Commit Graph

216 Commits

Author SHA1 Message Date
Tom Lane 5ee190f8ec Rationalize use of list_concat + list_copy combinations.
In the wake of commit 1cff1b95a, the result of list_concat no longer
shares the ListCells of the second input.  Therefore, we can replace
"list_concat(x, list_copy(y))" with just "list_concat(x, y)".

To improve call sites that were list_copy'ing the first argument,
or both arguments, invent "list_concat_copy()" which produces a new
list sharing no ListCells with either input.  (This is a bit faster
than "list_concat(list_copy(x), y)" because it makes the result list
the right size to start with.)

In call sites that were not list_copy'ing the second argument, the new
semantics mean that we are usually leaking the second List's storage,
since typically there is no remaining pointer to it.  We considered
inventing another list_copy variant that would list_free the second
input, but concluded that for most call sites it isn't worth worrying
about, given the relative compactness of the new List representation.
(Note that in cases where such leakage would happen, the old code
already leaked the second List's header; so we're only discussing
the size of the leak not whether there is one.  I did adjust two or
three places that had been troubling to free that header so that
they manually free the whole second List.)

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-08-12 11:20:18 -04:00
Tom Lane 1cff1b95ab Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link.  We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells.  That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.

In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links.  Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header.  (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)

Of course this is not without downsides.  The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.

For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state.  We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value.  (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.

The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext().  The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell().  However, we no longer
need a previous-cell pointer to delete a list cell efficiently.  Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)

There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents.  To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen.  This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).

There are two notable API differences from the previous code:

* lnext() now requires the List's header pointer in addition to the
current cell's address.

* list_delete_cell() no longer requires a previous-cell argument.

These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.

Programmers should be aware of these significant performance changes:

* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.

* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.)  Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long.  Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.

* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index.  These have the
data-movement penalty explained above, but there's no search penalty.

* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists.  The second argument is
now declared "const List *" to reflect that it isn't changed.

This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests.  As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.

Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit.  Code using those should have been gone a dozen years ago.

Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 13:41:58 -04:00
Tom Lane 8255c7a5ee Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent.  This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.

Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-05-22 13:04:48 -04:00
Tom Lane be76af171c Initial pgindent run for v12.
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.

Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
2019-05-22 12:55:34 -04:00
Peter Eisentraut c6ff0b892c Refactor ParamListInfo initialization
There were six copies of identical nontrivial code.  Put it into a
function.
2019-03-14 13:30:09 +01:00
Andres Freund a9c35cf85c Change function call information to be variable length.
Before this change FunctionCallInfoData, the struct arguments etc for
V1 function calls are stored in, always had space for
FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two
arrays.  For nearly every function call 100 arguments is far more than
needed, therefore wasting memory. Arg and argnull being two separate
arrays also guarantees that to access a single argument, two
cachelines have to be touched.

Change the layout so there's a single variable-length array with pairs
of value / isnull. That drastically reduces memory consumption for
most function calls (on x86-64 a two argument function now uses
64bytes, previously 936 bytes), and makes it very likely that argument
value and its nullness are on the same cacheline.

Arguments are stored in a new NullableDatum struct, which, due to
padding, needs more memory per argument than before. But as usually
far fewer arguments are stored, and individual arguments are cheaper
to access, that's still a clear win.  It's likely that there's other
places where conversion to NullableDatum arrays would make sense,
e.g. TupleTableSlots, but that's for another commit.

Because the function call information is now variable-length
allocations have to take the number of arguments into account. For
heap allocations that can be done with SizeForFunctionCallInfoData(),
for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro
that helps to allocate an appropriately sized and aligned variable.

Some places with stack allocation function call information don't know
the number of arguments at compile time, and currently variably sized
stack allocations aren't allowed in postgres. Therefore allow for
FUNC_MAX_ARGS space in these cases. They're not that common, so for
now that seems acceptable.

Because of the need to allocate FunctionCallInfo of the appropriate
size, older extensions may need to update their code. To avoid subtle
breakages, the FunctionCallInfoData struct has been renamed to
FunctionCallInfoBaseData. Most code only references FunctionCallInfo,
so that shouldn't cause much collateral damage.

This change is also a prerequisite for more efficient expression JIT
compilation (by allocating the function call information on the stack,
allowing LLVM to optimize it away); previously the size of the call
information caused problems inside LLVM's optimizer.

Author: Andres Freund
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de
2019-01-26 14:17:52 -08:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Andres Freund 578b229718 Remove WITH OIDS support, change oid catalog column visibility.
Previously tables declared WITH OIDS, including a significant fraction
of the catalog tables, stored the oid column not as a normal column,
but as part of the tuple header.

This special column was not shown by default, which was somewhat odd,
as it's often (consider e.g. pg_class.oid) one of the more important
parts of a row.  Neither pg_dump nor COPY included the contents of the
oid column by default.

The fact that the oid column was not an ordinary column necessitated a
significant amount of special case code to support oid columns. That
already was painful for the existing, but upcoming work aiming to make
table storage pluggable, would have required expanding and duplicating
that "specialness" significantly.

WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0).
Remove it.

Removing includes:
- CREATE TABLE and ALTER TABLE syntax for declaring the table to be
  WITH OIDS has been removed (WITH (oids[ = true]) will error out)
- pg_dump does not support dumping tables declared WITH OIDS and will
  issue a warning when dumping one (and ignore the oid column).
- restoring an pg_dump archive with pg_restore will warn when
  restoring a table with oid contents (and ignore the oid column)
- COPY will refuse to load binary dump that includes oids.
- pg_upgrade will error out when encountering tables declared WITH
  OIDS, they have to be altered to remove the oid column first.
- Functionality to access the oid of the last inserted row (like
  plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed.

The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false)
for CREATE TABLE) is still supported. While that requires a bit of
support code, it seems unnecessary to break applications / dumps that
do not use oids, and are explicit about not using them.

