postgresql/src/backend/access/transam/xlog.c

8976 lines
285 KiB
C

/*-------------------------------------------------------------------------
*
* xlog.c
* PostgreSQL write-ahead log manager
*
* The Write-Ahead Log (WAL) functionality is split into several source
* files, in addition to this one:
*
* xloginsert.c - Functions for constructing WAL records
* xlogrecovery.c - WAL recovery and standby code
* xlogreader.c - Facility for reading WAL files and parsing WAL records
* xlogutils.c - Helper functions for WAL redo routines
*
* This file contains functions for coordinating database startup and
* checkpointing, and managing the write-ahead log buffers when the
* system is running.
*
* StartupXLOG() is the main entry point of the startup process. It
* coordinates database startup, performing WAL recovery, and the
* transition from WAL recovery into normal operations.
*
* XLogInsertRecord() inserts a WAL record into the WAL buffers. Most
* callers should not call this directly, but use the functions in
* xloginsert.c to construct the WAL record. XLogFlush() can be used
* to force the WAL to disk.
*
* In addition to those, there are many other functions for interrogating
* the current system state, and for starting/stopping backups.
*
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/backend/access/transam/xlog.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include <math.h>
#include <time.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <unistd.h>
#include "access/clog.h"
#include "access/commit_ts.h"
#include "access/heaptoast.h"
#include "access/multixact.h"
#include "access/rewriteheap.h"
#include "access/subtrans.h"
#include "access/timeline.h"
#include "access/transam.h"
#include "access/twophase.h"
#include "access/xact.h"
#include "access/xlog_internal.h"
#include "access/xlogarchive.h"
#include "access/xloginsert.h"
#include "access/xlogprefetcher.h"
#include "access/xlogreader.h"
#include "access/xlogrecovery.h"
#include "access/xlogutils.h"
#include "backup/basebackup.h"
#include "catalog/catversion.h"
#include "catalog/pg_control.h"
#include "catalog/pg_database.h"
#include "common/controldata_utils.h"
#include "common/file_utils.h"
#include "executor/instrument.h"
#include "miscadmin.h"
#include "pg_trace.h"
#include "pgstat.h"
#include "port/atomics.h"
#include "port/pg_iovec.h"
#include "postmaster/bgwriter.h"
#include "postmaster/startup.h"
#include "postmaster/walwriter.h"
#include "replication/logical.h"
#include "replication/origin.h"
#include "replication/slot.h"
#include "replication/snapbuild.h"
#include "replication/walreceiver.h"
#include "replication/walsender.h"
#include "storage/bufmgr.h"
#include "storage/fd.h"
#include "storage/ipc.h"
#include "storage/large_object.h"
#include "storage/latch.h"
#include "storage/pmsignal.h"
#include "storage/predicate.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "storage/reinit.h"
#include "storage/smgr.h"
#include "storage/spin.h"
#include "storage/sync.h"
#include "utils/guc_hooks.h"
#include "utils/guc_tables.h"
#include "utils/memutils.h"
#include "utils/ps_status.h"
#include "utils/relmapper.h"
#include "utils/pg_rusage.h"
#include "utils/snapmgr.h"
#include "utils/timeout.h"
#include "utils/timestamp.h"
#include "utils/varlena.h"
extern uint32 bootstrap_data_checksum_version;
/* timeline ID to be used when bootstrapping */
#define BootstrapTimeLineID 1
/* User-settable parameters */
int max_wal_size_mb = 1024; /* 1 GB */
int min_wal_size_mb = 80; /* 80 MB */
int wal_keep_size_mb = 0;
int XLOGbuffers = -1;
int XLogArchiveTimeout = 0;
int XLogArchiveMode = ARCHIVE_MODE_OFF;
char *XLogArchiveCommand = NULL;
bool EnableHotStandby = false;
bool fullPageWrites = true;
bool wal_log_hints = false;
int wal_compression = WAL_COMPRESSION_NONE;
char *wal_consistency_checking_string = NULL;
bool *wal_consistency_checking = NULL;
bool wal_init_zero = true;
bool wal_recycle = true;
bool log_checkpoints = true;
int sync_method = DEFAULT_SYNC_METHOD;
int wal_level = WAL_LEVEL_REPLICA;
int CommitDelay = 0; /* precommit delay in microseconds */
int CommitSiblings = 5; /* # concurrent xacts needed to sleep */
int wal_retrieve_retry_interval = 5000;
int max_slot_wal_keep_size_mb = -1;
int wal_decode_buffer_size = 512 * 1024;
bool track_wal_io_timing = false;
#ifdef WAL_DEBUG
bool XLOG_DEBUG = false;
#endif
int wal_segment_size = DEFAULT_XLOG_SEG_SIZE;
/*
* Number of WAL insertion locks to use. A higher value allows more insertions
* to happen concurrently, but adds some CPU overhead to flushing the WAL,
* which needs to iterate all the locks.
*/
#define NUM_XLOGINSERT_LOCKS 8
/*
* Max distance from last checkpoint, before triggering a new xlog-based
* checkpoint.
*/
int CheckPointSegments;
/* Estimated distance between checkpoints, in bytes */
static double CheckPointDistanceEstimate = 0;
static double PrevCheckPointDistance = 0;
/*
* Track whether there were any deferred checks for custom resource managers
* specified in wal_consistency_checking.
*/
static bool check_wal_consistency_checking_deferred = false;
/*
* GUC support
*/
const struct config_enum_entry sync_method_options[] = {
{"fsync", SYNC_METHOD_FSYNC, false},
#ifdef HAVE_FSYNC_WRITETHROUGH
{"fsync_writethrough", SYNC_METHOD_FSYNC_WRITETHROUGH, false},
#endif
{"fdatasync", SYNC_METHOD_FDATASYNC, false},
#ifdef O_SYNC
{"open_sync", SYNC_METHOD_OPEN, false},
#endif
#ifdef O_DSYNC
{"open_datasync", SYNC_METHOD_OPEN_DSYNC, false},
#endif
{NULL, 0, false}
};
/*
* Although only "on", "off", and "always" are documented,
* we accept all the likely variants of "on" and "off".
*/
const struct config_enum_entry archive_mode_options[] = {
{"always", ARCHIVE_MODE_ALWAYS, false},
{"on", ARCHIVE_MODE_ON, false},
{"off", ARCHIVE_MODE_OFF, false},
{"true", ARCHIVE_MODE_ON, true},
{"false", ARCHIVE_MODE_OFF, true},
{"yes", ARCHIVE_MODE_ON, true},
{"no", ARCHIVE_MODE_OFF, true},
{"1", ARCHIVE_MODE_ON, true},
{"0", ARCHIVE_MODE_OFF, true},
{NULL, 0, false}
};
/*
* Statistics for current checkpoint are collected in this global struct.
* Because only the checkpointer or a stand-alone backend can perform
* checkpoints, this will be unused in normal backends.
*/
CheckpointStatsData CheckpointStats;
/*
* During recovery, lastFullPageWrites keeps track of full_page_writes that
* the replayed WAL records indicate. It's initialized with full_page_writes
* that the recovery starting checkpoint record indicates, and then updated
* each time XLOG_FPW_CHANGE record is replayed.
*/
static bool lastFullPageWrites;
/*
* Local copy of the state tracked by SharedRecoveryState in shared memory,
* It is false if SharedRecoveryState is RECOVERY_STATE_DONE. True actually
* means "not known, need to check the shared state".
*/
static bool LocalRecoveryInProgress = true;
/*
* Local state for XLogInsertAllowed():
* 1: unconditionally allowed to insert XLOG
* 0: unconditionally not allowed to insert XLOG
* -1: must check RecoveryInProgress(); disallow until it is false
* Most processes start with -1 and transition to 1 after seeing that recovery
* is not in progress. But we can also force the value for special cases.
* The coding in XLogInsertAllowed() depends on the first two of these states
* being numerically the same as bool true and false.
*/
static int LocalXLogInsertAllowed = -1;
/*
* ProcLastRecPtr points to the start of the last XLOG record inserted by the
* current backend. It is updated for all inserts. XactLastRecEnd points to
* end+1 of the last record, and is reset when we end a top-level transaction,
* or start a new one; so it can be used to tell if the current transaction has
* created any XLOG records.
*
* While in parallel mode, this may not be fully up to date. When committing,
* a transaction can assume this covers all xlog records written either by the
* user backend or by any parallel worker which was present at any point during
* the transaction. But when aborting, or when still in parallel mode, other
* parallel backends may have written WAL records at later LSNs than the value
* stored here. The parallel leader advances its own copy, when necessary,
* in WaitForParallelWorkersToFinish.
*/
XLogRecPtr ProcLastRecPtr = InvalidXLogRecPtr;
XLogRecPtr XactLastRecEnd = InvalidXLogRecPtr;
XLogRecPtr XactLastCommitEnd = InvalidXLogRecPtr;
/*
* RedoRecPtr is this backend's local copy of the REDO record pointer
* (which is almost but not quite the same as a pointer to the most recent
* CHECKPOINT record). We update this from the shared-memory copy,
* XLogCtl->Insert.RedoRecPtr, whenever we can safely do so (ie, when we
* hold an insertion lock). See XLogInsertRecord for details. We are also
* allowed to update from XLogCtl->RedoRecPtr if we hold the info_lck;
* see GetRedoRecPtr.
*
* NB: Code that uses this variable must be prepared not only for the
* possibility that it may be arbitrarily out of date, but also for the
* possibility that it might be set to InvalidXLogRecPtr. We used to
* initialize it as a side effect of the first call to RecoveryInProgress(),
* which meant that most code that might use it could assume that it had a
* real if perhaps stale value. That's no longer the case.
*/
static XLogRecPtr RedoRecPtr;
/*
* doPageWrites is this backend's local copy of (fullPageWrites ||
* runningBackups > 0). It is used together with RedoRecPtr to decide whether
* a full-page image of a page need to be taken.
*
* NB: Initially this is false, and there's no guarantee that it will be
* initialized to any other value before it is first used. Any code that
* makes use of it must recheck the value after obtaining a WALInsertLock,
* and respond appropriately if it turns out that the previous value wasn't
* accurate.
*/
static bool doPageWrites;
/*----------
* Shared-memory data structures for XLOG control
*
* LogwrtRqst indicates a byte position that we need to write and/or fsync
* the log up to (all records before that point must be written or fsynced).
* LogwrtResult indicates the byte positions we have already written/fsynced.
* These structs are identical but are declared separately to indicate their
* slightly different functions.
*
* To read XLogCtl->LogwrtResult, you must hold either info_lck or
* WALWriteLock. To update it, you need to hold both locks. The point of
* this arrangement is that the value can be examined by code that already
* holds WALWriteLock without needing to grab info_lck as well. In addition
* to the shared variable, each backend has a private copy of LogwrtResult,
* which is updated when convenient.
*
* The request bookkeeping is simpler: there is a shared XLogCtl->LogwrtRqst
* (protected by info_lck), but we don't need to cache any copies of it.
*
* info_lck is only held long enough to read/update the protected variables,
* so it's a plain spinlock. The other locks are held longer (potentially
* over I/O operations), so we use LWLocks for them. These locks are:
*
* WALBufMappingLock: must be held to replace a page in the WAL buffer cache.
* It is only held while initializing and changing the mapping. If the
* contents of the buffer being replaced haven't been written yet, the mapping
* lock is released while the write is done, and reacquired afterwards.
*
* WALWriteLock: must be held to write WAL buffers to disk (XLogWrite or
* XLogFlush).
*
* ControlFileLock: must be held to read/update control file or create
* new log file.
*
*----------
*/
typedef struct XLogwrtRqst
{
XLogRecPtr Write; /* last byte + 1 to write out */
XLogRecPtr Flush; /* last byte + 1 to flush */
} XLogwrtRqst;
typedef struct XLogwrtResult
{
XLogRecPtr Write; /* last byte + 1 written out */
XLogRecPtr Flush; /* last byte + 1 flushed */
} XLogwrtResult;
/*
* Inserting to WAL is protected by a small fixed number of WAL insertion
* locks. To insert to the WAL, you must hold one of the locks - it doesn't
* matter which one. To lock out other concurrent insertions, you must hold
* of them. Each WAL insertion lock consists of a lightweight lock, plus an
* indicator of how far the insertion has progressed (insertingAt).
*
* The insertingAt values are read when a process wants to flush WAL from
* the in-memory buffers to disk, to check that all the insertions to the
* region the process is about to write out have finished. You could simply
* wait for all currently in-progress insertions to finish, but the
* insertingAt indicator allows you to ignore insertions to later in the WAL,
* so that you only wait for the insertions that are modifying the buffers
* you're about to write out.
*
* This isn't just an optimization. If all the WAL buffers are dirty, an
* inserter that's holding a WAL insert lock might need to evict an old WAL
* buffer, which requires flushing the WAL. If it's possible for an inserter
* to block on another inserter unnecessarily, deadlock can arise when two
* inserters holding a WAL insert lock wait for each other to finish their
* insertion.
*
* Small WAL records that don't cross a page boundary never update the value,
* the WAL record is just copied to the page and the lock is released. But
* to avoid the deadlock-scenario explained above, the indicator is always
* updated before sleeping while holding an insertion lock.
*
* lastImportantAt contains the LSN of the last important WAL record inserted
* using a given lock. This value is used to detect if there has been
* important WAL activity since the last time some action, like a checkpoint,
* was performed - allowing to not repeat the action if not. The LSN is
* updated for all insertions, unless the XLOG_MARK_UNIMPORTANT flag was
* set. lastImportantAt is never cleared, only overwritten by the LSN of newer
* records. Tracking the WAL activity directly in WALInsertLock has the
* advantage of not needing any additional locks to update the value.
*/
typedef struct
{
LWLock lock;
XLogRecPtr insertingAt;
XLogRecPtr lastImportantAt;
} WALInsertLock;
/*
* All the WAL insertion locks are allocated as an array in shared memory. We
* force the array stride to be a power of 2, which saves a few cycles in
* indexing, but more importantly also ensures that individual slots don't
* cross cache line boundaries. (Of course, we have to also ensure that the
* array start address is suitably aligned.)
*/
typedef union WALInsertLockPadded
{
WALInsertLock l;
char pad[PG_CACHE_LINE_SIZE];
} WALInsertLockPadded;
/*
* Session status of running backup, used for sanity checks in SQL-callable
* functions to start and stop backups.
*/
static SessionBackupState sessionBackupState = SESSION_BACKUP_NONE;
/*
* Shared state data for WAL insertion.
*/
typedef struct XLogCtlInsert
{
slock_t insertpos_lck; /* protects CurrBytePos and PrevBytePos */
/*
* CurrBytePos is the end of reserved WAL. The next record will be
* inserted at that position. PrevBytePos is the start position of the
* previously inserted (or rather, reserved) record - it is copied to the
* prev-link of the next record. These are stored as "usable byte
* positions" rather than XLogRecPtrs (see XLogBytePosToRecPtr()).
*/
uint64 CurrBytePos;
uint64 PrevBytePos;
/*
* Make sure the above heavily-contended spinlock and byte positions are
* on their own cache line. In particular, the RedoRecPtr and full page
* write variables below should be on a different cache line. They are
* read on every WAL insertion, but updated rarely, and we don't want
* those reads to steal the cache line containing Curr/PrevBytePos.
*/
char pad[PG_CACHE_LINE_SIZE];
/*
* fullPageWrites is the authoritative value used by all backends to
* determine whether to write full-page image to WAL. This shared value,
* instead of the process-local fullPageWrites, is required because, when
* full_page_writes is changed by SIGHUP, we must WAL-log it before it
* actually affects WAL-logging by backends. Checkpointer sets at startup
* or after SIGHUP.
*
* To read these fields, you must hold an insertion lock. To modify them,
* you must hold ALL the locks.
*/
XLogRecPtr RedoRecPtr; /* current redo point for insertions */
bool fullPageWrites;
/*
* runningBackups is a counter indicating the number of backups currently
* in progress. lastBackupStart is the latest checkpoint redo location
* used as a starting point for an online backup.
*/
int runningBackups;
XLogRecPtr lastBackupStart;
/*
* WAL insertion locks.
*/
WALInsertLockPadded *WALInsertLocks;
} XLogCtlInsert;
/*
* Total shared-memory state for XLOG.
*/
typedef struct XLogCtlData
{
XLogCtlInsert Insert;
/* Protected by info_lck: */
XLogwrtRqst LogwrtRqst;
XLogRecPtr RedoRecPtr; /* a recent copy of Insert->RedoRecPtr */
FullTransactionId ckptFullXid; /* nextXid of latest checkpoint */
XLogRecPtr asyncXactLSN; /* LSN of newest async commit/abort */
XLogRecPtr replicationSlotMinLSN; /* oldest LSN needed by any slot */
XLogSegNo lastRemovedSegNo; /* latest removed/recycled XLOG segment */
/* Fake LSN counter, for unlogged relations. Protected by ulsn_lck. */
XLogRecPtr unloggedLSN;
slock_t ulsn_lck;
/* Time and LSN of last xlog segment switch. Protected by WALWriteLock. */
pg_time_t lastSegSwitchTime;
XLogRecPtr lastSegSwitchLSN;
/*
* Protected by info_lck and WALWriteLock (you must hold either lock to
* read it, but both to update)
*/
XLogwrtResult LogwrtResult;
/*
* Latest initialized page in the cache (last byte position + 1).
*
* To change the identity of a buffer (and InitializedUpTo), you need to
* hold WALBufMappingLock. To change the identity of a buffer that's
* still dirty, the old page needs to be written out first, and for that
* you need WALWriteLock, and you need to ensure that there are no
* in-progress insertions to the page by calling
* WaitXLogInsertionsToFinish().
*/
XLogRecPtr InitializedUpTo;
/*
* These values do not change after startup, although the pointed-to pages
* and xlblocks values certainly do. xlblocks values are protected by
* WALBufMappingLock.
*/
char *pages; /* buffers for unwritten XLOG pages */
XLogRecPtr *xlblocks; /* 1st byte ptr-s + XLOG_BLCKSZ */
int XLogCacheBlck; /* highest allocated xlog buffer index */
/*
* InsertTimeLineID is the timeline into which new WAL is being inserted
* and flushed. It is zero during recovery, and does not change once set.
*
* If we create a new timeline when the system was started up,
* PrevTimeLineID is the old timeline's ID that we forked off from.
* Otherwise it's equal to InsertTimeLineID.
*/
TimeLineID InsertTimeLineID;
TimeLineID PrevTimeLineID;
/*
* SharedRecoveryState indicates if we're still in crash or archive
* recovery. Protected by info_lck.
*/
RecoveryState SharedRecoveryState;
/*
* InstallXLogFileSegmentActive indicates whether the checkpointer should
* arrange for future segments by recycling and/or PreallocXlogFiles().
