Commit Graph

2365 Commits

Author SHA1 Message Date
Tom Lane ca5e93f769 Clamp total-tuples estimates for foreign tables to ensure planner sanity.
After running GetForeignRelSize for a foreign table, adjust rel->tuples
to be at least as large as rel->rows.  This prevents bizarre behavior
in estimate_num_groups() and perhaps other places, especially in the
scenario where rel->tuples is zero because pg_class.reltuples is
(suggesting that ANALYZE has never been run for the table).  As things
stood, we'd end up estimating one group out of any GROUP BY on such a
table, whereas the default group-count estimate is more likely to result
in a sane plan.

Also, clarify in the documentation that GetForeignRelSize has the option
to override the rel->tuples value if it has a better idea of what to use
than what is in pg_class.reltuples.

Per report from Jeff Janes.  Back-patch to all supported branches.

Patch by me; thanks to Etsuro Fujita for review

Discussion: https://postgr.es/m/CAMkU=1xNo9cnan+Npxgz0eK7394xmjmKg-QEm8wYG9P5-CcaqQ@mail.gmail.com
2020-07-03 19:01:21 -04:00
Jeff Davis 92c58fd948 Rework HashAgg GUCs.
Eliminate enable_groupingsets_hash_disk, which was primarily useful
for testing grouping sets that use HashAgg and spill. Instead, hack
the table stats to convince the planner to choose hashed aggregation
for grouping sets that will spill to disk. Suggested by Melanie
Plageman.

Rename enable_hashagg_disk to hashagg_avoid_disk_plan, and invert the
meaning of on/off. The new name indicates more strongly that it only
affects the planner. Also, the word "avoid" is less definite, which
should avoid surprises when HashAgg still needs to use the
disk. Change suggested by Justin Pryzby, though I chose a different
GUC name.

Discussion: https://postgr.es/m/CAAKRu_aisiENMsPM2gC4oUY1hHG3yrCwY-fXUg22C6_MJUwQdA%40mail.gmail.com
Discussion: https://postgr.es/m/20200610021544.GA14879@telsasoft.com
Backpatch-through: 13
2020-06-11 12:57:43 -07:00
Peter Eisentraut 350f47786c Spelling adjustments
similar to 0fd2a79a63
2020-06-09 10:41:41 +02:00
Tom Lane b5d69b7c22 pgindent run prior to branching v13.
pgperltidy and reformat-dat-files too, though those didn't
find anything to change.
2020-06-07 16:57:08 -04:00
Tomas Vondra 4cad2534da Use CP_SMALL_TLIST for hash aggregate
Commit 1f39bce021 added disk-based hash aggregation, which may spill
incoming tuples to disk. It however did not request projection to make
the tuples as narrow as possible, which may mean having to spill much
more data than necessary (increasing I/O, pushing other stuff from page
cache, etc.).

This adds CP_SMALL_TLIST in places that may use hash aggregation - we do
that only for AGG_HASHED. It's unnecessary for AGG_SORTED, because that
either uses explicit Sort (which already does projection) or pre-sorted
input (which does not need spilling to disk).

Author: Tomas Vondra
Reviewed-by: Jeff Davis
Discussion: https://postgr.es/m/20200519151202.u2p2gpiawoaznsv2%40development
2020-05-31 14:43:13 +02:00
Etsuro Fujita bb2ae6fa47 Adjust indentation in src/backend/optimizer/README.
The previous indentation of optimizer functions was unclear; adjust the
indentation dashes so that a deeper level of indentation indicates that
the outer optimizer function calls the inner one.

Author: Richard Guo, with additional change by me
Reviewed-by: Kyotaro Horiguchi
Discussion: https://postgr.es/m/CAMbWs4-U-ogzpchGsP2BBMufCss1hktm%2B%2BeTJK_dUC196pw0cQ%40mail.gmail.com
2020-05-22 15:45:00 +09:00
Magnus Hagander a01debe3db Fix typos in README
Author: Daniel Gustafsson
2020-05-18 11:55:35 +02:00
Tom Lane fa27dd40d5 Run pgindent with new pg_bsd_indent version 2.1.1.
Thomas Munro fixed a longstanding annoyance in pg_bsd_indent, that
it would misformat lines containing IsA() macros on the assumption
that the IsA() call should be treated like a cast.  This improves
some other cases involving field/variable names that match typedefs,
too.  The only places that get worse are a couple of uses of the
OpenSSL macro STACK_OF(); we'll gladly take that trade-off.

Discussion: https://postgr.es/m/20200114221814.GA19630@alvherre.pgsql
2020-05-16 11:54:51 -04:00
Tom Lane 5cbfce562f Initial pgindent and pgperltidy run for v13.
Includes some manual cleanup of places that pgindent messed up,
most of which weren't per project style anyway.

Notably, it seems some people didn't absorb the style rules of
commit c9d297751, because there were a bunch of new occurrences
of function calls with a newline just after the left paren, all
with faulty expectations about how the rest of the call would get
indented.
2020-05-14 13:06:50 -04:00
Alvaro Herrera 17cc133f01
Dial back -Wimplicit-fallthrough to level 3
The additional pain from level 4 is excessive for the gain.

Also revert all the source annotation changes to their original
wordings, to avoid back-patching pain.

Discussion: https://postgr.es/m/31166.1589378554@sss.pgh.pa.us
2020-05-13 15:31:14 -04:00
Alvaro Herrera 3e9744465d
Add -Wimplicit-fallthrough to CFLAGS and CXXFLAGS
Use it at level 4, a bit more restrictive than the default level, and
tweak our commanding comments to FALLTHROUGH.

(However, leave zic.c alone, since it's external code; to avoid the
warnings that would appear there, change CFLAGS for that file in the
Makefile.)

Author: Julien Rouhaud <rjuju123@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Discussion: https://postgr.es/m/20200412081825.qyo5vwwco3fv4gdo@nol
Discussion: https://postgr.es/m/flat/E1fDenm-0000C8-IJ@gemulon.postgresql.org
2020-05-12 16:07:30 -04:00
Etsuro Fujita 2793bbe75e Remove unnecessary #include.
My oversight in commit c8434d64c.
2020-05-12 19:55:55 +09:00
Tomas Vondra 60fbb4d762 Simplify cost_incremental_sort a bit
Commit de0dc1a847 added code to cost_incremental_sort to handle varno 0.
Explicitly removing the RelabelType is not really necessary, because the
pull_varnos handles that just fine, which simplifies the code a bit.

Author: Richard Guo
Discussion: https://postgr.es/m/CAMbWs4_3_D2J5XxOuw68hvn0-gJsw9FXNSGcZka9aTymn9UJ8A%40mail.gmail.com
Discussion: https://postgr.es/m/20200411214639.GK2228%40telsasoft.com
2020-05-02 01:33:51 +02:00
Tom Lane 0da06d9faf Get rid of trailing semicolons in C macro definitions.
Writing a trailing semicolon in a macro is almost never the right thing,
because you almost always want to write a semicolon after each macro
call instead.  (Even if there was some reason to prefer not to, pgindent
would probably make a hash of code formatted that way; so within PG the
rule should basically be "don't do it".)  Thus, if we have a semi inside
the macro, the compiler sees "something;;".  Much of the time the extra
empty statement is harmless, but it could lead to mysterious syntax
errors at call sites.  In perhaps an overabundance of neatnik-ism, let's
run around and get rid of the excess semicolons whereever possible.

The only thing worse than a mysterious syntax error is a mysterious
syntax error that only happens in the back branches; therefore,
backpatch these changes where relevant, which is most of them because
most of these mistakes are old.  (The lack of reported problems shows
that this is largely a hypothetical issue, but still, it could bite
us in some future patch.)

John Naylor and Tom Lane

Discussion: https://postgr.es/m/CACPNZCs0qWTqJ2QUSGJ07B7uvAvzMb-KbG2q+oo+J3tsWN5cqw@mail.gmail.com
2020-05-01 17:28:00 -04:00
Tomas Vondra de0dc1a847 Fix cost_incremental_sort for expressions with varno 0
When estimating the number of pre-sorted groups in cost_incremental_sort
we must not pass Vars with varno 0 to estimate_num_groups, which would
cause failues in find_base_rel. This may happen when sorting output of
set operations, thanks to generate_append_tlist.

Unlike recurse_set_operations we can't easily access the original target
list, so if we find any Vars with varno 0, we fall back to the default
estimate DEFAULT_NUM_DISTINCT.

Reported-by: Justin Pryzby
Discussion: https://postgr.es/m/20200411214639.GK2228%40telsasoft.com
2020-04-23 00:15:24 +02:00
David Rowley 5b736e9cf9 Remove unneeded constraint dependency tracking
It was previously thought that remove_useless_groupby_columns() needed to
keep track of which constraints the generated plan depended upon, however,
this is unnecessary. The confusion likely arose regarding this because of
check_functional_grouping(), which does need to track the dependency to
ensure VIEWs with columns which are functionally dependant on the GROUP BY
remain so. For remove_useless_groupby_columns(), cached plans will just
become invalidated when the primary key's underlying index is removed
through the normal relcache invalidation code.

Here we just remove the unneeded code which records the dependency and
updates the comments. The previous comments claimed that we could not use
UNIQUE constraints for the same optimization due to lack of a
pg_constraint record for NOT NULL constraints (which are required because
NULLs can be duplicated in a unique index). Since we don't actually need a
pg_constraint record to handle the invalidation, it looks like we could
add code to do this in the future. But not today.

We're not really fixing any bug in the code here, this fix is just to set
the record straight on UNIQUE constraints. This code was added back in
9.6, but due to lack of any bug, we'll not be backpatching this.

Reviewed-by: Tom Lane
Discussion: https://postgr.es/m/CAApHDvrdYa=VhOoMe4ZZjZ-G4ALnD-xuAeUNCRTL+PYMVN8OnQ@mail.gmail.com
2020-04-17 10:29:49 +12:00
Tom Lane 981643dcdb Allow partitionwise join to handle nested FULL JOIN USING cases.
This case didn't work because columns merged by FULL JOIN USING are
represented in the parse tree by COALESCE expressions, and the logic
for recognizing a partitionable join failed to match upper-level join
clauses to such expressions.  To fix, synthesize suitable COALESCE
expressions and add them to the nullable_partexprs lists.  This is
pretty ugly and brute-force, but it gets the job done.  (I have
ambitions of rethinking the way outer-join output Vars are
represented, so maybe that will provide a cleaner solution someday.
For now, do this.)

Amit Langote, reviewed by Justin Pryzby, Richard Guo, and myself

Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
2020-04-07 22:12:14 -04:00
Etsuro Fujita c8434d64ce Allow partitionwise joins in more cases.
Previously, the partitionwise join technique only allowed partitionwise
join when input partitioned tables had exactly the same partition
bounds.  This commit extends the technique to some cases when the tables
have different partition bounds, by using an advanced partition-matching
algorithm introduced by this commit.  For both the input partitioned
tables, the algorithm checks whether every partition of one input
partitioned table only matches one partition of the other input
partitioned table at most, and vice versa.  In such a case the join
between the tables can be broken down into joins between the matching
partitions, so the algorithm produces the pairs of the matching
partitions, plus the partition bounds for the join relation, to allow
partitionwise join for computing the join.  Currently, the algorithm
works for list-partitioned and range-partitioned tables, but not
hash-partitioned tables.  See comments in partition_bounds_merge().

Ashutosh Bapat and Etsuro Fujita, most of regression tests by Rajkumar
Raghuwanshi, some of the tests by Mark Dilger and Amul Sul, reviewed by
Dmitry Dolgov and Amul Sul, with additional review at various points by
Ashutosh Bapat, Mark Dilger, Robert Haas, Antonin Houska, Amit Langote,
Justin Pryzby, and Tomas Vondra

Discussion: https://postgr.es/m/CAFjFpRdjQvaUEV5DJX3TW6pU5eq54NCkadtxHX2JiJG_GvbrCA@mail.gmail.com
2020-04-08 10:25:00 +09:00
Alvaro Herrera 357889eb17
Support FETCH FIRST WITH TIES
WITH TIES is an option to the FETCH FIRST N ROWS clause (the SQL
standard's spelling of LIMIT), where you additionally get rows that
compare equal to the last of those N rows by the columns in the
mandatory ORDER BY clause.

There was a proposal by Andrew Gierth to implement this functionality in
a more powerful way that would yield more features, but the other patch
had not been finished at this time, so we decided to use this one for
now in the spirit of incremental development.

Author: Surafel Temesgen <surafel3000@gmail.com>
Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com>
Discussion: https://postgr.es/m/CALAY4q9ky7rD_A4vf=FVQvCGngm3LOes-ky0J6euMrg=_Se+ag@mail.gmail.com
Discussion: https://postgr.es/m/87o8wvz253.fsf@news-spur.riddles.org.uk
2020-04-07 16:22:13 -04:00
Tomas Vondra ba3e76cc57 Consider Incremental Sort paths at additional places
Commit d2d8a229bc introduced Incremental Sort, but it was considered
only in create_ordered_paths() as an alternative to regular Sort. There
are many other places that require sorted input and might benefit from
considering Incremental Sort too.

This patch modifies a number of those places, but not all. The concern
is that just adding Incremental Sort to any place that already adds
Sort may increase the number of paths considered, negatively affecting
planning time, without any benefit. So we've taken a more conservative
approach, based on analysis of which places do affect a set of queries
that did seem practical. This means some less common queries may not
benefit from Incremental Sort yet.

Author: Tomas Vondra
Reviewed-by: James Coleman
Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
2020-04-07 16:43:22 +02:00
Tomas Vondra d2d8a229bc Implement Incremental Sort
Incremental Sort is an optimized variant of multikey sort for cases when
the input is already sorted by a prefix of the requested sort keys. For
example when the relation is already sorted by (key1, key2) and we need
to sort it by (key1, key2, key3) we can simply split the input rows into
groups having equal values in (key1, key2), and only sort/compare the
remaining column key3.

This has a number of benefits:

- Reduced memory consumption, because only a single group (determined by
  values in the sorted prefix) needs to be kept in memory. This may also
  eliminate the need to spill to disk.

- Lower startup cost, because Incremental Sort produce results after each
  prefix group, which is beneficial for plans where startup cost matters
  (like for example queries with LIMIT clause).

We consider both Sort and Incremental Sort, and decide based on costing.

The implemented algorithm operates in two different modes:

- Fetching a minimum number of tuples without check of equality on the
  prefix keys, and sorting on all columns when safe.

- Fetching all tuples for a single prefix group and then sorting by
  comparing only the remaining (non-prefix) keys.

We always start in the first mode, and employ a heuristic to switch into
the second mode if we believe it's beneficial - the goal is to minimize
the number of unnecessary comparions while keeping memory consumption
below work_mem.

This is a very old patch series. The idea was originally proposed by
Alexander Korotkov back in 2013, and then revived in 2017. In 2018 the
patch was taken over by James Coleman, who wrote and rewrote most of the
current code.

There were many reviewers/contributors since 2013 - I've done my best to
pick the most active ones, and listed them in this commit message.

Author: James Coleman, Alexander Korotkov
Reviewed-by: Tomas Vondra, Andreas Karlsson, Marti Raudsepp, Peter Geoghegan, Robert Haas, Thomas Munro, Antonin Houska, Andres Freund, Alexander Kuzmenkov
Discussion: https://postgr.es/m/CAPpHfdscOX5an71nHd8WSUH6GNOCf=V7wgDaTXdDd9=goN-gfA@mail.gmail.com
Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
2020-04-06 21:35:10 +02:00
Tom Lane 0568e7a2a4 Cosmetic improvements for code related to partitionwise join.
Move have_partkey_equi_join and match_expr_to_partition_keys to
relnode.c, since they're used only there.  Refactor
build_joinrel_partition_info to split out the code that fills the
joinrel's partition key lists; this doesn't have any non-cosmetic
impact, but it seems like a useful separation of concerns.
Improve assorted nearby comments.

Amit Langote, with a little further editorialization by me

Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
2020-04-03 17:00:35 -04:00
Alexander Korotkov 911e702077 Implement operator class parameters
PostgreSQL provides set of template index access methods, where opclasses have
much freedom in the semantics of indexing.  These index AMs are GiST, GIN,
SP-GiST and BRIN.  There opclasses define representation of keys, operations on
them and supported search strategies.  So, it's natural that opclasses may be
faced some tradeoffs, which require user-side decision.  This commit implements
opclass parameters allowing users to set some values, which tell opclass how to
index the particular dataset.

This commit doesn't introduce new storage in system catalog.  Instead it uses
pg_attribute.attoptions, which is used for table column storage options but
unused for index attributes.

In order to evade changing signature of each opclass support function, we
implement unified way to pass options to opclass support functions.  Options
are set to fn_expr as the constant bytea expression.  It's possible due to the
fact that opclass support functions are executed outside of expressions, so
fn_expr is unused for them.