The biggest user of WITH OID columns was postgres' catalog. This
commit changes all 'magic' oid columns to be columns that are normally
declared and stored. To reduce unnecessary query breakage all the
newly added columns are still named 'oid', even if a table's column
naming scheme would indicate 'reloid' or such.  This obviously
requires adapting a lot code, mostly replacing oid access via
HeapTupleGetOid() with access to the underlying Form_pg_*->oid column.

The bootstrap process now assigns oids for all oid columns in
genbki.pl that do not have an explicit value (starting at the largest
oid previously used), only oids assigned later by oids will be above
FirstBootstrapObjectId. As the oid column now is a normal column the
special bootstrap syntax for oids has been removed.

Oids are not automatically assigned during insertion anymore, all
backend code explicitly assigns oids with GetNewOidWithIndex(). For
the rare case that insertions into the catalog via SQL are called for
the new pg_nextoid() function can be used (which only works on catalog
tables).

The fact that oid columns on system tables are now normal columns
means that they will be included in the set of columns expanded
by * (i.e. SELECT * FROM pg_class will now include the table's oid,
previously it did not). It'd not technically be hard to hide oid
column by default, but that'd mean confusing behavior would either
have to be carried forward forever, or it'd cause breakage down the
line.

While it's not unlikely that further adjustments are needed, the
scope/invasiveness of the patch makes it worthwhile to get merge this
now. It's painful to maintain externally, too complicated to commit
after the code code freeze, and a dependency of a number of other
patches.

Catversion bump, for obvious reasons.

Author: Andres Freund, with contributions by John Naylor
Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
2018-11-20 16:00:17 -08:00
Andres Freund 1a0586de36 Introduce notion of different types of slots (without implementing them).
Upcoming work intends to allow pluggable ways to introduce new ways of
storing table data. Accessing those table access methods from the
executor requires TupleTableSlots to be carry tuples in the native
format of such storage methods; otherwise there'll be a significant
conversion overhead.

Different access methods will require different data to store tuples
efficiently (just like virtual, minimal, heap already require fields
in TupleTableSlot). To allow that without requiring additional pointer
indirections, we want to have different structs (embedding
TupleTableSlot) for different types of slots.  Thus different types of
slots are needed, which requires adapting creators of slots.

The slot that most efficiently can represent a type of tuple in an
executor node will often depend on the type of slot a child node
uses. Therefore we need to track the type of slot is returned by
nodes, so parent slots can create slots based on that.

Relatedly, JIT compilation of tuple deforming needs to know which type
of slot a certain expression refers to, so it can create an
appropriate deforming function for the type of tuple in the slot.

But not all nodes will only return one type of slot, e.g. an append
node will potentially return different types of slots for each of its
subplans.

Therefore add function that allows to query the type of a node's
result slot, and whether it'll always be the same type (whether it's
fixed). This can be queried using ExecGetResultSlotOps().

The scan, result, inner, outer type of slots are automatically
inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(),
left/right subtrees respectively. If that's not correct for a node,
that can be overwritten using new fields in PlanState.

This commit does not introduce the actually abstracted implementation
of different kind of TupleTableSlots, that will be left for a followup
commit.  The different types of slots introduced will, for now, still
use the same backing implementation.

While this already partially invalidates the big comment in
tuptable.h, it seems to make more sense to update it later, when the
different TupleTableSlot implementations actually exist.

Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-15 22:00:30 -08:00
Andres Freund 763f2edd92 Rejigger materializing and fetching a HeapTuple from a slot.
Previously materializing a slot always returned a HeapTuple. As
current work aims to reduce the reliance on HeapTuples (so other
storage systems can work efficiently), that needs to change. Thus
split the tasks of materializing a slot (i.e. making it independent
from the underlying storage / other memory contexts) from fetching a
HeapTuple from the slot.  For brevity, allow to fetch a HeapTuple from
a slot and materializing the slot at the same time, controlled by a
parameter.

For now some callers of ExecFetchSlotHeapTuple, with materialize =
true, expect that changes to the heap tuple will be reflected in the
underlying slot.  Those places will be adapted in due course, so while
not pretty, that's OK for now.

Also rename ExecFetchSlotTuple to ExecFetchSlotHeapTupleDatum and
ExecFetchSlotTupleDatum to ExecFetchSlotHeapTupleDatum, as it's likely
that future storage methods will need similar methods. There already
is ExecFetchSlotMinimalTuple, so the new names make the naming scheme
more coherent.

Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar
Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
2018-11-15 14:31:12 -08:00
Tom Lane 442accc3fe Allow memory contexts to have both fixed and variable ident strings.
Originally, we treated memory context names as potentially variable in
all cases, and therefore always copied them into the context header.
Commit 9fa6f00b1 rethought this a little bit and invented a distinction
between fixed and variable names, skipping the copy step for the former.
But we can make things both simpler and more useful by instead allowing
there to be two parts to a context's identification, a fixed "name" and
an optional, variable "ident".  The name supplied in the context create
call is now required to be a compile-time-constant string in all cases,
as it is never copied but just pointed to.  The "ident" string, if
wanted, is supplied later.  This is needed because typically we want
the ident to be stored inside the context so that it's cleaned up
automatically on context deletion; that means it has to be copied into
the context before we can set the pointer.

The cost of this approach is basically just an additional pointer field
in struct MemoryContextData, which isn't much overhead, and is bought
back entirely in the AllocSet case by not needing a headerSize field
anymore, since we no longer have to cope with variable header length.
In addition, we can simplify the internal interfaces for memory context
creation still further, saving a few cycles there.  And it's no longer
true that a custom identifier disqualifies a context from participating
in aset.c's freelist scheme, so possibly there's some win on that end.

All the places that were using non-compile-time-constant context names
are adjusted to put the variable info into the "ident" instead.  This
allows more effective identification of those contexts in many cases;
for example, subsidary contexts of relcache entries are now identified
by both type (e.g. "index info") and relname, where before you got only
one or the other.  Contexts associated with PL function cache entries
are now identified more fully and uniformly, too.