* Protected by ControlFileLock. Only the startup process changes it. If
* true, anyone can use InstallXLogFileSegment(). If false, the startup
* process owns the exclusive right to install segments, by reading from
* the archive and possibly replacing existing files.
*/
bool InstallXLogFileSegmentActive;
/*
* WalWriterSleeping indicates whether the WAL writer is currently in
* low-power mode (and hence should be nudged if an async commit occurs).
* Protected by info_lck.
*/
bool WalWriterSleeping;
/*
* During recovery, we keep a copy of the latest checkpoint record here.
* lastCheckPointRecPtr points to start of checkpoint record and
* lastCheckPointEndPtr points to end+1 of checkpoint record. Used by the
* checkpointer when it wants to create a restartpoint.
*
* Protected by info_lck.
*/
XLogRecPtr lastCheckPointRecPtr;
XLogRecPtr lastCheckPointEndPtr;
CheckPoint lastCheckPoint;
/*
* lastFpwDisableRecPtr points to the start of the last replayed
* XLOG_FPW_CHANGE record that instructs full_page_writes is disabled.
*/
XLogRecPtr lastFpwDisableRecPtr;
slock_t info_lck; /* locks shared variables shown above */
} XLogCtlData;
static XLogCtlData *XLogCtl = NULL;
/* a private copy of XLogCtl->Insert.WALInsertLocks, for convenience */
static WALInsertLockPadded *WALInsertLocks = NULL;
/*
* We maintain an image of pg_control in shared memory.
*/
static ControlFileData *ControlFile = NULL;
/*
* Calculate the amount of space left on the page after 'endptr'. Beware
* multiple evaluation!
*/
#define INSERT_FREESPACE(endptr) \
(((endptr) % XLOG_BLCKSZ == 0) ? 0 : (XLOG_BLCKSZ - (endptr) % XLOG_BLCKSZ))
/* Macro to advance to next buffer index. */
#define NextBufIdx(idx) \
(((idx) == XLogCtl->XLogCacheBlck) ? 0 : ((idx) + 1))
/*
* XLogRecPtrToBufIdx returns the index of the WAL buffer that holds, or
* would hold if it was in cache, the page containing 'recptr'.
*/
#define XLogRecPtrToBufIdx(recptr) \
(((recptr) / XLOG_BLCKSZ) % (XLogCtl->XLogCacheBlck + 1))
/*
* These are the number of bytes in a WAL page usable for WAL data.
*/
#define UsableBytesInPage (XLOG_BLCKSZ - SizeOfXLogShortPHD)
/*
* Convert values of GUCs measured in megabytes to equiv. segment count.
* Rounds down.
*/
#define ConvertToXSegs(x, segsize) XLogMBVarToSegs((x), (segsize))
/* The number of bytes in a WAL segment usable for WAL data. */
static int UsableBytesInSegment;
/*
* Private, possibly out-of-date copy of shared LogwrtResult.
* See discussion above.
*/
static XLogwrtResult LogwrtResult = {0, 0};
/*
* openLogFile is -1 or a kernel FD for an open log file segment.
* openLogSegNo identifies the segment, and openLogTLI the corresponding TLI.
* These variables are only used to write the XLOG, and so will normally refer
* to the active segment.
*
* Note: call Reserve/ReleaseExternalFD to track consumption of this FD.
*/
static int openLogFile = -1;
static XLogSegNo openLogSegNo = 0;
static TimeLineID openLogTLI = 0;
/*
* Local copies of equivalent fields in the control file. When running
* crash recovery, LocalMinRecoveryPoint is set to InvalidXLogRecPtr as we
* expect to replay all the WAL available, and updateMinRecoveryPoint is
* switched to false to prevent any updates while replaying records.
* Those values are kept consistent as long as crash recovery runs.
*/
static XLogRecPtr LocalMinRecoveryPoint;
static TimeLineID LocalMinRecoveryPointTLI;
static bool updateMinRecoveryPoint = true;
/* For WALInsertLockAcquire/Release functions */
static int MyLockNo = 0;
static bool holdingAllLocks = false;
#ifdef WAL_DEBUG
static MemoryContext walDebugCxt = NULL;
#endif
static void CleanupAfterArchiveRecovery(TimeLineID EndOfLogTLI,
XLogRecPtr EndOfLog,
TimeLineID newTLI);
static void CheckRequiredParameterValues(void);
static void XLogReportParameters(void);
static int LocalSetXLogInsertAllowed(void);
static void CreateEndOfRecoveryRecord(void);
static XLogRecPtr CreateOverwriteContrecordRecord(XLogRecPtr aborted_lsn,
XLogRecPtr pagePtr,
TimeLineID newTLI);
static void CheckPointGuts(XLogRecPtr checkPointRedo, int flags);
static void KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo);
static XLogRecPtr XLogGetReplicationSlotMinimumLSN(void);
static void AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli,
bool opportunistic);
static void XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible);
static bool InstallXLogFileSegment(XLogSegNo *segno, char *tmppath,
bool find_free, XLogSegNo max_segno,
TimeLineID tli);
static void XLogFileClose(void);
static void PreallocXlogFiles(XLogRecPtr endptr, TimeLineID tli);
static void RemoveTempXlogFiles(void);
static void RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr lastredoptr,
XLogRecPtr endptr, TimeLineID insertTLI);
static void RemoveXlogFile(const struct dirent *segment_de,
XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo,
TimeLineID insertTLI);
static void UpdateLastRemovedPtr(char *filename);
static void ValidateXLOGDirectoryStructure(void);
static void CleanupBackupHistory(void);
static void UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force);
static bool PerformRecoveryXLogAction(void);
static void InitControlFile(uint64 sysidentifier);
static void WriteControlFile(void);
static void ReadControlFile(void);
static void UpdateControlFile(void);
static char *str_time(pg_time_t tnow);
static int get_sync_bit(int method);
static void CopyXLogRecordToWAL(int write_len, bool isLogSwitch,
XLogRecData *rdata,
XLogRecPtr StartPos, XLogRecPtr EndPos,
TimeLineID tli);
static void ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos,
XLogRecPtr *EndPos, XLogRecPtr *PrevPtr);
static bool ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos,
XLogRecPtr *PrevPtr);
static XLogRecPtr WaitXLogInsertionsToFinish(XLogRecPtr upto);
static char *GetXLogBuffer(XLogRecPtr ptr, TimeLineID tli);
static XLogRecPtr XLogBytePosToRecPtr(uint64 bytepos);
static XLogRecPtr XLogBytePosToEndRecPtr(uint64 bytepos);
static uint64 XLogRecPtrToBytePos(XLogRecPtr ptr);
static void WALInsertLockAcquire(void);
static void WALInsertLockAcquireExclusive(void);
static void WALInsertLockRelease(void);
static void WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt);
/*
* Insert an XLOG record represented by an already-constructed chain of data
* chunks. This is a low-level routine; to construct the WAL record header
* and data, use the higher-level routines in xloginsert.c.
*
* If 'fpw_lsn' is valid, it is the oldest LSN among the pages that this
* WAL record applies to, that were not included in the record as full page
* images. If fpw_lsn <= RedoRecPtr, the function does not perform the
* insertion and returns InvalidXLogRecPtr. The caller can then recalculate
* which pages need a full-page image, and retry. If fpw_lsn is invalid, the
* record is always inserted.
*
* 'flags' gives more in-depth control on the record being inserted. See
* XLogSetRecordFlags() for details.
*
* 'topxid_included' tells whether the top-transaction id is logged along with
* current subtransaction. See XLogRecordAssemble().
*
* The first XLogRecData in the chain must be for the record header, and its
* data must be MAXALIGNed. XLogInsertRecord fills in the xl_prev and
* xl_crc fields in the header, the rest of the header must already be filled
* by the caller.
*
* Returns XLOG pointer to end of record (beginning of next record).
* This can be used as LSN for data pages affected by the logged action.
* (LSN is the XLOG point up to which the XLOG must be flushed to disk
* before the data page can be written out. This implements the basic
* WAL rule "write the log before the data".)
*/
XLogRecPtr
XLogInsertRecord(XLogRecData *rdata,
XLogRecPtr fpw_lsn,
uint8 flags,
int num_fpi,
bool topxid_included)
{
XLogCtlInsert *Insert = &XLogCtl->Insert;
pg_crc32c rdata_crc;
bool inserted;
XLogRecord *rechdr = (XLogRecord *) rdata->data;
uint8 info = rechdr->xl_info & ~XLR_INFO_MASK;
bool isLogSwitch = (rechdr->xl_rmid == RM_XLOG_ID &&
info == XLOG_SWITCH);
XLogRecPtr StartPos;
XLogRecPtr EndPos;
bool prevDoPageWrites = doPageWrites;
TimeLineID insertTLI;
/* we assume that all of the record header is in the first chunk */
Assert(rdata->len >= SizeOfXLogRecord);
/* cross-check on whether we should be here or not */
if (!XLogInsertAllowed())
elog(ERROR, "cannot make new WAL entries during recovery");
/*
* Given that we're not in recovery, InsertTimeLineID is set and can't
* change, so we can read it without a lock.
*/
insertTLI = XLogCtl->InsertTimeLineID;
/*----------
*
* We have now done all the preparatory work we can without holding a
* lock or modifying shared state. From here on, inserting the new WAL
* record to the shared WAL buffer cache is a two-step process:
*
* 1. Reserve the right amount of space from the WAL. The current head of
* reserved space is kept in Insert->CurrBytePos, and is protected by
* insertpos_lck.
*
* 2. Copy the record to the reserved WAL space. This involves finding the
* correct WAL buffer containing the reserved space, and copying the
* record in place. This can be done concurrently in multiple processes.
*
* To keep track of which insertions are still in-progress, each concurrent
* inserter acquires an insertion lock. In addition to just indicating that
* an insertion is in progress, the lock tells others how far the inserter
* has progressed. There is a small fixed number of insertion locks,
* determined by NUM_XLOGINSERT_LOCKS. When an inserter crosses a page
* boundary, it updates the value stored in the lock to the how far it has
* inserted, to allow the previous buffer to be flushed.
*
* Holding onto an insertion lock also protects RedoRecPtr and
* fullPageWrites from changing until the insertion is finished.
*
* Step 2 can usually be done completely in parallel. If the required WAL
* page is not initialized yet, you have to grab WALBufMappingLock to
* initialize it, but the WAL writer tries to do that ahead of insertions
* to avoid that from happening in the critical path.
*
*----------
*/
START_CRIT_SECTION();
if (isLogSwitch)
WALInsertLockAcquireExclusive();
else
WALInsertLockAcquire();
/*
* Check to see if my copy of RedoRecPtr is out of date. If so, may have
* to go back and have the caller recompute everything. This can only
* happen just after a checkpoint, so it's better to be slow in this case
* and fast otherwise.
*
* Also check to see if fullPageWrites was just turned on or there's a
* running backup (which forces full-page writes); if we weren't already
* doing full-page writes then go back and recompute.
*
* If we aren't doing full-page writes then RedoRecPtr doesn't actually
* affect the contents of the XLOG record, so we'll update our local copy
* but not force a recomputation. (If doPageWrites was just turned off,
* we could recompute the record without full pages, but we choose not to
* bother.)
*/
if (RedoRecPtr != Insert->RedoRecPtr)
{
Assert(RedoRecPtr < Insert->RedoRecPtr);
RedoRecPtr = Insert->RedoRecPtr;
}
doPageWrites = (Insert->fullPageWrites || Insert->runningBackups > 0);
if (doPageWrites &&
(!prevDoPageWrites ||
(fpw_lsn != InvalidXLogRecPtr && fpw_lsn <= RedoRecPtr)))
{
/*
* Oops, some buffer now needs to be backed up that the caller didn't
* back up. Start over.
*/
WALInsertLockRelease();
END_CRIT_SECTION();
return InvalidXLogRecPtr;
}
/*
* Reserve space for the record in the WAL. This also sets the xl_prev
* pointer.
*/
if (isLogSwitch)
inserted = ReserveXLogSwitch(&StartPos, &EndPos, &rechdr->xl_prev);
else
{
ReserveXLogInsertLocation(rechdr->xl_tot_len, &StartPos, &EndPos,
&rechdr->xl_prev);
inserted = true;
}
if (inserted)
{
/*
* Now that xl_prev has been filled in, calculate CRC of the record
* header.
*/
rdata_crc = rechdr->xl_crc;
COMP_CRC32C(rdata_crc, rechdr, offsetof(XLogRecord, xl_crc));
FIN_CRC32C(rdata_crc);
rechdr->xl_crc = rdata_crc;
/*
* All the record data, including the header, is now ready to be
* inserted. Copy the record in the space reserved.
*/
CopyXLogRecordToWAL(rechdr->xl_tot_len, isLogSwitch, rdata,
StartPos, EndPos, insertTLI);
/*
* Unless record is flagged as not important, update LSN of last
* important record in the current slot. When holding all locks, just
* update the first one.
*/
if ((flags & XLOG_MARK_UNIMPORTANT) == 0)
{
int lockno = holdingAllLocks ? 0 : MyLockNo;
WALInsertLocks[lockno].l.lastImportantAt = StartPos;
}
}
else
{
/*
* This was an xlog-switch record, but the current insert location was
* already exactly at the beginning of a segment, so there was no need
* to do anything.
*/
}
/*
* Done! Let others know that we're finished.
*/
WALInsertLockRelease();
END_CRIT_SECTION();
MarkCurrentTransactionIdLoggedIfAny();
/*
* Mark top transaction id is logged (if needed) so that we should not try
* to log it again with the next WAL record in the current subtransaction.
*/
if (topxid_included)
MarkSubxactTopXidLogged();
/*
* Update shared LogwrtRqst.Write, if we crossed page boundary.
*/
if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ)
{
SpinLockAcquire(&XLogCtl->info_lck);
/* advance global request to include new block(s) */
if (XLogCtl->LogwrtRqst.Write < EndPos)
XLogCtl->LogwrtRqst.Write = EndPos;
/* update local result copy while I have the chance */
LogwrtResult = XLogCtl->LogwrtResult;
SpinLockRelease(&XLogCtl->info_lck);
}
/*
* If this was an XLOG_SWITCH record, flush the record and the empty
* padding space that fills the rest of the segment, and perform
* end-of-segment actions (eg, notifying archiver).
*/
if (isLogSwitch)
{
TRACE_POSTGRESQL_WAL_SWITCH();
XLogFlush(EndPos);
/*
* Even though we reserved the rest of the segment for us, which is
* reflected in EndPos, we return a pointer to just the end of the
* xlog-switch record.
*/
if (inserted)
{
EndPos = StartPos + SizeOfXLogRecord;
if (StartPos / XLOG_BLCKSZ != EndPos / XLOG_BLCKSZ)
{
uint64 offset = XLogSegmentOffset(EndPos, wal_segment_size);
if (offset == EndPos % XLOG_BLCKSZ)
EndPos += SizeOfXLogLongPHD;
else
EndPos += SizeOfXLogShortPHD;
}
}
}
#ifdef WAL_DEBUG
if (XLOG_DEBUG)
{
static XLogReaderState *debug_reader = NULL;
XLogRecord *record;
DecodedXLogRecord *decoded;
StringInfoData buf;
StringInfoData recordBuf;
char *errormsg = NULL;
MemoryContext oldCxt;
oldCxt = MemoryContextSwitchTo(walDebugCxt);
initStringInfo(&buf);
appendStringInfo(&buf, "INSERT @ %X/%X: ", LSN_FORMAT_ARGS(EndPos));
/*
* We have to piece together the WAL record data from the XLogRecData
* entries, so that we can pass it to the rm_desc function as one
* contiguous chunk.
*/
initStringInfo(&recordBuf);
for (; rdata != NULL; rdata = rdata->next)
appendBinaryStringInfo(&recordBuf, rdata->data, rdata->len);
/* We also need temporary space to decode the record. */
record = (XLogRecord *) recordBuf.data;
decoded = (DecodedXLogRecord *)
palloc(DecodeXLogRecordRequiredSpace(record->xl_tot_len));
if (!debug_reader)
debug_reader = XLogReaderAllocate(wal_segment_size, NULL,
XL_ROUTINE(), NULL);
if (!debug_reader)
{
appendStringInfoString(&buf, "error decoding record: out of memory while allocating a WAL reading processor");
}
else if (!DecodeXLogRecord(debug_reader,
decoded,
record,
EndPos,
&errormsg))
{
appendStringInfo(&buf, "error decoding record: %s",
errormsg ? errormsg : "no error message");
}
else
{
appendStringInfoString(&buf, " - ");
debug_reader->record = decoded;
xlog_outdesc(&buf, debug_reader);
debug_reader->record = NULL;
}
elog(LOG, "%s", buf.data);
pfree(decoded);
pfree(buf.data);
pfree(recordBuf.data);
MemoryContextSwitchTo(oldCxt);
}
#endif
/*
* Update our global variables
*/
ProcLastRecPtr = StartPos;
XactLastRecEnd = EndPos;
/* Report WAL traffic to the instrumentation. */
if (inserted)
{
pgWalUsage.wal_bytes += rechdr->xl_tot_len;
pgWalUsage.wal_records++;
pgWalUsage.wal_fpi += num_fpi;
}
return EndPos;
}
/*
* Reserves the right amount of space for a record of given size from the WAL.
* *StartPos is set to the beginning of the reserved section, *EndPos to
* its end+1. *PrevPtr is set to the beginning of the previous record; it is
* used to set the xl_prev of this record.
*
* This is the performance critical part of XLogInsert that must be serialized
* across backends. The rest can happen mostly in parallel. Try to keep this
* section as short as possible, insertpos_lck can be heavily contended on a
* busy system.
*
* NB: The space calculation here must match the code in CopyXLogRecordToWAL,
* where we actually copy the record to the reserved space.
*/
static void
ReserveXLogInsertLocation(int size, XLogRecPtr *StartPos, XLogRecPtr *EndPos,
XLogRecPtr *PrevPtr)
{
XLogCtlInsert *Insert = &XLogCtl->Insert;
uint64 startbytepos;
uint64 endbytepos;
uint64 prevbytepos;
size = MAXALIGN(size);
/* All (non xlog-switch) records should contain data. */
Assert(size > SizeOfXLogRecord);
/*
* The duration the spinlock needs to be held is minimized by minimizing
* the calculations that have to be done while holding the lock. The
* current tip of reserved WAL is kept in CurrBytePos, as a byte position
* that only counts "usable" bytes in WAL, that is, it excludes all WAL
* page headers. The mapping between "usable" byte positions and physical
* positions (XLogRecPtrs) can be done outside the locked region, and
* because the usable byte position doesn't include any headers, reserving
* X bytes from WAL is almost as simple as "CurrBytePos += X".