This commit comes with some examples of opclass options usage.  We parametrize
signature length in GiST.  That applies to multiple opclasses: tsvector_ops,
gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and
gist_hstore_ops.  Also we parametrize maximum number of integer ranges for
gist__int_ops.  However, the main future usage of this feature is expected
to be json, where users would be able to specify which way to index particular
json parts.

Catversion is bumped.

Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru
Author: Nikita Glukhov, revised by me
Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
2020-03-30 19:17:23 +03:00
Fujii Masao 6aba63ef3e Allow the planner-related functions and hook to accept the query string.
This commit adds query_string argument into the planner-related functions
and hook and allows us to pass the query string to them.

Currently there is no user of the query string passed. But the upcoming patch
for the planning counters will add the planning hook function into
pg_stat_statements and the function will need the query string. So this change
will be necessary for that patch.

Also this change is useful for some extensions that want to use the query
string in their planner hook function.

Author: Pascal Legrand, Julien Rouhaud
Reviewed-by: Yoshikazu Imai, Tom Lane, Fujii Masao
Discussion: https://postgr.es/m/CAOBaU_bU1m3_XF5qKYtSj1ua4dxd=FWDyh2SH4rSJAUUfsGmAQ@mail.gmail.com
Discussion: https://postgr.es/m/1583789487074-0.post@n3.nabble.com
2020-03-30 13:51:05 +09:00
Jeff Davis 7351bfeda3 Fix costing for disk-based hash aggregation.
Report and suggestions from Richard Guo and Tomas Vondra.

Discussion: https://postgr.es/m/CAMbWs4_W8fYbAn8KxgidAaZHON_Oo08OYn9ze=7remJymLqo5g@mail.gmail.com
2020-03-28 12:07:49 -07:00
Jeff Davis dd8e19132a Consider disk-based hash aggregation to implement DISTINCT.
Correct oversight in 1f39bce0. If enable_hashagg_disk=true, we should
consider hash aggregation for DISTINCT when applicable.
2020-03-24 18:30:04 -07:00
Amit Kapila 3ba59ccc89 Allow page lock to conflict among parallel group members.
This is required as it is no safer for two related processes to perform
clean up in gin indexes at a time than for unrelated processes to do the
same.  After acquiring page locks, we can acquire relation extension lock
but reverse never happens which means these will also not participate in
deadlock.  So, avoid checking wait edges from this lock.

Currently, the parallel mode is strictly read-only, but after this patch
we have the infrastructure to allow parallel inserts and parallel copy.

Author: Dilip Kumar, Amit Kapila
Reviewed-by: Amit Kapila, Kuntal Ghosh and Sawada Masahiko
Discussion: https://postgr.es/m/CAD21AoCmT3cFQUN4aVvzy5chw7DuzXrJCbrjTU05B+Ss=Gn1LA@mail.gmail.com
2020-03-21 08:48:06 +05:30
Jeff Davis 1f39bce021 Disk-based Hash Aggregation.
While performing hash aggregation, track memory usage when adding new
groups to a hash table. If the memory usage exceeds work_mem, enter
"spill mode".

In spill mode, new groups are not created in the hash table(s), but
existing groups continue to be advanced if input tuples match. Tuples
that would cause a new group to be created are instead spilled to a
logical tape to be processed later.

The tuples are spilled in a partitioned fashion. When all tuples from
the outer plan are processed (either by advancing the group or
spilling the tuple), finalize and emit the groups from the hash
table. Then, create new batches of work from the spilled partitions,
and select one of the saved batches and process it (possibly spilling
recursively).

Author: Jeff Davis
Reviewed-by: Tomas Vondra, Adam Lee, Justin Pryzby, Taylor Vesely, Melanie Plageman
Discussion: https://postgr.es/m/507ac540ec7c20136364b5272acbcd4574aa76ef.camel@j-davis.com
2020-03-18 15:42:02 -07:00
Jeff Davis c11cb17dc5 Save calculated transitionSpace in Agg node.
This will be useful in the upcoming Hash Aggregation work to improve
estimates for hash table sizing.

Discussion: https://postgr.es/m/37091115219dd522fd9ed67333ee8ed1b7e09443.camel%40j-davis.com
2020-02-27 11:20:56 -08:00
Tom Lane a477bfc1df Suppress unnecessary RelabelType nodes in more cases.
eval_const_expressions sometimes produced RelabelType nodes that
were useless because they just relabeled an expression to the same
exposed type it already had.  This is worth avoiding because it can
cause two equivalent expressions to not be equal(), preventing
recognition of useful optimizations.  In the test case added here,
an unpatched planner fails to notice that the "sqli = constant" clause
renders a sort step unnecessary, because one code path produces an
extra RelabelType and another doesn't.

Fix by ensuring that eval_const_expressions_mutator's T_RelabelType
case will not add in an unnecessary RelabelType.  Also save some
code by sharing a subroutine with the effectively-equivalent cases
for CollateExpr and CoerceToDomain.  (CollateExpr had no bug, and
I think that the case couldn't arise with CoerceToDomain, but
it seems prudent to do the same check for all three cases.)

Back-patch to v12.  In principle this has been wrong all along,
but I haven't seen a case where it causes visible misbehavior
before v12, so refrain from changing stable branches unnecessarily.

Per investigation of a report from Eric Gillum.

Discussion: https://postgr.es/m/CAMmjdmvAZsUEskHYj=KT9sTukVVCiCSoe_PBKOXsncFeAUDPCQ@mail.gmail.com
2020-02-26 18:14:12 -05:00
Jeff Davis 7d4395d0a1 Refactor hash_agg_entry_size().
Consolidate the calculations for hash table size estimation. This will
help with upcoming Hash Aggregation work that will add additional call
sites.
2020-02-06 11:49:56 -08:00
Amit Kapila cac8ce4a73 Fix typo.
Reported-by: Amit Langote
Author: Amit Langote
Backpatch-through: 9.6, where it was introduced
Discussion: https://postgr.es/m/CA+HiwqFNADeukaaGRmTqANbed9Fd81gLi08AWe_F86_942Gspw@mail.gmail.com
2020-02-06 15:57:02 +05:30
Alvaro Herrera c9d2977519 Clean up newlines following left parentheses
We used to strategically place newlines after some function call left
parentheses to make pgindent move the argument list a few chars to the
left, so that the whole line would fit under 80 chars.  However,
pgindent no longer does that, so the newlines just made the code
vertically longer for no reason.  Remove those newlines, and reflow some
of those lines for some extra naturality.

Reviewed-by: Michael Paquier, Tom Lane
Discussion: https://postgr.es/m/20200129200401.GA6303@alvherre.pgsql
2020-01-30 13:42:14 -03:00
Tom Lane 9ce77d75c5 Reconsider the representation of join alias Vars.
The core idea of this patch is to make the parser generate join alias
Vars (that is, ones with varno pointing to a JOIN RTE) only when the
alias Var is actually different from any raw join input, that is a type
coercion and/or COALESCE is necessary to generate the join output value.
Otherwise just generate varno/varattno pointing to the relevant join
input column.

In effect, this means that the planner's flatten_join_alias_vars()
transformation is already done in the parser, for all cases except
(a) columns that are merged by JOIN USING and are transformed in the
process, and (b) whole-row join Vars.  In principle that would allow
us to skip doing flatten_join_alias_vars() in many more queries than
we do now, but we don't have quite enough infrastructure to know that
we can do so --- in particular there's no cheap way to know whether
there are any whole-row join Vars.  I'm not sure if it's worth the
trouble to add a Query-level flag for that, and in any case it seems
like fit material for a separate patch.  But even without skipping the
work entirely, this should make flatten_join_alias_vars() faster,
particularly where there are nested joins that it previously had to
flatten recursively.

An essential part of this change is to replace Var nodes'
varnoold/varoattno fields with varnosyn/varattnosyn, which have
considerably more tightly-defined meanings than the old fields: when
they differ from varno/varattno, they identify the Var's position in
an aliased JOIN RTE, and the join alias is what ruleutils.c should
print for the Var.  This is necessary because the varno change
destroyed ruleutils.c's ability to find the JOIN RTE from the Var's
varno.

Another way in which this change broke ruleutils.c is that it's no
longer feasible to determine, from a JOIN RTE's joinaliasvars list,
which join columns correspond to which columns of the join's immediate
input relations.  (If those are sub-joins, the joinaliasvars entries
may point to columns of their base relations, not the sub-joins.)
But that was a horrid mess requiring a lot of fragile assumptions
already, so let's just bite the bullet and add some more JOIN RTE
fields to make it more straightforward to figure that out.  I added
two integer-List fields containing the relevant column numbers from
the left and right input rels, plus a count of how many merged columns
there are.

This patch depends on the ParseNamespaceColumn infrastructure that
I added in commit 5815696bc.  The biggest bit of code change is
restructuring transformFromClauseItem's handling of JOINs so that
the ParseNamespaceColumn data is propagated upward correctly.

Other than that and the ruleutils fixes, everything pretty much
just works, though some processing is now inessential.  I grabbed
two pieces of low-hanging fruit in that line:

1. In find_expr_references, we don't need to recurse into join alias
Vars anymore.  There aren't any except for references to merged USING
columns, which are more properly handled when we scan the join's RTE.
This change actually fixes an edge-case issue: we will now record a
dependency on any type-coercion function present in a USING column's
joinaliasvar, even if that join column has no references in the query
text.  The odds of the missing dependency causing a problem seem quite
small: you'd have to posit somebody dropping an implicit cast between
two data types, without removing the types themselves, and then having
a stored rule containing a whole-row Var for a join whose USING merge
depends on that cast.  So I don't feel a great need to change this in
the back branches.  But in theory this way is more correct.

2. markRTEForSelectPriv and markTargetListOrigin don't need to recurse
into join alias Vars either, because the cases they care about don't
apply to alias Vars for USING columns that are semantically distinct
from the underlying columns.  This removes the only case in which
markVarForSelectPriv could be called with NULL for the RTE, so adjust
the comments to describe that hack as being strictly internal to
markRTEForSelectPriv.

catversion bump required due to changes in stored rules.

Discussion: https://postgr.es/m/7115.1577986646@sss.pgh.pa.us
2020-01-09 11:56:59 -05:00
Tom Lane 913bbd88dc Improve the handling of result type coercions in SQL functions.
Use the parser's standard type coercion machinery to convert the
output column(s) of a SQL function's final SELECT or RETURNING
to the type(s) they should have according to the function's declared
result type.  We'll allow any case where an assignment-level
coercion is available.  Previously, we failed unless the required
coercion was a binary-compatible one (and the documentation ignored
this, falsely claiming that the types must match exactly).

Notably, the coercion now accounts for typmods, so that cases where
a SQL function is declared to return a composite type whose columns
are typmod-constrained now behave as one would expect.  Arguably
this aspect is a bug fix, but the overall behavioral change here
seems too large to consider back-patching.

A nice side-effect is that functions can now be inlined in a
few cases where we previously failed to do so because of type
mismatches.

Discussion: https://postgr.es/m/18929.1574895430@sss.pgh.pa.us
2020-01-08 11:07:59 -05:00
Tom Lane 5815696bc6 Make parser rely more heavily on the ParseNamespaceItem data structure.
When I added the ParseNamespaceItem data structure (in commit 5ebaaa494),
it wasn't very tightly integrated into the parser's APIs.  In the wake of
adding p_rtindex to that struct (commit b541e9acc), there is a good reason
to make more use of it: by passing around ParseNamespaceItem pointers
instead of bare RTE pointers, we can get rid of various messy methods for
passing back or deducing the rangetable index of an RTE during parsing.
Hence, refactor the addRangeTableEntryXXX functions to build and return
a ParseNamespaceItem struct, not just the RTE proper; and replace
addRTEtoQuery with addNSItemToQuery, which is passed a ParseNamespaceItem
rather than building one internally.

Also, add per-column data (a ParseNamespaceColumn array) to each
ParseNamespaceItem.  These arrays are built during addRangeTableEntryXXX,
where we have column type data at hand so that it's nearly free to fill
the data structure.  Later, when we need to build Vars referencing RTEs,
we can use the ParseNamespaceColumn info to avoid the rather expensive
operations done in get_rte_attribute_type() or expandRTE().
get_rte_attribute_type() is indeed dead code now, so I've removed it.
This makes for a useful improvement in parse analysis speed, around 20%
in one moderately-complex test query.

The ParseNamespaceColumn structs also include Var identity information
(varno/varattno).  That info isn't actually being used in this patch,
except that p_varno == 0 is a handy test for a dropped column.
A follow-on patch will make more use of it.

Discussion: https://postgr.es/m/2461.1577764221@sss.pgh.pa.us
2020-01-02 11:29:01 -05:00
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00
Michael Paquier 7854e07f25 Revert "Rename files and headers related to index AM"
This follows multiple complains from Peter Geoghegan, Andres Freund and
Alvaro Herrera that this issue ought to be dug more before actually
happening, if it happens.

Discussion: https://postgr.es/m/20191226144606.GA5659@alvherre.pgsql
2019-12-27 08:09:00 +09:00
Michael Paquier 8ce3aa9b59 Rename files and headers related to index AM
The following renaming is done so as source files related to index
access methods are more consistent with table access methods (the
original names used for index AMs ware too generic, and could be
confused as including features related to table AMs):
- amapi.h -> indexam.h.
- amapi.c -> indexamapi.c.  Here we have an equivalent with
backend/access/table/tableamapi.c.
- amvalidate.c -> indexamvalidate.c.
- amvalidate.h -> indexamvalidate.h.
- genam.c -> indexgenam.c.
- genam.h -> indexgenam.h.

This has been discussed during the development of v12 when table AM was
worked on, but the renaming never happened.

Author: Michael Paquier
Reviewed-by: Fabien Coelho, Julien Rouhaud
Discussion: https://postgr.es/m/20191223053434.GF34339@paquier.xyz
2019-12-25 10:23:39 +09:00
Tom Lane 6ea364e7e7 Prevent overly-aggressive collapsing of joins to RTE_RESULT relations.
The RTE_RESULT simplification logic added by commit 4be058fe9 had a
flaw: it would collapse out a RTE_RESULT that is due to compute a
PlaceHolderVar, and reassign the PHV to the parent join level, even if
another input relation of the join contained a lateral reference to
the PHV.  That can't work because the PHV would be computed too late.
In practice it led to failures of internal sanity checks later in
planning (either assertion failures or errors such as "failed to
construct the join relation").

To fix, add code to check for the presence of such PHVs in relevant
portions of the query tree.  Notably, this required refactoring
range_table_walker so that a caller could ask to walk individual RTEs
not the whole list.  (It might be a good idea to refactor
range_table_mutator in the same way, if only to keep those functions
looking similar; but I didn't do so here as it wasn't necessary for
the bug fix.)

This exercise also taught me that find_dependent_phvs(), as it stood,
could only safely be used on the entire Query, not on subtrees.
Adjust its API to reflect that; which in passing allows it to have
a fast path for the common case of no PHVs anywhere.

Per report from Will Leinweber.  Back-patch to v12 where the bug
was introduced.

Discussion: https://postgr.es/m/CALLb-4xJMd4GZt2YCecMC95H-PafuWNKcmps4HLRx2NHNBfB4g@mail.gmail.com
2019-12-14 13:49:15 -05:00
Tom Lane 6ef77cf46e Further adjust EXPLAIN's choices of table alias names.
This patch causes EXPLAIN to always assign a separate table alias to the
parent RTE of an append relation (inheritance set); before, such RTEs
were ignored if not actually scanned by the plan.  Since the child RTEs
now always have that same alias to start with (cf. commit 55a1954da),
the net effect is that the parent RTE usually gets the alias used or
implied by the query text, and the children all get that alias with "_N"
appended.  (The exception to "usually" is if there are duplicate aliases
in different subtrees of the original query; then some of those original
RTEs will also have "_N" appended.)

This results in more uniform output for partitioned-table plans than
we had before: the partitioned table itself gets the original alias,
and all child tables have aliases with "_N", rather than the previous
behavior where one of the children would get an alias without "_N".

The reason for giving the parent RTE an alias, even if it isn't scanned
by the plan, is that we now use the parent's alias to qualify Vars that
refer to an appendrel output column and appear above the Append or
MergeAppend that computes the appendrel.  But below the append, Vars
refer to some one of the child relations, and are displayed that way.
This seems clearer than the old behavior where a Var that could carry
values from any child relation was displayed as if it referred to only
one of them.

While at it, change ruleutils.c so that the code paths used by EXPLAIN
deal in Plan trees not PlanState trees.  This effectively reverts a
decision made in commit 1cc29fe7c, which seemed like a good idea at
the time to make ruleutils.c consistent with explain.c.  However,
it's problematic because we'd really like to allow executor startup
pruning to remove all the children of an append node when possible,
leaving no child PlanState to resolve Vars against.  (That's not done
here, but will be in the next patch.)  This requires different handling
of subplans and initplans than before, but is otherwise a pretty
straightforward change.