I also arranged for plancache contexts to use the query source string
as their identifier.  This is basically free for CachedPlanSources, as
they contained a copy of that string already.  We pay an extra pstrdup
to do it for CachedPlans.  That could perhaps be avoided, but it would
make things more fragile (since the CachedPlanSource is sometimes
destroyed first).  I suspect future improvements in error reporting will
require CachedPlans to have a copy of that string anyway, so it's not
clear that it's worth moving mountains to avoid it now.

This also changes the APIs for context statistics routines so that the
context-specific routines no longer assume that output goes straight
to stderr, nor do they know all details of the output format.  This
is useful immediately to reduce code duplication, and it also allows
for external code to do something with stats output that's different
from printing to stderr.

The reason for pushing this now rather than waiting for v12 is that
it rethinks some of the API changes made by commit 9fa6f00b1.  Seems
better for extension authors to endure just one round of API changes
not two.

Discussion: https://postgr.es/m/CAB=Je-FdtmFZ9y9REHD7VsSrnCkiBhsA4mdsLKSPauwXtQBeNA@mail.gmail.com
2018-03-27 16:46:51 -04:00
Peter Eisentraut 33803f67f1 Support INOUT arguments in procedures
In a top-level CALL, the values of INOUT arguments will be returned as a
result row.  In PL/pgSQL, the values are assigned back to the input
arguments.  In other languages, the same convention as for return a
record from a function is used.  That does not require any code changes
in the PL implementations.

Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
2018-03-14 12:07:28 -04:00
Peter Eisentraut fd1a421fe6 Add prokind column, replacing proisagg and proiswindow
The new column distinguishes normal functions, procedures, aggregates,
and window functions.  This replaces the existing columns proisagg and
proiswindow, and replaces the convention that procedures are indicated
by prorettype == 0.  Also change prorettype to be VOIDOID for procedures.

Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: Michael Paquier <michael@paquier.xyz>
2018-03-02 13:48:33 -05:00
Bruce Momjian 9d4649ca49 Update copyright for 2018
Backpatch-through: certain files through 9.3
2018-01-02 23:30:12 -05:00
Tom Lane 6719b238e8 Rearrange execution of PARAM_EXTERN Params for plpgsql's benefit.
This patch does three interrelated things:

* Create a new expression execution step type EEOP_PARAM_CALLBACK
and add the infrastructure needed for add-on modules to generate that.
As discussed, the best control mechanism for that seems to be to add
another hook function to ParamListInfo, which will be called by
ExecInitExpr if it's supplied and a PARAM_EXTERN Param is found.
For stand-alone expressions, we add a new entry point to allow the
ParamListInfo to be specified directly, since it can't be retrieved
from the parent plan node's EState.

* Redesign the API for the ParamListInfo paramFetch hook so that the
ParamExternData array can be entirely virtual.  This also lets us get rid
of ParamListInfo.paramMask, instead leaving it to the paramFetch hook to
decide which param IDs should be accessible or not.  plpgsql_param_fetch
was already doing the identical masking check, so having callers do it too
seemed redundant.  While I was at it, I added a "speculative" flag to
paramFetch that the planner can specify as TRUE to avoid unwanted failures.
This solves an ancient problem for plpgsql that it couldn't provide values
of non-DTYPE_VAR variables to the planner for fear of triggering premature
"record not assigned yet" or "field not found" errors during planning.

* Rework plpgsql to get rid of the need for "unshared" parameter lists,
by dint of turning the single ParamListInfo per estate into a nearly
read-only data structure that doesn't instantiate any per-variable data.
Instead, the paramFetch hook controls access to per-variable data and can
make the right decisions on the fly, replacing the cases that we used to
need multiple ParamListInfos for.  This might perhaps have been a
performance loss on its own, but by using a paramCompile hook we can
bypass plpgsql_param_fetch entirely during normal query execution.
(It's now only called when, eg, we copy the ParamListInfo into a cursor
portal.  copyParamList() or SerializeParamList() effectively instantiate
the virtual parameter array as a simple physical array without a
paramFetch hook, which is what we want in those cases.)  This allows
reverting most of commit 6c82d8d1f, though I kept the cosmetic
code-consolidation aspects of that (eg the assign_simple_var function).

Performance testing shows this to be at worst a break-even change,
and it can provide wins ranging up to 20% in test cases involving
accesses to fields of "record" variables.  The fact that values of
such variables can now be exposed to the planner might produce wins
in some situations, too, but I've not pursued that angle.

In passing, remove the "parent" pointer from the arguments to
ExecInitExprRec and related functions, instead storing that pointer in a
transient field in ExprState.  The ParamListInfo pointer for a stand-alone
expression is handled the same way; we'd otherwise have had to add
yet another recursively-passed-down argument in expression compilation.

Discussion: https://postgr.es/m/32589.1513706441@sss.pgh.pa.us
2017-12-21 12:57:45 -05:00
Peter Eisentraut e4128ee767 SQL procedures
This adds a new object type "procedure" that is similar to a function
but does not have a return type and is invoked by the new CALL statement
instead of SELECT or similar.  This implementation is aligned with the
SQL standard and compatible with or similar to other SQL implementations.

This commit adds new commands CALL, CREATE/ALTER/DROP PROCEDURE, as well
as ALTER/DROP ROUTINE that can refer to either a function or a
procedure (or an aggregate function, as an extension to SQL).  There is
also support for procedures in various utility commands such as COMMENT
and GRANT, as well as support in pg_dump and psql.  Support for defining
procedures is available in all the languages supplied by the core
distribution.

While this commit is mainly syntax sugar around existing functionality,
future features will rely on having procedures as a separate object
type.

Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
2017-11-30 11:03:20 -05:00
Tom Lane 37a795a60b Support domains over composite types.
This is the last major omission in our domains feature: you can now
make a domain over anything that's not a pseudotype.