*/
SpinLockAcquire(&Insert->insertpos_lck);
startbytepos = Insert->CurrBytePos;
endbytepos = startbytepos + size;
prevbytepos = Insert->PrevBytePos;
Insert->CurrBytePos = endbytepos;
Insert->PrevBytePos = startbytepos;
SpinLockRelease(&Insert->insertpos_lck);
*StartPos = XLogBytePosToRecPtr(startbytepos);
*EndPos = XLogBytePosToEndRecPtr(endbytepos);
*PrevPtr = XLogBytePosToRecPtr(prevbytepos);
/*
* Check that the conversions between "usable byte positions" and
* XLogRecPtrs work consistently in both directions.
*/
Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos);
Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos);
Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos);
}
/*
* Like ReserveXLogInsertLocation(), but for an xlog-switch record.
*
* A log-switch record is handled slightly differently. The rest of the
* segment will be reserved for this insertion, as indicated by the returned
* *EndPos value. However, if we are already at the beginning of the current
* segment, *StartPos and *EndPos are set to the current location without
* reserving any space, and the function returns false.
*/
static bool
ReserveXLogSwitch(XLogRecPtr *StartPos, XLogRecPtr *EndPos, XLogRecPtr *PrevPtr)
{
XLogCtlInsert *Insert = &XLogCtl->Insert;
uint64 startbytepos;
uint64 endbytepos;
uint64 prevbytepos;
uint32 size = MAXALIGN(SizeOfXLogRecord);
XLogRecPtr ptr;
uint32 segleft;
/*
* These calculations are a bit heavy-weight to be done while holding a
* spinlock, but since we're holding all the WAL insertion locks, there
* are no other inserters competing for it. GetXLogInsertRecPtr() does
* compete for it, but that's not called very frequently.
*/
SpinLockAcquire(&Insert->insertpos_lck);
startbytepos = Insert->CurrBytePos;
ptr = XLogBytePosToEndRecPtr(startbytepos);
if (XLogSegmentOffset(ptr, wal_segment_size) == 0)
{
SpinLockRelease(&Insert->insertpos_lck);
*EndPos = *StartPos = ptr;
return false;
}
endbytepos = startbytepos + size;
prevbytepos = Insert->PrevBytePos;
*StartPos = XLogBytePosToRecPtr(startbytepos);
*EndPos = XLogBytePosToEndRecPtr(endbytepos);
segleft = wal_segment_size - XLogSegmentOffset(*EndPos, wal_segment_size);
if (segleft != wal_segment_size)
{
/* consume the rest of the segment */
*EndPos += segleft;
endbytepos = XLogRecPtrToBytePos(*EndPos);
}
Insert->CurrBytePos = endbytepos;
Insert->PrevBytePos = startbytepos;
SpinLockRelease(&Insert->insertpos_lck);
*PrevPtr = XLogBytePosToRecPtr(prevbytepos);
Assert(XLogSegmentOffset(*EndPos, wal_segment_size) == 0);
Assert(XLogRecPtrToBytePos(*EndPos) == endbytepos);
Assert(XLogRecPtrToBytePos(*StartPos) == startbytepos);
Assert(XLogRecPtrToBytePos(*PrevPtr) == prevbytepos);
return true;
}
/*
* Subroutine of XLogInsertRecord. Copies a WAL record to an already-reserved
* area in the WAL.
*/
static void
CopyXLogRecordToWAL(int write_len, bool isLogSwitch, XLogRecData *rdata,
XLogRecPtr StartPos, XLogRecPtr EndPos, TimeLineID tli)
{
char *currpos;
int freespace;
int written;
XLogRecPtr CurrPos;
XLogPageHeader pagehdr;
/*
* Get a pointer to the right place in the right WAL buffer to start
* inserting to.
*/
CurrPos = StartPos;
currpos = GetXLogBuffer(CurrPos, tli);
freespace = INSERT_FREESPACE(CurrPos);
/*
* there should be enough space for at least the first field (xl_tot_len)
* on this page.
*/
Assert(freespace >= sizeof(uint32));
/* Copy record data */
written = 0;
while (rdata != NULL)
{
char *rdata_data = rdata->data;
int rdata_len = rdata->len;
while (rdata_len > freespace)
{
/*
* Write what fits on this page, and continue on the next page.
*/
Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || freespace == 0);
memcpy(currpos, rdata_data, freespace);
rdata_data += freespace;
rdata_len -= freespace;
written += freespace;
CurrPos += freespace;
/*
* Get pointer to beginning of next page, and set the xlp_rem_len
* in the page header. Set XLP_FIRST_IS_CONTRECORD.
*
* It's safe to set the contrecord flag and xlp_rem_len without a
* lock on the page. All the other flags were already set when the
* page was initialized, in AdvanceXLInsertBuffer, and we're the
* only backend that needs to set the contrecord flag.
*/
currpos = GetXLogBuffer(CurrPos, tli);
pagehdr = (XLogPageHeader) currpos;
pagehdr->xlp_rem_len = write_len - written;
pagehdr->xlp_info |= XLP_FIRST_IS_CONTRECORD;
/* skip over the page header */
if (XLogSegmentOffset(CurrPos, wal_segment_size) == 0)
{
CurrPos += SizeOfXLogLongPHD;
currpos += SizeOfXLogLongPHD;
}
else
{
CurrPos += SizeOfXLogShortPHD;
currpos += SizeOfXLogShortPHD;
}
freespace = INSERT_FREESPACE(CurrPos);
}
Assert(CurrPos % XLOG_BLCKSZ >= SizeOfXLogShortPHD || rdata_len == 0);
memcpy(currpos, rdata_data, rdata_len);
currpos += rdata_len;
CurrPos += rdata_len;
freespace -= rdata_len;
written += rdata_len;
rdata = rdata->next;
}
Assert(written == write_len);
/*
* If this was an xlog-switch, it's not enough to write the switch record,
* we also have to consume all the remaining space in the WAL segment. We
* have already reserved that space, but we need to actually fill it.
*/
if (isLogSwitch && XLogSegmentOffset(CurrPos, wal_segment_size) != 0)
{
/* An xlog-switch record doesn't contain any data besides the header */
Assert(write_len == SizeOfXLogRecord);
/* Assert that we did reserve the right amount of space */
Assert(XLogSegmentOffset(EndPos, wal_segment_size) == 0);
/* Use up all the remaining space on the current page */
CurrPos += freespace;
/*
* Cause all remaining pages in the segment to be flushed, leaving the
* XLog position where it should be, at the start of the next segment.
* We do this one page at a time, to make sure we don't deadlock
* against ourselves if wal_buffers < wal_segment_size.
*/
while (CurrPos < EndPos)
{
/*
* The minimal action to flush the page would be to call
* WALInsertLockUpdateInsertingAt(CurrPos) followed by
* AdvanceXLInsertBuffer(...). The page would be left initialized
* mostly to zeros, except for the page header (always the short
* variant, as this is never a segment's first page).
*
* The large vistas of zeros are good for compressibility, but the
* headers interrupting them every XLOG_BLCKSZ (with values that
* differ from page to page) are not. The effect varies with
* compression tool, but bzip2 for instance compresses about an
* order of magnitude worse if those headers are left in place.
*
* Rather than complicating AdvanceXLInsertBuffer itself (which is
* called in heavily-loaded circumstances as well as this lightly-
* loaded one) with variant behavior, we just use GetXLogBuffer
* (which itself calls the two methods we need) to get the pointer
* and zero most of the page. Then we just zero the page header.
*/
currpos = GetXLogBuffer(CurrPos, tli);
MemSet(currpos, 0, SizeOfXLogShortPHD);
CurrPos += XLOG_BLCKSZ;
}
}
else
{
/* Align the end position, so that the next record starts aligned */
CurrPos = MAXALIGN64(CurrPos);
}
if (CurrPos != EndPos)
elog(PANIC, "space reserved for WAL record does not match what was written");
}
/*
* Acquire a WAL insertion lock, for inserting to WAL.
*/
static void
WALInsertLockAcquire(void)
{
bool immed;
/*
* It doesn't matter which of the WAL insertion locks we acquire, so try
* the one we used last time. If the system isn't particularly busy, it's
* a good bet that it's still available, and it's good to have some
* affinity to a particular lock so that you don't unnecessarily bounce
* cache lines between processes when there's no contention.
*
* If this is the first time through in this backend, pick a lock
* (semi-)randomly. This allows the locks to be used evenly if you have a
* lot of very short connections.
*/
static int lockToTry = -1;
if (lockToTry == -1)
lockToTry = MyProc->pgprocno % NUM_XLOGINSERT_LOCKS;
MyLockNo = lockToTry;
/*
* The insertingAt value is initially set to 0, as we don't know our
* insert location yet.
*/
immed = LWLockAcquire(&WALInsertLocks[MyLockNo].l.lock, LW_EXCLUSIVE);
if (!immed)
{
/*
* If we couldn't get the lock immediately, try another lock next
* time. On a system with more insertion locks than concurrent
* inserters, this causes all the inserters to eventually migrate to a
* lock that no-one else is using. On a system with more inserters
* than locks, it still helps to distribute the inserters evenly
* across the locks.
*/
lockToTry = (lockToTry + 1) % NUM_XLOGINSERT_LOCKS;
}
}
/*
* Acquire all WAL insertion locks, to prevent other backends from inserting
* to WAL.
*/
static void
WALInsertLockAcquireExclusive(void)
{
int i;
/*
* When holding all the locks, all but the last lock's insertingAt
* indicator is set to 0xFFFFFFFFFFFFFFFF, which is higher than any real
* XLogRecPtr value, to make sure that no-one blocks waiting on those.
*/
for (i = 0; i < NUM_XLOGINSERT_LOCKS - 1; i++)
{
LWLockAcquire(&WALInsertLocks[i].l.lock, LW_EXCLUSIVE);
LWLockUpdateVar(&WALInsertLocks[i].l.lock,
&WALInsertLocks[i].l.insertingAt,
PG_UINT64_MAX);
}
/* Variable value reset to 0 at release */
LWLockAcquire(&WALInsertLocks[i].l.lock, LW_EXCLUSIVE);
holdingAllLocks = true;
}
/*
* Release our insertion lock (or locks, if we're holding them all).
*
* NB: Reset all variables to 0, so they cause LWLockWaitForVar to block the
* next time the lock is acquired.
*/
static void
WALInsertLockRelease(void)
{
if (holdingAllLocks)
{
int i;
for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
LWLockReleaseClearVar(&WALInsertLocks[i].l.lock,
&WALInsertLocks[i].l.insertingAt,
0);
holdingAllLocks = false;
}
else
{
LWLockReleaseClearVar(&WALInsertLocks[MyLockNo].l.lock,
&WALInsertLocks[MyLockNo].l.insertingAt,
0);
}
}
/*
* Update our insertingAt value, to let others know that we've finished
* inserting up to that point.
*/
static void
WALInsertLockUpdateInsertingAt(XLogRecPtr insertingAt)
{
if (holdingAllLocks)
{
/*
* We use the last lock to mark our actual position, see comments in
* WALInsertLockAcquireExclusive.
*/
LWLockUpdateVar(&WALInsertLocks[NUM_XLOGINSERT_LOCKS - 1].l.lock,
&WALInsertLocks[NUM_XLOGINSERT_LOCKS - 1].l.insertingAt,
insertingAt);
}
else
LWLockUpdateVar(&WALInsertLocks[MyLockNo].l.lock,
&WALInsertLocks[MyLockNo].l.insertingAt,
insertingAt);
}
/*
* Wait for any WAL insertions < upto to finish.
*
* Returns the location of the oldest insertion that is still in-progress.
* Any WAL prior to that point has been fully copied into WAL buffers, and
* can be flushed out to disk. Because this waits for any insertions older
* than 'upto' to finish, the return value is always >= 'upto'.
*
* Note: When you are about to write out WAL, you must call this function
* *before* acquiring WALWriteLock, to avoid deadlocks. This function might
* need to wait for an insertion to finish (or at least advance to next
* uninitialized page), and the inserter might need to evict an old WAL buffer
* to make room for a new one, which in turn requires WALWriteLock.
*/
static XLogRecPtr
WaitXLogInsertionsToFinish(XLogRecPtr upto)
{
uint64 bytepos;
XLogRecPtr reservedUpto;
XLogRecPtr finishedUpto;
XLogCtlInsert *Insert = &XLogCtl->Insert;
int i;
if (MyProc == NULL)
elog(PANIC, "cannot wait without a PGPROC structure");
/* Read the current insert position */
SpinLockAcquire(&Insert->insertpos_lck);
bytepos = Insert->CurrBytePos;
SpinLockRelease(&Insert->insertpos_lck);
reservedUpto = XLogBytePosToEndRecPtr(bytepos);
/*
* No-one should request to flush a piece of WAL that hasn't even been
* reserved yet. However, it can happen if there is a block with a bogus
* LSN on disk, for example. XLogFlush checks for that situation and
* complains, but only after the flush. Here we just assume that to mean
* that all WAL that has been reserved needs to be finished. In this
* corner-case, the return value can be smaller than 'upto' argument.
*/
if (upto > reservedUpto)
{
ereport(LOG,
(errmsg("request to flush past end of generated WAL; request %X/%X, current position %X/%X",
LSN_FORMAT_ARGS(upto), LSN_FORMAT_ARGS(reservedUpto))));
upto = reservedUpto;
}
/*
* Loop through all the locks, sleeping on any in-progress insert older
* than 'upto'.
*
* finishedUpto is our return value, indicating the point upto which all
* the WAL insertions have been finished. Initialize it to the head of
* reserved WAL, and as we iterate through the insertion locks, back it
* out for any insertion that's still in progress.
*/
finishedUpto = reservedUpto;
for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
{
XLogRecPtr insertingat = InvalidXLogRecPtr;
do
{
/*
* See if this insertion is in progress. LWLockWaitForVar will
* wait for the lock to be released, or for the 'value' to be set
* by a LWLockUpdateVar call. When a lock is initially acquired,
* its value is 0 (InvalidXLogRecPtr), which means that we don't
* know where it's inserting yet. We will have to wait for it. If
* it's a small insertion, the record will most likely fit on the
* same page and the inserter will release the lock without ever
* calling LWLockUpdateVar. But if it has to sleep, it will
* advertise the insertion point with LWLockUpdateVar before
* sleeping.
*/
if (LWLockWaitForVar(&WALInsertLocks[i].l.lock,
&WALInsertLocks[i].l.insertingAt,
insertingat, &insertingat))
{
/* the lock was free, so no insertion in progress */
insertingat = InvalidXLogRecPtr;
break;
}
/*
* This insertion is still in progress. Have to wait, unless the
* inserter has proceeded past 'upto'.
*/
} while (insertingat < upto);
if (insertingat != InvalidXLogRecPtr && insertingat < finishedUpto)
finishedUpto = insertingat;
}
return finishedUpto;
}
/*
* Get a pointer to the right location in the WAL buffer containing the
* given XLogRecPtr.
*
* If the page is not initialized yet, it is initialized. That might require
* evicting an old dirty buffer from the buffer cache, which means I/O.
*
* The caller must ensure that the page containing the requested location
* isn't evicted yet, and won't be evicted. The way to ensure that is to
* hold onto a WAL insertion lock with the insertingAt position set to
* something <= ptr. GetXLogBuffer() will update insertingAt if it needs
* to evict an old page from the buffer. (This means that once you call
* GetXLogBuffer() with a given 'ptr', you must not access anything before
* that point anymore, and must not call GetXLogBuffer() with an older 'ptr'
* later, because older buffers might be recycled already)
*/
static char *
GetXLogBuffer(XLogRecPtr ptr, TimeLineID tli)
{
int idx;
XLogRecPtr endptr;
static uint64 cachedPage = 0;
static char *cachedPos = NULL;
XLogRecPtr expectedEndPtr;
/*
* Fast path for the common case that we need to access again the same
* page as last time.
*/
if (ptr / XLOG_BLCKSZ == cachedPage)
{
Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC);
Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ));
return cachedPos + ptr % XLOG_BLCKSZ;
}
/*
* The XLog buffer cache is organized so that a page is always loaded to a
* particular buffer. That way we can easily calculate the buffer a given
* page must be loaded into, from the XLogRecPtr alone.
*/
idx = XLogRecPtrToBufIdx(ptr);
/*
* See what page is loaded in the buffer at the moment. It could be the
* page we're looking for, or something older. It can't be anything newer
* - that would imply the page we're looking for has already been written
* out to disk and evicted, and the caller is responsible for making sure
* that doesn't happen.
*
* However, we don't hold a lock while we read the value. If someone has
* just initialized the page, it's possible that we get a "torn read" of
* the XLogRecPtr if 64-bit fetches are not atomic on this platform. In
* that case we will see a bogus value. That's ok, we'll grab the mapping
* lock (in AdvanceXLInsertBuffer) and retry if we see anything else than
* the page we're looking for. But it means that when we do this unlocked
* read, we might see a value that appears to be ahead of the page we're
* looking for. Don't PANIC on that, until we've verified the value while
* holding the lock.
*/
expectedEndPtr = ptr;
expectedEndPtr += XLOG_BLCKSZ - ptr % XLOG_BLCKSZ;
endptr = XLogCtl->xlblocks[idx];
if (expectedEndPtr != endptr)
{
XLogRecPtr initializedUpto;
/*
* Before calling AdvanceXLInsertBuffer(), which can block, let others
* know how far we're finished with inserting the record.
*
* NB: If 'ptr' points to just after the page header, advertise a
* position at the beginning of the page rather than 'ptr' itself. If
* there are no other insertions running, someone might try to flush
* up to our advertised location. If we advertised a position after
* the page header, someone might try to flush the page header, even
* though page might actually not be initialized yet. As the first
* inserter on the page, we are effectively responsible for making
* sure that it's initialized, before we let insertingAt to move past
* the page header.
*/
if (ptr % XLOG_BLCKSZ == SizeOfXLogShortPHD &&
XLogSegmentOffset(ptr, wal_segment_size) > XLOG_BLCKSZ)
initializedUpto = ptr - SizeOfXLogShortPHD;
else if (ptr % XLOG_BLCKSZ == SizeOfXLogLongPHD &&
XLogSegmentOffset(ptr, wal_segment_size) < XLOG_BLCKSZ)
initializedUpto = ptr - SizeOfXLogLongPHD;
else
initializedUpto = ptr;
WALInsertLockUpdateInsertingAt(initializedUpto);
AdvanceXLInsertBuffer(ptr, tli, false);
endptr = XLogCtl->xlblocks[idx];
if (expectedEndPtr != endptr)
elog(PANIC, "could not find WAL buffer for %X/%X",
LSN_FORMAT_ARGS(ptr));
}
else
{
/*
* Make sure the initialization of the page is visible to us, and
* won't arrive later to overwrite the WAL data we write on the page.
*/
pg_memory_barrier();
}
/*
* Found the buffer holding this page. Return a pointer to the right
* offset within the page.