Discussion: https://postgr.es/m/001001d4f44b$2a2cca50$7e865ef0$@lab.ntt.co.jp
2019-12-11 17:05:18 -05:00
Tom Lane 55a1954da1 Fix EXPLAIN's column alias output for mismatched child tables.
If an inheritance/partitioning parent table is assigned some column
alias names in the query, EXPLAIN mapped those aliases onto the
child tables' columns by physical position, resulting in bogus output
if a child table's columns aren't one-for-one with the parent's.

To fix, make expand_single_inheritance_child() generate a correctly
re-mapped column alias list, rather than just copying the parent
RTE's alias node.  (We have to fill the alias field, not just
adjust the eref field, because ruleutils.c will ignore eref in
favor of looking at the real column names.)

This means that child tables will now always have alias fields in
plan rtables, where before they might not have.  That results in
a rather substantial set of regression test output changes:
EXPLAIN will now always show child tables with aliases that match
the parent table (usually with "_N" appended for uniqueness).
But that seems like a net positive for understandability, since
the parent alias corresponds to something that actually appeared
in the original query, while the child table names didn't.
(Note that this does not change anything for cases where an explicit
table alias was written in the query for the parent table; it
just makes cases without such aliases behave similarly to that.)
Hence, while we could avoid these subsidiary changes if we made
inherit.c more complicated, we choose not to.

Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
2019-12-02 19:08:10 -05:00
Tom Lane ce76c0ba53 Add a reverse-translation column number array to struct AppendRelInfo.
This provides for cheaper mapping of child columns back to parent
columns.  The one existing use-case in examine_simple_variable()
would hardly justify this by itself; but an upcoming bug fix will
make use of this array in a mainstream code path, and it seems
likely that we'll find other uses for it as we continue to build
out the partitioning infrastructure.

Discussion: https://postgr.es/m/12424.1575168015@sss.pgh.pa.us
2019-12-02 18:05:29 -05:00
Etsuro Fujita 47a3c7fa06 Fix typo in comment. 2019-11-27 16:00:45 +09:00
Amit Kapila 14aec03502 Make the order of the header file includes consistent in backend modules.
Similar to commits 7e735035f2 and dddf4cdc33, this commit makes the order
of header file inclusion consistent for backend modules.

In the passing, removed a couple of duplicate inclusions.

Author: Vignesh C
Reviewed-by: Kuntal Ghosh and Amit Kapila
Discussion: https://postgr.es/m/CALDaNm2Sznv8RR6Ex-iJO6xAdsxgWhCoETkaYX=+9DW3q0QCfA@mail.gmail.com
2019-11-12 08:30:16 +05:30
Andrew Gierth a9056cc637 Request small targetlist for input to WindowAgg.
WindowAgg will potentially store large numbers of input rows into
tuplestores to allow access to other rows in the frame. If the input
is coming via an explicit Sort node, then unneeded columns will
already have been discarded (since Sort requests a small tlist); but
there are idioms like COUNT(*) OVER () that result in the input not
being sorted at all, and cases where the input is being sorted by some
means other than a Sort; if we don't request a small tlist, then
WindowAgg's storage requirement is inflated by the unneeded columns.

Backpatch back to 9.6, where the current tlist handling was added.
(Prior to that, WindowAgg would always use a small tlist.)

Discussion: https://postgr.es/m/87a7ator8n.fsf@news-spur.riddles.org.uk
2019-11-06 04:13:30 +00:00
Andres Freund 01368e5d9d Split all OBJS style lines in makefiles into one-line-per-entry style.
When maintaining or merging patches, one of the most common sources
for conflicts are the list of objects in makefiles. Especially when
the split across lines has been changed on both sides, which is
somewhat common due to attempting to stay below 80 columns, those
conflicts are unnecessarily laborious to resolve.

By splitting, and alphabetically sorting, OBJS style lines into one
object per line, conflicts should be less frequent, and easier to
resolve when they still occur.

Author: Andres Freund
Discussion: https://postgr.es/m/20191029200901.vww4idgcxv74cwes@alap3.anarazel.de
2019-11-05 14:41:07 -08:00
Tom Lane 529ebb20aa Generate EquivalenceClass members for partitionwise child join rels.
Commit d25ea0127 got rid of what I thought were entirely unnecessary
derived child expressions in EquivalenceClasses for EC members that
mention multiple baserels.  But it turns out that some of the child
expressions that code created are necessary for partitionwise joins,
else we fail to find matching pathkeys for Sort nodes.  (This happens
only for certain shapes of the resulting plan; it may be that
partitionwise aggregation is also necessary to show the failure,
though I'm not sure of that.)

Reverting that commit entirely would be quite painful performance-wise
for large partition sets.  So instead, add code that explicitly
generates child expressions that match only partitionwise child join
rels we have actually generated.

Per report from Justin Pryzby.  (Amit Langote noticed the problem
earlier, though it's not clear if he recognized then that it could
result in a planner error, not merely failure to exploit partitionwise
join, in the code as-committed.)  Back-patch to v12 where commit
d25ea0127 came in.

Amit Langote, with lots of kibitzing from me

Discussion: https://postgr.es/m/CA+HiwqG2WVUGmLJqtR0tPFhniO=H=9qQ+Z3L_ZC+Y3-EVQHFGg@mail.gmail.com
Discussion: https://postgr.es/m/20191011143703.GN10470@telsasoft.com
2019-11-05 11:42:24 -05:00
Michael Paquier f25968c496 Remove last traces of heap_open/close in the tree
Since pluggable storage has been introduced, those two routines have
been replaced by table_open/close, with some compatibility macros still
present to allow extensions to compile correctly with v12.

Some code paths using the old routines still remained, so replace them.
Based on the discussion done, the consensus reached is that it is better
to remove those compatibility macros so as nothing new uses the old
routines, so remove also the compatibility macros.

Discussion: https://postgr.es/m/20191017014706.GF5605@paquier.xyz
2019-10-19 11:18:15 +09:00
Tom Lane a9ae99d019 Prevent bogus pullup of constant-valued functions returning composite.
Fix an oversight in commit 7266d0997: as it stood, the code failed
when a function-in-FROM returns composite and can be simplified
to a composite constant.

For the moment, just test for composite result and abandon pullup
if we see one.  To make it actually work, we'd have to decompose
the composite constant into per-column constants; which is surely
do-able, but I'm not convinced it's worth the code space.

Per report from Raúl Marín Rodríguez.

Discussion: https://postgr.es/m/CAM6_UM4isP+buRA5sWodO_MUEgutms-KDfnkwGmryc5DGj9XuQ@mail.gmail.com
2019-09-24 12:11:32 -04:00
Etsuro Fujita 076e9d4209 Remove useless bms_free() calls in build_child_join_rel().
These seem to be leftovers from the original partitionwise-join patch,
perhaps.

Discussion: https://postgr.es/m/CAPmGK145YiMTPRnvev1dLz8na_-0aZ=Xyqn8f2QsJFBUTObNow@mail.gmail.com
2019-08-16 14:35:55 +09:00
Alvaro Herrera 815ef2f568 Don't constraint-exclude partitioned tables as much
We only need to invoke constraint exclusion on partitioned tables when
they are a partition, and they themselves contain a default partition;
it's not necessary otherwise, and it's expensive, so avoid it.  Also, we
were trying once for each clause separately, but we can do it for all
the clauses at once.

While at it, centralize setting of RelOptInfo->partition_qual instead of
computing it in slightly different ways in different places.

Per complaints from Simon Riggs about 4e85642d935e; reviewed by Yuzuko
Hosoya, Kyotaro Horiguchi.

Author: Amit Langote.  I (Álvaro) again mangled the patch somewhat.
Discussion: https://postgr.es/m/CANP8+j+tMCY=nEcQeqQam85=uopLBtX-2vHiLD2bbp7iQQUKpA@mail.gmail.com
2019-08-13 10:26:04 -04:00
Michael Paquier 66bde49d96 Fix inconsistencies and typos in the tree, take 10
This addresses some issues with unnecessary code comments, fixes various
typos in docs and comments, and removes some orphaned structures and
definitions.

Author: Alexander Lakhin
Discussion: https://postgr.es/m/9aabc775-5494-b372-8bcb-4dfc0bd37c68@gmail.com
2019-08-13 13:53:41 +09:00
Tom Lane 5ee190f8ec Rationalize use of list_concat + list_copy combinations.
In the wake of commit 1cff1b95a, the result of list_concat no longer
shares the ListCells of the second input.  Therefore, we can replace
"list_concat(x, list_copy(y))" with just "list_concat(x, y)".

To improve call sites that were list_copy'ing the first argument,
or both arguments, invent "list_concat_copy()" which produces a new
list sharing no ListCells with either input.  (This is a bit faster
than "list_concat(list_copy(x), y)" because it makes the result list
the right size to start with.)

In call sites that were not list_copy'ing the second argument, the new
semantics mean that we are usually leaking the second List's storage,
since typically there is no remaining pointer to it.  We considered
inventing another list_copy variant that would list_free the second
input, but concluded that for most call sites it isn't worth worrying
about, given the relative compactness of the new List representation.
(Note that in cases where such leakage would happen, the old code
already leaked the second List's header; so we're only discussing
the size of the leak not whether there is one.  I did adjust two or
three places that had been troubling to free that header so that
they manually free the whole second List.)

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-08-12 11:20:18 -04:00
Tom Lane 1661a40505 Cosmetic improvements in setup of planner's per-RTE arrays.
Merge setup_append_rel_array into setup_simple_rel_arrays.  There's no
particularly good reason to keep them separate, and it's inconsistent
with the lack of separation in expand_planner_arrays.  The only apparent
benefit was that the fast path for trivial queries in query_planner()
doesn't need to set up the append_rel_array; but all we're saving there
is an if-test and NULL assignment, which surely ought to be negligible.

Also improve some obsolete comments.

Discussion: https://postgr.es/m/17220.1565301350@sss.pgh.pa.us
2019-08-09 12:33:43 -04:00
Michael Paquier 940c8b01b0 Fix typo in pathnode.c
Author: Amit Langote
Discussion: https://postgr.es/m/CA+HiwqFhZ6ABoz-i=JZ5wMMyz-orx4asjR0og9qBtgEwOww6Yg@mail.gmail.com
2019-08-06 18:11:02 +09:00
Michael Paquier 8548ddc61b Fix inconsistencies and typos in the tree, take 9
This addresses more issues with code comments, variable names and
unreferenced variables.

Author: Alexander Lakhin
Discussion: https://postgr.es/m/7ab243e0-116d-3e44-d120-76b3df7abefd@gmail.com
2019-08-05 12:14:58 +09:00
Andres Freund 2abd7ae9b2 Fix representation of hash keys in Hash/HashJoin nodes.
In 5f32b29c18 I changed the creation of HashState.hashkeys to
actually use HashState as the parent (instead of HashJoinState, which
was incorrect, as they were executed below HashState), to fix the
problem of hashkeys expressions otherwise relying on slot types
appropriate for HashJoinState, rather than HashState as would be
correct. That reliance was only introduced in 12, which is why it
previously worked to use HashJoinState as the parent (although I'd be
unsurprised if there were problematic cases).

Unfortunately that's not a sufficient solution, because before this
commit, the to-be-hashed expressions referenced inner/outer as
appropriate for the HashJoin, not Hash. That didn't have obvious bad
consequences, because the slots containing the tuples were put into
ecxt_innertuple when hashing a tuple for HashState (even though Hash
doesn't have an inner plan).

There are less common cases where this can cause visible problems
however (rather than just confusion when inspecting such executor
trees). E.g. "ERROR: bogus varno: 65000", when explaining queries
containing a HashJoin where the subsidiary Hash node's hash keys
reference a subplan. While normally hashkeys aren't displayed by
EXPLAIN, if one of those expressions references a subplan, that
subplan may be printed as part of the Hash node - which then failed
because an inner plan was referenced, and Hash doesn't have that.

It seems quite possible that there's other broken cases, too.

Fix the problem by properly splitting the expression for the HashJoin
and Hash nodes at plan time, and have them reference the proper
subsidiary node. While other workarounds are possible, fixing this
correctly seems easy enough. It was a pretty ugly hack to have
ExecInitHashJoin put the expression into the already initialized
HashState, in the first place.

I decided to not just split inner/outer hashkeys inside
make_hashjoin(), but also to separate out hashoperators and
hashcollations at plan time. Otherwise we would have ended up having
two very similar loops, one at plan time and the other during executor
startup. The work seems to more appropriately belong to plan time,
anyway.

Reported-By: Nikita Glukhov, Alexander Korotkov
Author: Andres Freund
Reviewed-By: Tom Lane, in an earlier version
Discussion: https://postgr.es/m/CAPpHfdvGVegF_TKKRiBrSmatJL2dR9uwFCuR+teQ_8tEXU8mxg@mail.gmail.com
Backpatch: 12-
2019-08-02 00:02:46 -07:00
Tom Lane 7266d0997d Allow functions-in-FROM to be pulled up if they reduce to constants.
This allows simplification of the plan tree in some common usage
patterns: we can get rid of a join to the function RTE.

In principle we could pull up any immutable expression, but restricting
it to Consts avoids the risk that multiple evaluations of the expression
might cost more than we can save.  (Possibly this could be improved in
future --- but we've more or less promised people that putting a function
in FROM guarantees single evaluation, so we'd have to tread carefully.)

To do this, we need to rearrange when eval_const_expressions()
happens for expressions in function RTEs.  I moved it to
inline_set_returning_functions(), which already has to iterate over
every function RTE, and in consequence renamed that function to
preprocess_function_rtes().  A useful consequence is that
inline_set_returning_function() no longer has to do this for itself,
simplifying that code.

In passing, break out pull_up_simple_subquery's code that knows where
everything that needs pullup_replace_vars() processing is, so that
the new pull_up_constant_function() routine can share it.  We'd
gotten away with one-and-a-half copies of that code so far, since
pull_up_simple_values() could assume that a lot of cases didn't apply
to it --- but I don't think pull_up_constant_function() can make any
simplifying assumptions.  Might as well make pull_up_simple_values()
use it too.

(Possibly this refactoring should go further: maybe we could share
some of the code to fill in the pullup_replace_vars_context struct?
For now, I left it that the callers fill that completely.)

Note: the one existing test case that this patch changes has to be
changed because inlining its function RTEs would destroy the point
of the test, namely to check join order.

Alexander Kuzmenkov and Aleksandr Parfenov, reviewed by
Antonin Houska and Anastasia Lubennikova, and whacked around
some more by me

Discussion: https://postgr.es/m/402356c32eeb93d4fed01f66d6c7fe2d@postgrespro.ru
2019-08-01 18:50:22 -04:00
David Rowley e1a0f6a983 Adjust overly strict Assert
3373c7155 changed how we determine EquivalenceClasses for relations and
added an Assert to ensure all relations mentioned in each EC's ec_relids
was a RELOPT_BASEREL.  However, the join removal code may remove a LEFT
JOIN and since it does not clean up EC members belonging to the removed
relations it can leave RELOPT_DEADREL rels in ec_relids.

Fix this by adjusting the Assert to allow RELOPT_DEADREL rels too.

Reported-by: sqlsmith via Andreas Seltenreich
Discussion: https://postgr.es/m/87y30r8sls.fsf@ansel.ydns.eu
2019-07-22 10:29:41 +12:00
David Rowley 3373c71553 Speed up finding EquivalenceClasses for a given set of rels
Previously in order to determine which ECs a relation had members in, we
had to loop over all ECs stored in PlannerInfo's eq_classes and check if
ec_relids mentioned the relation.  For the most part, this was fine, as
generally, unless queries were fairly complex, the overhead of performing
the lookup would have not been that significant.  However, when queries
contained large numbers of joins and ECs, the overhead to find the set of
classes matching a given set of relations could become a significant
portion of the overall planning effort.

Here we allow a much more efficient method to access the ECs which match a
given relation or set of relations.  A new Bitmapset field in RelOptInfo
now exists to store the indexes into PlannerInfo's eq_classes list which
each relation is mentioned in.  This allows very fast lookups to find all
ECs belonging to a single relation.  When we need to lookup ECs belonging
to a given pair of relations, we can simply bitwise-AND the Bitmapsets from
each relation and use the result to perform the lookup.

We also take the opportunity to write a new implementation of
generate_join_implied_equalities which makes use of the new indexes.
generate_join_implied_equalities_for_ecs must remain as is as it can be
given a custom list of ECs, which we can't easily determine the indexes of.

This was originally intended to fix the performance penalty of looking up
foreign keys matching a join condition which was introduced by 100340e2d.
However, we're speeding up much more than just that here.

