Commit Graph

239 Commits

Author SHA1 Message Date
Tom Lane 382ceffdf7 Phase 3 of pgindent updates.
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.

By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis.  However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent.  That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.

This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:35:54 -04:00
Tom Lane c7b8998ebb Phase 2 of pgindent updates.
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.

Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code.  The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there.  BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs.  So the
net result is that in about half the cases, such comments are placed
one tab stop left of before.  This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.

Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:19:25 -04:00
Tom Lane e3860ffa4d Initial pgindent run with pg_bsd_indent version 2.0.
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:

* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
  sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
  well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
  with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
  than the expected column 33.

On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list.  This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.

There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses.  I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 14:39:04 -04:00
Bruce Momjian a6fd7b7a5f Post-PG 10 beta1 pgindent run
perltidy run not included.
2017-05-17 16:31:56 -04:00
Tom Lane 8f0530f580 Improve castNode notation by introducing list-extraction-specific variants.
This extends the castNode() notation introduced by commit 5bcab1114 to
provide, in one step, extraction of a list cell's pointer and coercion to
a concrete node type.  For example, "lfirst_node(Foo, lc)" is the same
as "castNode(Foo, lfirst(lc))".  Almost half of the uses of castNode
that have appeared so far include a list extraction call, so this is
pretty widely useful, and it saves a few more keystrokes compared to the
old way.

As with the previous patch, back-patch the addition of these macros to
pg_list.h, so that the notation will be available when back-patching.

Patch by me, after an idea of Andrew Gierth's.

Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
2017-04-10 13:51:53 -04:00
Andres Freund fa117ee403 Allow avoiding tuple copy within tuplesort_gettupleslot().
Add a "copy" argument to make it optional to receive a copy of caller
tuple that is safe to use following a subsequent manipulating of
tuplesort's state.  This is a performance optimization.  Most existing
tuplesort_gettupleslot() callers are made to opt out of copying.
Existing callers that happen to rely on the validity of tuple memory
beyond subsequent manipulations of the tuplesort request their own
copy.

This brings tuplesort_gettupleslot() in line with
tuplestore_gettupleslot().  In the future, a "copy"
tuplesort_getdatum() argument may be added, that similarly allows
callers to opt out of receiving their own copy of tuple.

In passing, clarify assumptions that callers of other tuplesort fetch
routines may make about tuple memory validity, per gripe from Tom
Lane.

Author: Peter Geoghegan
Discussion: CAM3SWZQWZZ_N=DmmL7tKy_OUjGH_5mN=N=A6h7kHyyDvEhg2DA@mail.gmail.com
2017-04-06 14:48:59 -07:00
Andrew Gierth b5635948ab Support hashed aggregation with grouping sets.
This extends the Aggregate node with two new features: HashAggregate
can now run multiple hashtables concurrently, and a new strategy
MixedAggregate populates hashtables while doing sorted grouping.

The planner will now attempt to save as many sorts as possible when
planning grouping sets queries, while not exceeding work_mem for the
estimated combined sizes of all hashtables used.  No SQL-level changes
are required.  There should be no user-visible impact other than the
new EXPLAIN output and possible changes to result ordering when ORDER
BY was not used (which affected a few regression tests).  The
enable_hashagg option is respected.

Author: Andrew Gierth
Reviewers: Mark Dilger, Andres Freund
Discussion: https://postgr.es/m/87vatszyhj.fsf@news-spur.riddles.org.uk
2017-03-27 04:20:54 +01:00
Andres Freund b8d7f053c5 Faster expression evaluation and targetlist projection.
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.

This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.

The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
  function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
  out operation metadata sequentially; including the avoidance of
  nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
  constant re-checks at evaluation time

Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.

The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
  overhead of expression evaluation, by caching state in prepared
  statements.  That'd be helpful in OLTPish scenarios where
  initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
  work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
  been made here too.

The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
  initialization, whereas previously they were done during
  execution. In edge cases this can lead to errors being raised that
  previously wouldn't have been, e.g. a NULL array being coerced to a
  different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
  during expression initialization, previously it was re-built
  every time a domain check was evaluated. For normal queries this
  doesn't change much, but e.g. for plpgsql functions, which caches
  ExprStates, the old set could stick around longer.  The behavior
  around might still change.