*/
cachedPage = ptr / XLOG_BLCKSZ;
cachedPos = XLogCtl->pages + idx * (Size) XLOG_BLCKSZ;
Assert(((XLogPageHeader) cachedPos)->xlp_magic == XLOG_PAGE_MAGIC);
Assert(((XLogPageHeader) cachedPos)->xlp_pageaddr == ptr - (ptr % XLOG_BLCKSZ));
return cachedPos + ptr % XLOG_BLCKSZ;
}
/*
* Converts a "usable byte position" to XLogRecPtr. A usable byte position
* is the position starting from the beginning of WAL, excluding all WAL
* page headers.
*/
static XLogRecPtr
XLogBytePosToRecPtr(uint64 bytepos)
{
uint64 fullsegs;
uint64 fullpages;
uint64 bytesleft;
uint32 seg_offset;
XLogRecPtr result;
fullsegs = bytepos / UsableBytesInSegment;
bytesleft = bytepos % UsableBytesInSegment;
if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD)
{
/* fits on first page of segment */
seg_offset = bytesleft + SizeOfXLogLongPHD;
}
else
{
/* account for the first page on segment with long header */
seg_offset = XLOG_BLCKSZ;
bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD;
fullpages = bytesleft / UsableBytesInPage;
bytesleft = bytesleft % UsableBytesInPage;
seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD;
}
XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result);
return result;
}
/*
* Like XLogBytePosToRecPtr, but if the position is at a page boundary,
* returns a pointer to the beginning of the page (ie. before page header),
* not to where the first xlog record on that page would go to. This is used
* when converting a pointer to the end of a record.
*/
static XLogRecPtr
XLogBytePosToEndRecPtr(uint64 bytepos)
{
uint64 fullsegs;
uint64 fullpages;
uint64 bytesleft;
uint32 seg_offset;
XLogRecPtr result;
fullsegs = bytepos / UsableBytesInSegment;
bytesleft = bytepos % UsableBytesInSegment;
if (bytesleft < XLOG_BLCKSZ - SizeOfXLogLongPHD)
{
/* fits on first page of segment */
if (bytesleft == 0)
seg_offset = 0;
else
seg_offset = bytesleft + SizeOfXLogLongPHD;
}
else
{
/* account for the first page on segment with long header */
seg_offset = XLOG_BLCKSZ;
bytesleft -= XLOG_BLCKSZ - SizeOfXLogLongPHD;
fullpages = bytesleft / UsableBytesInPage;
bytesleft = bytesleft % UsableBytesInPage;
if (bytesleft == 0)
seg_offset += fullpages * XLOG_BLCKSZ + bytesleft;
else
seg_offset += fullpages * XLOG_BLCKSZ + bytesleft + SizeOfXLogShortPHD;
}
XLogSegNoOffsetToRecPtr(fullsegs, seg_offset, wal_segment_size, result);
return result;
}
/*
* Convert an XLogRecPtr to a "usable byte position".
*/
static uint64
XLogRecPtrToBytePos(XLogRecPtr ptr)
{
uint64 fullsegs;
uint32 fullpages;
uint32 offset;
uint64 result;
XLByteToSeg(ptr, fullsegs, wal_segment_size);
fullpages = (XLogSegmentOffset(ptr, wal_segment_size)) / XLOG_BLCKSZ;
offset = ptr % XLOG_BLCKSZ;
if (fullpages == 0)
{
result = fullsegs * UsableBytesInSegment;
if (offset > 0)
{
Assert(offset >= SizeOfXLogLongPHD);
result += offset - SizeOfXLogLongPHD;
}
}
else
{
result = fullsegs * UsableBytesInSegment +
(XLOG_BLCKSZ - SizeOfXLogLongPHD) + /* account for first page */
(fullpages - 1) * UsableBytesInPage; /* full pages */
if (offset > 0)
{
Assert(offset >= SizeOfXLogShortPHD);
result += offset - SizeOfXLogShortPHD;
}
}
return result;
}
/*
* Initialize XLOG buffers, writing out old buffers if they still contain
* unwritten data, upto the page containing 'upto'. Or if 'opportunistic' is
* true, initialize as many pages as we can without having to write out
* unwritten data. Any new pages are initialized to zeros, with pages headers
* initialized properly.
*/
static void
AdvanceXLInsertBuffer(XLogRecPtr upto, TimeLineID tli, bool opportunistic)
{
XLogCtlInsert *Insert = &XLogCtl->Insert;
int nextidx;
XLogRecPtr OldPageRqstPtr;
XLogwrtRqst WriteRqst;
XLogRecPtr NewPageEndPtr = InvalidXLogRecPtr;
XLogRecPtr NewPageBeginPtr;
XLogPageHeader NewPage;
int npages pg_attribute_unused() = 0;
LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE);
/*
* Now that we have the lock, check if someone initialized the page
* already.
*/
while (upto >= XLogCtl->InitializedUpTo || opportunistic)
{
nextidx = XLogRecPtrToBufIdx(XLogCtl->InitializedUpTo);
/*
* Get ending-offset of the buffer page we need to replace (this may
* be zero if the buffer hasn't been used yet). Fall through if it's
* already written out.
*/
OldPageRqstPtr = XLogCtl->xlblocks[nextidx];
if (LogwrtResult.Write < OldPageRqstPtr)
{
/*
* Nope, got work to do. If we just want to pre-initialize as much
* as we can without flushing, give up now.
*/
if (opportunistic)
break;
/* Before waiting, get info_lck and update LogwrtResult */
SpinLockAcquire(&XLogCtl->info_lck);
if (XLogCtl->LogwrtRqst.Write < OldPageRqstPtr)
XLogCtl->LogwrtRqst.Write = OldPageRqstPtr;
LogwrtResult = XLogCtl->LogwrtResult;
SpinLockRelease(&XLogCtl->info_lck);
/*
* Now that we have an up-to-date LogwrtResult value, see if we
* still need to write it or if someone else already did.
*/
if (LogwrtResult.Write < OldPageRqstPtr)
{
/*
* Must acquire write lock. Release WALBufMappingLock first,
* to make sure that all insertions that we need to wait for
* can finish (up to this same position). Otherwise we risk
* deadlock.
*/
LWLockRelease(WALBufMappingLock);
WaitXLogInsertionsToFinish(OldPageRqstPtr);
LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
LogwrtResult = XLogCtl->LogwrtResult;
if (LogwrtResult.Write >= OldPageRqstPtr)
{
/* OK, someone wrote it already */
LWLockRelease(WALWriteLock);
}
else
{
/* Have to write it ourselves */
TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_START();
WriteRqst.Write = OldPageRqstPtr;
WriteRqst.Flush = 0;
XLogWrite(WriteRqst, tli, false);
LWLockRelease(WALWriteLock);
PendingWalStats.wal_buffers_full++;
TRACE_POSTGRESQL_WAL_BUFFER_WRITE_DIRTY_DONE();
}
/* Re-acquire WALBufMappingLock and retry */
LWLockAcquire(WALBufMappingLock, LW_EXCLUSIVE);
continue;
}
}
/*
* Now the next buffer slot is free and we can set it up to be the
* next output page.
*/
NewPageBeginPtr = XLogCtl->InitializedUpTo;
NewPageEndPtr = NewPageBeginPtr + XLOG_BLCKSZ;
Assert(XLogRecPtrToBufIdx(NewPageBeginPtr) == nextidx);
NewPage = (XLogPageHeader) (XLogCtl->pages + nextidx * (Size) XLOG_BLCKSZ);
/*
* Be sure to re-zero the buffer so that bytes beyond what we've
* written will look like zeroes and not valid XLOG records...
*/
MemSet((char *) NewPage, 0, XLOG_BLCKSZ);
/*
* Fill the new page's header
*/
NewPage->xlp_magic = XLOG_PAGE_MAGIC;
/* NewPage->xlp_info = 0; */ /* done by memset */
NewPage->xlp_tli = tli;
NewPage->xlp_pageaddr = NewPageBeginPtr;
/* NewPage->xlp_rem_len = 0; */ /* done by memset */
/*
* If online backup is not in progress, mark the header to indicate
* that WAL records beginning in this page have removable backup
* blocks. This allows the WAL archiver to know whether it is safe to
* compress archived WAL data by transforming full-block records into
* the non-full-block format. It is sufficient to record this at the
* page level because we force a page switch (in fact a segment
* switch) when starting a backup, so the flag will be off before any
* records can be written during the backup. At the end of a backup,
* the last page will be marked as all unsafe when perhaps only part
* is unsafe, but at worst the archiver would miss the opportunity to
* compress a few records.
*/
if (Insert->runningBackups == 0)
NewPage->xlp_info |= XLP_BKP_REMOVABLE;
/*
* If first page of an XLOG segment file, make it a long header.
*/
if ((XLogSegmentOffset(NewPage->xlp_pageaddr, wal_segment_size)) == 0)
{
XLogLongPageHeader NewLongPage = (XLogLongPageHeader) NewPage;
NewLongPage->xlp_sysid = ControlFile->system_identifier;
NewLongPage->xlp_seg_size = wal_segment_size;
NewLongPage->xlp_xlog_blcksz = XLOG_BLCKSZ;
NewPage->xlp_info |= XLP_LONG_HEADER;
}
/*
* Make sure the initialization of the page becomes visible to others
* before the xlblocks update. GetXLogBuffer() reads xlblocks without
* holding a lock.
*/
pg_write_barrier();
*((volatile XLogRecPtr *) &XLogCtl->xlblocks[nextidx]) = NewPageEndPtr;
XLogCtl->InitializedUpTo = NewPageEndPtr;
npages++;
}
LWLockRelease(WALBufMappingLock);
#ifdef WAL_DEBUG
if (XLOG_DEBUG && npages > 0)
{
elog(DEBUG1, "initialized %d pages, up to %X/%X",
npages, LSN_FORMAT_ARGS(NewPageEndPtr));
}
#endif
}
/*
* Calculate CheckPointSegments based on max_wal_size_mb and
* checkpoint_completion_target.
*/
static void
CalculateCheckpointSegments(void)
{
double target;
/*-------
* Calculate the distance at which to trigger a checkpoint, to avoid
* exceeding max_wal_size_mb. This is based on two assumptions:
*
* a) we keep WAL for only one checkpoint cycle (prior to PG11 we kept
* WAL for two checkpoint cycles to allow us to recover from the
* secondary checkpoint if the first checkpoint failed, though we
* only did this on the primary anyway, not on standby. Keeping just
* one checkpoint simplifies processing and reduces disk space in
* many smaller databases.)
* b) during checkpoint, we consume checkpoint_completion_target *
* number of segments consumed between checkpoints.
*-------
*/
target = (double) ConvertToXSegs(max_wal_size_mb, wal_segment_size) /
(1.0 + CheckPointCompletionTarget);
/* round down */
CheckPointSegments = (int) target;
if (CheckPointSegments < 1)
CheckPointSegments = 1;
}
void
assign_max_wal_size(int newval, void *extra)
{
max_wal_size_mb = newval;
CalculateCheckpointSegments();
}
void
assign_checkpoint_completion_target(double newval, void *extra)
{
CheckPointCompletionTarget = newval;
CalculateCheckpointSegments();
}
/*
* At a checkpoint, how many WAL segments to recycle as preallocated future
* XLOG segments? Returns the highest segment that should be preallocated.
*/
static XLogSegNo
XLOGfileslop(XLogRecPtr lastredoptr)
{
XLogSegNo minSegNo;
XLogSegNo maxSegNo;
double distance;
XLogSegNo recycleSegNo;
/*
* Calculate the segment numbers that min_wal_size_mb and max_wal_size_mb
* correspond to. Always recycle enough segments to meet the minimum, and
* remove enough segments to stay below the maximum.
*/
minSegNo = lastredoptr / wal_segment_size +
ConvertToXSegs(min_wal_size_mb, wal_segment_size) - 1;
maxSegNo = lastredoptr / wal_segment_size +
ConvertToXSegs(max_wal_size_mb, wal_segment_size) - 1;
/*
* Between those limits, recycle enough segments to get us through to the
* estimated end of next checkpoint.
*
* To estimate where the next checkpoint will finish, assume that the
* system runs steadily consuming CheckPointDistanceEstimate bytes between
* every checkpoint.
*/
distance = (1.0 + CheckPointCompletionTarget) * CheckPointDistanceEstimate;
/* add 10% for good measure. */
distance *= 1.10;
recycleSegNo = (XLogSegNo) ceil(((double) lastredoptr + distance) /
wal_segment_size);
if (recycleSegNo < minSegNo)
recycleSegNo = minSegNo;
if (recycleSegNo > maxSegNo)
recycleSegNo = maxSegNo;
return recycleSegNo;
}
/*
* Check whether we've consumed enough xlog space that a checkpoint is needed.
*
* new_segno indicates a log file that has just been filled up (or read
* during recovery). We measure the distance from RedoRecPtr to new_segno
* and see if that exceeds CheckPointSegments.
*
* Note: it is caller's responsibility that RedoRecPtr is up-to-date.
*/
bool
XLogCheckpointNeeded(XLogSegNo new_segno)
{
XLogSegNo old_segno;
XLByteToSeg(RedoRecPtr, old_segno, wal_segment_size);
if (new_segno >= old_segno + (uint64) (CheckPointSegments - 1))
return true;
return false;
}
/*
* Write and/or fsync the log at least as far as WriteRqst indicates.
*
* If flexible == true, we don't have to write as far as WriteRqst, but
* may stop at any convenient boundary (such as a cache or logfile boundary).
* This option allows us to avoid uselessly issuing multiple writes when a
* single one would do.
*
* Must be called with WALWriteLock held. WaitXLogInsertionsToFinish(WriteRqst)
* must be called before grabbing the lock, to make sure the data is ready to
* write.
*/
static void
XLogWrite(XLogwrtRqst WriteRqst, TimeLineID tli, bool flexible)
{
bool ispartialpage;
bool last_iteration;
bool finishing_seg;
int curridx;
int npages;
int startidx;
uint32 startoffset;
/* We should always be inside a critical section here */
Assert(CritSectionCount > 0);
/*
* Update local LogwrtResult (caller probably did this already, but...)
*/
LogwrtResult = XLogCtl->LogwrtResult;
/*
* Since successive pages in the xlog cache are consecutively allocated,
* we can usually gather multiple pages together and issue just one
* write() call. npages is the number of pages we have determined can be
* written together; startidx is the cache block index of the first one,
* and startoffset is the file offset at which it should go. The latter
* two variables are only valid when npages > 0, but we must initialize
* all of them to keep the compiler quiet.
*/
npages = 0;
startidx = 0;
startoffset = 0;
/*
* Within the loop, curridx is the cache block index of the page to
* consider writing. Begin at the buffer containing the next unwritten
* page, or last partially written page.
*/
curridx = XLogRecPtrToBufIdx(LogwrtResult.Write);
while (LogwrtResult.Write < WriteRqst.Write)
{
/*
* Make sure we're not ahead of the insert process. This could happen
* if we're passed a bogus WriteRqst.Write that is past the end of the
* last page that's been initialized by AdvanceXLInsertBuffer.
*/
XLogRecPtr EndPtr = XLogCtl->xlblocks[curridx];
if (LogwrtResult.Write >= EndPtr)
elog(PANIC, "xlog write request %X/%X is past end of log %X/%X",
LSN_FORMAT_ARGS(LogwrtResult.Write),
LSN_FORMAT_ARGS(EndPtr));
/* Advance LogwrtResult.Write to end of current buffer page */
LogwrtResult.Write = EndPtr;
ispartialpage = WriteRqst.Write < LogwrtResult.Write;
if (!XLByteInPrevSeg(LogwrtResult.Write, openLogSegNo,
wal_segment_size))
{
/*
* Switch to new logfile segment. We cannot have any pending
* pages here (since we dump what we have at segment end).
*/
Assert(npages == 0);
if (openLogFile >= 0)
XLogFileClose();
XLByteToPrevSeg(LogwrtResult.Write, openLogSegNo,
wal_segment_size);
openLogTLI = tli;
/* create/use new log file */
openLogFile = XLogFileInit(openLogSegNo, tli);
ReserveExternalFD();
}
/* Make sure we have the current logfile open */
if (openLogFile < 0)
{
XLByteToPrevSeg(LogwrtResult.Write, openLogSegNo,
wal_segment_size);
openLogTLI = tli;
openLogFile = XLogFileOpen(openLogSegNo, tli);
ReserveExternalFD();
}
/* Add current page to the set of pending pages-to-dump */
if (npages == 0)
{
/* first of group */
startidx = curridx;
startoffset = XLogSegmentOffset(LogwrtResult.Write - XLOG_BLCKSZ,
wal_segment_size);
}
npages++;
/*
* Dump the set if this will be the last loop iteration, or if we are
* at the last page of the cache area (since the next page won't be
* contiguous in memory), or if we are at the end of the logfile
* segment.
*/
last_iteration = WriteRqst.Write <= LogwrtResult.Write;
finishing_seg = !ispartialpage &&
(startoffset + npages * XLOG_BLCKSZ) >= wal_segment_size;
if (last_iteration ||
curridx == XLogCtl->XLogCacheBlck ||
finishing_seg)
{
char *from;
Size nbytes;
Size nleft;
int written;
instr_time start;
/* OK to write the page(s) */
from = XLogCtl->pages + startidx * (Size) XLOG_BLCKSZ;
nbytes = npages * (Size) XLOG_BLCKSZ;
nleft = nbytes;
do
{
errno = 0;
/* Measure I/O timing to write WAL data */
if (track_wal_io_timing)
INSTR_TIME_SET_CURRENT(start);
else
INSTR_TIME_SET_ZERO(start);
pgstat_report_wait_start(WAIT_EVENT_WAL_WRITE);
written = pg_pwrite(openLogFile, from, nleft, startoffset);
pgstat_report_wait_end();
/*
* Increment the I/O timing and the number of times WAL data
* were written out to disk.
*/
if (track_wal_io_timing)
{
instr_time duration;
INSTR_TIME_SET_CURRENT(duration);
INSTR_TIME_ACCUM_DIFF(PendingWalStats.wal_write_time, duration, start);
}
PendingWalStats.wal_write++;
if (written <= 0)
{
char xlogfname[MAXFNAMELEN];
int save_errno;
if (errno == EINTR)
continue;
save_errno = errno;
XLogFileName(xlogfname, tli, openLogSegNo,
wal_segment_size);
errno = save_errno;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not write to log file %s "
"at offset %u, length %zu: %m",
xlogfname, startoffset, nleft)));
}
nleft -= written;
from += written;
startoffset += written;
} while (nleft > 0);
npages = 0;
/*
* If we just wrote the whole last page of a logfile segment,
* fsync the segment immediately. This avoids having to go back
* and re-open prior segments when an fsync request comes along
* later. Doing it here ensures that one and only one backend will
* perform this fsync.
*
* This is also the right place to notify the Archiver that the
* segment is ready to copy to archival storage, and to update the
* timer for archive_timeout, and to signal for a checkpoint if
* too many logfile segments have been used since the last
* checkpoint.