Author: David Rowley, Tom Lane
Reviewed-by: Tom Lane, Tomas Vondra
Discussion: https://postgr.es/m/6970.1545327857@sss.pgh.pa.us
2019-07-21 17:30:58 +12:00
Tom Lane d97b714a21 Avoid using lcons and list_delete_first where it's easy to do so.
Formerly, lcons was about the same speed as lappend, but with the new
List implementation, that's not so; with a long List, data movement
imposes an O(N) cost on lcons and list_delete_first, but not lappend.

Hence, invent list_delete_last with semantics parallel to
list_delete_first (but O(1) cost), and change various places to use
lappend and list_delete_last where this can be done without much
violence to the code logic.

There are quite a few places that construct result lists using lcons not
lappend.  Some have semantic rationales for that; I added comments about
it to a couple that didn't have them already.  In many such places though,
I think the coding is that way only because back in the dark ages lcons
was faster than lappend.  Hence, switch to lappend where this can be done
without causing semantic changes.

In ExecInitExprRec(), this results in aggregates and window functions that
are in the same plan node being executed in a different order than before.
Generally, the executions of such functions ought to be independent of
each other, so this shouldn't result in visibly different query results.
But if you push it, as one regression test case does, you can show that
the order is different.  The new order seems saner; it's closer to
the order of the functions in the query text.  And we never documented
or promised anything about this, anyway.

Also, in gistfinishsplit(), don't bother building a reverse-order list;
it's easy now to iterate backwards through the original list.

It'd be possible to go further towards removing uses of lcons and
list_delete_first, but it'd require more extensive logic changes,
and I'm not convinced it's worth it.  Most of the remaining uses
deal with queues that probably never get long enough to be worth
sweating over.  (Actually, I doubt that any of the changes in this
patch will have measurable performance effects either.  But better
to have good examples than bad ones in the code base.)

Patch by me, thanks to David Rowley and Daniel Gustafsson for review.

Discussion: https://postgr.es/m/21272.1563318411@sss.pgh.pa.us
2019-07-17 11:15:34 -04:00
Tom Lane c245776906 Remove lappend_cell...() family of List functions.
It seems worth getting rid of these functions because they require the
caller to retain a ListCell pointer into a List that it's modifying,
which is a dangerous practice with the new List implementation.
(The only other List-modifying function that takes a ListCell pointer
as input is list_delete_cell, which nowadays is preferentially used
via the constrained API foreach_delete_current.)

There was only one remaining caller of these functions after commit
2f5b8eb5a, and that was some fairly ugly GEQO code that can be much
more clearly expressed using a list-index variable and list_insert_nth.
Hence, rewrite that code, and remove the functions.

Discussion: https://postgr.es/m/26193.1563228600@sss.pgh.pa.us
2019-07-16 13:12:24 -04:00
Tom Lane 569ed7f483 Redesign the API for list sorting (list_qsort becomes list_sort).
In the wake of commit 1cff1b95a, the obvious way to sort a List
is to apply qsort() directly to the array of ListCells.  list_qsort
was building an intermediate array of pointers-to-ListCells, which
we no longer need, but getting rid of it forces an API change:
the comparator functions need to do one less level of indirection.

Since we're having to touch the callers anyway, let's do two additional
changes: sort the given list in-place rather than making a copy (as
none of the existing callers have any use for the copying behavior),
and rename list_qsort to list_sort.  It was argued that the old name
exposes more about the implementation than it should, which I find
pretty questionable, but a better reason to rename it is to be sure
we get the attention of any external callers about the need to fix
their comparator functions.

While we're at it, change four existing callers of qsort() to use
list_sort instead; previously, they all had local reinventions
of list_qsort, ie build-an-array-from-a-List-and-qsort-it.
(There are some other places where changing to list_sort perhaps
would be worthwhile, but they're less obviously wins.)

Discussion: https://postgr.es/m/29361.1563220190@sss.pgh.pa.us
2019-07-16 11:51:44 -04:00
Michael Paquier 0896ae561b Fix inconsistencies and typos in the tree
This is numbered take 7, and addresses a set of issues around:
- Fixes for typos and incorrect reference names.
- Removal of unneeded comments.
- Removal of unreferenced functions and structures.
- Fixes regarding variable name consistency.

Author: Alexander Lakhin
Discussion: https://postgr.es/m/10bfd4ac-3e7c-40ab-2b2e-355ed15495e8@gmail.com
2019-07-16 13:23:53 +09:00
Tom Lane 1cff1b95ab Represent Lists as expansible arrays, not chains of cons-cells.
Originally, Postgres Lists were a more or less exact reimplementation of
Lisp lists, which consist of chains of separately-allocated cons cells,
each having a value and a next-cell link.  We'd hacked that once before
(commit d0b4399d8) to add a separate List header, but the data was still
in cons cells.  That makes some operations -- notably list_nth() -- O(N),
and it's bulky because of the next-cell pointers and per-cell palloc
overhead, and it's very cache-unfriendly if the cons cells end up
scattered around rather than being adjacent.

In this rewrite, we still have List headers, but the data is in a
resizable array of values, with no next-cell links.  Now we need at
most two palloc's per List, and often only one, since we can allocate
some values in the same palloc call as the List header.  (Of course,
extending an existing List may require repalloc's to enlarge the array.
But this involves just O(log N) allocations not O(N).)

Of course this is not without downsides.  The key difficulty is that
addition or deletion of a list entry may now cause other entries to
move, which it did not before.

For example, that breaks foreach() and sister macros, which historically
used a pointer to the current cons-cell as loop state.  We can repair
those macros transparently by making their actual loop state be an
integer list index; the exposed "ListCell *" pointer is no longer state
carried across loop iterations, but is just a derived value.  (In
practice, modern compilers can optimize things back to having just one
loop state value, at least for simple cases with inline loop bodies.)
In principle, this is a semantics change for cases where the loop body
inserts or deletes list entries ahead of the current loop index; but
I found no such cases in the Postgres code.

The change is not at all transparent for code that doesn't use foreach()
but chases lists "by hand" using lnext().  The largest share of such
code in the backend is in loops that were maintaining "prev" and "next"
variables in addition to the current-cell pointer, in order to delete
list cells efficiently using list_delete_cell().  However, we no longer
need a previous-cell pointer to delete a list cell efficiently.  Keeping
a next-cell pointer doesn't work, as explained above, but we can improve
matters by changing such code to use a regular foreach() loop and then
using the new macro foreach_delete_current() to delete the current cell.
(This macro knows how to update the associated foreach loop's state so
that no cells will be missed in the traversal.)

There remains a nontrivial risk of code assuming that a ListCell *
pointer will remain good over an operation that could now move the list
contents.  To help catch such errors, list.c can be compiled with a new
define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents
whenever that could possibly happen.  This makes list operations
significantly more expensive so it's not normally turned on (though it
is on by default if USE_VALGRIND is on).

There are two notable API differences from the previous code:

* lnext() now requires the List's header pointer in addition to the
current cell's address.

* list_delete_cell() no longer requires a previous-cell argument.

These changes are somewhat unfortunate, but on the other hand code using
either function needs inspection to see if it is assuming anything
it shouldn't, so it's not all bad.

Programmers should be aware of these significant performance changes:

* list_nth() and related functions are now O(1); so there's no
major access-speed difference between a list and an array.

* Inserting or deleting a list element now takes time proportional to
the distance to the end of the list, due to moving the array elements.
(However, it typically *doesn't* require palloc or pfree, so except in
long lists it's probably still faster than before.)  Notably, lcons()
used to be about the same cost as lappend(), but that's no longer true
if the list is long.  Code that uses lcons() and list_delete_first()
to maintain a stack might usefully be rewritten to push and pop at the
end of the list rather than the beginning.

* There are now list_insert_nth...() and list_delete_nth...() functions
that add or remove a list cell identified by index.  These have the
data-movement penalty explained above, but there's no search penalty.

* list_concat() and variants now copy the second list's data into
storage belonging to the first list, so there is no longer any
sharing of cells between the input lists.  The second argument is
now declared "const List *" to reflect that it isn't changed.

This patch just does the minimum needed to get the new implementation
in place and fix bugs exposed by the regression tests.  As suggested
by the foregoing, there's a fair amount of followup work remaining to
do.

Also, the ENABLE_LIST_COMPAT macros are finally removed in this
commit.  Code using those should have been gone a dozen years ago.

Patch by me; thanks to David Rowley, Jesper Pedersen, and others
for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 13:41:58 -04:00
David Rowley a5be4062f7 Don't remove surplus columns from GROUP BY for inheritance parents
d4c3a156c added code to remove columns that were not part of a table's
PRIMARY KEY constraint from the GROUP BY clause when all the primary key
columns were present in the group by.  This is fine to do since we know
that there will only be one row per group coming from this relation.
However, the logic failed to consider inheritance parent relations.  These
can have child relations without a primary key, but even if they did, they
could duplicate one of the parent's rows or one from another child
relation.  In this case, those additional GROUP BY columns are required.

Fix this by disabling the optimization for inheritance parent tables.
In v11 and beyond, partitioned tables are fine since partitions cannot
overlap and before v11 partitioned tables could not have a primary key.

Reported-by: Manuel Rigger
Discussion: http://postgr.es/m/CA+u7OA7VLKf_vEr6kLF3MnWSA9LToJYncgpNX2tQ-oWzYCBQAw@mail.gmail.com
Backpatch-through: 9.6
2019-07-03 23:44:54 +12:00
Michael Paquier c74d49d41c Fix many typos and inconsistencies
Author: Alexander Lakhin
Discussion: https://postgr.es/m/af27d1b3-a128-9d62-46e0-88f424397f44@gmail.com
2019-07-01 10:00:23 +09:00
Andrew Gierth da53be23d1 Repair logic for reordering grouping sets optimization.
The logic in reorder_grouping_sets to order grouping set elements to
match a pre-specified sort ordering was defective, resulting in
unnecessary sort nodes (though the query output would still be
correct). Repair, simplifying the code a little, and add a test.

Per report from Richard Guo, though I didn't use their patch. Original
bug seems to have been my fault.

Backpatch back to 9.5 where grouping sets were introduced.

Discussion: https://postgr.es/m/CAN_9JTzyjGcUjiBHxLsgqfk7PkdLGXiM=pwM+=ph2LsWw0WO1A@mail.gmail.com
2019-06-30 23:49:13 +01:00
Thomas Munro aca127c105 Prevent Parallel Hash Join for JOIN_UNIQUE_INNER.
WHERE EXISTS (...) queries cannot be executed by Parallel Hash Join
with jointype JOIN_UNIQUE_INNER, because there is no way to make a
partial plan totally unique.  The consequence of allowing such plans
was duplicate results from some EXISTS queries.

Back-patch to 11.  Bug #15857.

Author: Thomas Munro
Reviewed-by: Tom Lane
Reported-by: Vladimir Kriukov
Discussion: https://postgr.es/m/15857-d1ba2a64bce0795e%40postgresql.org
2019-06-19 01:25:57 +12:00
Tomas Vondra 6cbfb784c3 Rework the pg_statistic_ext catalog
Since extended statistic got introduced in PostgreSQL 10, there was a
single catalog pg_statistic_ext storing both the definitions and built
statistic.  That's however problematic when a user is supposed to have
access only to the definitions, but not to user data.

Consider for example pg_dump on a database with RLS enabled - if the
pg_statistic_ext catalog respects RLS (which it should, if it contains
user data), pg_dump would not see any records and the result would not
define any extended statistics.  That would be a surprising behavior.

Until now this was not a pressing issue, because the existing types of
extended statistic (functional dependencies and ndistinct coefficients)
do not include any user data directly.  This changed with introduction
of MCV lists, which do include most common combinations of values.

The easiest way to fix this is to split the pg_statistic_ext catalog
into two - one for definitions, one for the built statistic values.
The new catalog is called pg_statistic_ext_data, and we're maintaining
a 1:1 relationship with the old catalog - either there are matching
records in both catalogs, or neither of them.

Bumped CATVERSION due to changing system catalog definitions.

Author: Dean Rasheed, with improvements by me
Reviewed-by: Dean Rasheed, John Naylor
Discussion: https://postgr.es/m/CAEZATCUhT9rt7Ui%3DVdx4N%3D%3DVV5XOK5dsXfnGgVOz_JhAicB%3DZA%40mail.gmail.com
2019-06-16 01:20:31 +02:00
Tom Lane d25ea01275 Avoid combinatorial explosion in add_child_rel_equivalences().
If an EquivalenceClass member expression includes variables from
multiple appendrels, then instead of producing one substituted
expression per child relation as intended, we'd create additional
child expressions for combinations of children of different appendrels.
This happened because the child expressions generated while considering
the first appendrel were taken as sources during substitution of the
second appendrel, and so on.  The extra expressions are useless, and are
harmless unless there are too many of them --- but if you have several
appendrels with a thousand or so members each, it gets bad fast.

To fix, consider only original (non-em_is_child) EC members as candidates
to be expanded.  This requires the ability to substitute directly from a
top parent relation's Vars to those of an indirect descendant relation,
but we already have that in adjust_appendrel_attrs_multilevel().

Per bug #15847 from Feike Steenbergen.  This is a longstanding misbehavior,
but it's only worth worrying about when there are more appendrel children
than we've historically considered wise to use.  So I'm not going to take
the risk of back-patching this.

Discussion: https://postgr.es/m/15847-ea3734094bf8ae61@postgresql.org
2019-06-13 18:10:20 -04:00
Tom Lane 8255c7a5ee Phase 2 pgindent run for v12.
Switch to 2.1 version of pg_bsd_indent.  This formats
multiline function declarations "correctly", that is with
additional lines of parameter declarations indented to match
where the first line's left parenthesis is.

Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
2019-05-22 13:04:48 -04:00
Tom Lane be76af171c Initial pgindent run for v12.
This is still using the 2.0 version of pg_bsd_indent.
I thought it would be good to commit this separately,
so as to document the differences between 2.0 and 2.1 behavior.

Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
2019-05-22 12:55:34 -04:00
Tom Lane 24c19e9f66 Repair issues with faulty generation of merge-append plans.
create_merge_append_plan failed to honor the CP_EXACT_TLIST flag:
it would generate the expected targetlist but then it felt free to
add resjunk sort targets to it.  This demonstrably leads to assertion
failures in v11 and HEAD, and it's probably just accidental that we
don't see the same in older branches.  I've not looked into whether
there would be any real-world consequences in non-assert builds.
In HEAD, create_append_plan has sprouted the same problem, so fix
that too (although we do not have any test cases that seem able to
reach that bug).  This is an oversight in commit 3fc6e2d7f which
invented the CP_EXACT_TLIST flag, so back-patch to 9.6 where that
came in.

convert_subquery_pathkeys would create pathkeys for subquery output
values if they match any EquivalenceClass known in the outer query
and are available in the subquery's syntactic targetlist.  However,
the second part of that condition is wrong, because such values might
not appear in the subquery relation's reltarget list, which would
mean that they couldn't be accessed above the level of the subquery
scan.  We must check that they appear in the reltarget list, instead.
This can lead to dropping knowledge about the subquery's sort
ordering, but I believe it's okay, because any sort key that the
outer query actually has any interest in would appear in the
reltarget list.

This second issue is of very long standing, but right now there's no
evidence that it causes observable problems before 9.6, so I refrained
from back-patching further than that.  We can revisit that choice if
somebody finds a way to make it cause problems in older branches.
(Developing useful test cases for these issues is really problematic;
fixing convert_subquery_pathkeys removes the only known way to exhibit
the create_merge_append_plan bug, and neither of the test cases added
by this patch causes a problem in all branches, even when considering
the issues separately.)

The second issue explains bug #15795 from Suresh Kumar R ("could not
find pathkey item to sort" with nested DISTINCT queries).  I stumbled
across the first issue while investigating that.

Discussion: https://postgr.es/m/15795-fadb56c8e44ee73c@postgresql.org
2019-05-09 16:53:05 -04:00
Etsuro Fujita edbcbe277d postgres_fdw: Fix cost estimation for aggregate pushdown.
In commit 7012b132d0, which added support for aggregate pushdown in
postgres_fdw, the expense of evaluating the final scan/join target
computed by make_group_input_target() was not accounted for at all in
costing aggregate pushdown paths with local statistics.  The right fix
for this would be to have a separate upper stage to adjust the final
scan/join relation (see comments for apply_scanjoin_target_to_paths());
but for now, fix by adding the tlist eval cost when costing aggregate
pushdown paths with local statistics.

Apply this to HEAD only to avoid destabilizing existing plan choices.

Author: Etsuro Fujita
Reviewed-By: Antonin Houska
Discussion: https://postgr.es/m/5C66A056.60007%40lab.ntt.co.jp
2019-05-09 18:39:23 +09:00
Tom Lane 9691aa72e2 Fix style violations in syscache lookups.
Project style is to check the success of SearchSysCacheN and friends
by applying HeapTupleIsValid to the result.  A tiny minority of calls
creatively did it differently.  Bring them into line with the rest.