The major complication from an implementation standpoint is that places
that might be creating tuples of a domain type now need to be prepared
to apply domain_check().  It seems better that unprepared code fail
with an error like "<type> is not composite" than that it silently fail
to apply domain constraints.  Therefore, relevant infrastructure like
get_func_result_type() and lookup_rowtype_tupdesc() has been adjusted
to treat domain-over-composite as a distinct case that unprepared code
won't recognize, rather than just transparently treating it the same
as plain composite.  This isn't a 100% solution to the possibility of
overlooked domain checks, but it catches most places.

In passing, improve typcache.c's support for domains (it can now cache
the identity of a domain's base type), and rewrite the argument handling
logic in jsonfuncs.c's populate_record[set]_worker to reduce duplicative
per-call lookups.

I believe this is code-complete so far as the core and contrib code go.
The PLs need varying amounts of work, which will be tackled in followup
patches.

Discussion: https://postgr.es/m/4206.1499798337@sss.pgh.pa.us
2017-10-26 13:47:45 -04:00
Peter Eisentraut 1356f78ea9 Reduce excessive dereferencing of function pointers
It is equivalent in ANSI C to write (*funcptr) () and funcptr().  These
two styles have been applied inconsistently.  After discussion, we'll
use the more verbose style for plain function pointer variables, to make
it clear that it's a variable, and the shorter style when the function
pointer is in a struct (s.func() or s->func()), because then it's clear
that it's not a plain function name, and otherwise the excessive
punctuation makes some of those invocations hard to read.

Discussion: https://www.postgresql.org/message-id/f52c16db-14ed-757d-4b48-7ef360b1631d@2ndquadrant.com
2017-09-07 13:56:09 -04:00
Andres Freund 2cd7084524 Change tupledesc->attrs[n] to TupleDescAttr(tupledesc, n).
This is a mechanical change in preparation for a later commit that
will change the layout of TupleDesc.  Introducing a macro to abstract
the details of where attributes are stored will allow us to change
that in separate step and revise it in future.

Author: Thomas Munro, editorialized by Andres Freund
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CAEepm=0ZtQ-SpsgCyzzYpsXS6e=kZWqk3g5Ygn3MDV7A8dabUA@mail.gmail.com
2017-08-20 11:19:07 -07:00
Tom Lane 382ceffdf7 Phase 3 of pgindent updates.
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.

By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis.  However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent.  That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.

This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:35:54 -04:00
Tom Lane c7b8998ebb Phase 2 of pgindent updates.
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.

Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code.  The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there.  BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs.  So the
net result is that in about half the cases, such comments are placed
one tab stop left of before.  This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.

Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:19:25 -04:00
Tom Lane e3860ffa4d Initial pgindent run with pg_bsd_indent version 2.0.
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:

* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
  sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
  well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
  with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
  than the expected column 33.

On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list.  This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.

There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses.  I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 14:39:04 -04:00
Tom Lane 0436f6bde8 Disallow set-returning functions inside CASE or COALESCE.
When we reimplemented SRFs in commit 69f4b9c85, our initial choice was
to allow the behavior to vary from historical practice in cases where a
SRF call appeared within a conditional-execution construct (currently,
only CASE or COALESCE).  But that was controversial to begin with, and
subsequent discussion has resulted in a consensus that it's better to
throw an error instead of executing the query differently from before,
so long as we can provide a reasonably clear error message and a way to
rewrite the query.

Hence, add a parser mechanism to allow detection of such cases during
parse analysis.  The mechanism just requires storing, in the ParseState,
a pointer to the set-returning FuncExpr or OpExpr most recently emitted
by parse analysis.  Then the parsing functions for CASE and COALESCE can
detect the presence of a SRF in their arguments by noting whether this
pointer changes while analyzing their arguments.  Furthermore, if it does,
it provides a suitable error cursor location for the complaint.  (This
means that if there's more than one SRF in the arguments, the error will
point at the last one to be analyzed not the first.  While connoisseurs of
parsing behavior might find that odd, it's unlikely the average user would
ever notice.)

While at it, we can also provide more specific error messages than before
about some pre-existing restrictions, such as no-SRFs-within-aggregates.
Also, reject at parse time cases where a NULLIF or IS DISTINCT FROM
construct would need to return a set.  We've never supported that, but the
restriction is depended on in more subtle ways now, so it seems wise to
detect it at the start.

Also, provide some documentation about how to rewrite a SRF-within-CASE
query using a custom wrapper SRF.

It turns out that the information_schema.user_mapping_options view
contained an instance of exactly the behavior we're now forbidding; but
rewriting it makes it more clear and safer too.

initdb forced because of user_mapping_options change.

Patch by me, with error message suggestions from Alvaro Herrera and
Andres Freund, pursuant to a complaint from Regina Obe.

Discussion: https://postgr.es/m/000001d2d5de$d8d66170$8a832450$@pcorp.us
2017-06-13 23:46:39 -04:00
Tom Lane 8f0530f580 Improve castNode notation by introducing list-extraction-specific variants.
This extends the castNode() notation introduced by commit 5bcab1114 to
provide, in one step, extraction of a list cell's pointer and coercion to
a concrete node type.  For example, "lfirst_node(Foo, lc)" is the same
as "castNode(Foo, lfirst(lc))".  Almost half of the uses of castNode
that have appeared so far include a list extraction call, so this is
pretty widely useful, and it saves a few more keystrokes compared to the
old way.

As with the previous patch, back-patch the addition of these macros to
pg_list.h, so that the notation will be available when back-patching.

Patch by me, after an idea of Andrew Gierth's.

Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
2017-04-10 13:51:53 -04:00
Kevin Grittner 18ce3a4ab2 Add infrastructure to support EphemeralNamedRelation references.
A QueryEnvironment concept is added, which allows new types of
objects to be passed into queries from parsing on through
execution.  At this point, the only thing implemented is a
collection of EphemeralNamedRelation objects -- relations which
can be referenced by name in queries, but do not exist in the
catalogs.  The only type of ENR implemented is NamedTuplestore, but
provision is made to add more types fairly easily.