Author: Andres Freund, with significant changes by Tom Lane,
	changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-25 14:52:06 -07:00
Peter Eisentraut a47b38c9ee Spelling fixes
From: Josh Soref <jsoref@gmail.com>
2017-03-14 12:58:39 -04:00
Heikki Linnakangas 181bdb90ba Fix typos in comments.
Backpatch to all supported versions, where applicable, to make backpatching
of future fixes go more smoothly.

Josh Soref

Discussion: https://www.postgresql.org/message-id/CACZqfqCf+5qRztLPgmmosr-B0Ye4srWzzw_mo4c_8_B_mtjmJQ@mail.gmail.com
2017-02-06 11:33:58 +02:00
Andres Freund 9ba8a9ce45 Use the new castNode() macro in a number of places.
This is far from a pervasive conversion, but it's a good starting
point.

Author: Peter Eisentraut, with some minor changes by me
Reviewed-By: Tom Lane
Discussion: https://postgr.es/m/c5d387d9-3440-f5e0-f9d4-71d53b9fbe52@2ndquadrant.com
2017-01-26 16:47:03 -08:00
Andres Freund ea15e18677 Remove obsoleted code relating to targetlist SRF evaluation.
Since 69f4b9c plain expression evaluation (and thus normal projection)
can't return sets of tuples anymore. Thus remove code dealing with
that possibility.

This will require adjustments in external code using
ExecEvalExpr()/ExecProject() - that should neither be hard nor very
common.

Author: Andres Freund and Tom Lane
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-19 14:40:41 -08:00
Robert Haas 0355e6f310 Repair commit b81b5a96f4.
This commit purported to use a variable hash seed for Partial
HashAggregate, but actually did the opposite - it made us use a
variable seed for any HashAggregate that is NOT partial.  Woops.
2017-01-06 09:34:26 -05:00
Bruce Momjian 1d25779284 Update copyright via script for 2017 2017-01-03 13:48:53 -05:00
Tom Lane c080b223a7 Fix minor oversights in nodeAgg.c.
aggstate->evalproj is always set up by ExecInitAgg, so there's no
need to test.  Doing so led Coverity to think that we might be
intending "slot" to be possibly NULL here, and it quite properly
complained that the rest of combine_aggregates() wasn't prepared
for that.

Also fix a couple of obvious thinkos in Asserts checking that
"inputoff" isn't past the end of the slot.

Errors introduced in commit 8ed3f11bb, so no need for back-patch.
2016-12-20 19:22:02 -05:00
Heikki Linnakangas db80acfc9d Fix sharing Agg transition state of DISTINCT or ordered aggs.
If a query contained two aggregates that could share the transition value,
we would correctly collect the input into a tuplesort only once, but
incorrectly run the transition function over the accumulated input twice,
in finalize_aggregates(). That caused a crash, when we tried to call
tuplesort_performsort() on an already-freed NULL tuplestore.

Backport to 9.6, where sharing of transition state and this bug were
introduced.

Analysis by Tom Lane.

Discussion: https://www.postgresql.org/message-id/ac5b0b69-744c-9114-6218-8300ac920e61@iki.fi
2016-12-20 09:20:17 +02:00
Robert Haas b81b5a96f4 Unbreak Finalize HashAggregate over Partial HashAggregate.
Commit 5dfc198146 introduced the use
of a new type of hash table with linear reprobing for hash aggregates.
Such a hash table behaves very poorly if keys are inserted in hash
order, which does in fact happen in the case where a query use a
Finalize HashAggregate node fed (via Gather) by a Partial
HashAggregate node.  In fact, queries with this type of plan tend
to run effectively forever.

Fix that by seeding the hash value differently in each worker
(and in the leader, if it participates).

Andres Freund and Robert Haas
2016-12-16 10:03:08 -05:00
Andres Freund fc4b3dea29 User narrower representative tuples in the hash-agg hashtable.
So far the hashtable stored representative tuples in the form of its
input slot, with all columns in the hashtable that are not
needed (i.e. not grouped upon or functionally dependent) set to NULL.