This is just cosmetic, since HeapTupleIsValid is indeed just a null
check at the moment ... but that may not be true forever, and in any
case it puts a mental burden on readers who may wonder why these
call sites are not like the rest.

Back-patch to v11 just to keep the branches in sync.  (The bulk of these
errors seem to have originated in v11 or v12, though a few are old.)

Per searching to see if anyplace else had made the same error
repaired in 62148c352.
2019-05-05 13:10:07 -04:00
Tom Lane e03ff73969 Clean up handling of constraint_exclusion and enable_partition_pruning.
The interaction of these parameters was a bit confused/confusing,
and in fact v11 entirely misses the opportunity to apply partition
constraints when a partition is accessed directly (rather than
indirectly from its parent).

In HEAD, establish the principle that enable_partition_pruning controls
partition pruning and nothing else.  When accessing a partition via its
parent, we do partition pruning (if enabled by enable_partition_pruning)
and then there is no need to consider partition constraints in the
constraint_exclusion logic.  When accessing a partition directly, its
partition constraints are applied by the constraint_exclusion logic,
only if constraint_exclusion = on.

In v11, we can't have such a clean division of these GUCs' effects,
partly because we don't want to break compatibility too much in a
released branch, and partly because the clean coding requires
inheritance_planner to have applied partition pruning to a partitioned
target table, which it doesn't in v11.  However, we can tweak things
enough to cover the missed case, which seems like a good idea since
it's potentially a performance regression from v10.  This patch keeps
v11's previous behavior in which enable_partition_pruning overrides
constraint_exclusion for an inherited target table, though.

In HEAD, also teach relation_excluded_by_constraints that it's okay to use
inheritable constraints when trying to prune a traditional inheritance
tree.  This might not be thought worthy of effort given that that feature
is semi-deprecated now, but we have enough infrastructure that it only
takes a couple more lines of code to do it correctly.

Amit Langote and Tom Lane

Discussion: https://postgr.es/m/9813f079-f16b-61c8-9ab7-4363cab28d80@lab.ntt.co.jp
Discussion: https://postgr.es/m/29069.1555970894@sss.pgh.pa.us
2019-04-30 15:03:50 -04:00
Michael Paquier 148266fa35 Fix collection of typos and grammar mistakes in docs and comments
Author: Justin Pryzby
Discussion: https://postgr.es/m/20190330224333.GQ5815@telsasoft.com
2019-04-19 16:57:40 +09:00
Tom Lane 9476131278 Prevent inlining of multiply-referenced CTEs with outer recursive refs.
This has to be prevented because inlining would result in multiple
self-references, which we don't support (and in fact that's disallowed
by the SQL spec, see statements about linearly vs. nonlinearly
recursive queries).  Bug fix for commit 608b167f9.

Per report from Yaroslav Schekin (via Andrew Gierth)

Discussion: https://postgr.es/m/87wolmg60q.fsf@news-spur.riddles.org.uk
2019-04-09 15:47:35 -04:00
Tom Lane 45f8eaa8e3 Fix improper interaction of FULL JOINs with lateral references.
join_is_legal() needs to reject forming certain outer joins in cases
where that would lead the planner down a blind alley.  However, it
mistakenly supposed that the way to handle full joins was to treat them
as applying the same constraints as for left joins, only to both sides.
That doesn't work, as shown in bug #15741 from Anthony Skorski: given
a lateral reference out of a join that's fully enclosed by a full join,
the code would fail to believe that any join ordering is legal, resulting
in errors like "failed to build any N-way joins".

However, we don't really need to consider full joins at all for this
purpose, because we effectively force them to be evaluated in syntactic
order, and that order is always legal for lateral references.  Hence,
get rid of this broken logic for full joins and just ignore them instead.

This seems to have been an oversight in commit 7e19db0c0.
Back-patch to all supported branches, as that was.

Discussion: https://postgr.es/m/15741-276f1f464b3f40eb@postgresql.org
2019-04-08 16:09:26 -04:00
Tom Lane 159970bcad Clean up side-effects of commits ab5fcf2b0 et al.
Before those commits, partitioning-related code in the executor could
assume that ModifyTableState.resultRelInfo[] contains only leaf partitions.
However, now a fully-pruned update results in a dummy ModifyTable that
references the root partitioned table, and that breaks some stuff.

In v11, this led to an assertion or core dump in the tuple routing code.
Fix by disabling tuple routing, since we don't need that anyway.
(I chose to do that in HEAD as well for safety, even though the problem
doesn't manifest in HEAD as it stands.)

In v10, this confused ExecInitModifyTable's decision about whether it
needed to close the root table.  But we can get rid of that altogether
by being smarter about where to find the root table.

Note that since the referenced commits haven't shipped yet, this
isn't fixing any bug the field has seen.

Amit Langote, per a report from me

Discussion: https://postgr.es/m/20710.1554582479@sss.pgh.pa.us
2019-04-07 12:54:22 -04:00
Tom Lane 959d00e9db Use Append rather than MergeAppend for scanning ordered partitions.
If we need ordered output from a scan of a partitioned table, but
the ordering matches the partition ordering, then we don't need to
use a MergeAppend to combine the pre-ordered per-partition scan
results: a plain Append will produce the same results.  This
both saves useless comparison work inside the MergeAppend proper,
and allows us to start returning tuples after istarting up just
the first child node not all of them.

However, all is not peaches and cream, because if some of the
child nodes have high startup costs then there will be big
discontinuities in the tuples-returned-versus-elapsed-time curve.
The planner's cost model cannot handle that (yet, anyway).
If we model the Append's startup cost as being just the first
child's startup cost, we may drastically underestimate the cost
of fetching slightly more tuples than are available from the first
child.  Since we've had bad experiences with over-optimistic choices
of "fast start" plans for ORDER BY LIMIT queries, that seems scary.
As a klugy workaround, set the startup cost estimate for an ordered
Append to be the sum of its children's startup costs (as MergeAppend
would).  This doesn't really describe reality, but it's less likely
to cause a bad plan choice than an underestimated startup cost would.
In practice, the cases where we really care about this optimization
will have child plans that are IndexScans with zero startup cost,
so that the overly conservative estimate is still just zero.

David Rowley, reviewed by Julien Rouhaud and Antonin Houska

Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-05 19:20:43 -04:00
Tom Lane 9c703c169a Make queries' locking of indexes more consistent.
The assertions added by commit b04aeb0a0 exposed that there are some
code paths wherein the executor will try to open an index without
holding any lock on it.  We do have some lock on the index's table,
so it seems likely that there's no fatal problem with this (for
instance, the index couldn't get dropped from under us).  Still,
it's bad practice and we should fix it.

To do so, remove the optimizations in ExecInitIndexScan and friends
that tried to avoid taking a lock on an index belonging to a target
relation, and just take the lock always.  In non-bug cases, this
will result in no additional shared-memory access, since we'll find
in the local lock table that we already have a lock of the desired
type; hence, no significant performance degradation should occur.

Also, adjust the planner and executor so that the type of lock taken
on an index is always identical to the type of lock taken for its table,
by relying on the recently added RangeTblEntry.rellockmode field.
This avoids some corner cases where that might not have been true
before (possibly resulting in extra locking overhead), and prevents
future maintenance issues from having multiple bits of logic that
all needed to be in sync.  In addition, this change removes all core
calls to ExecRelationIsTargetRelation, which avoids a possible O(N^2)
startup penalty for queries with large numbers of target relations.
(We'd probably remove that function altogether, were it not that we
advertise it as something that FDWs might want to use.)

Also adjust some places in selfuncs.c to not take any lock on indexes
they are transiently opening, since we can assume that plancat.c
did that already.

In passing, change gin_clean_pending_list() to take RowExclusiveLock
not AccessShareLock on its target index.  Although it's not clear that
that's actually a bug, it seemed very strange for a function that's
explicitly going to modify the index to use only AccessShareLock.

David Rowley, reviewed by Julien Rouhaud and Amit Langote,
a bit of further tweaking by me

Discussion: https://postgr.es/m/19465.1541636036@sss.pgh.pa.us
2019-04-04 15:12:58 -04:00
Etsuro Fujita d50d172e51 postgres_fdw: Perform the (FINAL, NULL) upperrel operations remotely.
The upper-planner pathification allows FDWs to arrange to push down
different types of upper-stage operations to the remote side.  This
commit teaches postgres_fdw to do it for the (FINAL, NULL) upperrel,
which is responsible for doing LockRows, LIMIT, and/or ModifyTable.
This provides the ability for postgres_fdw to handle SELECT commands
so that it 1) skips the LockRows step (if any) (note that this is
safe since it performs early locking) and 2) pushes down the LIMIT
and/or OFFSET restrictions (if any) to the remote side.  This doesn't
handle the INSERT/UPDATE/DELETE cases.

Author: Etsuro Fujita
Reviewed-By: Antonin Houska and Jeff Janes
Discussion: https://postgr.es/m/87pnz1aby9.fsf@news-spur.riddles.org.uk
2019-04-02 20:30:45 +09:00
Etsuro Fujita aef65db676 Refactor create_limit_path() to share cost adjustment code with FDWs.
This is in preparation for an upcoming commit.

Author: Etsuro Fujita
Reviewed-By: Antonin Houska and Jeff Janes
Discussion: https://postgr.es/m/87pnz1aby9.fsf@news-spur.riddles.org.uk
2019-04-02 19:55:12 +09:00
Andres Freund bfbcad478f tableam: bitmap table scan.
This moves bitmap heap scan support to below an optional tableam
callback. It's optional as the whole concept of bitmap heapscans is
fairly block specific.

This basically moves the work previously done in bitgetpage() into the
new scan_bitmap_next_block callback, and the direct poking into the
buffer done in BitmapHeapNext() into the new scan_bitmap_next_tuple()
callback.

The abstraction is currently somewhat leaky because
nodeBitmapHeapscan.c's prefetching and visibilitymap based logic
remains - it's likely that we'll later have to move more into the
AM. But it's not trivial to do so without introducing a significant
amount of code duplication between the AMs, so that's a project for
later.

Note that now nodeBitmapHeapscan.c and the associated node types are a
bit misnamed. But it's not clear whether renaming wouldn't be a cure
worse than the disease. Either way, that'd be best done in a separate
commit.

Author: Andres Freund
Reviewed-By: Robert Haas (in an older version)
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-31 18:37:57 -07:00
Andres Freund 4bb50236eb tableam: Formatting and other minor cleanups.
The superflous heapam_xlog.h includes were reported by Peter
Geoghegan.
2019-03-31 18:16:53 -07:00
Tom Lane 9fd4de119c Compute root->qual_security_level in a less random place.
We can set this up once and for all in subquery_planner's initial survey
of the flattened rangetable, rather than incrementally adjusting it in
build_simple_rel.  The previous approach made it rather hard to reason
about exactly when the value would be available, and we were definitely
using it in some places before the final value was computed.

Noted while fooling around with Amit Langote's patch to delay creation
of inheritance child rels.  That didn't break this code, but it made it
even more fragile, IMO.
2019-03-31 13:47:41 -04:00
Andres Freund 696d78469f tableam: Move heap specific logic from estimate_rel_size below tableam.
This just moves the table/matview[/toast] determination of relation
size to a callback, and uses a copy of the existing logic to implement
that callback for heap.

It probably would make sense to also move the index specific logic
into a callback, so the metapage handling (and probably more) can be
index specific. But that's a separate task.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-03-30 19:26:36 -07:00
Tom Lane 428b260f87 Speed up planning when partitions can be pruned at plan time.
Previously, the planner created RangeTblEntry and RelOptInfo structs
for every partition of a partitioned table, even though many of them
might later be deemed uninteresting thanks to partition pruning logic.
This incurred significant overhead when there are many partitions.
Arrange to postpone creation of these data structures until after
we've processed the query enough to identify restriction quals for
the partitioned table, and then apply partition pruning before not
after creation of each partition's data structures.  In this way
we need not open the partition relations at all for partitions that
the planner has no real interest in.

For queries that can be proven at plan time to access only a small
number of partitions, this patch improves the practical maximum
number of partitions from under 100 to perhaps a few thousand.

Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-30 18:58:55 -04:00
Tom Lane 7ad6498fd5 Avoid crash in partitionwise join planning under GEQO.
While trying to plan a partitionwise join, we may be faced with cases
where one or both input partitions for a particular segment of the join
have been pruned away.  In HEAD and v11, this is problematic because
earlier processing didn't bother to make a pruned RelOptInfo fully
valid.  With an upcoming patch to make partition pruning more efficient,
this'll be even more problematic because said RelOptInfo won't exist at
all.

The existing code attempts to deal with this by retroactively making the
RelOptInfo fully valid, but that causes crashes under GEQO because join
planning is done in a short-lived memory context.  In v11 we could
probably have fixed this by switching to the planner's main context
while fixing up the RelOptInfo, but that idea doesn't scale well to the
upcoming patch.  It would be better not to mess with the base-relation
data structures during join planning, anyway --- that's just a recipe
for order-of-operations bugs.

In many cases, though, we don't actually need the child RelOptInfo,
because if the input is certainly empty then the join segment's result
is certainly empty, so we can skip making a join plan altogether.  (The
existing code ultimately arrives at the same conclusion, but only after
doing a lot more work.)  This approach works except when the pruned-away
partition is on the nullable side of a LEFT, ANTI, or FULL join, and the
other side isn't pruned.  But in those cases the existing code leaves a
lot to be desired anyway --- the correct output is just the result of
the unpruned side of the join, but we were emitting a useless outer join
against a dummy Result.  Pending somebody writing code to handle that
more nicely, let's just abandon the partitionwise-join optimization in
such cases.

When the modified code skips making a join plan, it doesn't make a
join RelOptInfo either; this requires some upper-level code to
cope with nulls in part_rels[] arrays.  We would have had to have
that anyway after the upcoming patch.

Back-patch to v11 since the crash is demonstrable there.

Discussion: https://postgr.es/m/8305.1553884377@sss.pgh.pa.us
2019-03-30 12:48:32 -04:00
Peter Eisentraut fc22b6623b Generated columns
This is an SQL-standard feature that allows creating columns that are
computed from expressions rather than assigned, similar to a view or
materialized view but on a column basis.

This implements one kind of generated column: stored (computed on
write).  Another kind, virtual (computed on read), is planned for the
future, and some room is left for it.

Reviewed-by: Michael Paquier <michael@paquier.xyz>
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
2019-03-30 08:15:57 +01:00
Tomas Vondra 7300a69950 Add support for multivariate MCV lists
Introduce a third extended statistic type, supported by the CREATE
STATISTICS command - MCV lists, a generalization of the statistic
already built and used for individual columns.

Compared to the already supported types (n-distinct coefficients and
functional dependencies), MCV lists are more complex, include column
values and allow estimation of much wider range of common clauses
(equality and inequality conditions, IS NULL, IS NOT NULL etc.).
Similarly to the other types, a new pseudo-type (pg_mcv_list) is used.

Author: Tomas Vondra
Reviewed-by: Dean Rasheed, David Rowley, Mark Dilger, Alvaro Herrera
Discussion: https://postgr.es/m/dfdac334-9cf2-2597-fb27-f0fb3753f435@2ndquadrant.com
2019-03-27 18:32:18 +01:00
Tom Lane 333ed246c6 Avoid passing query tlist around separately from root->processed_tlist.
In the dim past, the planner kept the fully-processed version of the query
targetlist (the result of preprocess_targetlist) in grouping_planner's
local variable "tlist", and only grudgingly passed it to individual other
routines as needed.  Later we discovered a need to still have it available
after grouping_planner finishes, and invented the root->processed_tlist
field for that purpose, but it wasn't used internally to grouping_planner;
the tlist was still being passed around separately in the same places as
before.

Now comes a proposed patch to allow appendrel expansion to add entries
to the processed tlist, well after preprocess_targetlist has finished
its work.  To avoid having to pass around the tlist explicitly, it's
proposed to allow appendrel expansion to modify root->processed_tlist.
That makes aliasing the tlist with assorted parameters and local
variables really scary.  It would accidentally work as long as the
tlist is initially nonempty, because then the List header won't move
around, but it's not exactly hard to think of ways for that to break.
Aliased values are poor programming practice anyway.

Hence, get rid of local variables and parameters that can be identified
with root->processed_tlist, in favor of just using that field directly.
And adjust comments to match.  (Some of the new comments speak as though
it's already possible for appendrel expansion to modify the tlist; that's
not true yet, but will happen in a later patch.)

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-27 12:57:49 -04:00
Tom Lane 53bcf5e3db Build "other rels" of appendrel baserels in a separate step.
Up to now, otherrel RelOptInfos were built at the same time as baserel
RelOptInfos, thanks to recursion in build_simple_rel().  However,
nothing in query_planner's preprocessing cares at all about otherrels,
only baserels, so we don't really need to build them until just before
we enter make_one_rel.  This has two benefits:

* create_lateral_join_info did a lot of extra work to propagate
lateral-reference information from parents to the correct children.
But if we delay creation of the children till after that, it's
trivial (and much harder to break, too).