*/
if (finishing_seg)
{
issue_xlog_fsync(openLogFile, openLogSegNo, tli);
/* signal that we need to wakeup walsenders later */
WalSndWakeupRequest();
LogwrtResult.Flush = LogwrtResult.Write; /* end of page */
if (XLogArchivingActive())
XLogArchiveNotifySeg(openLogSegNo, tli);
XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL);
XLogCtl->lastSegSwitchLSN = LogwrtResult.Flush;
/*
* Request a checkpoint if we've consumed too much xlog since
* the last one. For speed, we first check using the local
* copy of RedoRecPtr, which might be out of date; if it looks
* like a checkpoint is needed, forcibly update RedoRecPtr and
* recheck.
*/
if (IsUnderPostmaster && XLogCheckpointNeeded(openLogSegNo))
{
(void) GetRedoRecPtr();
if (XLogCheckpointNeeded(openLogSegNo))
RequestCheckpoint(CHECKPOINT_CAUSE_XLOG);
}
}
}
if (ispartialpage)
{
/* Only asked to write a partial page */
LogwrtResult.Write = WriteRqst.Write;
break;
}
curridx = NextBufIdx(curridx);
/* If flexible, break out of loop as soon as we wrote something */
if (flexible && npages == 0)
break;
}
Assert(npages == 0);
/*
* If asked to flush, do so
*/
if (LogwrtResult.Flush < WriteRqst.Flush &&
LogwrtResult.Flush < LogwrtResult.Write)
{
/*
* Could get here without iterating above loop, in which case we might
* have no open file or the wrong one. However, we do not need to
* fsync more than one file.
*/
if (sync_method != SYNC_METHOD_OPEN &&
sync_method != SYNC_METHOD_OPEN_DSYNC)
{
if (openLogFile >= 0 &&
!XLByteInPrevSeg(LogwrtResult.Write, openLogSegNo,
wal_segment_size))
XLogFileClose();
if (openLogFile < 0)
{
XLByteToPrevSeg(LogwrtResult.Write, openLogSegNo,
wal_segment_size);
openLogTLI = tli;
openLogFile = XLogFileOpen(openLogSegNo, tli);
ReserveExternalFD();
}
issue_xlog_fsync(openLogFile, openLogSegNo, tli);
}
/* signal that we need to wakeup walsenders later */
WalSndWakeupRequest();
LogwrtResult.Flush = LogwrtResult.Write;
}
/*
* Update shared-memory status
*
* We make sure that the shared 'request' values do not fall behind the
* 'result' values. This is not absolutely essential, but it saves some
* code in a couple of places.
*/
{
SpinLockAcquire(&XLogCtl->info_lck);
XLogCtl->LogwrtResult = LogwrtResult;
if (XLogCtl->LogwrtRqst.Write < LogwrtResult.Write)
XLogCtl->LogwrtRqst.Write = LogwrtResult.Write;
if (XLogCtl->LogwrtRqst.Flush < LogwrtResult.Flush)
XLogCtl->LogwrtRqst.Flush = LogwrtResult.Flush;
SpinLockRelease(&XLogCtl->info_lck);
}
}
/*
* Record the LSN for an asynchronous transaction commit/abort
* and nudge the WALWriter if there is work for it to do.
* (This should not be called for synchronous commits.)
*/
void
XLogSetAsyncXactLSN(XLogRecPtr asyncXactLSN)
{
XLogRecPtr WriteRqstPtr = asyncXactLSN;
bool sleeping;
SpinLockAcquire(&XLogCtl->info_lck);
LogwrtResult = XLogCtl->LogwrtResult;
sleeping = XLogCtl->WalWriterSleeping;
if (XLogCtl->asyncXactLSN < asyncXactLSN)
XLogCtl->asyncXactLSN = asyncXactLSN;
SpinLockRelease(&XLogCtl->info_lck);
/*
* If the WALWriter is sleeping, we should kick it to make it come out of
* low-power mode. Otherwise, determine whether there's a full page of
* WAL available to write.
*/
if (!sleeping)
{
/* back off to last completed page boundary */
WriteRqstPtr -= WriteRqstPtr % XLOG_BLCKSZ;
/* if we have already flushed that far, we're done */
if (WriteRqstPtr <= LogwrtResult.Flush)
return;
}
/*
* Nudge the WALWriter: it has a full page of WAL to write, or we want it
* to come out of low-power mode so that this async commit will reach disk
* within the expected amount of time.
*/
if (ProcGlobal->walwriterLatch)
SetLatch(ProcGlobal->walwriterLatch);
}
/*
* Record the LSN up to which we can remove WAL because it's not required by
* any replication slot.
*/
void
XLogSetReplicationSlotMinimumLSN(XLogRecPtr lsn)
{
SpinLockAcquire(&XLogCtl->info_lck);
XLogCtl->replicationSlotMinLSN = lsn;
SpinLockRelease(&XLogCtl->info_lck);
}
/*
* Return the oldest LSN we must retain to satisfy the needs of some
* replication slot.
*/
static XLogRecPtr
XLogGetReplicationSlotMinimumLSN(void)
{
XLogRecPtr retval;
SpinLockAcquire(&XLogCtl->info_lck);
retval = XLogCtl->replicationSlotMinLSN;
SpinLockRelease(&XLogCtl->info_lck);
return retval;
}
/*
* Advance minRecoveryPoint in control file.
*
* If we crash during recovery, we must reach this point again before the
* database is consistent.
*
* If 'force' is true, 'lsn' argument is ignored. Otherwise, minRecoveryPoint
* is only updated if it's not already greater than or equal to 'lsn'.
*/
static void
UpdateMinRecoveryPoint(XLogRecPtr lsn, bool force)
{
/* Quick check using our local copy of the variable */
if (!updateMinRecoveryPoint || (!force && lsn <= LocalMinRecoveryPoint))
return;
/*
* An invalid minRecoveryPoint means that we need to recover all the WAL,
* i.e., we're doing crash recovery. We never modify the control file's
* value in that case, so we can short-circuit future checks here too. The
* local values of minRecoveryPoint and minRecoveryPointTLI should not be
* updated until crash recovery finishes. We only do this for the startup
* process as it should not update its own reference of minRecoveryPoint
* until it has finished crash recovery to make sure that all WAL
* available is replayed in this case. This also saves from extra locks
* taken on the control file from the startup process.
*/
if (XLogRecPtrIsInvalid(LocalMinRecoveryPoint) && InRecovery)
{
updateMinRecoveryPoint = false;
return;
}
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
/* update local copy */
LocalMinRecoveryPoint = ControlFile->minRecoveryPoint;
LocalMinRecoveryPointTLI = ControlFile->minRecoveryPointTLI;
if (XLogRecPtrIsInvalid(LocalMinRecoveryPoint))
updateMinRecoveryPoint = false;
else if (force || LocalMinRecoveryPoint < lsn)
{
XLogRecPtr newMinRecoveryPoint;
TimeLineID newMinRecoveryPointTLI;
/*
* To avoid having to update the control file too often, we update it
* all the way to the last record being replayed, even though 'lsn'
* would suffice for correctness. This also allows the 'force' case
* to not need a valid 'lsn' value.
*
* Another important reason for doing it this way is that the passed
* 'lsn' value could be bogus, i.e., past the end of available WAL, if
* the caller got it from a corrupted heap page. Accepting such a
* value as the min recovery point would prevent us from coming up at
* all. Instead, we just log a warning and continue with recovery.
* (See also the comments about corrupt LSNs in XLogFlush.)
*/
newMinRecoveryPoint = GetCurrentReplayRecPtr(&newMinRecoveryPointTLI);
if (!force && newMinRecoveryPoint < lsn)
elog(WARNING,
"xlog min recovery request %X/%X is past current point %X/%X",
LSN_FORMAT_ARGS(lsn), LSN_FORMAT_ARGS(newMinRecoveryPoint));
/* update control file */
if (ControlFile->minRecoveryPoint < newMinRecoveryPoint)
{
ControlFile->minRecoveryPoint = newMinRecoveryPoint;
ControlFile->minRecoveryPointTLI = newMinRecoveryPointTLI;
UpdateControlFile();
LocalMinRecoveryPoint = newMinRecoveryPoint;
LocalMinRecoveryPointTLI = newMinRecoveryPointTLI;
ereport(DEBUG2,
(errmsg_internal("updated min recovery point to %X/%X on timeline %u",
LSN_FORMAT_ARGS(newMinRecoveryPoint),
newMinRecoveryPointTLI)));
}
}
LWLockRelease(ControlFileLock);
}
/*
* Ensure that all XLOG data through the given position is flushed to disk.
*
* NOTE: this differs from XLogWrite mainly in that the WALWriteLock is not
* already held, and we try to avoid acquiring it if possible.
*/
void
XLogFlush(XLogRecPtr record)
{
XLogRecPtr WriteRqstPtr;
XLogwrtRqst WriteRqst;
TimeLineID insertTLI = XLogCtl->InsertTimeLineID;
/*
* During REDO, we are reading not writing WAL. Therefore, instead of
* trying to flush the WAL, we should update minRecoveryPoint instead. We
* test XLogInsertAllowed(), not InRecovery, because we need checkpointer
* to act this way too, and because when it tries to write the
* end-of-recovery checkpoint, it should indeed flush.
*/
if (!XLogInsertAllowed())
{
UpdateMinRecoveryPoint(record, false);
return;
}
/* Quick exit if already known flushed */
if (record <= LogwrtResult.Flush)
return;
#ifdef WAL_DEBUG
if (XLOG_DEBUG)
elog(LOG, "xlog flush request %X/%X; write %X/%X; flush %X/%X",
LSN_FORMAT_ARGS(record),
LSN_FORMAT_ARGS(LogwrtResult.Write),
LSN_FORMAT_ARGS(LogwrtResult.Flush));
#endif
START_CRIT_SECTION();
/*
* Since fsync is usually a horribly expensive operation, we try to
* piggyback as much data as we can on each fsync: if we see any more data
* entered into the xlog buffer, we'll write and fsync that too, so that
* the final value of LogwrtResult.Flush is as large as possible. This
* gives us some chance of avoiding another fsync immediately after.
*/
/* initialize to given target; may increase below */
WriteRqstPtr = record;
/*
* Now wait until we get the write lock, or someone else does the flush
* for us.
*/
for (;;)
{
XLogRecPtr insertpos;
/* read LogwrtResult and update local state */
SpinLockAcquire(&XLogCtl->info_lck);
if (WriteRqstPtr < XLogCtl->LogwrtRqst.Write)
WriteRqstPtr = XLogCtl->LogwrtRqst.Write;
LogwrtResult = XLogCtl->LogwrtResult;
SpinLockRelease(&XLogCtl->info_lck);
/* done already? */
if (record <= LogwrtResult.Flush)
break;
/*
* Before actually performing the write, wait for all in-flight
* insertions to the pages we're about to write to finish.
*/
insertpos = WaitXLogInsertionsToFinish(WriteRqstPtr);
/*
* Try to get the write lock. If we can't get it immediately, wait
* until it's released, and recheck if we still need to do the flush
* or if the backend that held the lock did it for us already. This
* helps to maintain a good rate of group committing when the system
* is bottlenecked by the speed of fsyncing.
*/
if (!LWLockAcquireOrWait(WALWriteLock, LW_EXCLUSIVE))
{
/*
* The lock is now free, but we didn't acquire it yet. Before we
* do, loop back to check if someone else flushed the record for
* us already.
*/
continue;
}
/* Got the lock; recheck whether request is satisfied */
LogwrtResult = XLogCtl->LogwrtResult;
if (record <= LogwrtResult.Flush)
{
LWLockRelease(WALWriteLock);
break;
}
/*
* Sleep before flush! By adding a delay here, we may give further
* backends the opportunity to join the backlog of group commit
* followers; this can significantly improve transaction throughput,
* at the risk of increasing transaction latency.
*
* We do not sleep if enableFsync is not turned on, nor if there are
* fewer than CommitSiblings other backends with active transactions.
*/
if (CommitDelay > 0 && enableFsync &&
MinimumActiveBackends(CommitSiblings))
{
pg_usleep(CommitDelay);
/*
* Re-check how far we can now flush the WAL. It's generally not
* safe to call WaitXLogInsertionsToFinish while holding
* WALWriteLock, because an in-progress insertion might need to
* also grab WALWriteLock to make progress. But we know that all
* the insertions up to insertpos have already finished, because
* that's what the earlier WaitXLogInsertionsToFinish() returned.
* We're only calling it again to allow insertpos to be moved
* further forward, not to actually wait for anyone.
*/
insertpos = WaitXLogInsertionsToFinish(insertpos);
}
/* try to write/flush later additions to XLOG as well */
WriteRqst.Write = insertpos;
WriteRqst.Flush = insertpos;
XLogWrite(WriteRqst, insertTLI, false);
LWLockRelease(WALWriteLock);
/* done */
break;
}
END_CRIT_SECTION();
/* wake up walsenders now that we've released heavily contended locks */
WalSndWakeupProcessRequests(true, !RecoveryInProgress());
/*
* If we still haven't flushed to the request point then we have a
* problem; most likely, the requested flush point is past end of XLOG.
* This has been seen to occur when a disk page has a corrupted LSN.
*
* Formerly we treated this as a PANIC condition, but that hurts the
* system's robustness rather than helping it: we do not want to take down
* the whole system due to corruption on one data page. In particular, if
* the bad page is encountered again during recovery then we would be
* unable to restart the database at all! (This scenario actually
* happened in the field several times with 7.1 releases.) As of 8.4, bad
* LSNs encountered during recovery are UpdateMinRecoveryPoint's problem;
* the only time we can reach here during recovery is while flushing the
* end-of-recovery checkpoint record, and we don't expect that to have a
* bad LSN.
*
* Note that for calls from xact.c, the ERROR will be promoted to PANIC
* since xact.c calls this routine inside a critical section. However,
* calls from bufmgr.c are not within critical sections and so we will not
* force a restart for a bad LSN on a data page.
*/
if (LogwrtResult.Flush < record)
elog(ERROR,
"xlog flush request %X/%X is not satisfied --- flushed only to %X/%X",
LSN_FORMAT_ARGS(record),
LSN_FORMAT_ARGS(LogwrtResult.Flush));
}
/*
* Write & flush xlog, but without specifying exactly where to.
*
* We normally write only completed blocks; but if there is nothing to do on
* that basis, we check for unwritten async commits in the current incomplete
* block, and write through the latest one of those. Thus, if async commits
* are not being used, we will write complete blocks only.
*
* If, based on the above, there's anything to write we do so immediately. But
* to avoid calling fsync, fdatasync et. al. at a rate that'd impact
* concurrent IO, we only flush WAL every wal_writer_delay ms, or if there's
* more than wal_writer_flush_after unflushed blocks.
*
* We can guarantee that async commits reach disk after at most three
* wal_writer_delay cycles. (When flushing complete blocks, we allow XLogWrite
* to write "flexibly", meaning it can stop at the end of the buffer ring;
* this makes a difference only with very high load or long wal_writer_delay,
* but imposes one extra cycle for the worst case for async commits.)
*
* This routine is invoked periodically by the background walwriter process.
*
* Returns true if there was any work to do, even if we skipped flushing due
* to wal_writer_delay/wal_writer_flush_after.
*/
bool
XLogBackgroundFlush(void)
{
XLogwrtRqst WriteRqst;
bool flexible = true;
static TimestampTz lastflush;
TimestampTz now;
int flushbytes;
TimeLineID insertTLI;
/* XLOG doesn't need flushing during recovery */
if (RecoveryInProgress())
return false;
/*
* Since we're not in recovery, InsertTimeLineID is set and can't change,
* so we can read it without a lock.
*/
insertTLI = XLogCtl->InsertTimeLineID;
/* read LogwrtResult and update local state */
SpinLockAcquire(&XLogCtl->info_lck);
LogwrtResult = XLogCtl->LogwrtResult;
WriteRqst = XLogCtl->LogwrtRqst;
SpinLockRelease(&XLogCtl->info_lck);
/* back off to last completed page boundary */
WriteRqst.Write -= WriteRqst.Write % XLOG_BLCKSZ;
/* if we have already flushed that far, consider async commit records */
if (WriteRqst.Write <= LogwrtResult.Flush)
{
SpinLockAcquire(&XLogCtl->info_lck);
WriteRqst.Write = XLogCtl->asyncXactLSN;
SpinLockRelease(&XLogCtl->info_lck);
flexible = false; /* ensure it all gets written */
}
/*
* If already known flushed, we're done. Just need to check if we are
* holding an open file handle to a logfile that's no longer in use,
* preventing the file from being deleted.
*/
if (WriteRqst.Write <= LogwrtResult.Flush)
{
if (openLogFile >= 0)
{
if (!XLByteInPrevSeg(LogwrtResult.Write, openLogSegNo,
wal_segment_size))
{
XLogFileClose();
}
}
return false;
}
/*
* Determine how far to flush WAL, based on the wal_writer_delay and
* wal_writer_flush_after GUCs.
*/
now = GetCurrentTimestamp();
flushbytes =
WriteRqst.Write / XLOG_BLCKSZ - LogwrtResult.Flush / XLOG_BLCKSZ;
if (WalWriterFlushAfter == 0 || lastflush == 0)
{
/* first call, or block based limits disabled */
WriteRqst.Flush = WriteRqst.Write;
lastflush = now;
}
else if (TimestampDifferenceExceeds(lastflush, now, WalWriterDelay))
{
/*
* Flush the writes at least every WalWriterDelay ms. This is
* important to bound the amount of time it takes for an asynchronous
* commit to hit disk.
*/
WriteRqst.Flush = WriteRqst.Write;
lastflush = now;
}
else if (flushbytes >= WalWriterFlushAfter)
{
/* exceeded wal_writer_flush_after blocks, flush */
WriteRqst.Flush = WriteRqst.Write;
lastflush = now;
}
else
{
/* no flushing, this time round */
WriteRqst.Flush = 0;
}
#ifdef WAL_DEBUG
if (XLOG_DEBUG)
elog(LOG, "xlog bg flush request write %X/%X; flush: %X/%X, current is write %X/%X; flush %X/%X",
LSN_FORMAT_ARGS(WriteRqst.Write),
LSN_FORMAT_ARGS(WriteRqst.Flush),
LSN_FORMAT_ARGS(LogwrtResult.Write),
LSN_FORMAT_ARGS(LogwrtResult.Flush));
#endif
START_CRIT_SECTION();
/* now wait for any in-progress insertions to finish and get write lock */
WaitXLogInsertionsToFinish(WriteRqst.Write);
LWLockAcquire(WALWriteLock, LW_EXCLUSIVE);
LogwrtResult = XLogCtl->LogwrtResult;
if (WriteRqst.Write > LogwrtResult.Write ||
WriteRqst.Flush > LogwrtResult.Flush)
{
XLogWrite(WriteRqst, insertTLI, flexible);
}
LWLockRelease(WALWriteLock);
END_CRIT_SECTION();
/* wake up walsenders now that we've released heavily contended locks */
WalSndWakeupProcessRequests(true, !RecoveryInProgress());
/*
* Great, done. To take some work off the critical path, try to initialize
* as many of the no-longer-needed WAL buffers for future use as we can.