Thats good for saving memory, but it turns out that having tuples full
of NULL isn't free. slot_deform_tuple is faster if there's no NULL
bitmap even if no NULLs are encountered, and skipping over leading NULLs
isn't free.

So compute a separate tuple descriptor that only contains the needed
columns. As columns have already been moved in/out the slot for the
hashtable that does not imply additional per-row overhead.

Author: Andres Freund
Reviewed-By: Heikki Linnakangas
Discussion: https://postgr.es/m/20161103110721.h5i5t5saxfk5eeik@alap3.anarazel.de
2016-11-30 17:30:09 -08:00
Andres Freund 8ed3f11bb0 Perform one only projection to compute agg arguments.
Previously we did a ExecProject() for each individual aggregate
argument. That turned out to be a performance bottleneck in queries with
multiple aggregates.

Doing all the argument computations in one ExecProject() is quite a bit
cheaper because ExecProject's fastpath can do the work at once in a
relatively tight loop, and because it can get all the required columns
with a single slot_getsomeattr and save some other redundant setup
costs.

Author: Andres Freund
Reviewed-By: Heikki Linnakangas
Discussion: https://postgr.es/m/20161103110721.h5i5t5saxfk5eeik@alap3.anarazel.de
2016-11-30 16:20:24 -08:00
Tom Lane 9a00f03e47 Improve speed of aggregates that use array_append as transition function.
In the previous coding, if an aggregate's transition function returned an
expanded array, nodeAgg.c and nodeWindowAgg.c would always copy it and thus
force it into the flat representation.  This led to ping-ponging between
flat and expanded formats, which costs a lot.  For an aggregate using
array_append as transition function, I measured about a 15X slowdown
compared to the pre-9.5 code, when working on simple int[] arrays.
Of course, the old code was already O(N^2) in this usage due to copying
flat arrays all the time, but it wasn't quite this inefficient.

To fix, teach nodeAgg.c and nodeWindowAgg.c to allow expanded transition
values without copying, so long as the transition function takes care to
return the transition value already properly parented under the aggcontext.
That puts a bit of extra responsibility on the transition function, but
doing it this way allows us to not need any extra logic in the fast path
of advance_transition_function (ie, with a pass-by-value transition value,
or with a modified-in-place pass-by-reference value).  We already know
that that's a hot spot so I'm loath to add any cycles at all there.  Also,
while only array_append currently knows how to follow this convention,
this solution allows other transition functions to opt-in without needing
to have a whitelist in the core aggregation code.

(The reason we would need a whitelist is that currently, if you pass a
R/W expanded-object pointer to an arbitrary function, it's allowed to do
anything with it including deleting it; that breaks the core agg code's
assumption that it should free discarded values.  Returning a value under
aggcontext is the transition function's signal that it knows it is an
aggregate transition function and will play nice.  Possibly the API rules
for expanded objects should be refined, but that would not be a
back-patchable change.)

With this fix, an aggregate using array_append is no longer O(N^2), so it's
much faster than pre-9.5 code rather than much slower.  It's still a bit
slower than the bespoke infrastructure for array_agg, but the differential
seems to be only about 10%-20% rather than orders of magnitude.

Discussion: <6315.1477677885@sss.pgh.pa.us>
2016-10-30 12:27:41 -04:00
Andres Freund 5dfc198146 Use more efficient hashtable for execGrouping.c to speed up hash aggregation.
The more efficient hashtable speeds up hash-aggregations with more than
a few hundred groups significantly. Improvements of over 120% have been
measured.

Due to the the different hash table queries that not fully
determined (e.g. GROUP BY without ORDER BY) may change their result
order.

The conversion is largely straight-forward, except that, due to the
static element types of simplehash.h type hashes, the additional data
some users store in elements (e.g. the per-group working data for hash
aggregaters) is now stored in TupleHashEntryData->additional.  The
meaning of BuildTupleHashTable's entrysize (renamed to additionalsize)
has been changed to only be about the additionally stored size.  That
size is only used for the initial sizing of the hash-table.