An ENR can carry its own TupleDesc or reference a relation in the
catalogs by relid.

Although these features can be used without SPI, convenience
functions are added to SPI so that ENRs can easily be used by code
run through SPI.

The initial use of all this is going to be transition tables in
AFTER triggers, but that will be added to each PL as a separate
commit.

An incidental effect of this patch is to produce a more informative
error message if an attempt is made to modify the contents of a CTE
from a referencing DML statement.  No tests previously covered that
possibility, so one is added.

Kevin Grittner and Thomas Munro
Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro
with valuable comments and suggestions from many others
2017-03-31 23:17:18 -05:00
Andres Freund b8d7f053c5 Faster expression evaluation and targetlist projection.
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.

This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.

The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
  function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
  out operation metadata sequentially; including the avoidance of
  nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
  constant re-checks at evaluation time

Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.

The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
  overhead of expression evaluation, by caching state in prepared
  statements.  That'd be helpful in OLTPish scenarios where
  initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
  work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
  been made here too.

The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
  initialization, whereas previously they were done during
  execution. In edge cases this can lead to errors being raised that
  previously wouldn't have been, e.g. a NULL array being coerced to a
  different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
  during expression initialization, previously it was re-built
  every time a domain check was evaluated. For normal queries this
  doesn't change much, but e.g. for plpgsql functions, which caches
  ExprStates, the old set could stick around longer.  The behavior
  around might still change.

Author: Andres Freund, with significant changes by Tom Lane,
	changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-25 14:52:06 -07:00
Robert Haas 61c2e1a95f Improve access to parallel query from procedural languages.
In SQL, the ability to use parallel query was previous contingent on
fcache->readonly_func, which is only set for non-volatile functions;
but the volatility of a function has no bearing on whether queries
inside it can use parallelism.  Remove that condition.

SPI_execute and SPI_execute_with_args always run the plan just once,
though not necessarily to completion.  Given the changes in commit
691b8d5928, it's sensible to pass
CURSOR_OPT_PARALLEL_OK here, so do that.  This improves access to
parallelism for any caller that uses these functions to execute
queries.  Such callers include plperl, plpython, pltcl, and plpgsql,
though it's not the case that they all use these functions
exclusively.

In plpgsql, allow parallel query for plain SELECT queries (as
opposed to PERFORM, which already worked) and for plain expressions
(which probably won't go through the executor at all, because they
will likely be simple expressions, but if they do then this helps).

Rafia Sabih and Robert Haas, reviewed by Dilip Kumar and Amit Kapila

Discussion: http://postgr.es/m/CAOGQiiMfJ+4SQwgG=6CVHWoisiU0+7jtXSuiyXBM3y=A=eJzmg@mail.gmail.com
2017-03-24 14:46:33 -04:00
Robert Haas 691b8d5928 Allow for parallel execution whenever ExecutorRun() is done only once.
Previously, it was unsafe to execute a plan in parallel if
ExecutorRun() might be called with a non-zero row count.  However,
it's quite easy to fix things up so that we can support that case,
provided that it is known that we will never call ExecutorRun() a
second time for the same QueryDesc.  Add infrastructure to signal
this, and cross-checks to make sure that a caller who claims this is
true doesn't later reneg.

While that pattern never happens with queries received directly from a
client -- there's no way to know whether multiple Execute messages
will be sent unless the first one requests all the rows -- it's pretty
common for queries originating from procedural languages, which often
limit the result to a single tuple or to a user-specified number of
tuples.

This commit doesn't actually enable parallelism in any additional
cases, because currently none of the places that would be able to
benefit from this infrastructure pass CURSOR_OPT_PARALLEL_OK in the
first place, but it makes it much more palatable to pass
CURSOR_OPT_PARALLEL_OK in places where we currently don't, because it
eliminates some cases where we'd end up having to run the parallel
plan serially.

Patch by me, based on some ideas from Rafia Sabih and corrected by
Rafia Sabih based on feedback from Dilip Kumar and myself.

Discussion: http://postgr.es/m/CA+TgmobXEhvHbJtWDuPZM9bVSLiTj-kShxQJ2uM5GPDze9fRYA@mail.gmail.com
2017-03-23 13:14:36 -04:00
Tom Lane 7afd56c3c6 Use castNode() in a bunch of statement-list-related code.
When I wrote commit ab1f0c822, I really missed the castNode() macro that
Peter E. had proposed shortly before.  This back-fills the uses I would
have put it to.  It's probably not all that significant, but there are
more assertions here than there were before, and conceivably they will
help catch any bugs associated with those representation changes.

I left behind a number of usages like "(Query *) copyObject(query_var)".
Those could have been converted as well, but Peter has proposed another
notational improvement that would handle copyObject cases automatically,
so I let that be for now.
2017-01-26 22:09:34 -05:00
Andres Freund 9ba8a9ce45 Use the new castNode() macro in a number of places.
This is far from a pervasive conversion, but it's a good starting
point.

Author: Peter Eisentraut, with some minor changes by me
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/c5d387d9-3440-f5e0-f9d4-71d53b9fbe52@2ndquadrant.com
2017-01-26 16:47:03 -08:00
Tom Lane ab1f0c8225 Change representation of statement lists, and add statement location info.
This patch makes several changes that improve the consistency of
representation of lists of statements.  It's always been the case
that the output of parse analysis is a list of Query nodes, whatever
the types of the individual statements in the list.  This patch brings
similar consistency to the outputs of raw parsing and planning steps:

* The output of raw parsing is now always a list of RawStmt nodes;
the statement-type-dependent nodes are one level down from that.

