big comment in
tuptable.h, it seems to make more sense to update it later, when the
different TupleTableSlot implementations actually exist.

Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-15 22:00:30 -08:00
Andres Freund 1ef6bd2954 Don't require return slots for nodes without projection.
In a lot of nodes the return slot is not required. That can either be
because the node doesn't do any projection (say an Append node), or
because the node does perform projections but the projection is
optimized away because the projection would yield an identical row.

Slots aren't that small, especially for wide rows, so it's worthwhile
to avoid creating them.  It's not possible to just skip creating the
slot - it's currently used to determine the tuple descriptor returned
by ExecGetResultType().  So separate the determination of the result
type from the slot creation.  The work previously done internally
ExecInitResultTupleSlotTL() can now also be done separately with
ExecInitResultTypeTL() and ExecInitResultSlot().  That way nodes that
aren't guaranteed to need a result slot, can use
ExecInitResultTypeTL() to determine the result type of the node, and
ExecAssignScanProjectionInfo() (via
ExecConditionalAssignProjectionInfo()) determines that a result slot
is needed, it is created with ExecInitResultSlot().

Besides the advantage of avoiding to create slots that then are
unused, this is necessary preparation for later patches around tuple
table slot abstraction. In particular separating the return descriptor
and slot is a prerequisite to allow JITing of tuple deforming with
knowledge of the underlying tuple format, and to avoid unnecessarily
creating JITed tuple deforming for virtual slots.

This commit removes a redundant argument from
ExecInitResultTupleSlotTL(). While this commit touches a lot of the
relevant lines anyway, it'd normally still not worthwhile to cause
breakage, except that aforementioned later commits will touch *all*
ExecInitResultTupleSlotTL() callers anyway (but fits worse
thematically).

Author: Andres Freund
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-09 17:19:39 -08:00
Tom Lane 29ef2b310d Restore sane locking behavior during parallel query.
Commit 9a3cebeaa changed things so that parallel workers didn't obtain
any lock of their own on tables they access.  That was clearly a bad
idea, but I'd mistakenly supposed that it was the intended end result
of the series of patches for simplifying the executor's lock management.
Undo that change in relation_open(), and adjust ExecOpenScanRelation()
so that it gets the correct lock if inside a parallel worker.

In passing, clean up some more obsolete comments about when locks
are acquired.

Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
2018-10-06 15:49:37 -04:00
Tom Lane 9ddef36278 Centralize executor's opening/closing of Relations for rangetable entries.
Create an array estate->es_relations[] paralleling the es_range_table,
and store references to Relations (relcache entries) there, so that any
given RT entry is opened and closed just once per executor run.  Scan
nodes typically still call ExecOpenScanRelation, but ExecCloseScanRelation
is no more; relation closing is now done centrally in ExecEndPlan.

This is slightly more complex than one would expect because of the
interactions with relcache references held in ResultRelInfo nodes.
The general convention is now that ResultRelInfo->ri_RelationDesc does
not represent a separate relcache reference and so does not need to be
explicitly closed; but there is an exception for ResultRelInfos in the
es_trig_target_relations list, which are manufactured by
ExecGetTriggerResultRel and have to be cleaned up by
ExecCleanUpTriggerState.  (That much was true all along, but these
ResultRelInfos are now more different from others than they used to be.)

To allow the partition pruning logic to make use of es_relations[] rather
than having its own relcache references, adjust PartitionedRelPruneInfo
to store an RT index rather than a relation OID.

Amit Langote, reviewed by David Rowley and Jesper Pedersen,
some mods by me

Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
2018-10-04 14:03:42 -04:00
Andres Freund 29c94e03c7 Split ExecStoreTuple into ExecStoreHeapTuple and ExecStoreBufferHeapTuple.
Upcoming changes introduce further types of tuple table slots, in
preparation of making table storage pluggable. New storage methods
will have different representation of tuples, therefore the slot
accessor should refer explicitly to heap tuples.

Instead of just renaming the functions, split it into one function
that accepts heap tuples not residing in buffers, and one accepting
ones in buffers.  Previously one function was used for both, but that
was a bit awkward already, and splitting will allow us to represent
slot types for tuples in buffers and normal memory separately.

This is split out from the patch introducing abstract slots, as this
largely consists out of mechanical changes.