Reviewed-By: Tomas Vondra
Discussion: <20160727004333.r3e2k2y6fvk2ntup@alap3.anarazel.de>
2016-10-14 17:22:51 -07:00
Tom Lane 2c00fad286 Fix improper repetition of previous results from a hashed aggregate.
ExecReScanAgg's check for whether it could re-use a previously calculated
hashtable neglected the possibility that the Agg node might reference
PARAM_EXEC Params that are not referenced by its input plan node.  That's
okay if the Params are in upper tlist or qual expressions; but if one
appears in aggregate input expressions, then the hashtable contents need
to be recomputed when the Param's value changes.

To avoid unnecessary performance degradation in the case of a Param that
isn't within an aggregate input, add logic to the planner to determine
which Params are within aggregate inputs.  This requires a new field in
struct Agg, but fortunately we never write plans to disk, so this isn't
an initdb-forcing change.

Per report from Jeevan Chalke.  This has been broken since forever,
so back-patch to all supported branches.

Andrew Gierth, with minor adjustments by me

Report: <CAM2+6=VY8ykfLT5Q8vb9B6EbeBk-NGuLbT6seaQ+Fq4zXvrDcA@mail.gmail.com>
2016-08-24 14:38:12 -04:00
Peter Eisentraut 40fcfec82c Message style improvements 2016-07-25 22:07:44 -04:00
Tom Lane 19e972d558 Rethink node-level representation of partial-aggregation modes.
The original coding had three separate booleans representing partial
aggregation behavior, which was confusing, unreadable, and error-prone,
not least because the booleans weren't always listed in the same order.
It was also inadequate for the allegedly-desirable future extension to
support intermediate partial aggregation, because we'd need separate
markers for serialization and deserialization in such a case.

Merge these bools into an enum "AggSplit" to provide symbolic names for
the supported operating modes (and document what those are).  By assigning
the values of the enum constants carefully, we can treat AggSplit values
as options bitmasks so that tests of what to do aren't noticeably more
expensive than before.

While at it, get rid of Aggref.aggoutputtype.  That's not needed since
commit 59a3795c2 got rid of setrefs.c's special-purpose Aggref comparison
code, and it likewise seemed more confusing than helpful.

Assorted comment cleanup as well (there's still more that I want to do
in that line).

catversion bump for change in Aggref node contents.  Should be the last
one for partial-aggregation changes.

Discussion: <29309.1466699160@sss.pgh.pa.us>
2016-06-26 14:33:38 -04:00
Tom Lane f8ace5477e Fix type-safety problem with parallel aggregate serial/deserialization.
The original specification for this called for the deserialization function
to have signature "deserialize(serialtype) returns transtype", which is a
security violation if transtype is INTERNAL (which it always would be in
practice) and serialtype is not (which ditto).  The patch blithely overrode
the opr_sanity check for that, which was sloppy-enough work in itself,
but the indisputable reason this cannot be allowed to stand is that CREATE
FUNCTION will reject such a signature and thus it'd be impossible for
extensions to create parallelizable aggregates.

The minimum fix to make the signature type-safe is to add a second, dummy
argument of type INTERNAL.  But to lock it down a bit more and make misuse
of INTERNAL-accepting functions less likely, let's get rid of the ability
to specify a "serialtype" for an aggregate and just say that the only
useful serialtype is BYTEA --- which, in practice, is the only interesting
value anyway, due to the usefulness of the send/recv infrastructure for
this purpose.  That means we only have to allow "serialize(internal)
returns bytea" and "deserialize(bytea, internal) returns internal" as
the signatures for these support functions.

In passing fix bogus signature of int4_avg_combine, which I found thanks
to adding an opr_sanity check on combinefunc signatures.

catversion bump due to removing pg_aggregate.aggserialtype and adjusting
signatures of assorted built-in functions.