* The output of pg_plan_queries() is now always a list of PlannedStmt
nodes, even for utility statements.  In the case of a utility statement,
"planning" just consists of wrapping a CMD_UTILITY PlannedStmt around
the utility node.  This list representation is now used in Portal and
CachedPlan plan lists, replacing the former convention of intermixing
PlannedStmts with bare utility-statement nodes.

Now, every list of statements has a consistent head-node type depending
on how far along it is in processing.  This allows changing many places
that formerly used generic "Node *" pointers to use a more specific
pointer type, thus reducing the number of IsA() tests and casts needed,
as well as improving code clarity.

Also, the post-parse-analysis representation of DECLARE CURSOR is changed
so that it looks more like EXPLAIN, PREPARE, etc.  That is, the contained
SELECT remains a child of the DeclareCursorStmt rather than getting flipped
around to be the other way.  It's now true for both Query and PlannedStmt
that utilityStmt is non-null if and only if commandType is CMD_UTILITY.
That allows simplifying a lot of places that were testing both fields.
(I think some of those were just defensive programming, but in many places,
it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.)

Because PlannedStmt carries a canSetTag field, we're also able to get rid
of some ad-hoc rules about how to reconstruct canSetTag for a bare utility
statement; specifically, the assumption that a utility is canSetTag if and
only if it's the only one in its list.  While I see no near-term need for
relaxing that restriction, it's nice to get rid of the ad-hocery.

The API of ProcessUtility() is changed so that what it's passed is the
wrapper PlannedStmt not just the bare utility statement.  This will affect
all users of ProcessUtility_hook, but the changes are pretty trivial; see
the affected contrib modules for examples of the minimum change needed.
(Most compilers should give pointer-type-mismatch warnings for uncorrected
code.)

There's also a change in the API of ExplainOneQuery_hook, to pass through
cursorOptions instead of expecting hook functions to know what to pick.
This is needed because of the DECLARE CURSOR changes, but really should
have been done in 9.6; it's unlikely that any extant hook functions
know about using CURSOR_OPT_PARALLEL_OK.

Finally, teach gram.y to save statement boundary locations in RawStmt
nodes, and pass those through to Query and PlannedStmt nodes.  This allows
more intelligent handling of cases where a source query string contains
multiple statements.  This patch doesn't actually do anything with the
information, but a follow-on patch will.  (Passing this information through
cleanly is the true motivation for these changes; while I think this is all
good cleanup, it's unlikely we'd have bothered without this end goal.)

catversion bump because addition of location fields to struct Query
affects stored rules.

This patch is by me, but it owes a good deal to Fabien Coelho who did
a lot of preliminary work on the problem, and also reviewed the patch.

Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 16:02:35 -05:00
Tom Lane 75abb955df Throw suitable error for COPY TO STDOUT/FROM STDIN in a SQL function.
A client copy can't work inside a function because the FE/BE wire protocol
doesn't support nesting of a COPY operation within query results.  (Maybe
it could, but the protocol spec doesn't suggest that clients should support
this, and libpq for one certainly doesn't.)

In most PLs, this prohibition is enforced by spi.c, but SQL functions don't
use SPI.  A comparison of _SPI_execute_plan() and init_execution_state()
shows that rejecting client COPY is the only discrepancy in what they
allow, so there's no other similar bugs.

This is an astonishingly ancient oversight, so back-patch to all supported
branches.

Report: https://postgr.es/m/BY2PR05MB2309EABA3DEFA0143F50F0D593780@BY2PR05MB2309.namprd05.prod.outlook.com
2017-01-14 13:27:47 -05:00
Bruce Momjian 1d25779284 Update copyright via script for 2017 2017-01-03 13:48:53 -05:00
Tom Lane ea268cdc9a Add macros to make AllocSetContextCreate() calls simpler and safer.
I found that half a dozen (nearly 5%) of our AllocSetContextCreate calls
had typos in the context-sizing parameters.  While none of these led to
especially significant problems, they did create minor inefficiencies,
and it's now clear that expecting people to copy-and-paste those calls
accurately is not a great idea.  Let's reduce the risk of future errors
by introducing single macros that encapsulate the common use-cases.
Three such macros are enough to cover all but two special-purpose contexts;
those two calls can be left as-is, I think.

While this patch doesn't in itself improve matters for third-party
extensions, it doesn't break anything for them either, and they can
gradually adopt the simplified notation over time.

In passing, change TopMemoryContext to use the default allocation
parameters.  Formerly it could only be extended 8K at a time.  That was
probably reasonable when this code was written; but nowadays we create
many more contexts than we did then, so that it's not unusual to have a
couple hundred K in TopMemoryContext, even without considering various
dubious code that sticks other things there.  There seems no good reason
not to let it use growing blocks like most other contexts.

Back-patch to 9.6, mostly because that's still close enough to HEAD that
it's easy to do so, and keeping the branches in sync can be expected to
avoid some future back-patching pain.  The bugs fixed by these changes
don't seem to be significant enough to justify fixing them further back.

Discussion: <21072.1472321324@sss.pgh.pa.us>
2016-08-27 17:50:38 -04:00
Robert Haas 4bc424b968 pgindent run for 9.6 2016-06-09 18:02:36 -04:00
Robert Haas c6dbf1fe79 Stop the executor if no more tuples can be sent from worker to leader.
If a Gather node has read as many tuples as it needs (for example, due
to Limit) it may detach the queue connecting it to the worker before
reading all of the worker's tuples.  Rather than let the worker
continue to generate and send all of the results, have it stop after
sending the next tuple.

More could be done here to stop the worker even quicker, but this is
about as well as we can hope to do for 9.6.

This is in response to a problem report from Andreas Seltenreich.
Commit 44339b892a should be actually be
sufficient to fix that example even without this change, but it seems
better to do this, too, since we might otherwise waste quite a large
amount of effort in one or more workers.