*/
AdvanceXLInsertBuffer(InvalidXLogRecPtr, insertTLI, true);
/*
* If we determined that we need to write data, but somebody else
* wrote/flushed already, it should be considered as being active, to
* avoid hibernating too early.
*/
return true;
}
/*
* Test whether XLOG data has been flushed up to (at least) the given position.
*
* Returns true if a flush is still needed. (It may be that someone else
* is already in process of flushing that far, however.)
*/
bool
XLogNeedsFlush(XLogRecPtr record)
{
/*
* During recovery, we don't flush WAL but update minRecoveryPoint
* instead. So "needs flush" is taken to mean whether minRecoveryPoint
* would need to be updated.
*/
if (RecoveryInProgress())
{
/*
* An invalid minRecoveryPoint means that we need to recover all the
* WAL, i.e., we're doing crash recovery. We never modify the control
* file's value in that case, so we can short-circuit future checks
* here too. This triggers a quick exit path for the startup process,
* which cannot update its local copy of minRecoveryPoint as long as
* it has not replayed all WAL available when doing crash recovery.
*/
if (XLogRecPtrIsInvalid(LocalMinRecoveryPoint) && InRecovery)
updateMinRecoveryPoint = false;
/* Quick exit if already known to be updated or cannot be updated */
if (record <= LocalMinRecoveryPoint || !updateMinRecoveryPoint)
return false;
/*
* Update local copy of minRecoveryPoint. But if the lock is busy,
* just return a conservative guess.
*/
if (!LWLockConditionalAcquire(ControlFileLock, LW_SHARED))
return true;
LocalMinRecoveryPoint = ControlFile->minRecoveryPoint;
LocalMinRecoveryPointTLI = ControlFile->minRecoveryPointTLI;
LWLockRelease(ControlFileLock);
/*
* Check minRecoveryPoint for any other process than the startup
* process doing crash recovery, which should not update the control
* file value if crash recovery is still running.
*/
if (XLogRecPtrIsInvalid(LocalMinRecoveryPoint))
updateMinRecoveryPoint = false;
/* check again */
if (record <= LocalMinRecoveryPoint || !updateMinRecoveryPoint)
return false;
else
return true;
}
/* Quick exit if already known flushed */
if (record <= LogwrtResult.Flush)
return false;
/* read LogwrtResult and update local state */
SpinLockAcquire(&XLogCtl->info_lck);
LogwrtResult = XLogCtl->LogwrtResult;
SpinLockRelease(&XLogCtl->info_lck);
/* check again */
if (record <= LogwrtResult.Flush)
return false;
return true;
}
/*
* Try to make a given XLOG file segment exist.
*
* logsegno: identify segment.
*
* *added: on return, true if this call raised the number of extant segments.
*
* path: on return, this char[MAXPGPATH] has the path to the logsegno file.
*
* Returns -1 or FD of opened file. A -1 here is not an error; a caller
* wanting an open segment should attempt to open "path", which usually will
* succeed. (This is weird, but it's efficient for the callers.)
*/
static int
XLogFileInitInternal(XLogSegNo logsegno, TimeLineID logtli,
bool *added, char *path)
{
char tmppath[MAXPGPATH];
XLogSegNo installed_segno;
XLogSegNo max_segno;
int fd;
int save_errno;
int open_flags = O_RDWR | O_CREAT | O_EXCL | PG_BINARY;
Assert(logtli != 0);
XLogFilePath(path, logtli, logsegno, wal_segment_size);
/*
* Try to use existent file (checkpoint maker may have created it already)
*/
*added = false;
fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
get_sync_bit(sync_method));
if (fd < 0)
{
if (errno != ENOENT)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not open file \"%s\": %m", path)));
}
else
return fd;
/*
* Initialize an empty (all zeroes) segment. NOTE: it is possible that
* another process is doing the same thing. If so, we will end up
* pre-creating an extra log segment. That seems OK, and better than
* holding the lock throughout this lengthy process.
*/
elog(DEBUG2, "creating and filling new WAL file");
snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
unlink(tmppath);
if (io_direct_flags & IO_DIRECT_WAL_INIT)
open_flags |= PG_O_DIRECT;
/* do not use get_sync_bit() here --- want to fsync only at end of fill */
fd = BasicOpenFile(tmppath, open_flags);
if (fd < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not create file \"%s\": %m", tmppath)));
pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_WRITE);
save_errno = 0;
if (wal_init_zero)
{
ssize_t rc;
/*
* Zero-fill the file. With this setting, we do this the hard way to
* ensure that all the file space has really been allocated. On
* platforms that allow "holes" in files, just seeking to the end
* doesn't allocate intermediate space. This way, we know that we
* have all the space and (after the fsync below) that all the
* indirect blocks are down on disk. Therefore, fdatasync(2) or
* O_DSYNC will be sufficient to sync future writes to the log file.
*/
rc = pg_pwrite_zeros(fd, wal_segment_size, 0);
if (rc < 0)
save_errno = errno;
}
else
{
/*
* Otherwise, seeking to the end and writing a solitary byte is
* enough.
*/
errno = 0;
if (pg_pwrite(fd, "\0", 1, wal_segment_size - 1) != 1)
{
/* if write didn't set errno, assume no disk space */
save_errno = errno ? errno : ENOSPC;
}
}
pgstat_report_wait_end();
if (save_errno)
{
/*
* If we fail to make the file, delete it to release disk space
*/
unlink(tmppath);
close(fd);
errno = save_errno;
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not write to file \"%s\": %m", tmppath)));
}
pgstat_report_wait_start(WAIT_EVENT_WAL_INIT_SYNC);
if (pg_fsync(fd) != 0)
{
save_errno = errno;
close(fd);
errno = save_errno;
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m", tmppath)));
}
pgstat_report_wait_end();
if (close(fd) != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m", tmppath)));
/*
* Now move the segment into place with its final name. Cope with
* possibility that someone else has created the file while we were
* filling ours: if so, use ours to pre-create a future log segment.
*/
installed_segno = logsegno;
/*
* XXX: What should we use as max_segno? We used to use XLOGfileslop when
* that was a constant, but that was always a bit dubious: normally, at a
* checkpoint, XLOGfileslop was the offset from the checkpoint record, but
* here, it was the offset from the insert location. We can't do the
* normal XLOGfileslop calculation here because we don't have access to
* the prior checkpoint's redo location. So somewhat arbitrarily, just use
* CheckPointSegments.
*/
max_segno = logsegno + CheckPointSegments;
if (InstallXLogFileSegment(&installed_segno, tmppath, true, max_segno,
logtli))
{
*added = true;
elog(DEBUG2, "done creating and filling new WAL file");
}
else
{
/*
* No need for any more future segments, or InstallXLogFileSegment()
* failed to rename the file into place. If the rename failed, a
* caller opening the file may fail.
*/
unlink(tmppath);
elog(DEBUG2, "abandoned new WAL file");
}
return -1;
}
/*
* Create a new XLOG file segment, or open a pre-existing one.
*
* logsegno: identify segment to be created/opened.
*
* Returns FD of opened file.
*
* Note: errors here are ERROR not PANIC because we might or might not be
* inside a critical section (eg, during checkpoint there is no reason to
* take down the system on failure). They will promote to PANIC if we are
* in a critical section.
*/
int
XLogFileInit(XLogSegNo logsegno, TimeLineID logtli)
{
bool ignore_added;
char path[MAXPGPATH];
int fd;
Assert(logtli != 0);
fd = XLogFileInitInternal(logsegno, logtli, &ignore_added, path);
if (fd >= 0)
return fd;
/* Now open original target segment (might not be file I just made) */
fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
get_sync_bit(sync_method));
if (fd < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not open file \"%s\": %m", path)));
return fd;
}
/*
* Create a new XLOG file segment by copying a pre-existing one.
*
* destsegno: identify segment to be created.
*
* srcTLI, srcsegno: identify segment to be copied (could be from
* a different timeline)
*
* upto: how much of the source file to copy (the rest is filled with
* zeros)
*
* Currently this is only used during recovery, and so there are no locking
* considerations. But we should be just as tense as XLogFileInit to avoid
* emplacing a bogus file.
*/
static void
XLogFileCopy(TimeLineID destTLI, XLogSegNo destsegno,
TimeLineID srcTLI, XLogSegNo srcsegno,
int upto)
{
char path[MAXPGPATH];
char tmppath[MAXPGPATH];
PGAlignedXLogBlock buffer;
int srcfd;
int fd;
int nbytes;
/*
* Open the source file
*/
XLogFilePath(path, srcTLI, srcsegno, wal_segment_size);
srcfd = OpenTransientFile(path, O_RDONLY | PG_BINARY);
if (srcfd < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not open file \"%s\": %m", path)));
/*
* Copy into a temp file name.
*/
snprintf(tmppath, MAXPGPATH, XLOGDIR "/xlogtemp.%d", (int) getpid());
unlink(tmppath);
/* do not use get_sync_bit() here --- want to fsync only at end of fill */
fd = OpenTransientFile(tmppath, O_RDWR | O_CREAT | O_EXCL | PG_BINARY);
if (fd < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not create file \"%s\": %m", tmppath)));
/*
* Do the data copying.
*/
for (nbytes = 0; nbytes < wal_segment_size; nbytes += sizeof(buffer))
{
int nread;
nread = upto - nbytes;
/*
* The part that is not read from the source file is filled with
* zeros.
*/
if (nread < sizeof(buffer))
memset(buffer.data, 0, sizeof(buffer));
if (nread > 0)
{
int r;
if (nread > sizeof(buffer))
nread = sizeof(buffer);
pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_READ);
r = read(srcfd, buffer.data, nread);
if (r != nread)
{
if (r < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not read file \"%s\": %m",
path)));
else
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("could not read file \"%s\": read %d of %zu",
path, r, (Size) nread)));
}
pgstat_report_wait_end();
}
errno = 0;
pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_WRITE);
if ((int) write(fd, buffer.data, sizeof(buffer)) != (int) sizeof(buffer))
{
int save_errno = errno;
/*
* If we fail to make the file, delete it to release disk space
*/
unlink(tmppath);
/* if write didn't set errno, assume problem is no disk space */
errno = save_errno ? save_errno : ENOSPC;
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not write to file \"%s\": %m", tmppath)));
}
pgstat_report_wait_end();
}
pgstat_report_wait_start(WAIT_EVENT_WAL_COPY_SYNC);
if (pg_fsync(fd) != 0)
ereport(data_sync_elevel(ERROR),
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m", tmppath)));
pgstat_report_wait_end();
if (CloseTransientFile(fd) != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m", tmppath)));
if (CloseTransientFile(srcfd) != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m", path)));
/*
* Now move the segment into place with its final name.
*/
if (!InstallXLogFileSegment(&destsegno, tmppath, false, 0, destTLI))
elog(ERROR, "InstallXLogFileSegment should not have failed");
}
/*
* Install a new XLOG segment file as a current or future log segment.
*
* This is used both to install a newly-created segment (which has a temp
* filename while it's being created) and to recycle an old segment.
*
* *segno: identify segment to install as (or first possible target).
* When find_free is true, this is modified on return to indicate the
* actual installation location or last segment searched.
*
* tmppath: initial name of file to install. It will be renamed into place.
*
* find_free: if true, install the new segment at the first empty segno
* number at or after the passed numbers. If false, install the new segment
* exactly where specified, deleting any existing segment file there.
*
* max_segno: maximum segment number to install the new file as. Fail if no
* free slot is found between *segno and max_segno. (Ignored when find_free
* is false.)
*
* tli: The timeline on which the new segment should be installed.
*
* Returns true if the file was installed successfully. false indicates that
* max_segno limit was exceeded, the startup process has disabled this
* function for now, or an error occurred while renaming the file into place.
*/
static bool
InstallXLogFileSegment(XLogSegNo *segno, char *tmppath,
bool find_free, XLogSegNo max_segno, TimeLineID tli)
{
char path[MAXPGPATH];
struct stat stat_buf;
Assert(tli != 0);
XLogFilePath(path, tli, *segno, wal_segment_size);
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
if (!XLogCtl->InstallXLogFileSegmentActive)
{
LWLockRelease(ControlFileLock);
return false;
}
if (!find_free)
{
/* Force installation: get rid of any pre-existing segment file */
durable_unlink(path, DEBUG1);
}
else
{
/* Find a free slot to put it in */
while (stat(path, &stat_buf) == 0)
{
if ((*segno) >= max_segno)
{
/* Failed to find a free slot within specified range */
LWLockRelease(ControlFileLock);
return false;
}
(*segno)++;
XLogFilePath(path, tli, *segno, wal_segment_size);
}
}
Assert(access(path, F_OK) != 0 && errno == ENOENT);
if (durable_rename(tmppath, path, LOG) != 0)
{
LWLockRelease(ControlFileLock);
/* durable_rename already emitted log message */
return false;
}
LWLockRelease(ControlFileLock);
return true;
}
/*
* Open a pre-existing logfile segment for writing.
*/
int
XLogFileOpen(XLogSegNo segno, TimeLineID tli)
{
char path[MAXPGPATH];
int fd;
XLogFilePath(path, tli, segno, wal_segment_size);
fd = BasicOpenFile(path, O_RDWR | PG_BINARY | O_CLOEXEC |
get_sync_bit(sync_method));
if (fd < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not open file \"%s\": %m", path)));
return fd;
}
/*
* Close the current logfile segment for writing.
*/
static void
XLogFileClose(void)
{
Assert(openLogFile >= 0);
/*
* WAL segment files will not be re-read in normal operation, so we advise
* the OS to release any cached pages. But do not do so if WAL archiving
* or streaming is active, because archiver and walsender process could
* use the cache to read the WAL segment.
*/
#if defined(USE_POSIX_FADVISE) && defined(POSIX_FADV_DONTNEED)
if (!XLogIsNeeded() && (io_direct_flags & IO_DIRECT_WAL) == 0)
(void) posix_fadvise(openLogFile, 0, 0, POSIX_FADV_DONTNEED);
#endif
if (close(openLogFile) != 0)
{
char xlogfname[MAXFNAMELEN];
int save_errno = errno;
XLogFileName(xlogfname, openLogTLI, openLogSegNo, wal_segment_size);
errno = save_errno;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m", xlogfname)));
}
openLogFile = -1;
ReleaseExternalFD();
}
/*
* Preallocate log files beyond the specified log endpoint.
*
* XXX this is currently extremely conservative, since it forces only one
* future log segment to exist, and even that only if we are 75% done with
* the current one. This is only appropriate for very low-WAL-volume systems.
* High-volume systems will be OK once they've built up a sufficient set of
* recycled log segments, but the startup transient is likely to include
* a lot of segment creations by foreground processes, which is not so good.
*
* XLogFileInitInternal() can ereport(ERROR). All known causes indicate big
* trouble; for example, a full filesystem is one cause. The checkpoint WAL
* and/or ControlFile updates already completed. If a RequestCheckpoint()
* initiated the present checkpoint and an ERROR ends this function, the
* command that called RequestCheckpoint() fails. That's not ideal, but it's
* not worth contorting more functions to use caller-specified elevel values.
* (With or without RequestCheckpoint(), an ERROR forestalls some inessential
* reporting and resource reclamation.)
*/
static void
PreallocXlogFiles(XLogRecPtr endptr, TimeLineID tli)
{
XLogSegNo _logSegNo;
int lf;
bool added;
char path[MAXPGPATH];
uint64 offset;
if (!XLogCtl->InstallXLogFileSegmentActive)
return; /* unlocked check says no */
XLByteToPrevSeg(endptr, _logSegNo, wal_segment_size);
offset = XLogSegmentOffset(endptr - 1, wal_segment_size);
if (offset >= (uint32) (0.75 * wal_segment_size))
{
_logSegNo++;
lf = XLogFileInitInternal(_logSegNo, tli, &added, path);
if (lf >= 0)
close(lf);
if (added)
CheckpointStats.ckpt_segs_added++;
}
}
/*
* Throws an error if the given log segment has already been removed or
* recycled. The caller should only pass a segment that it knows to have
* existed while the server has been running, as this function always
* succeeds if no WAL segments have been removed since startup.
* 'tli' is only used in the error message.
*
* Note: this function guarantees to keep errno unchanged on return.
* This supports callers that use this to possibly deliver a better
* error message about a missing file, while still being able to throw
* a normal file-access error afterwards, if this does return.
*/
void
CheckXLogRemoved(XLogSegNo segno, TimeLineID tli)
{
int save_errno = errno;
XLogSegNo lastRemovedSegNo;
SpinLockAcquire(&XLogCtl->info_lck);
lastRemovedSegNo = XLogCtl->lastRemovedSegNo;
SpinLockRelease(&XLogCtl->info_lck);
if (segno <= lastRemovedSegNo)
{
char filename[MAXFNAMELEN];
XLogFileName(filename, tli, segno, wal_segment_size);
errno = save_errno;
ereport(ERROR,
(errcode_for_file_access(),
errmsg("requested WAL segment %s has already been removed",
filename)));
}
errno = save_errno;
}
/*
* Return the last WAL segment removed, or 0 if no segment has been removed
* since startup.
*
* NB: the result can be out of date arbitrarily fast, the caller has to deal
* with that.
*/
XLogSegNo
XLogGetLastRemovedSegno(void)
{
XLogSegNo lastRemovedSegNo;
SpinLockAcquire(&XLogCtl->info_lck);
lastRemovedSegNo = XLogCtl->lastRemovedSegNo;
SpinLockRelease(&XLogCtl->info_lck);
return lastRemovedSegNo;
}
/*
* Update the last removed segno pointer in shared memory, to reflect that the
* given XLOG file has been removed.
*/
static void
UpdateLastRemovedPtr(char *filename)
{
uint32 tli;
XLogSegNo segno;
XLogFromFileName(filename, &tli, &segno, wal_segment_size);
SpinLockAcquire(&XLogCtl->info_lck);
if (segno > XLogCtl->lastRemovedSegNo)
XLogCtl->lastRemovedSegNo = segno;
SpinLockRelease(&XLogCtl->info_lck);
}
/*
* Remove all temporary log files in pg_wal
*
* This is called at the beginning of recovery after a previous crash,
* at a point where no other processes write fresh WAL data.