David Rowley and Tom Lane

Discussion: <27247.1466185504@sss.pgh.pa.us>
2016-06-22 16:52:41 -04:00
Tom Lane 915b703e16 Fix handling of argument and result datatypes for partial aggregation.
When doing partial aggregation, the args list of the upper (combining)
Aggref node is replaced by a Var representing the output of the partial
aggregation steps, which has either the aggregate's transition data type
or a serialized representation of that.  However, nodeAgg.c blindly
continued to use the args list as an indication of the user-level argument
types.  This broke resolution of polymorphic transition datatypes at
executor startup (though it accidentally failed to fail for the ANYARRAY
case, which is likely the only one anyone had tested).  Moreover, the
constructed FuncExpr passed to the finalfunc contained completely wrong
information, which would have led to bogus answers or crashes for any case
where the finalfunc examined that information (which is only likely to be
with polymorphic aggregates using a non-polymorphic transition type).

As an independent bug, apply_partialaggref_adjustment neglected to resolve
a polymorphic transition datatype before assigning it as the output type
of the lower-level Aggref node.  This again accidentally failed to fail
for ANYARRAY but would be unlikely to work in other cases.

To fix the first problem, record the user-level argument types in a
separate OID-list field of Aggref, and look to that rather than the args
list when asking what the argument types were.  (It turns out to be
convenient to include any "direct" arguments in this list too, although
those are not currently subject to being overwritten.)

Rather than adding yet another resolve_aggregate_transtype() call to fix
the second problem, add an aggtranstype field to Aggref, and store the
resolved transition type OID there when the planner first computes it.
(By doing this in the planner and not the parser, we can allow the
aggregate's transition type to change from time to time, although no DDL
support yet exists for that.)  This saves nothing of consequence for
simple non-polymorphic aggregates, but for polymorphic transition types
we save a catalog lookup during executor startup as well as several
planner lookups that are new in 9.6 due to parallel query planning.

In passing, fix an error that was introduced into count_agg_clauses_walker
some time ago: it was applying exprTypmod() to something that wasn't an
expression node at all, but a TargetEntry.  exprTypmod silently returned
-1 so that there was not an obvious failure, but this broke the intended
sensitivity of aggregate space consumption estimates to the typmod of
varchar and similar data types.  This part needs to be back-patched.

Catversion bump due to change of stored Aggref nodes.

Discussion: <8229.1466109074@sss.pgh.pa.us>
2016-06-17 21:44:37 -04:00
Robert Haas 4bc424b968 pgindent run for 9.6 2016-06-09 18:02:36 -04:00
Robert Haas 8826d85078 Tweak a few more things in preparation for upcoming pgindent run.
These adjustments adjust code and comments in minor ways to prevent
pgindent from mangling them.  Among other things, I tried to avoid
situations where pgindent would emit "a +b" instead of "a + b", and I
tried to avoid having it break up inline comments across multiple
lines.
2016-05-03 10:52:25 -04:00
Robert Haas 96f8373cad Fix bug in aggregate (de)serialization commit.
resulttypeLen and resulttypeByVal must be set correctly when serializing
aggregates, not just when finalizing them.  This was in David's final
patch but I downloaded the wrong version by mistake and failed to spot
the error.

David Rowley
2016-03-29 15:21:57 -04:00
Robert Haas 5fe5a2cee9 Allow aggregate transition states to be serialized and deserialized.
This is necessary infrastructure for supporting parallel aggregation
for aggregates whose transition type is "internal".  Such values
can't be passed between cooperating processes, because they are
just pointers.

David Rowley, reviewed by Tomas Vondra and by me.
2016-03-29 15:04:05 -04:00
Robert Haas f1f5ec1efa Reuse abbreviated keys in ordered [set] aggregates.
When processing ordered aggregates following a sort that could make use
of the abbreviated key optimization, only call the equality operator to
compare successive pairs of tuples when their abbreviated keys were not
equal.

Peter Geoghegan, reviewd by Andreas Karlsson and by me.
2016-02-17 15:40:00 +05:30
Robert Haas a7de3dc5c3 Support multi-stage aggregation.
Aggregate nodes now have two new modes: a "partial" mode where they
output the unfinalized transition state, and a "finalize" mode where
they accept unfinalized transition states rather than individual
values as input.