Author: Ashutosh Bapat
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/20180220224318.gw4oe5jadhpmcdnm@alap3.anarazel.de
2018-09-25 16:27:48 -07:00
Andres Freund ad7dbee368 Allow tupleslots to have a fixed tupledesc, use in executor nodes.
The reason for doing so is that it will allow expression evaluation to
optimize based on the underlying tupledesc. In particular it will
allow to JIT tuple deforming together with the expression itself.

For that expression initialization needs to be moved after the
relevant slots are initialized - mostly unproblematic, except in the
case of nodeWorktablescan.c.

After doing so there's no need for ExecAssignResultType() and
ExecAssignResultTypeFromTL() anymore, as all former callers have been
converted to create a slot with a fixed descriptor.

When creating a slot with a fixed descriptor, tts_values/isnull can be
allocated together with the main slot, reducing allocation overhead
and increasing cache density a bit.

Author: Andres Freund
Discussion: https://postgr.es/m/20171206093717.vqdxe5icqttpxs3p@alap3.anarazel.de
2018-02-16 21:17:38 -08:00
Bruce Momjian 9d4649ca49 Update copyright for 2018
Backpatch-through: certain files through 9.3
2018-01-02 23:30:12 -05:00
Andres Freund cc9f08b6b8 Move ExecProcNode from dispatch to function pointer based model.
This allows us to add stack-depth checks the first time an executor
node is called, and skip that overhead on following
calls. Additionally it yields a nice speedup.

While it'd probably have been a good idea to have that check all
along, it has become more important after the new expression
evaluation framework in b8d7f053c5 - there's no stack depth
check in common paths anymore now. We previously relied on
ExecEvalExpr() being executed somewhere.

We should move towards that model for further routines, but as this is
required for v10, it seems better to only do the necessary (which
already is quite large).

Author: Andres Freund, Tom Lane
Reported-By: Julien Rouhaud
Discussion:
    https://postgr.es/m/22833.1490390175@sss.pgh.pa.us
    https://postgr.es/m/b0af9eaa-130c-60d0-9e4e-7a135b1e0c76@dalibo.com
2017-07-30 16:18:21 -07:00
Andres Freund d47cfef711 Move interrupt checking from ExecProcNode() to executor nodes.
In a followup commit ExecProcNode(), and especially the large switch
it contains, will largely be replaced by a function pointer directly
to the correct node. The node functions will then get invoked by a
thin inline function wrapper. To avoid having to include miscadmin.h
in headers - CHECK_FOR_INTERRUPTS() - move the interrupt checks into
the individual executor routines.

While looking through all executor nodes, I noticed a number of
arguably missing interrupt checks, add these too.

Author: Andres Freund, Tom Lane
Reviewed-By: Tom Lane
Discussion:
    https://postgr.es/m/22833.1490390175@sss.pgh.pa.us
2017-07-30 16:06:42 -07:00
Tom Lane 382ceffdf7 Phase 3 of pgindent updates.
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.

By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis.  However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent.  That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.

This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:35:54 -04:00
Tom Lane c7b8998ebb Phase 2 of pgindent updates.
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.

Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code.  The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there.  BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs.  So the
net result is that in about half the cases, such comments are placed
one tab stop left of before.  This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.

Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:19:25 -04:00
Andres Freund b8d7f053c5 Faster expression evaluation and targetlist projection.
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.

This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.

The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
  function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
  out operation metadata sequentially; including the avoidance of
  nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
  constant re-checks at evaluation time

Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.

The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
  overhead of expression evaluation, by caching state in prepared
  statements.  That'd be helpful in OLTPish scenarios where
  initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
  work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
  been made here too.

The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
  initialization, whereas previously they were done during
  execution. In edge cases this can lead to errors being raised that
  previously wouldn't have been, e.g. a NULL array being coerced to a
  different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
  during expression initialization, previously it was re-built
  every time a domain check was evaluated. For normal queries this
  doesn't change much, but e.g. for plpgsql functions, which caches
  ExprStates, the old set could stick around longer.  The behavior
  around might still change.