*/
static void
RemoveTempXlogFiles(void)
{
DIR *xldir;
struct dirent *xlde;
elog(DEBUG2, "removing all temporary WAL segments");
xldir = AllocateDir(XLOGDIR);
while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
{
char path[MAXPGPATH];
if (strncmp(xlde->d_name, "xlogtemp.", 9) != 0)
continue;
snprintf(path, MAXPGPATH, XLOGDIR "/%s", xlde->d_name);
unlink(path);
elog(DEBUG2, "removed temporary WAL segment \"%s\"", path);
}
FreeDir(xldir);
}
/*
* Recycle or remove all log files older or equal to passed segno.
*
* endptr is current (or recent) end of xlog, and lastredoptr is the
* redo pointer of the last checkpoint. These are used to determine
* whether we want to recycle rather than delete no-longer-wanted log files.
*
* insertTLI is the current timeline for XLOG insertion. Any recycled
* segments should be reused for this timeline.
*/
static void
RemoveOldXlogFiles(XLogSegNo segno, XLogRecPtr lastredoptr, XLogRecPtr endptr,
TimeLineID insertTLI)
{
DIR *xldir;
struct dirent *xlde;
char lastoff[MAXFNAMELEN];
XLogSegNo endlogSegNo;
XLogSegNo recycleSegNo;
/* Initialize info about where to try to recycle to */
XLByteToSeg(endptr, endlogSegNo, wal_segment_size);
recycleSegNo = XLOGfileslop(lastredoptr);
/*
* Construct a filename of the last segment to be kept. The timeline ID
* doesn't matter, we ignore that in the comparison. (During recovery,
* InsertTimeLineID isn't set, so we can't use that.)
*/
XLogFileName(lastoff, 0, segno, wal_segment_size);
elog(DEBUG2, "attempting to remove WAL segments older than log file %s",
lastoff);
xldir = AllocateDir(XLOGDIR);
while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
{
/* Ignore files that are not XLOG segments */
if (!IsXLogFileName(xlde->d_name) &&
!IsPartialXLogFileName(xlde->d_name))
continue;
/*
* We ignore the timeline part of the XLOG segment identifiers in
* deciding whether a segment is still needed. This ensures that we
* won't prematurely remove a segment from a parent timeline. We could
* probably be a little more proactive about removing segments of
* non-parent timelines, but that would be a whole lot more
* complicated.
*
* We use the alphanumeric sorting property of the filenames to decide
* which ones are earlier than the lastoff segment.
*/
if (strcmp(xlde->d_name + 8, lastoff + 8) <= 0)
{
if (XLogArchiveCheckDone(xlde->d_name))
{
/* Update the last removed location in shared memory first */
UpdateLastRemovedPtr(xlde->d_name);
RemoveXlogFile(xlde, recycleSegNo, &endlogSegNo, insertTLI);
}
}
}
FreeDir(xldir);
}
/*
* Remove WAL files that are not part of the given timeline's history.
*
* This is called during recovery, whenever we switch to follow a new
* timeline, and at the end of recovery when we create a new timeline. We
* wouldn't otherwise care about extra WAL files lying in pg_wal, but they
* might be leftover pre-allocated or recycled WAL segments on the old timeline
* that we haven't used yet, and contain garbage. If we just leave them in
* pg_wal, they will eventually be archived, and we can't let that happen.
* Files that belong to our timeline history are valid, because we have
* successfully replayed them, but from others we can't be sure.
*
* 'switchpoint' is the current point in WAL where we switch to new timeline,
* and 'newTLI' is the new timeline we switch to.
*/
void
RemoveNonParentXlogFiles(XLogRecPtr switchpoint, TimeLineID newTLI)
{
DIR *xldir;
struct dirent *xlde;
char switchseg[MAXFNAMELEN];
XLogSegNo endLogSegNo;
XLogSegNo switchLogSegNo;
XLogSegNo recycleSegNo;
/*
* Initialize info about where to begin the work. This will recycle,
* somewhat arbitrarily, 10 future segments.
*/
XLByteToPrevSeg(switchpoint, switchLogSegNo, wal_segment_size);
XLByteToSeg(switchpoint, endLogSegNo, wal_segment_size);
recycleSegNo = endLogSegNo + 10;
/*
* Construct a filename of the last segment to be kept.
*/
XLogFileName(switchseg, newTLI, switchLogSegNo, wal_segment_size);
elog(DEBUG2, "attempting to remove WAL segments newer than log file %s",
switchseg);
xldir = AllocateDir(XLOGDIR);
while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
{
/* Ignore files that are not XLOG segments */
if (!IsXLogFileName(xlde->d_name))
continue;
/*
* Remove files that are on a timeline older than the new one we're
* switching to, but with a segment number >= the first segment on the
* new timeline.
*/
if (strncmp(xlde->d_name, switchseg, 8) < 0 &&
strcmp(xlde->d_name + 8, switchseg + 8) > 0)
{
/*
* If the file has already been marked as .ready, however, don't
* remove it yet. It should be OK to remove it - files that are
* not part of our timeline history are not required for recovery
* - but seems safer to let them be archived and removed later.
*/
if (!XLogArchiveIsReady(xlde->d_name))
RemoveXlogFile(xlde, recycleSegNo, &endLogSegNo, newTLI);
}
}
FreeDir(xldir);
}
/*
* Recycle or remove a log file that's no longer needed.
*
* segment_de is the dirent structure of the segment to recycle or remove.
* recycleSegNo is the segment number to recycle up to. endlogSegNo is
* the segment number of the current (or recent) end of WAL.
*
* endlogSegNo gets incremented if the segment is recycled so as it is not
* checked again with future callers of this function.
*
* insertTLI is the current timeline for XLOG insertion. Any recycled segments
* should be used for this timeline.
*/
static void
RemoveXlogFile(const struct dirent *segment_de,
XLogSegNo recycleSegNo, XLogSegNo *endlogSegNo,
TimeLineID insertTLI)
{
char path[MAXPGPATH];
#ifdef WIN32
char newpath[MAXPGPATH];
#endif
const char *segname = segment_de->d_name;
snprintf(path, MAXPGPATH, XLOGDIR "/%s", segname);
/*
* Before deleting the file, see if it can be recycled as a future log
* segment. Only recycle normal files, because we don't want to recycle
* symbolic links pointing to a separate archive directory.
*/
if (wal_recycle &&
*endlogSegNo <= recycleSegNo &&
XLogCtl->InstallXLogFileSegmentActive && /* callee rechecks this */
get_dirent_type(path, segment_de, false, DEBUG2) == PGFILETYPE_REG &&
InstallXLogFileSegment(endlogSegNo, path,
true, recycleSegNo, insertTLI))
{
ereport(DEBUG2,
(errmsg_internal("recycled write-ahead log file \"%s\"",
segname)));
CheckpointStats.ckpt_segs_recycled++;
/* Needn't recheck that slot on future iterations */
(*endlogSegNo)++;
}
else
{
/* No need for any more future segments, or recycling failed ... */
int rc;
ereport(DEBUG2,
(errmsg_internal("removing write-ahead log file \"%s\"",
segname)));
#ifdef WIN32
/*
* On Windows, if another process (e.g another backend) holds the file
* open in FILE_SHARE_DELETE mode, unlink will succeed, but the file
* will still show up in directory listing until the last handle is
* closed. To avoid confusing the lingering deleted file for a live
* WAL file that needs to be archived, rename it before deleting it.
*
* If another process holds the file open without FILE_SHARE_DELETE
* flag, rename will fail. We'll try again at the next checkpoint.
*/
snprintf(newpath, MAXPGPATH, "%s.deleted", path);
if (rename(path, newpath) != 0)
{
ereport(LOG,
(errcode_for_file_access(),
errmsg("could not rename file \"%s\": %m",
path)));
return;
}
rc = durable_unlink(newpath, LOG);
#else
rc = durable_unlink(path, LOG);
#endif
if (rc != 0)
{
/* Message already logged by durable_unlink() */
return;
}
CheckpointStats.ckpt_segs_removed++;
}
XLogArchiveCleanup(segname);
}
/*
* Verify whether pg_wal and pg_wal/archive_status exist.
* If the latter does not exist, recreate it.
*
* It is not the goal of this function to verify the contents of these
* directories, but to help in cases where someone has performed a cluster
* copy for PITR purposes but omitted pg_wal from the copy.
*
* We could also recreate pg_wal if it doesn't exist, but a deliberate
* policy decision was made not to. It is fairly common for pg_wal to be
* a symlink, and if that was the DBA's intent then automatically making a
* plain directory would result in degraded performance with no notice.
*/
static void
ValidateXLOGDirectoryStructure(void)
{
char path[MAXPGPATH];
struct stat stat_buf;
/* Check for pg_wal; if it doesn't exist, error out */
if (stat(XLOGDIR, &stat_buf) != 0 ||
!S_ISDIR(stat_buf.st_mode))
ereport(FATAL,
(errmsg("required WAL directory \"%s\" does not exist",
XLOGDIR)));
/* Check for archive_status */
snprintf(path, MAXPGPATH, XLOGDIR "/archive_status");
if (stat(path, &stat_buf) == 0)
{
/* Check for weird cases where it exists but isn't a directory */
if (!S_ISDIR(stat_buf.st_mode))
ereport(FATAL,
(errmsg("required WAL directory \"%s\" does not exist",
path)));
}
else
{
ereport(LOG,
(errmsg("creating missing WAL directory \"%s\"", path)));
if (MakePGDirectory(path) < 0)
ereport(FATAL,
(errmsg("could not create missing directory \"%s\": %m",
path)));
}
}
/*
* Remove previous backup history files. This also retries creation of
* .ready files for any backup history files for which XLogArchiveNotify
* failed earlier.
*/
static void
CleanupBackupHistory(void)
{
DIR *xldir;
struct dirent *xlde;
char path[MAXPGPATH + sizeof(XLOGDIR)];
xldir = AllocateDir(XLOGDIR);
while ((xlde = ReadDir(xldir, XLOGDIR)) != NULL)
{
if (IsBackupHistoryFileName(xlde->d_name))
{
if (XLogArchiveCheckDone(xlde->d_name))
{
elog(DEBUG2, "removing WAL backup history file \"%s\"",
xlde->d_name);
snprintf(path, sizeof(path), XLOGDIR "/%s", xlde->d_name);
unlink(path);
XLogArchiveCleanup(xlde->d_name);
}
}
}
FreeDir(xldir);
}
/*
* I/O routines for pg_control
*
* *ControlFile is a buffer in shared memory that holds an image of the
* contents of pg_control. WriteControlFile() initializes pg_control
* given a preloaded buffer, ReadControlFile() loads the buffer from
* the pg_control file (during postmaster or standalone-backend startup),
* and UpdateControlFile() rewrites pg_control after we modify xlog state.
* InitControlFile() fills the buffer with initial values.
*
* For simplicity, WriteControlFile() initializes the fields of pg_control
* that are related to checking backend/database compatibility, and
* ReadControlFile() verifies they are correct. We could split out the
* I/O and compatibility-check functions, but there seems no need currently.
*/
static void
InitControlFile(uint64 sysidentifier)
{
char mock_auth_nonce[MOCK_AUTH_NONCE_LEN];
/*
* Generate a random nonce. This is used for authentication requests that
* will fail because the user does not exist. The nonce is used to create
* a genuine-looking password challenge for the non-existent user, in lieu
* of an actual stored password.
*/
if (!pg_strong_random(mock_auth_nonce, MOCK_AUTH_NONCE_LEN))
ereport(PANIC,
(errcode(ERRCODE_INTERNAL_ERROR),
errmsg("could not generate secret authorization token")));
memset(ControlFile, 0, sizeof(ControlFileData));
/* Initialize pg_control status fields */
ControlFile->system_identifier = sysidentifier;
memcpy(ControlFile->mock_authentication_nonce, mock_auth_nonce, MOCK_AUTH_NONCE_LEN);
ControlFile->state = DB_SHUTDOWNED;
ControlFile->unloggedLSN = FirstNormalUnloggedLSN;
/* Set important parameter values for use when replaying WAL */
ControlFile->MaxConnections = MaxConnections;
ControlFile->max_worker_processes = max_worker_processes;
ControlFile->max_wal_senders = max_wal_senders;
ControlFile->max_prepared_xacts = max_prepared_xacts;
ControlFile->max_locks_per_xact = max_locks_per_xact;
ControlFile->wal_level = wal_level;
ControlFile->wal_log_hints = wal_log_hints;
ControlFile->track_commit_timestamp = track_commit_timestamp;
ControlFile->data_checksum_version = bootstrap_data_checksum_version;
}
static void
WriteControlFile(void)
{
int fd;
char buffer[PG_CONTROL_FILE_SIZE]; /* need not be aligned */
/*
* Initialize version and compatibility-check fields
*/
ControlFile->pg_control_version = PG_CONTROL_VERSION;
ControlFile->catalog_version_no = CATALOG_VERSION_NO;
ControlFile->maxAlign = MAXIMUM_ALIGNOF;
ControlFile->floatFormat = FLOATFORMAT_VALUE;
ControlFile->blcksz = BLCKSZ;
ControlFile->relseg_size = RELSEG_SIZE;
ControlFile->xlog_blcksz = XLOG_BLCKSZ;
ControlFile->xlog_seg_size = wal_segment_size;
ControlFile->nameDataLen = NAMEDATALEN;
ControlFile->indexMaxKeys = INDEX_MAX_KEYS;
ControlFile->toast_max_chunk_size = TOAST_MAX_CHUNK_SIZE;
ControlFile->loblksize = LOBLKSIZE;
ControlFile->float8ByVal = FLOAT8PASSBYVAL;
/* Contents are protected with a CRC */
INIT_CRC32C(ControlFile->crc);
COMP_CRC32C(ControlFile->crc,
(char *) ControlFile,
offsetof(ControlFileData, crc));
FIN_CRC32C(ControlFile->crc);
/*
* We write out PG_CONTROL_FILE_SIZE bytes into pg_control, zero-padding
* the excess over sizeof(ControlFileData). This reduces the odds of
* premature-EOF errors when reading pg_control. We'll still fail when we
* check the contents of the file, but hopefully with a more specific
* error than "couldn't read pg_control".
*/
memset(buffer, 0, PG_CONTROL_FILE_SIZE);
memcpy(buffer, ControlFile, sizeof(ControlFileData));
fd = BasicOpenFile(XLOG_CONTROL_FILE,
O_RDWR | O_CREAT | O_EXCL | PG_BINARY);
if (fd < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not create file \"%s\": %m",
XLOG_CONTROL_FILE)));
errno = 0;
pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_WRITE);
if (write(fd, buffer, PG_CONTROL_FILE_SIZE) != PG_CONTROL_FILE_SIZE)
{
/* if write didn't set errno, assume problem is no disk space */
if (errno == 0)
errno = ENOSPC;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not write to file \"%s\": %m",
XLOG_CONTROL_FILE)));
}
pgstat_report_wait_end();
pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_SYNC);
if (pg_fsync(fd) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m",
XLOG_CONTROL_FILE)));
pgstat_report_wait_end();
if (close(fd) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m",
XLOG_CONTROL_FILE)));
}
static void
ReadControlFile(void)
{
pg_crc32c crc;
int fd;
static char wal_segsz_str[20];
int r;
/*
* Read data...
*/
fd = BasicOpenFile(XLOG_CONTROL_FILE,
O_RDWR | PG_BINARY);
if (fd < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not open file \"%s\": %m",
XLOG_CONTROL_FILE)));
pgstat_report_wait_start(WAIT_EVENT_CONTROL_FILE_READ);
r = read(fd, ControlFile, sizeof(ControlFileData));
if (r != sizeof(ControlFileData))
{
if (r < 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not read file \"%s\": %m",
XLOG_CONTROL_FILE)));
else
ereport(PANIC,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("could not read file \"%s\": read %d of %zu",
XLOG_CONTROL_FILE, r, sizeof(ControlFileData))));
}
pgstat_report_wait_end();
close(fd);
/*
* Check for expected pg_control format version. If this is wrong, the
* CRC check will likely fail because we'll be checking the wrong number
* of bytes. Complaining about wrong version will probably be more
* enlightening than complaining about wrong CRC.
*/
if (ControlFile->pg_control_version != PG_CONTROL_VERSION && ControlFile->pg_control_version % 65536 == 0 && ControlFile->pg_control_version / 65536 != 0)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d (0x%08x),"
" but the server was compiled with PG_CONTROL_VERSION %d (0x%08x).",
ControlFile->pg_control_version, ControlFile->pg_control_version,
PG_CONTROL_VERSION, PG_CONTROL_VERSION),
errhint("This could be a problem of mismatched byte ordering. It looks like you need to initdb.")));
if (ControlFile->pg_control_version != PG_CONTROL_VERSION)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with PG_CONTROL_VERSION %d,"
" but the server was compiled with PG_CONTROL_VERSION %d.",
ControlFile->pg_control_version, PG_CONTROL_VERSION),
errhint("It looks like you need to initdb.")));
/* Now check the CRC. */
INIT_CRC32C(crc);
COMP_CRC32C(crc,
(char *) ControlFile,
offsetof(ControlFileData, crc));
FIN_CRC32C(crc);
if (!EQ_CRC32C(crc, ControlFile->crc))
ereport(FATAL,
(errmsg("incorrect checksum in control file")));
/*
* Do compatibility checking immediately. If the database isn't
* compatible with the backend executable, we want to abort before we can
* possibly do any damage.