These new modes are not used anywhere yet, but they will be necessary
for parallel aggregation.  The infrastructure also figures to be
useful for cases where we want to aggregate local data and remote
data via the FDW interface, and want to bring back partial aggregates
from the remote side that can then be combined with locally generated
partial aggregates to produce the final value.  It may also be useful
even when neither FDWs nor parallelism are in play, as explained in
the comments in nodeAgg.c.

David Rowley and Simon Riggs, reviewed by KaiGai Kohei, Heikki
Linnakangas, Haribabu Kommi, and me.
2016-01-20 13:46:50 -05:00
Bruce Momjian ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Heikki Linnakangas 804163bc25 Share transition state between different aggregates when possible.
If there are two different aggregates in the query with same inputs, and
the aggregates have the same initial condition and transition function,
only calculate the state value once, and only call the final functions
separately. For example, AVG(x) and SUM(x) aggregates have the same
transition function, which accumulates the sum and number of input tuples.
For a query like "SELECT AVG(x), SUM(x) FROM x", we can therefore
accumulate the state function only once, which gives a nice speedup.

David Rowley, reviewed and edited by me.
2015-08-04 17:53:10 +03:00
Tom Lane 2aa0476dc3 Manual cleanup of pgindent results.
Fix some places where pgindent did silly stuff, often because project
style wasn't followed to begin with.  (I've not touched the atomics
headers, though.)
2015-05-24 15:04:10 -04:00
Bruce Momjian 807b9e0dff pgindent run for 9.5 2015-05-23 21:35:49 -04:00
Andres Freund f3d3118532 Support GROUPING SETS, CUBE and ROLLUP.
This SQL standard functionality allows to aggregate data by different
GROUP BY clauses at once. Each grouping set returns rows with columns
grouped by in other sets set to NULL.

This could previously be achieved by doing each grouping as a separate
query, conjoined by UNION ALLs. Besides being considerably more concise,
grouping sets will in many cases be faster, requiring only one scan over
the underlying data.

The current implementation of grouping sets only supports using sorting
for input. Individual sets that share a sort order are computed in one
pass. If there are sets that don't share a sort order, additional sort &
aggregation steps are performed. These additional passes are sourced by
the previous sort step; thus avoiding repeated scans of the source data.

The code is structured in a way that adding support for purely using
hash aggregation or a mix of hashing and sorting is possible. Sorting
was chosen to be supported first, as it is the most generic method of
implementation.

Instead of, as in an earlier versions of the patch, representing the
chain of sort and aggregation steps as full blown planner and executor
nodes, all but the first sort are performed inside the aggregation node
itself. This avoids the need to do some unusual gymnastics to handle
having to return aggregated and non-aggregated tuples from underlying
nodes, as well as having to shut down underlying nodes early to limit
memory usage.  The optimizer still builds Sort/Agg node to describe each
phase, but they're not part of the plan tree, but instead additional
data for the aggregation node. They're a convenient and preexisting way
to describe aggregation and sorting.  The first (and possibly only) sort
step is still performed as a separate execution step. That retains
similarity with existing group by plans, makes rescans fairly simple,
avoids very deep plans (leading to slow explains) and easily allows to
avoid the sorting step if the underlying data is sorted by other means.

A somewhat ugly side of this patch is having to deal with a grammar
ambiguity between the new CUBE keyword and the cube extension/functions
named cube (and rollup). To avoid breaking existing deployments of the
cube extension it has not been renamed, neither has cube been made a
reserved keyword. Instead precedence hacking is used to make GROUP BY
cube(..) refer to the CUBE grouping sets feature, and not the function
cube(). To actually group by a function cube(), unlikely as that might
be, the function name has to be quoted.

Needs a catversion bump because stored rules may change.

Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund
Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas
    Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule
Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:46:31 +02:00
Robert Haas 78efd5c1ed Extend abbreviated key infrastructure to datum tuplesorts.
Andrew Gierth, reviewed by Peter Geoghegan and by me.
2015-05-13 14:36:26 -04:00
Robert Haas 40f42d2a34 Use outerPlanState macro instead of referring to leffttree.
This makes the executor code more consistent.  It also removes
an apparently superfluous NULL test in nodeGroup.c.