* Since we have all the restriction quals correctly assigned to
parent appendrels by this point, it'll be possible to do plan-time
pruning and never make child RelOptInfos at all for partitions that
can be pruned away.  That's not done here, but will be later on.

Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen,
Yoshikazu Imai, and David Rowley

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-26 18:21:10 -04:00
Tom Lane e8d5dd6be7 Get rid of duplicate child RTE for a partitioned table.
We've been creating duplicate RTEs for partitioned tables just
because we do so for regular inheritance parent tables.  But unlike
regular-inheritance parents which are themselves regular tables
and thus need to be scanned, partitioned tables don't need the
extra RTE.

This makes the conditions for building a child RTE the same as those
for building an AppendRelInfo, allowing minor simplification in
expand_single_inheritance_child.  Since the planner's actual processing
is driven off the AppendRelInfo list, nothing much changes beyond that,
we just have one fewer useless RTE entry.

Amit Langote, reviewed and hacked a bit by me

Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-26 12:03:27 -04:00
Tom Lane 8edd0e7946 Suppress Append and MergeAppend plan nodes that have a single child.
If there's only one child relation, the Append or MergeAppend isn't
doing anything useful, and can be elided.  It does have a purpose
during planning though, which is to serve as a buffer between parent
and child Var numbering.  Therefore we keep it all the way through
to setrefs.c, and get rid of it only after fixing references in the
plan level(s) above it.  This works largely the same as setrefs.c's
ancient hack to get rid of no-op SubqueryScan nodes, and can even
share some code with that.

Note the change to make setrefs.c use apply_tlist_labeling rather than
ad-hoc code.  This has the effect of propagating the child's resjunk
and ressortgroupref labels, which formerly weren't propagated when
removing a SubqueryScan.  Doing that is demonstrably necessary for
the [Merge]Append cases, and seems harmless for SubqueryScan, if only
because trivial_subqueryscan is afraid to collapse cases where the
resjunk marking differs.  (I suspect that restriction could now be
removed, though it's unclear that it'd make any new matches possible,
since the outer query can't have references to a child resjunk column.)

David Rowley, reviewed by Alvaro Herrera and Tomas Vondra

Discussion: https://postgr.es/m/CAKJS1f_7u8ATyJ1JGTMHFoKDvZdeF-iEBhs+sM_SXowOr9cArg@mail.gmail.com
2019-03-25 15:42:35 -04:00
Tom Lane c8151e6423 Don't copy PartitionBoundInfo in set_relation_partition_info.
I (tgl) remain dubious that it's a good idea for PartitionDirectory
to hold a pin on a relcache entry throughout planning, rather than
copying the data or using some kind of refcount scheme.  However, it's
certainly the responsibility of the PartitionDirectory code to ensure
that what it's handing back is a stable data structure, not that of
its caller.  So this is a pretty clear oversight in commit 898e5e329,
and one that can cost a lot of performance when there are many
partitions.

Amit Langote (extracted from a much larger patch set)

Discussion: https://postgr.es/m/CA+TgmoY3bRmGB6-DUnoVy5fJoreiBJ43rwMrQRCdPXuKt4Ykaw@mail.gmail.com
Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
2019-03-22 14:16:58 -04:00
Peter Eisentraut 5e1963fb76 Collations with nondeterministic comparison
This adds a flag "deterministic" to collations.  If that is false,
such a collation disables various optimizations that assume that
strings are equal only if they are byte-wise equal.  That then allows
use cases such as case-insensitive or accent-insensitive comparisons
or handling of strings with different Unicode normal forms.

This functionality is only supported with the ICU provider.  At least
glibc doesn't appear to have any locales that work in a
nondeterministic way, so it's not worth supporting this for the libc
provider.

The term "deterministic comparison" in this context is from Unicode
Technical Standard #10
(https://unicode.org/reports/tr10/#Deterministic_Comparison).

This patch makes changes in three areas:

- CREATE COLLATION DDL changes and system catalog changes to support
  this new flag.

- Many executor nodes and auxiliary code are extended to track
  collations.  Previously, this code would just throw away collation
  information, because the eventually-called user-defined functions
  didn't use it since they only cared about equality, which didn't
  need collation information.

- String data type functions that do equality comparisons and hashing
  are changed to take the (non-)deterministic flag into account.  For
  comparison, this just means skipping various shortcuts and tie
  breakers that use byte-wise comparison.  For hashing, we first need
  to convert the input string to a canonical "sort key" using the ICU
  analogue of strxfrm().

Reviewed-by: Daniel Verite <daniel@manitou-mail.org>
Reviewed-by: Peter Geoghegan <pg@bowt.ie>
Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com
2019-03-22 12:12:43 +01:00
Thomas Munro bb16aba50c Enable parallel query with SERIALIZABLE isolation.
Previously, the SERIALIZABLE isolation level prevented parallel query
from being used.  Allow the two features to be used together by
sharing the leader's SERIALIZABLEXACT with parallel workers.

An extra per-SERIALIZABLEXACT LWLock is introduced to make it safe to
share, and new logic is introduced to coordinate the early release
of the SERIALIZABLEXACT required for the SXACT_FLAG_RO_SAFE
optimization, as follows:

The first backend to observe the SXACT_FLAG_RO_SAFE flag (set by
some other transaction) will 'partially release' the SERIALIZABLEXACT,
meaning that the conflicts and locks it holds are released, but the
SERIALIZABLEXACT itself will remain active because other backends
might still have a pointer to it.

Whenever any backend notices the SXACT_FLAG_RO_SAFE flag, it clears
its own MySerializableXact variable and frees local resources so that
it can skip SSI checks for the rest of the transaction.  In the
special case of the leader process, it transfers the SERIALIZABLEXACT
to a new variable SavedSerializableXact, so that it can be completely
released at the end of the transaction after all workers have exited.

Remove the serializable_okay flag added to CreateParallelContext() by
commit 9da0cc35, because it's now redundant.

Author: Thomas Munro
Reviewed-by: Haribabu Kommi, Robert Haas, Masahiko Sawada, Kevin Grittner
Discussion: https://postgr.es/m/CAEepm=0gXGYhtrVDWOTHS8SQQy_=S9xo+8oCxGLWZAOoeJ=yzQ@mail.gmail.com
2019-03-15 17:47:04 +13:00
Tom Lane 0a9d7e1f6d Ensure dummy paths have correct required_outer if rel is parameterized.
The assertions added by commits 34ea1ab7f et al found another problem:
set_dummy_rel_pathlist and mark_dummy_rel were failing to label
the dummy paths they create with the correct outer_relids, in case
the relation is necessarily parameterized due to having lateral
references in its tlist.  It's likely that this has no user-visible
consequences in production builds, at the moment; but still an assertion
failure is a bad thing, so back-patch the fix.

Per bug #15694 from Roman Zharkov (via Alexander Lakhin)
and an independent report by Tushar Ahuja.

Discussion: https://postgr.es/m/15694-74f2ca97e7044f7f@postgresql.org
Discussion: https://postgr.es/m/7d72ab20-c725-3ce2-f99d-4e64dd8a0de6@enterprisedb.com
2019-03-14 12:16:36 -04:00
Etsuro Fujita b5afdde6a7 Fix testing of parallel-safety of scan/join target.
In commit 960df2a971 ("Correctly assess parallel-safety of tlists when
SRFs are used."), the testing of scan/join target was done incorrectly,
which caused a plan-quality problem.  Backpatch through to v11 where
the aforementioned commit went in, since this is a regression from v10.

Author: Etsuro Fujita
Reviewed-by: Robert Haas and Tom Lane
Discussion: https://postgr.es/m/5C75303E.8020303@lab.ntt.co.jp
2019-03-12 16:21:57 +09:00
Tom Lane 1d33858406 Fix handling of targetlist SRFs when scan/join relation is known empty.
When we introduced separate ProjectSetPath nodes for application of
set-returning functions in v10, we inadvertently broke some cases where
we're supposed to recognize that the result of a subquery is known to be
empty (contain zero rows).  That's because IS_DUMMY_REL was just looking
for a childless AppendPath without allowing for a ProjectSetPath being
possibly stuck on top.  In itself, this didn't do anything much worse
than produce slightly worse plans for some corner cases.

Then in v11, commit 11cf92f6e rearranged things to allow the scan/join
targetlist to be applied directly to partial paths before they get
gathered.  But it inserted a short-circuit path for dummy relations
that was a little too short: it failed to insert a ProjectSetPath node
at all for a targetlist containing set-returning functions, resulting in
bogus "set-valued function called in context that cannot accept a set"
errors, as reported in bug #15669 from Madelaine Thibaut.

The best way to fix this mess seems to be to reimplement IS_DUMMY_REL
so that it drills down through any ProjectSetPath nodes that might be
there (and it seems like we'd better allow for ProjectionPath as well).

While we're at it, make it look at rel->pathlist not cheapest_total_path,
so that it gives the right answer independently of whether set_cheapest
has been done lately.  That dependency looks pretty shaky in the context
of code like apply_scanjoin_target_to_paths, and even if it's not broken
today it'd certainly bite us at some point.  (Nastily, unsafe use of the
old coding would almost always work; the hazard comes down to possibly
looking through a dangling pointer, and only once in a blue moon would
you find something there that resulted in the wrong answer.)

It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if
there are any extensions using it, they'll continue to use the old
inadequate logic until they're recompiled, after which they'll fail
to load into server versions predating this fix.  Hopefully there are
few such extensions.

Having fixed IS_DUMMY_REL, the special path for dummy rels in
apply_scanjoin_target_to_paths is unnecessary as well as being wrong,
so we can just drop it.

Also change a few places that were testing for partitioned-ness of a
planner relation but not using IS_PARTITIONED_REL for the purpose; that
seems unsafe as well as inconsistent, plus it required an ugly hack in
apply_scanjoin_target_to_paths.

In passing, save a few cycles in apply_scanjoin_target_to_paths by
skipping processing of pre-existing paths for partitioned rels,
and do some cosmetic cleanup and comment adjustment in that function.

I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking
any code that might be using it, since in almost every case that would
be wrong; IS_DUMMY_REL is what to be using instead.

In HEAD, also make set_dummy_rel_pathlist static (since it's no longer
used from outside allpaths.c), and delete is_dummy_plan, since it's no
longer used anywhere.

Back-patch as appropriate into v11 and v10.

Tom Lane and Julien Rouhaud

Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
2019-03-07 14:22:13 -05:00
Robert Haas 898e5e3290 Allow ATTACH PARTITION with only ShareUpdateExclusiveLock.
We still require AccessExclusiveLock on the partition itself, because
otherwise an insert that violates the newly-imposed partition
constraint could be in progress at the same time that we're changing
that constraint; only the lock level on the parent relation is
weakened.

To make this safe, we have to cope with (at least) three separate
problems. First, relevant DDL might commit while we're in the process
of building a PartitionDesc.  If so, find_inheritance_children() might
see a new partition while the RELOID system cache still has the old
partition bound cached, and even before invalidation messages have
been queued.  To fix that, if we see that the pg_class tuple seems to
be missing or to have a null relpartbound, refetch the value directly
from the table. We can't get the wrong value, because DETACH PARTITION
still requires AccessExclusiveLock throughout; if we ever want to
change that, this will need more thought. In testing, I found it quite
difficult to hit even the null-relpartbound case; the race condition
is extremely tight, but the theoretical risk is there.

Second, successive calls to RelationGetPartitionDesc might not return
the same answer.  The query planner will get confused if lookup up the
PartitionDesc for a particular relation does not return a consistent
answer for the entire duration of query planning.  Likewise, query
execution will get confused if the same relation seems to have a
different PartitionDesc at different times.  Invent a new
PartitionDirectory concept and use it to ensure consistency.  This
ensures that a single invocation of either the planner or the executor
sees the same view of the PartitionDesc from beginning to end, but it
does not guarantee that the planner and the executor see the same
view.  Since this allows pointers to old PartitionDesc entries to
survive even after a relcache rebuild, also postpone removing the old
PartitionDesc entry until we're certain no one is using it.

For the most part, it seems to be OK for the planner and executor to
have different views of the PartitionDesc, because the executor will
just ignore any concurrently added partitions which were unknown at
plan time; those partitions won't be part of the inheritance
expansion, but invalidation messages will trigger replanning at some
point.  Normally, this happens by the time the very next command is
executed, but if the next command acquires no locks and executes a
prepared query, it can manage not to notice until a new transaction is
started.  We might want to tighten that up, but it's material for a
separate patch.  There would still be a small window where a query
that started just after an ATTACH PARTITION command committed might
fail to notice its results -- but only if the command starts before
the commit has been acknowledged to the user. All in all, the warts
here around serializability seem small enough to be worth accepting
for the considerable advantage of being able to add partitions without
a full table lock.

Although in general the consequences of new partitions showing up
between planning and execution are limited to the query not noticing
the new partitions, run-time partition pruning will get confused in
that case, so that's the third problem that this patch fixes.
Run-time partition pruning assumes that indexes into the PartitionDesc
are stable between planning and execution.  So, add code so that if
new partitions are added between plan time and execution time, the
indexes stored in the subplan_map[] and subpart_map[] arrays within
the plan's PartitionedRelPruneInfo get adjusted accordingly.  There
does not seem to be a simple way to generalize this scheme to cope
with partitions that are removed, mostly because they could then get
added back again with different bounds, but it works OK for added
partitions.

This code does not try to ensure that every backend participating in
a parallel query sees the same view of the PartitionDesc.  That
currently doesn't matter, because we never pass PartitionDesc
indexes between backends.  Each backend will ignore the concurrently
added partitions which it notices, and it doesn't matter if different
backends are ignoring different sets of concurrently added partitions.
If in the future that matters, for example because we allow writes in
parallel query and want all participants to do tuple routing to the same
set of partitions, the PartitionDirectory concept could be improved to
share PartitionDescs across backends.  There is a draft patch to
serialize and restore PartitionDescs on the thread where this patch
was discussed, which may be a useful place to start.

Patch by me.  Thanks to Alvaro Herrera, David Rowley, Simon Riggs,
Amit Langote, and Michael Paquier for discussion, and to Alvaro
Herrera for some review.

Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com
2019-03-07 11:13:12 -05:00
Tom Lane 65ce07e020 Teach optimizer's predtest.c more things about ScalarArrayOpExpr.
In particular, make it possible to prove/refute "x IS NULL" and
"x IS NOT NULL" predicates from a clause involving a ScalarArrayOpExpr
even when we are unable or unwilling to deconstruct the expression
into an AND/OR tree.  This avoids a former unexpected degradation of
plan quality when the size of an ARRAY[] expression or array constant
exceeded the arbitrary MAX_SAOP_ARRAY_SIZE limit.  For IS-NULL proofs,
we don't really care about the values of the individual array elements;
at most, we care whether there are any, and for some common cases we
needn't even know that.

The main user-visible effect of this is to let the optimizer recognize
applicability of partial indexes with "x IS NOT NULL" predicates to
queries with "x IN (array)" clauses in some cases where it previously
failed to recognize that.  The structure of predtest.c is such that a
bunch of related proofs will now also succeed, but they're probably
much less useful in the wild.

James Coleman, reviewed by David Rowley

Discussion: https://postgr.es/m/CAAaqYe8yKSvzbyu8w-dThRs9aTFMwrFxn_BkTYeXgjqe3CbNjg@mail.gmail.com
2019-03-01 17:14:17 -05:00
Tom Lane c94fb8e8ac Standardize some more loops that chase down parallel lists.
We have forboth() and forthree() macros that simplify iterating
through several parallel lists, but not everyplace that could
reasonably use those was doing so.  Also invent forfour() and
forfive() macros to do the same for four or five parallel lists,
and use those where applicable.

The immediate motivation for doing this is to reduce the number
of ad-hoc lnext() calls, to reduce the footprint of a WIP patch.
However, it seems like good cleanup and error-proofing anyway;
the places that were combining forthree() with a manually iterated
loop seem particularly illegible and bug-prone.

There was some speculation about restructuring related parsetree
representations to reduce the need for parallel list chasing of
this sort.  Perhaps that's a win, or perhaps not, but in any case
it would be considerably more invasive than this patch; and it's
not particularly related to my immediate goal of improving the
List infrastructure.  So I'll leave that question for another day.

Patch by me; thanks to David Rowley for review.

Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-02-28 14:25:01 -05:00
Robert Haas f4b6341d5f Change lock acquisition order in expand_inherited_rtentry.
Previously, this function acquired locks in the order using
find_all_inheritors(), which locks the children of each table that it
processes in ascending OID order, and which processes the inheritance
hierarchy as a whole in a breadth-first fashion.  Now, it processes
the inheritance hierarchy in a depth-first fashion, and at each level
it proceeds in the order in which tables appear in the PartitionDesc.
If table inheritance rather than table partitioning is used, the old
order is preserved.