Author: Andres Freund, with significant changes by Tom Lane,
	changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-25 14:52:06 -07:00
Andres Freund ea15e18677 Remove obsoleted code relating to targetlist SRF evaluation.
Since 69f4b9c plain expression evaluation (and thus normal projection)
can't return sets of tuples anymore. Thus remove code dealing with
that possibility.

This will require adjustments in external code using
ExecEvalExpr()/ExecProject() - that should neither be hard nor very
common.

Author: Andres Freund and Tom Lane
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-19 14:40:41 -08:00
Bruce Momjian 1d25779284 Update copyright via script for 2017 2017-01-03 13:48:53 -05:00
Tom Lane 8023b5827f Remove nearly-unused SizeOfIptrData macro.
Past refactorings have removed all but one reference to SizeOfIptrData
(and that one place was in a pretty noncritical spot).  Since nobody's
complained, it seems probable that there are no supported compilers
that don't think sizeof(ItemPointerData) is 6.  If there are, we're
wasting MAXALIGN per heap tuple anyway, so it's rather silly to worry
about whether we can shave space in places like WAL records.

Pavan Deolasee

Discussion: <CABOikdOOawDda4hwLOT6zdA6MFfPLu3Z2YBZkX0JdayNS6JOeQ@mail.gmail.com>
2016-09-22 14:30:33 -04:00
Bruce Momjian ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Bruce Momjian 4baaf863ec Update copyright for 2015
Backpatch certain files through 9.0
2015-01-06 11:43:47 -05:00
Tom Lane adbfab119b Remove dead code supporting mark/restore in SeqScan, TidScan, ValuesScan.
There seems no prospect that any of this will ever be useful, and indeed
it's questionable whether some of it would work if it ever got called;
it's certainly not been exercised in a very long time, if ever. So let's
get rid of it, and make the comments about mark/restore in execAmi.c less
wishy-washy.

The mark/restore support for Result nodes is also currently dead code,
but that's due to planner limitations not because it's impossible that
it could be useful.  So I left it in.
2014-11-20 20:20:54 -05:00
Bruce Momjian 7e04792a1c Update copyright for 2014
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
2014-01-07 16:05:30 -05:00
Tom Lane 5194024d72 Incidental cleanup of matviews code.
Move checking for unscannable matviews into ExecOpenScanRelation, which is
a better place for it first because the open relation is already available
(saving a relcache lookup cycle), and second because this eliminates the
problem of telling the difference between rangetable entries that will or
will not be scanned by the query.  In particular we can get rid of the
not-terribly-well-thought-out-or-implemented isResultRel field that the
initial matviews patch added to RangeTblEntry.

Also get rid of entirely unnecessary scannability check in the rewriter,
and a bogus decision about whether RefreshMatViewStmt requires a parse-time
snapshot.

catversion bump due to removal of a RangeTblEntry field, which changes
stored rules.
2013-04-27 17:48:57 -04:00
Bruce Momjian bd61a623ac Update copyrights for 2013
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
2013-01-01 17:15:01 -05:00
Bruce Momjian e126958c2e Update copyright notices for year 2012. 2012-01-01 18:01:58 -05:00
Tom Lane 1609797c25 Clean up the #include mess a little.
walsender.h should depend on xlog.h, not vice versa.  (Actually, the
inclusion was circular until a couple hours ago, which was even sillier;
but Bruce broke it in the expedient rather than logically correct
direction.)  Because of that poor decision, plus blind application of
pgrminclude, we had a situation where half the system was depending on
xlog.h to include such unrelated stuff as array.h and guc.h.  Clean up
the header inclusion, and manually revert a lot of what pgrminclude had
done so things build again.

This episode reinforces my feeling that pgrminclude should not be run
without adult supervision.  Inclusion changes in header files in particular
need to be reviewed with great care.  More generally, it'd be good if we
had a clearer notion of module layering to dictate which headers can sanely
include which others ... but that's a big task for another day.
2011-09-04 01:13:16 -04:00
Bruce Momjian 6416a82a62 Remove unnecessary #include references, per pgrminclude script. 2011-09-01 10:04:27 -04:00
Alvaro Herrera b93f5a5673 Move Trigger and TriggerDesc structs out of rel.h into a new reltrigger.h
This lets us stop including rel.h into execnodes.h, which is a widely
used header.
2011-07-04 14:35:58 -04:00