Qingqing Zhou, reviewed by Tom Lane, and further revised by me.
2015-05-04 16:17:36 -04:00
Tom Lane 33a3b03d63 Use FLEXIBLE_ARRAY_MEMBER in some more places.
Fix a batch of structs that are only visible within individual .c files.

Michael Paquier
2015-02-20 17:32:01 -05:00
Robert Haas 4ea51cdfe8 Use abbreviated keys for faster sorting of text datums.
This commit extends the SortSupport infrastructure to allow operator
classes the option to provide abbreviated representations of Datums;
in the case of text, we abbreviate by taking the first few characters
of the strxfrm() blob.  If the abbreviated comparison is insufficent
to resolve the comparison, we fall back on the normal comparator.
This can be much faster than the old way of doing sorting if the
first few bytes of the string are usually sufficient to resolve the
comparison.

There is the potential for a performance regression if all of the
strings to be sorted are identical for the first 8+ characters and
differ only in later positions; therefore, the SortSupport machinery
now provides an infrastructure to abort the use of abbreviation if
it appears that abbreviation is producing comparatively few distinct
keys.  HyperLogLog, a streaming cardinality estimator, is included in
this commit and used to make that determination for text.

Peter Geoghegan, reviewed by me.
2015-01-19 15:28:27 -05:00
Bruce Momjian 4baaf863ec Update copyright for 2015
Backpatch certain files through 9.0
2015-01-06 11:43:47 -05:00
Tom Lane 6f5034eda0 Redesign API presented by nodeAgg.c for ordered-set and similar aggregates.
The previous design exposed the input and output ExprContexts of the
Agg plan node, but work on grouping sets has suggested that we'll regret
doing that.  Instead provide more narrowly-defined APIs that can be
implemented in multiple ways, namely a way to get a short-term memory
context and a way to register an aggregate shutdown callback.

Back-patch to 9.4 where the bad APIs were introduced, since we don't
want third-party code using these APIs and then having to change in 9.5.

Andrew Gierth
2014-07-03 18:25:33 -04:00
Bruce Momjian 0a78320057 pgindent run for 9.4
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
2014-05-06 12:12:18 -04:00
Tom Lane f0fedfe82c Allow polymorphic aggregates to have non-polymorphic state data types.
Before 9.4, such an aggregate couldn't be declared, because its final
function would have to have polymorphic result type but no polymorphic
argument, which CREATE FUNCTION would quite properly reject.  The
ordered-set-aggregate patch found a workaround: allow the final function
to be declared as accepting additional dummy arguments that have types
matching the aggregate's regular input arguments.  However, we failed
to notice that this problem applies just as much to regular aggregates,
despite the fact that we had a built-in regular aggregate array_agg()
that was known to be undeclarable in SQL because its final function
had an illegal signature.  So what we should have done, and what this
patch does, is to decouple the extra-dummy-arguments behavior from
ordered-set aggregates and make it generally available for all aggregate
declarations.  We have to put this into 9.4 rather than waiting till
later because it slightly alters the rules for declaring ordered-set
aggregates.

The patch turned out a bit bigger than I'd hoped because it proved
necessary to record the extra-arguments option in a new pg_aggregate
column.  I'd thought we could just look at the final function's pronargs
at runtime, but that didn't work well for variadic final functions.
It's probably just as well though, because it simplifies life for pg_dump
to record the option explicitly.

While at it, fix array_agg() to have a valid final-function signature,
and add an opr_sanity test to notice future deviations from polymorphic
consistency.  I also marked the percentile_cont() aggregates as not
needing extra arguments, since they don't.
2014-04-23 19:17:41 -04:00
Tom Lane a9d9acbf21 Create infrastructure for moving-aggregate optimization.
Until now, when executing an aggregate function as a window function
within a window with moving frame start (that is, any frame start mode
except UNBOUNDED PRECEDING), we had to recalculate the aggregate from
scratch each time the frame head moved.  This patch allows an aggregate
definition to include an alternate "moving aggregate" implementation
that includes an inverse transition function for removing rows from
the aggregate's running state.  As long as this can be done successfully,
runtime is proportional to the total number of input rows, rather than
to the number of input rows times the average frame length.