This change moves the locking of any given partition much closer to
the code that actually expands that partition.  This seems essential
if we ever want to allow concurrent DDL to add or remove partitions,
because if the set of partitions can change, we must use the same data
to decide which partitions to lock as we do to decide which partitions
to expand; otherwise, we might expand a partition that we haven't
locked.  It should hopefully also facilitate efforts to postpone
inheritance expansion or locking for performance reasons, because
there's really no way to postpone locking some partitions if
we're blindly locking them all using find_all_inheritors().

The only downside of this change which is known to me is that it
further deviates from the principle that we should always lock the
inheritance hierarchy in find_all_inheritors() order to avoid deadlock
risk.  However, we've already crossed that bridge in commit
9eefba181f and there are futher patches
pending that make similar changes, so this isn't really giving up
anything that we haven't surrendered already -- and it seems entirely
worth it, given the performance benefits some of those changes seem
likely to bring.

Patch by me; thanks to David Rowley for discussion of these issues.

Discussion: http://postgr.es/m/CAKJS1f_eEYVEq5tM8sm1k-HOwG0AyCPwX54XG9x4w0zy_N4Q_Q@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZUwPf_uanjF==gTGBMJrn8uCq52XYvAEorNkLrUdoawg@mail.gmail.com
2019-02-26 12:22:57 -05:00
Tom Lane ab5fcf2b04 Fix plan created for inherited UPDATE/DELETE with all tables excluded.
In the case where inheritance_planner() finds that every table has
been excluded by constraints, it thought it could get away with
making a plan consisting of just a dummy Result node.  While certainly
there's no updating or deleting to be done, this had two user-visible
problems: the plan did not report the correct set of output columns
when a RETURNING clause was present, and if there were any
statement-level triggers that should be fired, it didn't fire them.

Hence, rather than only generating the dummy Result, we need to
stick a valid ModifyTable node on top, which requires a tad more
effort here.

It's been broken this way for as long as inheritance_planner() has
known about deleting excluded subplans at all (cf commit 635d42e9c),
so back-patch to all supported branches.

Amit Langote and Tom Lane, per a report from Petr Fedorov.

Discussion: https://postgr.es/m/5da6f0f0-1364-1876-6978-907678f89a3e@phystech.edu
2019-02-22 12:23:19 -05:00
Tom Lane 0c7d537930 Move estimate_hashagg_tablesize to selfuncs.c, and widen result to double.
It seems to make more sense for this to be in selfuncs.c, since it's
largely a statistical-estimation thing, and it's related to other
functions like estimate_hash_bucket_stats that are there.

While at it, change the result type from Size to double.  Perhaps at one
point it was impossible for the result to overflow an integer, but
I've got no confidence in that proposition anymore.  Nothing's actually
done with the result except to compare it to a work_mem-based limit,
so as long as we don't get an overflow on the way to that comparison,
things should be fine even with very large dNumGroups.

Code movement proposed by Antonin Houska, type change by me

Discussion: https://postgr.es/m/25767.1549359615@localhost
2019-02-21 14:59:12 -05:00
Robert Haas 1bb5e78218 Move code for managing PartitionDescs into a new file, partdesc.c
This is similar in spirit to the existing partbounds.c file in the
same directory, except that there's a lot less code in the new file
created by this commit.  Pending work in this area proposes to add a
bunch more code related to PartitionDescs, though, and this will give
us a good place to put it.

Discussion: http://postgr.es/m/CA+TgmoZUwPf_uanjF==gTGBMJrn8uCq52XYvAEorNkLrUdoawg@mail.gmail.com
2019-02-21 11:45:02 -05:00
Tom Lane fa86238f1e Speed up match_eclasses_to_foreign_key_col() when there are many ECs.
Check ec_relids before bothering to iterate through the EC members.
On a perhaps extreme, but still real-world, query in which
match_eclasses_to_foreign_key_col() accounts for the bulk of the
planner's runtime, this saves nearly 40% of the runtime.  It's a bit
of a stopgap fix, but it's simple enough to be back-patched to 9.6
where this code came in; so let's do that.

David Rowley

Discussion: https://postgr.es/m/6970.1545327857@sss.pgh.pa.us
2019-02-20 20:53:17 -05:00
Tom Lane e04a3905e4 Improve planner's understanding of strictness of type coercions.
PG type coercions are generally strict, ie a NULL input must produce
a NULL output (or, in domain cases, possibly an error).  The planner's
understanding of that was a bit incomplete though, so improve it:

* Teach contain_nonstrict_functions() that CoerceViaIO can always be
considered strict.  Previously it believed that only if the underlying
I/O functions were marked strict, which is often but not always true.

* Teach clause_is_strict_for() that CoerceViaIO, ArrayCoerceExpr,
ConvertRowtypeExpr, CoerceToDomain can all be considered strict.
Previously it knew nothing about any of them.

The main user-visible impact of this is that IS NOT NULL predicates
can be proven to hold from expressions involving casts in more cases
than before, allowing partial indexes with such predicates to be used
without extra pushups.  This reduces the surprise factor for users,
who may well be used to ordinary (function-call-based) casts being
known to be strict.

Per a gripe from Samuel Williams.  This doesn't rise to the level of
a bug, IMO, so no back-patch.

Discussion: https://postgr.es/m/27571.1550617881@sss.pgh.pa.us
2019-02-20 14:39:11 -05:00
Tom Lane 1571bc0f06 Fix incorrect strictness test for ArrayCoerceExpr expressions.
The recursion in contain_nonstrict_functions_walker() was done wrong,
causing the strictness check to be bypassed for a parse node that
is the immediate input of an ArrayCoerceExpr node.  This could allow,
for example, incorrect decisions about whether a strict SQL function
can be inlined.

I didn't add a regression test, because (a) the bug is so narrow
and (b) I couldn't think of a test case that wasn't dependent on a
large number of other behaviors, to the point where it would likely
soon rot to the point of not testing what it was intended to.

I broke this in commit c12d570fa, so back-patch to v11.

Discussion: https://postgr.es/m/27571.1550617881@sss.pgh.pa.us
2019-02-20 13:36:55 -05:00
Etsuro Fujita 3fdc374b5d Save PathTargets for distinct/ordered relations in root->upper_targets[].
For the convenience of extensions, we previously only saved PathTargets
for grouped, window, and final relations in root->upper_targets[] in
grouping_planner().  To improve the convenience, save PathTargets for
distinct and ordered relations as well.

Author: Antonin Houska, with an additional change by me
Discussion: https://postgr.es/m/10994.1549559088@localhost
2019-02-18 16:13:46 +09:00
Tom Lane 608b167f9f Allow user control of CTE materialization, and change the default behavior.
Historically we've always materialized the full output of a CTE query,
treating WITH as an optimization fence (so that, for example, restrictions
from the outer query cannot be pushed into it).  This is appropriate when
the CTE query is INSERT/UPDATE/DELETE, or is recursive; but when the CTE
query is non-recursive and side-effect-free, there's no hazard of changing
the query results by pushing restrictions down.

Another argument for materialization is that it can avoid duplicate
computation of an expensive WITH query --- but that only applies if
the WITH query is called more than once in the outer query.  Even then
it could still be a net loss, if each call has restrictions that
would allow just a small part of the WITH query to be computed.

Hence, let's change the behavior for WITH queries that are non-recursive
and side-effect-free.  By default, we will inline them into the outer
query (removing the optimization fence) if they are called just once.
If they are called more than once, we will keep the old behavior by
default, but the user can override this and force inlining by specifying
NOT MATERIALIZED.  Lastly, the user can force the old behavior by
specifying MATERIALIZED; this would mainly be useful when the query had
deliberately been employing WITH as an optimization fence to prevent a
poor choice of plan.

Andreas Karlsson, Andrew Gierth, David Fetter

Discussion: https://postgr.es/m/87sh48ffhb.fsf@news-spur.riddles.org.uk
2019-02-16 16:11:12 -05:00
Tom Lane 8fd3fdd85a Simplify the planner's new representation of indexable clauses a little.
In commit 1a8d5afb0, I thought it'd be a good idea to define
IndexClause.indexquals as NIL in the most common case where the given
clause (IndexClause.rinfo) is usable exactly as-is.  It'd be more
consistent to define the indexquals in that case as being a one-element
list containing IndexClause.rinfo, but I thought saving the palloc
overhead for making such a list would be worthwhile.

In hindsight, that was a great example of "premature optimization is the
root of all evil": it's complicated everyplace that needs to deal with
the indexquals, requiring duplicative code to handle both the simple
case and the not-simple case.  I'd initially found that tolerable but
it's getting less so as I mop up some areas that I'd not touched in
1a8d5afb0.  In any case, two more pallocs during a planner run are
surely at the noise level (a conclusion confirmed by a bit of
microbenchmarking).  So let's change this decision before it becomes
set in stone, and insist that IndexClause.indexquals always be a valid
list of the actual index quals for the clause.

Discussion: https://postgr.es/m/24586.1550106354@sss.pgh.pa.us
2019-02-14 19:37:30 -05:00
Michael Paquier 6ea95166a0 Fix comment related to calculation location of total_table_pages
As of commit c6e4133, the calculation happens in make_one_rel() and not
query_planner().

Author: Amit Langote
Discussion: https://postgr.es/m/c7a04a90-42e6-28a4-811a-a7e352831ba1@lab.ntt.co.jp
2019-02-13 16:31:20 +09:00
Tom Lane 75c46149fc Clean up planner confusion between ncolumns and nkeycolumns.
We're only going to consider key columns when creating indexquals,
so there is no point in having the outer loops in indxpath.c iterate
further than nkeycolumns.

Doing so in match_pathkeys_to_index() is actually wrong, and would have
caused crashes by now, except that we have no index AMs supporting both
amcanorderbyop and amcaninclude.

It's also wrong in relation_has_unique_index_for().  The effect there is
to fail to prove uniqueness even when the index does prove it, if there
are extra columns.

Also future-proof examine_variable() for the day when extra columns can
be expressions, and fix what's either a thinko or just an oversight in
btcostestimate(): we should consider the number of key columns, not the
total, when deciding whether to derate correlation.

None of these things seemed important enough to risk changing in a
just-before-wrap patch, but since we're past the release wrap window,
time to fix 'em.

Discussion: https://postgr.es/m/25526.1549847928@sss.pgh.pa.us
2019-02-12 18:38:32 -05:00
Tom Lane 74dfe58a59 Allow extensions to generate lossy index conditions.
For a long time, indxpath.c has had the ability to extract derived (lossy)
index conditions from certain operators such as LIKE.  For just as long,
it's been obvious that we really ought to make that capability available
to extensions.  This commit finally accomplishes that, by adding another
API for planner support functions that lets them create derived index
conditions for their functions.  As proof of concept, the hardwired
"special index operator" code formerly present in indxpath.c is pushed
out to planner support functions attached to LIKE and other relevant
operators.

A weak spot in this design is that an extension needs to know OIDs for
the operators, datatypes, and opfamilies involved in the transformation
it wants to make.  The core-code prototypes use hard-wired OID references
but extensions don't have that option for their own operators etc.  It's
usually possible to look up the required info, but that may be slow and
inconvenient.  However, improving that situation is a separate task.

I want to do some additional refactorization around selfuncs.c, but
that also seems like a separate task.

Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
2019-02-11 21:26:14 -05:00
Tom Lane 6bdc3005b5 Fix indexable-row-comparison logic to account for covering indexes.
indxpath.c needs a good deal more attention for covering indexes than
it's gotten.  But so far as I can tell, the only really awful breakage
is in expand_indexqual_rowcompare (nee adjust_rowcompare_for_index),
which was only half fixed in c266ed31a.  The other problems aren't
bad enough to take the risk of a just-before-wrap fix.

The problem here is that if the leading column of a row comparison
matches an index (allowing this code to be reached), and some later
column doesn't match the index, it'll nonetheless believe that that
column matches the first included index column.  Typically that'll
lead to an error like "operator M is not a member of opfamily N" as
a result of fetching a garbage opfamily OID.  But with enough bad
luck, maybe a broken plan would be generated.

Discussion: https://postgr.es/m/25526.1549847928@sss.pgh.pa.us
2019-02-10 22:51:32 -05:00
Tom Lane a391ff3c3d Build out the planner support function infrastructure.
Add support function requests for estimating the selectivity, cost,
and number of result rows (if a SRF) of the target function.

The lack of a way to estimate selectivity of a boolean-returning
function in WHERE has been a recognized deficiency of the planner
since Berkeley days.  This commit finally fixes it.

In addition, non-constant estimates of cost and number of output
rows are now possible.  We still fall back to looking at procost
and prorows if the support function doesn't service the request,
of course.

To make concrete use of the possibility of estimating output rowcount
for SRFs, this commit adds support functions for array_unnest(anyarray)
and the integer variants of generate_series; the lack of plausible
rowcount estimates for those, even when it's obvious to a human,
has been a repeated subject of complaints.  Obviously, much more
could now be done in this line, but I'm mostly just trying to get
the infrastructure in place.

Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
2019-02-09 18:32:23 -05:00
Tom Lane 1fb57af920 Create the infrastructure for planner support functions.
Rename/repurpose pg_proc.protransform as "prosupport".  The idea is
still that it names an internal function that provides knowledge to
the planner about the behavior of the function it's attached to;
but redesign the API specification so that it's not limited to doing
just one thing, but can support an extensible set of requests.

The original purpose of simplifying a function call is handled by
the first request type to be invented, SupportRequestSimplify.
Adjust all the existing transform functions to handle this API,
and rename them fron "xxx_transform" to "xxx_support" to reflect
the potential generalization of what they do.  (Since we never
previously provided any way for extensions to add transform functions,
this change doesn't create an API break for them.)

Also add DDL and pg_dump support for attaching a support function to a
user-defined function.  Unfortunately, DDL access has to be restricted
to superusers, at least for now; but seeing that support functions
will pretty much have to be written in C, that limitation is just
theoretical.  (This support is untested in this patch, but a follow-on
patch will add cases that exercise it.)

Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
2019-02-09 18:08:48 -05:00
Tom Lane 1a8d5afb0d Refactor the representation of indexable clauses in IndexPaths.
In place of three separate but interrelated lists (indexclauses,
indexquals, and indexqualcols), an IndexPath now has one list
"indexclauses" of IndexClause nodes.  This holds basically the same
information as before, but in a more useful format: in particular, there
is now a clear connection between an indexclause (an original restriction
clause from WHERE or JOIN/ON) and the indexquals (directly usable index
conditions) derived from it.

We also change the ground rules a bit by mandating that clause commutation,
if needed, be done up-front so that what is stored in the indexquals list
is always directly usable as an index condition.  This gets rid of repeated
re-determination of which side of the clause is the indexkey during costing
and plan generation, as well as repeated lookups of the commutator
operator.  To minimize the added up-front cost, the typical case of
commuting a plain OpExpr is handled by a new special-purpose function
commute_restrictinfo().  For RowCompareExprs, generating the new clause
properly commuted to begin with is not really any more complex than before,
it's just different --- and we can save doing that work twice, as the
pretty-klugy original implementation did.

Tracking the connection between original and derived clauses lets us
also track explicitly whether the derived clauses are an exact or lossy
translation of the original.  This provides a cheap solution to getting
rid of unnecessary rechecks of boolean index clauses, which previously
seemed like it'd be more expensive than it was worth.

Another pleasant (IMO) side-effect is that EXPLAIN now always shows
index clauses with the indexkey on the left; this seems less confusing.

This commit leaves expand_indexqual_conditions() and some related
functions in a slightly messy state.  I didn't bother to change them
any more than minimally necessary to work with the new data structure,
because all that code is going to be refactored out of existence in
a follow-on patch.

Discussion: https://postgr.es/m/22182.1549124950@sss.pgh.pa.us
2019-02-09 17:30:43 -05:00
Tom Lane 6401583863 Call set_rel_pathlist_hook before generate_gather_paths, not after.
The previous ordering of these steps satisfied the nominal requirement
that set_rel_pathlist_hook could editorialize on the whole set of Paths
constructed for a base relation.  In practice, though, trying to change
the set of partial paths was impossible.  Adding one didn't work because
(a) it was too late to be included in Gather paths made by the core code,
and (b) calling add_partial_path after generate_gather_paths is unsafe,
because it might try to delete a path it thinks is dominated, but that
is already embedded in some Gather path(s).  Nor could the hook safely
remove partial paths, for the same reason that they might already be
embedded in Gathers.

Better to call extensions first, let them add partial paths as desired,
and then gather.  In v11 and up, we already doubled down on that ordering
by postponing gathering even further for single-relation queries; so even
if the hook wished to editorialize on Gather path construction, it could
not.

Report and patch by KaiGai Kohei.  Back-patch to 9.6 where Gather paths
were added.