Discussion: CAA4eK1KOKGqmz9bGu+Z42qhRwMbm4R5rfnqsLCNqFs9j14jzEA@mail.gmail.com

Amit Kapila
2016-06-06 14:52:58 -04:00
Tom Lane 23a27b039d Widen query numbers-of-tuples-processed counters to uint64.
This patch widens SPI_processed, EState's es_processed field, PortalData's
portalPos field, FuncCallContext's call_cntr and max_calls fields,
ExecutorRun's count argument, PortalRunFetch's result, and the max number
of rows in a SPITupleTable to uint64, and deals with (I hope) all the
ensuing fallout.  Some of these values were declared uint32 before, and
others "long".

I also removed PortalData's posOverflow field, since that logic seems
pretty useless given that portalPos is now always 64 bits.

The user-visible results are that command tags for SELECT etc will
correctly report tuple counts larger than 4G, as will plpgsql's GET
GET DIAGNOSTICS ... ROW_COUNT command.  Queries processing more tuples
than that are still not exactly the norm, but they're becoming more
common.

Most values associated with FETCH/MOVE distances, such as PortalRun's count
argument and the count argument of most SPI functions that have one, remain
declared as "long".  It's not clear whether it would be worth promoting
those to int64; but it would definitely be a large dollop of additional
API churn on top of this, and it would only help 32-bit platforms which
seem relatively less likely to see any benefit.

Andreas Scherbaum, reviewed by Christian Ullrich, additional hacking by me
2016-03-12 16:05:29 -05:00
Bruce Momjian ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Robert Haas 1efc7e5382 Fix problems with ParamListInfo serialization mechanism.
Commit d1b7c1ffe7 introduced a mechanism
for serializing a ParamListInfo structure to be passed to a parallel
worker.  However, this mechanism failed to handle external expanded
values, as pointed out by Noah Misch.  Repair.

Moreover, plpgsql_param_fetch requires adjustment because the
serialization mechanism needs it to skip evaluating unused parameters
just as we would do when it is called from copyParamList, but params
== estate->paramLI in that case.  To fix, make the bms_is_member test
in that function unconditional.

Finally, have setup_param_list set a new ParamListInfo field,
paramMask, to the parameters actually used in the expression, so that
we don't try to fetch those that are not needed when serializing a
parameter list.  This isn't necessary for correctness, but it makes
the performance of the parallel executor code comparable to what we
do for cases involving cursors.

Design suggestions and extensive review by Noah Misch.  Patch by me.
2015-11-02 18:11:29 -05:00
Robert Haas 7aea8e4f2d Determine whether it's safe to attempt a parallel plan for a query.
Commit 924bcf4f16 introduced a framework
for parallel computation in PostgreSQL that makes most but not all
built-in functions safe to execute in parallel mode.  In order to have
parallel query, we'll need to be able to determine whether that query
contains functions (either built-in or user-defined) that cannot be
safely executed in parallel mode.  This requires those functions to be
labeled, so this patch introduces an infrastructure for that.  Some
functions currently labeled as safe may need to be revised depending on
how pending issues related to heavyweight locking under paralllelism
are resolved.

Parallel plans can't be used except for the case where the query will
run to completion.  If portal execution were suspended, the parallel
mode restrictions would need to remain in effect during that time, but
that might make other queries fail.  Therefore, this patch introduces
a framework that enables consideration of parallel plans only when it
is known that the plan will be run to completion.  This probably needs
some refinement; for example, at bind time, we do not know whether a
query run via the extended protocol will be execution to completion or
run with a limited fetch count.  Having the client indicate its
intentions at bind time would constitute a wire protocol break.  Some
contexts in which parallel mode would be safe are not adjusted by this
patch; the default is not to try parallel plans except from call sites
that have been updated to say that such plans are OK.

This commit doesn't introduce any parallel paths or plans; it just
provides a way to determine whether they could potentially be used.
I'm committing it on the theory that the remaining parallel sequential
scan patches will also get committed to this release, hopefully in the
not-too-distant future.

Robert Haas and Amit Kapila.  Reviewed (in earlier versions) by Noah
Misch.
2015-09-16 15:38:47 -04:00
Robert Haas 924bcf4f16 Create an infrastructure for parallel computation in PostgreSQL.
This does four basic things.  First, it provides convenience routines
to coordinate the startup and shutdown of parallel workers.  Second,
it synchronizes various pieces of state (e.g. GUCs, combo CID
mappings, transaction snapshot) from the parallel group leader to the
worker processes.  Third, it prohibits various operations that would
result in unsafe changes to that state while parallelism is active.
Finally, it propagates events that would result in an ErrorResponse,
NoticeResponse, or NotifyResponse message being sent to the client
from the parallel workers back to the master, from which they can then
be sent on to the client.

Robert Haas, Amit Kapila, Noah Misch, Rushabh Lathia, Jeevan Chalke.
Suggestions and review from Andres Freund, Heikki Linnakangas, Noah
Misch, Simon Riggs, Euler Taveira, and Jim Nasby.
2015-04-30 15:02:14 -04:00
Tom Lane 09d8d110a6 Use FLEXIBLE_ARRAY_MEMBER in a bunch more places.
Replace some bogus "x[1]" declarations with "x[FLEXIBLE_ARRAY_MEMBER]".
Aside from being more self-documenting, this should help prevent bogus
warnings from static code analyzers and perhaps compiler misoptimizations.

This patch is just a down payment on eliminating the whole problem, but
it gets rid of a lot of easy-to-fix cases.

Note that the main problem with doing this is that one must no longer rely
on computing sizeof(the containing struct), since the result would be
compiler-dependent.  Instead use offsetof(struct, lastfield).  Autoconf
also warns against spelling that offsetof(struct, lastfield[0]).