This commit includes the core infrastructure, documentation, and regression
tests using user-defined aggregates.  Follow-on commits will update some
of the built-in aggregates to use this feature.

David Rowley and Florian Pflug, reviewed by Dean Rasheed; additional
hacking by me
2014-04-12 12:03:30 -04:00
Tom Lane e6336b8b57 Save a few cycles in advance_transition_function().
Keep a pre-initialized FunctionCallInfoData in AggStatePerAggData, and
re-use that at each row instead of doing InitFunctionCallInfoData each
time.  This saves only half a dozen assignments and maybe some stack
manipulation, and yet that seems to be good for a percent or two of the
overall query run time for simple aggregates such as count(*).  The cost
is that the FunctionCallInfoData (which is about a kilobyte, on 64-bit
machines) stays allocated for the duration of the query instead of being
short-lived stack data.  But we're already paying an equivalent space cost
for each regular FuncExpr or OpExpr node, so I don't feel bad about paying
it for aggregate functions.  The code seems a little cleaner this way too,
since the number of things passed to advance_transition_function decreases.
2014-01-08 13:58:37 -05:00
Bruce Momjian 7e04792a1c Update copyright for 2014
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
2014-01-07 16:05:30 -05:00
Tom Lane 8d65da1f01 Support ordered-set (WITHIN GROUP) aggregates.
This patch introduces generic support for ordered-set and hypothetical-set
aggregate functions, as well as implementations of the instances defined in
SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(),
percent_rank(), cume_dist()).  We also added mode() though it is not in the
spec, as well as versions of percentile_cont() and percentile_disc() that
can compute multiple percentile values in one pass over the data.

Unlike the original submission, this patch puts full control of the sorting
process in the hands of the aggregate's support functions.  To allow the
support functions to find out how they're supposed to sort, a new API
function AggGetAggref() is added to nodeAgg.c.  This allows retrieval of
the aggregate call's Aggref node, which may have other uses beyond the
immediate need.  There is also support for ordered-set aggregates to
install cleanup callback functions, so that they can be sure that
infrastructure such as tuplesort objects gets cleaned up.

In passing, make some fixes in the recently-added support for variadic
aggregates, and make some editorial adjustments in the recent FILTER
additions for aggregates.  Also, simplify use of IsBinaryCoercible() by
allowing it to succeed whenever the target type is ANY or ANYELEMENT.
It was inconsistent that it dealt with other polymorphic target types
but not these.

Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing,
and rather heavily editorialized upon by Tom Lane
2013-12-23 16:11:35 -05:00
Tom Lane 0d3f4406df Allow aggregate functions to be VARIADIC.
There's no inherent reason why an aggregate function can't be variadic
(even VARIADIC ANY) if its transition function can handle the case.
Indeed, this patch to add the feature touches none of the planner or
executor, and little of the parser; the main missing stuff was DDL and
pg_dump support.

It is true that variadic aggregates can create the same sort of ambiguity
about parameters versus ORDER BY keys that was complained of when we
(briefly) had both one- and two-argument forms of string_agg().  However,
the policy formed in response to that discussion only said that we'd not
create any built-in aggregates with varying numbers of arguments, not that
we shouldn't allow users to do it.  So the logical extension of that is
we can allow users to make variadic aggregates as long as we're wary about
shipping any such in core.

In passing, this patch allows aggregate function arguments to be named, to
the extent of remembering the names in pg_proc and dumping them in pg_dump.
You can't yet call an aggregate using named-parameter notation.  That seems
like a likely future extension, but it'll take some work, and it's not what
this patch is really about.  Likewise, there's still some work needed to
make window functions handle VARIADIC fully, but I left that for another
day.

initdb forced because of new aggvariadic field in Aggref parse nodes.
2013-09-03 17:08:46 -04:00