Discussion: https://postgr.es/m/CAOP8fzahwpKJRTVVTqo2AE=mDTz_efVzV6Get_0=U3SO+-ha1A@mail.gmail.com
2019-02-09 11:41:09 -05:00
Tom Lane 34ea1ab7fd Split create_foreignscan_path() into three functions.
Up to now postgres_fdw has been using create_foreignscan_path() to
generate not only base-relation paths, but also paths for foreign joins
and foreign upperrels.  This is wrong, because create_foreignscan_path()
calls get_baserel_parampathinfo() which will only do the right thing for
baserels.  It accidentally fails to fail for unparameterized paths, which
are the only ones postgres_fdw (thought it) was handling, but we really
need different APIs for the baserel and join cases.

In HEAD, the best thing to do seems to be to split up the baserel,
joinrel, and upperrel cases into three functions so that they can
have different APIs.  I haven't actually given create_foreign_join_path
a different API in this commit: we should spend a bit of time thinking
about just what we want to do there, since perhaps FDWs would want to
do something different from the build-up-a-join-pairwise approach that
get_joinrel_parampathinfo expects.  In the meantime, since postgres_fdw
isn't prepared to generate parameterized joins anyway, just give it a
defense against trying to plan joins with lateral refs.

In addition (and this is what triggered this whole mess) fix bug #15613
from Srinivasan S A, by teaching file_fdw and postgres_fdw that plain
baserel foreign paths still have outer refs if the relation has
lateral_relids.  Add some assertions in relnode.c to catch future
occurrences of the same error --- in particular, to catch other FDWs
doing that, but also as backstop against core-code mistakes like the
one fixed by commit bdd9a99aa.

Bug #15613 also needs to be fixed in the back branches, but the
appropriate fix will look quite a bit different there, since we don't
want to assume that existing FDWs get the word right away.

Discussion: https://postgr.es/m/15613-092be1be9576c728@postgresql.org
2019-02-07 13:11:12 -05:00
Tom Lane bdd9a99aac Propagate lateral-reference information to indirect descendant relations.
create_lateral_join_info() computes a bunch of information about lateral
references between base relations, and then attempts to propagate those
markings to appendrel children of the original base relations.  But the
original coding neglected the possibility of indirect descendants
(grandchildren etc).  During v11 development we noticed that this was
wrong for partitioned-table cases, but failed to realize that it was just
as wrong for any appendrel.  While the case can't arise for appendrels
derived from traditional table inheritance (because we make a flat
appendrel for that), nested appendrels can arise from nested UNION ALL
subqueries.  Failure to mark the lower-level relations as having lateral
references leads to confusion in add_paths_to_append_rel about whether
unparameterized paths can be built.  It's not very clear whether that
leads to any user-visible misbehavior; the lack of field reports suggests
that it may cause nothing worse than minor cost misestimation.  Still,
it's a bug, and it leads to failures of Asserts that I intend to add
later.

To fix, we need to propagate information from all appendrel parents,
not just those that are RELOPT_BASERELs.  We can still do it in one
pass, if we rely on the append_rel_list to be ordered with ancestor
relationships before descendant ones; add assertions checking that.
While fixing this, we can make a small performance improvement by
traversing the append_rel_list just once instead of separately for
each appendrel parent relation.

Noted while investigating bug #15613, though this patch does not fix
that (which is why I'm not committing the related Asserts yet).

Discussion: https://postgr.es/m/3951.1549403812@sss.pgh.pa.us
2019-02-06 12:45:21 -05:00
Tom Lane 24114e8b4d Remove unnecessary "inline" marker introduced in commit 4be058fe9.
Some of our older buildfarm members bleat about this coding,
along the lines of

prepjointree.c:112: warning: 'get_result_relid' declared inline after being called
prepjointree.c:112: warning: previous declaration of 'get_result_relid' was here

Modern compilers will probably inline this function without being
prompted, so rather than move the function, let's just drop the
marking.
2019-02-04 21:45:39 -05:00
Alvaro Herrera 558d77f20e Renaming for new subscripting mechanism
Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to
introduce a more generic subscription mechanism, which allows
subscripting not only arrays but also other object types such as JSONB.
That functionality is introduced in a largish invasive patch, out of
which this internal renaming patch was extracted.

Author: Dmitry Dolgov
Reviewed-by: Tom Lane, Arthur Zakirov
Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com
2019-02-01 12:50:32 -03:00
Alvaro Herrera 80579f9bb1 Move building of child base quals out into a new function
An upcoming patch which changes how inheritance planning works requires
adding a new function that does a similar job to set_append_rel_size() but
for child target relations.  To save it from having to duplicate the qual
building code, move that to a separate function first.

Here we also change things so that we never attempt to build security quals
after detecting some const false child quals.  We needlessly used to do this
just before we marked the child relation as a dummy rel.

In passing, this also moves the partition pruned check to before the qual
building code.  We don't need to build the child quals before we check if
the partition has been pruned.

Author: David Rowley
Discussion: https://postgr.es/m/CAKJS1f_i+jrrD+if8qC7KPuTAAWsd=dtepgY_7u=P86GDEwm7A@mail.gmail.com
2019-02-01 06:47:49 -03:00
Tom Lane fa2cf164aa Rename nodes/relation.h to nodes/pathnodes.h.
The old name of this file was never a very good indication of what it
was for.  Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.

While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.

Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
2019-01-29 16:49:25 -05:00
Tom Lane f09346a9c6 Refactor planner's header files.
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h.  This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.

The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.

This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match.  There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:48:51 -05:00
Tom Lane a1b8c41e99 Make some small planner API cleanups.
Move a few very simple node-creation and node-type-testing functions
from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs.
There's nothing planner-specific about them, as evidenced by the
number of other places that were using them.

While at it, rename and_clause() etc to is_andclause() etc, to clarify
that they are node-type-testing functions not node-creation functions.
And use "static inline" implementations for the shortest ones.

Also, modify flatten_join_alias_vars() and some subsidiary functions
to take a Query not a PlannerInfo to define the join structure that
Vars should be translated according to.  They were only using the
"parse" field of the PlannerInfo anyway, so this just requires removing
one level of indirection.  The advantage is that now parse_agg.c can
use flatten_join_alias_vars() without the horrid kluge of creating an
incomplete PlannerInfo, which will allow that file to be decoupled from
relation.h in a subsequent patch.

Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
2019-01-29 15:26:44 -05:00
Tom Lane 4be058fe9e In the planner, replace an empty FROM clause with a dummy RTE.
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner.  It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it.  prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer.  We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about.  Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.

For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall.  However testing says that the
penalty is very small, close to the noise level.  In more complex queries,
this is able to find optimizations that we could not find before.

The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before).  To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)

Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.

Patch by me, reviewed by David Rowley and Mark Dilger

Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 17:54:23 -05:00
Tom Lane 18c0da88a5 Split QTW_EXAMINE_RTES flag into QTW_EXAMINE_RTES_BEFORE/_AFTER.
This change allows callers of query_tree_walker() to choose whether
to visit an RTE before or after visiting the contents of the RTE
(i.e., prefix or postfix tree order).  All existing users of
QTW_EXAMINE_RTES want the QTW_EXAMINE_RTES_BEFORE behavior, but
an upcoming patch will want QTW_EXAMINE_RTES_AFTER, and it seems
like a potentially useful change on its own.

Andreas Karlsson (extracted from CTE inlining patch)

Discussion: https://postgr.es/m/8810.1542402910@sss.pgh.pa.us
2019-01-25 17:09:45 -05:00
Peter Eisentraut 7c079d7417 Allow generalized expression syntax for partition bounds
Previously, only literals were allowed.  This change allows general
expressions, including functions calls, which are evaluated at the
time the DDL command is executed.

Besides offering some more functionality, it simplifies the parser
structures and removes some inconsistencies in how the literals were
handled.

Author: Kyotaro Horiguchi, Tom Lane, Amit Langote
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com>
Discussion: https://www.postgresql.org/message-id/flat/9f88b5e0-6da2-5227-20d0-0d7012beaa1c@lab.ntt.co.jp/
2019-01-25 11:28:49 +01:00
Andres Freund 346ed70b0a Rename RelationData.rd_amroutine to rd_indam.
The upcoming table AM support makes rd_amroutine to generic, as its
only about index AMs. The new name makes that clear, and is shorter to
boot.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-01-21 17:36:55 -08:00
Andres Freund e0c4ec0728 Replace uses of heap_open et al with the corresponding table_* function.
Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
2019-01-21 10:51:37 -08:00
Andres Freund 111944c5ee Replace heapam.h includes with {table, relation}.h where applicable.
A lot of files only included heapam.h for relation_open, heap_open etc
- replace the heapam.h include in those files with the narrower
header.

Author: Andres Freund
Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
2019-01-21 10:51:37 -08:00
Etsuro Fujita 8d8dcead12 Postpone generating tlists and EC members for inheritance dummy children.
Previously, in set_append_rel_size(), we generated tlists and EC members
for dummy children for possible use by partition-wise join, even if
partition-wise join was disabled or the top parent was not a partitioned
table, but adding such EC members causes noticeable planning speed
degradation for queries with certain kinds of join quals like
"(foo.x + bar.y) = constant" where foo and bar are partitioned tables in
cases where there are lots of dummy children, as the EC members lists
grow huge, especially for the ECs derived from such join quals, which
makes the search for the parent EC members in add_child_rel_equivalences()
very time-consuming.  Postpone the work until such children are actually
involved in a partition-wise join.

Reported-by: Sanyo Capobiango
Analyzed-by: Justin Pryzby and Alvaro Herrera
Author: Amit Langote, with a few additional changes by me
Reviewed-by: Ashutosh Bapat
Backpatch-through: v11 where partition-wise join was added
Discussion: https://postgr.es/m/CAO698qZnrxoZu7MEtfiJmpmUtz3AVYFVnwzR%2BpqjF%3DrmKBTgpw%40mail.gmail.com
2019-01-21 17:12:40 +09:00
Alvaro Herrera d723f56872 Reorganize planner code moved in b60c397599
It seems modules are better defined like this instead of the original
split.

Per complaints from David Rowley as well as Amit Langote's self review.
Discussion: https://postgr.es/m/CAKJS1f988rsyhwvLgfT-y1UCYUfXDOv67ENQk=v24OxhsZOzZw@mail.gmail.com
2019-01-16 16:27:44 -03:00
Andres Freund 0944ec54de Don't include genam.h from execnodes.h and relscan.h anymore.
This is the genam.h equivalent of 4c850ecec6 (which removed
heapam.h from a lot of other headers).  There's still a few header
includes of genam.h, but not from central headers anymore.

As a few headers are not indirectly included anymore, execnodes.h and
relscan.h need a few additional includes. Some of the depended on
types were replacable by using the underlying structs, but e.g. for
Snapshot in execnodes.h that'd have gotten more invasive than
reasonable in this commit.

Like the aforementioned commit 4c850ecec6, this requires adding new
genam.h includes to a number of backend files, which likely is also
required in a few external projects.

Author: Andres Freund
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
2019-01-14 17:02:12 -08:00
Andres Freund 4c850ecec6 Don't include heapam.h from others headers.
heapam.h previously was included in a number of widely used
headers (e.g. execnodes.h, indirectly in executor.h, ...). That's
problematic on its own, as heapam.h contains a lot of low-level
details that don't need to be exposed that widely, but becomes more
problematic with the upcoming introduction of pluggable table storage
- it seems inappropriate for heapam.h to be included that widely
afterwards.

heapam.h was largely only included in other headers to get the
HeapScanDesc typedef (which was defined in heapam.h, even though
HeapScanDescData is defined in relscan.h). The better solution here
seems to be to just use the underlying struct (forward declared where
necessary). Similar for BulkInsertState.

Another problem was that LockTupleMode was used in executor.h - parts
of the file tried to cope without heapam.h, but due to the fact that
it indirectly included it, several subsequent violations of that goal
were not not noticed. We could just reuse the approach of declaring
parameters as int, but it seems nicer to move LockTupleMode to
lockoptions.h - that's not a perfect location, but also doesn't seem
bad.

As a number of files relied on implicitly included heapam.h, a
significant number of files grew an explicit include. It's quite
probably that a few external projects will need to do the same.

Author: Andres Freund
Reviewed-By: Alvaro Herrera
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
2019-01-14 16:24:41 -08:00
Andres Freund 1845ca2cfd Remove heapam.h include made superfluous by b60c397599.
Noticed this while working on another patch.

Author: Andres Freund
2019-01-12 22:27:35 -08:00
Tom Lane 1db5667bac Avoid sharing PARAM_EXEC slots between different levels of NestLoop.
Up to now, createplan.c attempted to share PARAM_EXEC slots for
NestLoopParams across different plan levels, if the same underlying Var
was being fed down to different righthand-side subplan trees by different
NestLoops.  This was, I think, more of an artifact of using subselect.c's
PlannerParamItem infrastructure than an explicit design goal, but anyway
that was the end result.

This works well enough as long as the plan tree is executing synchronously,
but the feature whereby Gather can execute the parallelized subplan locally
breaks it.  An upper NestLoop node might execute for a row retrieved from
a parallel worker, and assign a value for a PARAM_EXEC slot from that row,
while the leader's copy of the parallelized subplan is suspended with a
different active value of the row the Var comes from.  When control
eventually returns to the leader's subplan, it gets the wrong answers if
the same PARAM_EXEC slot is being used within the subplan, as reported
in bug #15577 from Bartosz Polnik.

This is pretty reminiscent of the problem fixed in commit 46c508fbc, and
the proper fix seems to be the same: don't try to share PARAM_EXEC slots
across different levels of controlling NestLoop nodes.

This requires decoupling NestLoopParam handling from PlannerParamItem
handling, although the logic remains somewhat similar.  To avoid bizarre
division of labor between subselect.c and createplan.c, I decided to move
all the param-slot-assignment logic for both cases out of those files
and put it into a new file paramassign.c.  Hopefully it's a bit better
documented now, too.

A regression test case for this might be nice, but we don't know a
test case that triggers the problem with a suitably small amount
of data.

Back-patch to 9.6 where we added Gather nodes.  It's conceivable that
related problems exist in older branches; but without some evidence
for that, I'll leave the older branches alone.

Discussion: https://postgr.es/m/15577-ca61ab18904af852@postgresql.org
2019-01-11 15:54:06 -05:00
Tom Lane eaf0380ecc Fix C++ compile failures in headers.
Avoid using "typeid" as a parameter name in header files, since that
is a C++ keyword.  These cases were introduced recently, in 04fe805a1
and 586b98fdf.

Since I'm an incurable neatnik, also rename these parameters in the
underlying function definitions.  That's not really necessary per
project rules, but I don't like function declarations that don't
quite agree with the underlying definitions.

Per src/tools/pginclude/cpluspluscheck.
2019-01-10 14:07:01 -05:00
Alvaro Herrera b60c397599 Move inheritance expansion code into its own file
This commit moves expand_inherited_tables and underlings from
optimizer/prep/prepunionc.c to optimizer/utils/inherit.c.
Also, all of the AppendRelInfo-based expression manipulation routines
are moved to optimizer/utils/appendinfo.c.

No functional code changes.  One exception is the introduction of
make_append_rel_info, but that's still just moving around code.

Also, stop including <limits.h> in prepunion.c, which no longer needs
it since 3fc6e2d7f5.  I (Álvaro) noticed this because Amit was copying
that to inherit.c, which likewise doesn't need it.

Author: Amit Langote
Discussion: https://postgr.es/m/3be67028-a00a-502c-199a-da00eec8fb6e@lab.ntt.co.jp
2019-01-10 14:54:31 -03:00
Tom Lane 68a13f28be Don't believe MinMaxExpr is leakproof without checking.
MinMaxExpr invokes the btree comparison function for its input datatype,
so it's only leakproof if that function is.  Many such functions are
indeed leakproof, but others are not, and we should not just assume that
they are.  Hence, adjust contain_leaked_vars to verify the leakproofness
of the referenced function explicitly.

I didn't add a regression test because it would need to depend on
some particular comparison function being leaky, and that's a moving
target, per discussion.

This has been wrong all along, so back-patch to supported branches.

Discussion: https://postgr.es/m/31042.1546194242@sss.pgh.pa.us
2019-01-02 16:34:04 -05:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Tom Lane b2edbbd02d Fix oversight in commit b5415e3c21.
While rearranging code in tidpath.c, I overlooked the fact that we ought
to check restriction_is_securely_promotable when trying to use a join
clause as a TID qual.  Since tideq itself is leakproof, this wouldn't
really allow any interesting leak AFAICT, but it still seems like we
had better check it.

For consistency with the corresponding logic in indxpath.c, also
check rinfo->pseudoconstant.  I'm not sure right now that it's
possible for that to be set in a join clause, but if it were,
a match couldn't be made anyway.
2018-12-31 12:39:15 -05:00