Michael Paquier, review and additional fixes by me.
2015-02-20 00:11:42 -05:00
Bruce Momjian 4baaf863ec Update copyright for 2015
Backpatch certain files through 9.0
2015-01-06 11:43:47 -05:00
Bruce Momjian 0a78320057 pgindent run for 9.4
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
2014-05-06 12:12:18 -04:00
Tom Lane 3f8c8e3c61 Fix failure to detoast fields in composite elements of structured types.
If we have an array of records stored on disk, the individual record fields
cannot contain out-of-line TOAST pointers: the tuptoaster.c mechanisms are
only prepared to deal with TOAST pointers appearing in top-level fields of
a stored row.  The same applies for ranges over composite types, nested
composites, etc.  However, the existing code only took care of expanding
sub-field TOAST pointers for the case of nested composites, not for other
structured types containing composites.  For example, given a command such
as

UPDATE tab SET arraycol = ARRAY[(ROW(x,42)::mycompositetype] ...

where x is a direct reference to a field of an on-disk tuple, if that field
is long enough to be toasted out-of-line then the TOAST pointer would be
inserted as-is into the array column.  If the source record for x is later
deleted, the array field value would become a dangling pointer, leading
to errors along the line of "missing chunk number 0 for toast value ..."
when the value is referenced.  A reproducible test case for this was
provided by Jan Pecek, but it seems likely that some of the "missing chunk
number" reports we've heard in the past were caused by similar issues.

Code-wise, the problem is that PG_DETOAST_DATUM() is not adequate to
produce a self-contained Datum value if the Datum is of composite type.
Seen in this light, the problem is not just confined to arrays and ranges,
but could also affect some other places where detoasting is done in that
way, for example form_index_tuple().

I tried teaching the array code to apply toast_flatten_tuple_attribute()
along with PG_DETOAST_DATUM() when the array element type is composite,
but this was messy and imposed extra cache lookup costs whether or not any
TOAST pointers were present, indeed sometimes when the array element type
isn't even composite (since sometimes it takes a typcache lookup to find
that out).  The idea of extending that approach to all the places that
currently use PG_DETOAST_DATUM() wasn't attractive at all.

This patch instead solves the problem by decreeing that composite Datum
values must not contain any out-of-line TOAST pointers in the first place;
that is, we expand out-of-line fields at the point of constructing a
composite Datum, not at the point where we're about to insert it into a
larger tuple.  This rule is applied only to true composite Datums, not
to tuples that are being passed around the system as tuples, so it's not
as invasive as it might sound at first.  With this approach, the amount
of code that has to be touched for a full solution is greatly reduced,
and added cache lookup costs are avoided except when there actually is
a TOAST pointer that needs to be inlined.

The main drawback of this approach is that we might sometimes dereference
a TOAST pointer that will never actually be used by the query, imposing a
rather large cost that wasn't there before.  On the other side of the coin,
if the field value is used multiple times then we'll come out ahead by
avoiding repeat detoastings.  Experimentation suggests that common SQL
coding patterns are unaffected either way, though.  Applications that are
very negatively affected could be advised to modify their code to not fetch
columns they won't be using.

In future, we might consider reverting this solution in favor of detoasting
only at the point where data is about to be stored to disk, using some
method that can drill down into multiple levels of nested structured types.
That will require defining new APIs for structured types, though, so it
doesn't seem feasible as a back-patchable fix.

Note that this patch changes HeapTupleGetDatum() from a macro to a function
call; this means that any third-party code using that macro will not get
protection against creating TOAST-pointer-containing Datums until it's
recompiled.  The same applies to any uses of PG_RETURN_HEAPTUPLEHEADER().
It seems likely that this is not a big problem in practice: most of the
tuple-returning functions in core and contrib produce outputs that could
not possibly be toasted anyway, and the same probably holds for third-party
extensions.

This bug has existed since TOAST was invented, so back-patch to all
supported branches.
2014-05-01 15:19:06 -04:00
Tom Lane 0def2573c5 Fix *-qualification of named parameters in SQL-language functions.
Given a composite-type parameter named x, "$1.*" worked fine, but "x.*"
not so much.  This has been broken since named parameter references were
added in commit 9bff0780cf, so patch back
to 9.2.  Per bug #9085 from Hardy Falk.
2014-02-03 14:47:17 -05:00
Bruce Momjian 7e04792a1c Update copyright for 2014
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
2014-01-07 16:05:30 -05:00
Tom Lane 8d65da1f01 Support ordered-set (WITHIN GROUP) aggregates.
This patch introduces generic support for ordered-set and hypothetical-set
aggregate functions, as well as implementations of the instances defined in
SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(),
percent_rank(), cume_dist()).  We also added mode() though it is not in the
spec, as well as versions of percentile_cont() and percentile_disc() that
can compute multiple percentile values in one pass over the data.

Unlike the original submission, this patch puts full control of the sorting
process in the hands of the aggregate's support functions.  To allow the
support functions to find out how they're supposed to sort, a new API
function AggGetAggref() is added to nodeAgg.c.  This allows retrieval of
the aggregate call's Aggref node, which may have other uses beyond the
immediate need.  There is also support for ordered-set aggregates to
install cleanup callback functions, so that they can be sure that
infrastructure such as tuplesort objects gets cleaned up.

In passing, make some fixes in the recently-added support for variadic
aggregates, and make some editorial adjustments in the recent FILTER
additions for aggregates.  Also, simplify use of IsBinaryCoercible() by
allowing it to succeed whenever the target type is ANY or ANYELEMENT.
It was inconsistent that it dealt with other polymorphic target types
but not these.

Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing,
and rather heavily editorialized upon by Tom Lane
2013-12-23 16:11:35 -05:00
Noah Misch b560ec1b0d Implement the FILTER clause for aggregate function calls.
This is SQL-standard with a few extensions, namely support for
subqueries and outer references in clause expressions.

catversion bump due to change in Aggref and WindowFunc.

David Fetter, reviewed by Dean Rasheed.
2013-07-16 20:15:36 -04:00
Bruce Momjian 9af4159fce pgindent run for release 9.3
This is the first run of the Perl-based pgindent script.  Also update
pgindent instructions.
2013-05-29 16:58:43 -04:00