*/
if (ControlFile->catalog_version_no != CATALOG_VERSION_NO)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with CATALOG_VERSION_NO %d,"
" but the server was compiled with CATALOG_VERSION_NO %d.",
ControlFile->catalog_version_no, CATALOG_VERSION_NO),
errhint("It looks like you need to initdb.")));
if (ControlFile->maxAlign != MAXIMUM_ALIGNOF)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with MAXALIGN %d,"
" but the server was compiled with MAXALIGN %d.",
ControlFile->maxAlign, MAXIMUM_ALIGNOF),
errhint("It looks like you need to initdb.")));
if (ControlFile->floatFormat != FLOATFORMAT_VALUE)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster appears to use a different floating-point number format than the server executable."),
errhint("It looks like you need to initdb.")));
if (ControlFile->blcksz != BLCKSZ)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with BLCKSZ %d,"
" but the server was compiled with BLCKSZ %d.",
ControlFile->blcksz, BLCKSZ),
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->relseg_size != RELSEG_SIZE)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with RELSEG_SIZE %d,"
" but the server was compiled with RELSEG_SIZE %d.",
ControlFile->relseg_size, RELSEG_SIZE),
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->xlog_blcksz != XLOG_BLCKSZ)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with XLOG_BLCKSZ %d,"
" but the server was compiled with XLOG_BLCKSZ %d.",
ControlFile->xlog_blcksz, XLOG_BLCKSZ),
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->nameDataLen != NAMEDATALEN)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with NAMEDATALEN %d,"
" but the server was compiled with NAMEDATALEN %d.",
ControlFile->nameDataLen, NAMEDATALEN),
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->indexMaxKeys != INDEX_MAX_KEYS)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with INDEX_MAX_KEYS %d,"
" but the server was compiled with INDEX_MAX_KEYS %d.",
ControlFile->indexMaxKeys, INDEX_MAX_KEYS),
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->toast_max_chunk_size != TOAST_MAX_CHUNK_SIZE)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with TOAST_MAX_CHUNK_SIZE %d,"
" but the server was compiled with TOAST_MAX_CHUNK_SIZE %d.",
ControlFile->toast_max_chunk_size, (int) TOAST_MAX_CHUNK_SIZE),
errhint("It looks like you need to recompile or initdb.")));
if (ControlFile->loblksize != LOBLKSIZE)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with LOBLKSIZE %d,"
" but the server was compiled with LOBLKSIZE %d.",
ControlFile->loblksize, (int) LOBLKSIZE),
errhint("It looks like you need to recompile or initdb.")));
#ifdef USE_FLOAT8_BYVAL
if (ControlFile->float8ByVal != true)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized without USE_FLOAT8_BYVAL"
" but the server was compiled with USE_FLOAT8_BYVAL."),
errhint("It looks like you need to recompile or initdb.")));
#else
if (ControlFile->float8ByVal != false)
ereport(FATAL,
(errmsg("database files are incompatible with server"),
errdetail("The database cluster was initialized with USE_FLOAT8_BYVAL"
" but the server was compiled without USE_FLOAT8_BYVAL."),
errhint("It looks like you need to recompile or initdb.")));
#endif
wal_segment_size = ControlFile->xlog_seg_size;
if (!IsValidWalSegSize(wal_segment_size))
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg_plural("WAL segment size must be a power of two between 1 MB and 1 GB, but the control file specifies %d byte",
"WAL segment size must be a power of two between 1 MB and 1 GB, but the control file specifies %d bytes",
wal_segment_size,
wal_segment_size)));
snprintf(wal_segsz_str, sizeof(wal_segsz_str), "%d", wal_segment_size);
SetConfigOption("wal_segment_size", wal_segsz_str, PGC_INTERNAL,
PGC_S_DYNAMIC_DEFAULT);
/* check and update variables dependent on wal_segment_size */
if (ConvertToXSegs(min_wal_size_mb, wal_segment_size) < 2)
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("\"min_wal_size\" must be at least twice \"wal_segment_size\"")));
if (ConvertToXSegs(max_wal_size_mb, wal_segment_size) < 2)
ereport(ERROR, (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("\"max_wal_size\" must be at least twice \"wal_segment_size\"")));
UsableBytesInSegment =
(wal_segment_size / XLOG_BLCKSZ * UsableBytesInPage) -
(SizeOfXLogLongPHD - SizeOfXLogShortPHD);
CalculateCheckpointSegments();
/* Make the initdb settings visible as GUC variables, too */
SetConfigOption("data_checksums", DataChecksumsEnabled() ? "yes" : "no",
PGC_INTERNAL, PGC_S_DYNAMIC_DEFAULT);
}
/*
* Utility wrapper to update the control file. Note that the control
* file gets flushed.
*/
static void
UpdateControlFile(void)
{
update_controlfile(DataDir, ControlFile, true);
}
/*
* Returns the unique system identifier from control file.
*/
uint64
GetSystemIdentifier(void)
{
Assert(ControlFile != NULL);
return ControlFile->system_identifier;
}
/*
* Returns the random nonce from control file.
*/
char *
GetMockAuthenticationNonce(void)
{
Assert(ControlFile != NULL);
return ControlFile->mock_authentication_nonce;
}
/*
* Are checksums enabled for data pages?
*/
bool
DataChecksumsEnabled(void)
{
Assert(ControlFile != NULL);
return (ControlFile->data_checksum_version > 0);
}
/*
* Returns a fake LSN for unlogged relations.
*
* Each call generates an LSN that is greater than any previous value
* returned. The current counter value is saved and restored across clean
* shutdowns, but like unlogged relations, does not survive a crash. This can
* be used in lieu of real LSN values returned by XLogInsert, if you need an
* LSN-like increasing sequence of numbers without writing any WAL.
*/
XLogRecPtr
GetFakeLSNForUnloggedRel(void)
{
XLogRecPtr nextUnloggedLSN;
/* increment the unloggedLSN counter, need SpinLock */
SpinLockAcquire(&XLogCtl->ulsn_lck);
nextUnloggedLSN = XLogCtl->unloggedLSN++;
SpinLockRelease(&XLogCtl->ulsn_lck);
return nextUnloggedLSN;
}
/*
* Auto-tune the number of XLOG buffers.
*
* The preferred setting for wal_buffers is about 3% of shared_buffers, with
* a maximum of one XLOG segment (there is little reason to think that more
* is helpful, at least so long as we force an fsync when switching log files)
* and a minimum of 8 blocks (which was the default value prior to PostgreSQL
* 9.1, when auto-tuning was added).
*
* This should not be called until NBuffers has received its final value.
*/
static int
XLOGChooseNumBuffers(void)
{
int xbuffers;
xbuffers = NBuffers / 32;
if (xbuffers > (wal_segment_size / XLOG_BLCKSZ))
xbuffers = (wal_segment_size / XLOG_BLCKSZ);
if (xbuffers < 8)
xbuffers = 8;
return xbuffers;
}
/*
* GUC check_hook for wal_buffers
*/
bool
check_wal_buffers(int *newval, void **extra, GucSource source)
{
/*
* -1 indicates a request for auto-tune.
*/
if (*newval == -1)
{
/*
* If we haven't yet changed the boot_val default of -1, just let it
* be. We'll fix it when XLOGShmemSize is called.
*/
if (XLOGbuffers == -1)
return true;
/* Otherwise, substitute the auto-tune value */
*newval = XLOGChooseNumBuffers();
}
/*
* We clamp manually-set values to at least 4 blocks. Prior to PostgreSQL
* 9.1, a minimum of 4 was enforced by guc.c, but since that is no longer
* the case, we just silently treat such values as a request for the
* minimum. (We could throw an error instead, but that doesn't seem very
* helpful.)
*/
if (*newval < 4)
*newval = 4;
return true;
}
/*
* GUC check_hook for wal_consistency_checking
*/
bool
check_wal_consistency_checking(char **newval, void **extra, GucSource source)
{
char *rawstring;
List *elemlist;
ListCell *l;
bool newwalconsistency[RM_MAX_ID + 1];
/* Initialize the array */
MemSet(newwalconsistency, 0, (RM_MAX_ID + 1) * sizeof(bool));
/* Need a modifiable copy of string */
rawstring = pstrdup(*newval);
/* Parse string into list of identifiers */
if (!SplitIdentifierString(rawstring, ',', &elemlist))
{
/* syntax error in list */
GUC_check_errdetail("List syntax is invalid.");
pfree(rawstring);
list_free(elemlist);
return false;
}
foreach(l, elemlist)
{
char *tok = (char *) lfirst(l);
int rmid;
/* Check for 'all'. */
if (pg_strcasecmp(tok, "all") == 0)
{
for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
if (RmgrIdExists(rmid) && GetRmgr(rmid).rm_mask != NULL)
newwalconsistency[rmid] = true;
}
else
{
/* Check if the token matches any known resource manager. */
bool found = false;
for (rmid = 0; rmid <= RM_MAX_ID; rmid++)
{
if (RmgrIdExists(rmid) && GetRmgr(rmid).rm_mask != NULL &&
pg_strcasecmp(tok, GetRmgr(rmid).rm_name) == 0)
{
newwalconsistency[rmid] = true;
found = true;
break;
}
}
if (!found)
{
/*
* During startup, it might be a not-yet-loaded custom
* resource manager. Defer checking until
* InitializeWalConsistencyChecking().
*/
if (!process_shared_preload_libraries_done)
{
check_wal_consistency_checking_deferred = true;
}
else
{
GUC_check_errdetail("Unrecognized key word: \"%s\".", tok);
pfree(rawstring);
list_free(elemlist);
return false;
}
}
}
}
pfree(rawstring);
list_free(elemlist);
/* assign new value */
*extra = guc_malloc(ERROR, (RM_MAX_ID + 1) * sizeof(bool));
memcpy(*extra, newwalconsistency, (RM_MAX_ID + 1) * sizeof(bool));
return true;
}
/*
* GUC assign_hook for wal_consistency_checking
*/
void
assign_wal_consistency_checking(const char *newval, void *extra)
{
/*
* If some checks were deferred, it's possible that the checks will fail
* later during InitializeWalConsistencyChecking(). But in that case, the
* postmaster will exit anyway, so it's safe to proceed with the
* assignment.
*
* Any built-in resource managers specified are assigned immediately,
* which affects WAL created before shared_preload_libraries are
* processed. Any custom resource managers specified won't be assigned
* until after shared_preload_libraries are processed, but that's OK
* because WAL for a custom resource manager can't be written before the
* module is loaded anyway.
*/
wal_consistency_checking = extra;
}
/*
* InitializeWalConsistencyChecking: run after loading custom resource managers
*
* If any unknown resource managers were specified in the
* wal_consistency_checking GUC, processing was deferred. Now that
* shared_preload_libraries have been loaded, process wal_consistency_checking
* again.
*/
void
InitializeWalConsistencyChecking(void)
{
Assert(process_shared_preload_libraries_done);
if (check_wal_consistency_checking_deferred)
{
struct config_generic *guc;
guc = find_option("wal_consistency_checking", false, false, ERROR);
check_wal_consistency_checking_deferred = false;
set_config_option_ext("wal_consistency_checking",
wal_consistency_checking_string,
guc->scontext, guc->source, guc->srole,
GUC_ACTION_SET, true, ERROR, false);
/* checking should not be deferred again */
Assert(!check_wal_consistency_checking_deferred);
}
}
/*
* GUC show_hook for archive_command
*/
const char *
show_archive_command(void)
{
if (XLogArchivingActive())
return XLogArchiveCommand;
else
return "(disabled)";
}
/*
* GUC show_hook for in_hot_standby
*/
const char *
show_in_hot_standby(void)
{
/*
* We display the actual state based on shared memory, so that this GUC
* reports up-to-date state if examined intra-query. The underlying
* variable (in_hot_standby_guc) changes only when we transmit a new value
* to the client.
*/
return RecoveryInProgress() ? "on" : "off";
}
/*
* Read the control file, set respective GUCs.
*
* This is to be called during startup, including a crash recovery cycle,
* unless in bootstrap mode, where no control file yet exists. As there's no
* usable shared memory yet (its sizing can depend on the contents of the
* control file!), first store the contents in local memory. XLOGShmemInit()
* will then copy it to shared memory later.
*
* reset just controls whether previous contents are to be expected (in the
* reset case, there's a dangling pointer into old shared memory), or not.
*/
void
LocalProcessControlFile(bool reset)
{
Assert(reset || ControlFile == NULL);
ControlFile = palloc(sizeof(ControlFileData));
ReadControlFile();
}
/*
* Get the wal_level from the control file. For a standby, this value should be
* considered as its active wal_level, because it may be different from what
* was originally configured on standby.
*/
WalLevel
GetActiveWalLevelOnStandby(void)
{
return ControlFile->wal_level;
}
/*
* Initialization of shared memory for XLOG
*/
Size
XLOGShmemSize(void)
{
Size size;
/*
* If the value of wal_buffers is -1, use the preferred auto-tune value.
* This isn't an amazingly clean place to do this, but we must wait till
* NBuffers has received its final value, and must do it before using the
* value of XLOGbuffers to do anything important.
*
* We prefer to report this value's source as PGC_S_DYNAMIC_DEFAULT.
* However, if the DBA explicitly set wal_buffers = -1 in the config file,
* then PGC_S_DYNAMIC_DEFAULT will fail to override that and we must force
* the matter with PGC_S_OVERRIDE.
*/
if (XLOGbuffers == -1)
{
char buf[32];
snprintf(buf, sizeof(buf), "%d", XLOGChooseNumBuffers());
SetConfigOption("wal_buffers", buf, PGC_POSTMASTER,
PGC_S_DYNAMIC_DEFAULT);
if (XLOGbuffers == -1) /* failed to apply it? */
SetConfigOption("wal_buffers", buf, PGC_POSTMASTER,
PGC_S_OVERRIDE);
}
Assert(XLOGbuffers > 0);
/* XLogCtl */
size = sizeof(XLogCtlData);
/* WAL insertion locks, plus alignment */
size = add_size(size, mul_size(sizeof(WALInsertLockPadded), NUM_XLOGINSERT_LOCKS + 1));
/* xlblocks array */
size = add_size(size, mul_size(sizeof(XLogRecPtr), XLOGbuffers));
/* extra alignment padding for XLOG I/O buffers */
size = add_size(size, Max(XLOG_BLCKSZ, PG_IO_ALIGN_SIZE));
/* and the buffers themselves */
size = add_size(size, mul_size(XLOG_BLCKSZ, XLOGbuffers));
/*
* Note: we don't count ControlFileData, it comes out of the "slop factor"
* added by CreateSharedMemoryAndSemaphores. This lets us use this
* routine again below to compute the actual allocation size.
*/
return size;
}
void
XLOGShmemInit(void)
{
bool foundCFile,
foundXLog;
char *allocptr;
int i;
ControlFileData *localControlFile;
#ifdef WAL_DEBUG
/*
* Create a memory context for WAL debugging that's exempt from the normal
* "no pallocs in critical section" rule. Yes, that can lead to a PANIC if
* an allocation fails, but wal_debug is not for production use anyway.
*/
if (walDebugCxt == NULL)
{
walDebugCxt = AllocSetContextCreate(TopMemoryContext,
"WAL Debug",
ALLOCSET_DEFAULT_SIZES);
MemoryContextAllowInCriticalSection(walDebugCxt, true);
}
#endif
XLogCtl = (XLogCtlData *)
ShmemInitStruct("XLOG Ctl", XLOGShmemSize(), &foundXLog);
localControlFile = ControlFile;
ControlFile = (ControlFileData *)
ShmemInitStruct("Control File", sizeof(ControlFileData), &foundCFile);
if (foundCFile || foundXLog)
{
/* both should be present or neither */
Assert(foundCFile && foundXLog);
/* Initialize local copy of WALInsertLocks */
WALInsertLocks = XLogCtl->Insert.WALInsertLocks;
if (localControlFile)
pfree(localControlFile);
return;
}
memset(XLogCtl, 0, sizeof(XLogCtlData));
/*
* Already have read control file locally, unless in bootstrap mode. Move
* contents into shared memory.
*/
if (localControlFile)
{
memcpy(ControlFile, localControlFile, sizeof(ControlFileData));
pfree(localControlFile);
}
/*
* Since XLogCtlData contains XLogRecPtr fields, its sizeof should be a
* multiple of the alignment for same, so no extra alignment padding is
* needed here.
*/
allocptr = ((char *) XLogCtl) + sizeof(XLogCtlData);
XLogCtl->xlblocks = (XLogRecPtr *) allocptr;
memset(XLogCtl->xlblocks, 0, sizeof(XLogRecPtr) * XLOGbuffers);
allocptr += sizeof(XLogRecPtr) * XLOGbuffers;
/* WAL insertion locks. Ensure they're aligned to the full padded size */
allocptr += sizeof(WALInsertLockPadded) -
((uintptr_t) allocptr) % sizeof(WALInsertLockPadded);
WALInsertLocks = XLogCtl->Insert.WALInsertLocks =
(WALInsertLockPadded *) allocptr;
allocptr += sizeof(WALInsertLockPadded) * NUM_XLOGINSERT_LOCKS;
for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
{
LWLockInitialize(&WALInsertLocks[i].l.lock, LWTRANCHE_WAL_INSERT);
WALInsertLocks[i].l.insertingAt = InvalidXLogRecPtr;
WALInsertLocks[i].l.lastImportantAt = InvalidXLogRecPtr;
}
/*
* Align the start of the page buffers to a full xlog block size boundary.
* This simplifies some calculations in XLOG insertion. It is also
* required for O_DIRECT.
*/
allocptr = (char *) TYPEALIGN(XLOG_BLCKSZ, allocptr);
XLogCtl->pages = allocptr;
memset(XLogCtl->pages, 0, (Size) XLOG_BLCKSZ * XLOGbuffers);
/*
* Do basic initialization of XLogCtl shared data. (StartupXLOG will fill
* in additional info.)
*/
XLogCtl->XLogCacheBlck = XLOGbuffers - 1;
XLogCtl->SharedRecoveryState = RECOVERY_STATE_CRASH;
XLogCtl->InstallXLogFileSegmentActive = false;
XLogCtl->WalWriterSleeping = false;
SpinLockInit(&XLogCtl->Insert.insertpos_lck);
SpinLockInit(&XLogCtl->info_lck);
SpinLockInit(&XLogCtl->ulsn_lck);
}
/*
* This func must be called ONCE on system install. It creates pg_control
* and the initial XLOG segment.
*/
void
BootStrapXLOG(void)
{
CheckPoint checkPoint;
char *buffer;
XLogPageHeader page;
XLogLongPageHeader longpage;
XLogRecord *record;
char *recptr;
uint64 sysidentifier;
struct timeval tv;
pg_crc32c crc;
/* allow ordinary WAL segment creation, like StartupXLOG() would */
SetInstallXLogFileSegmentActive();
/*
* Select a hopefully-unique system identifier code for this installation.
* We use the result of gettimeofday(), including the fractional seconds
* field, as being about as unique as we can easily get. (Think not to
* use random(), since it hasn't been seeded and there's no portable way
* to seed it other than the system clock value...) The upper half of the
* uint64 value is just the tv_sec part, while the lower half contains the
* tv_usec part (which must fit in 20 bits), plus 12 bits from our current
* PID for a little extra uniqueness. A person knowing this encoding can
* determine the initialization time of the installation, which could
* perhaps be useful sometimes.
*/
gettimeofday(&tv, NULL);
sysidentifier = ((uint64) tv.tv_sec) << 32;
sysidentifier |= ((uint64) tv.tv_usec) << 12;
sysidentifier |= getpid() & 0xFFF;
/* page buffer must be aligned suitably for O_DIRECT */
buffer = (char *) palloc(XLOG_BLCKSZ + XLOG_BLCKSZ);
page = (XLogPageHeader) TYPEALIGN(XLOG_BLCKSZ, buffer);
memset(page, 0, XLOG_BLCKSZ);
/*
* Set up information for the initial checkpoint record
*
* The initial checkpoint record is written to the beginning of the WAL
* segment with logid=0 logseg=1. The very first WAL segment, 0/0, is not
* used, so that we can use 0/0 to mean "before any valid WAL segment".
*/
checkPoint.redo = wal_segment_size + SizeOfXLogLongPHD;
checkPoint.ThisTimeLineID = BootstrapTimeLineID;
checkPoint.PrevTimeLineID = BootstrapTimeLineID;
checkPoint.fullPageWrites = fullPageWrites;
checkPoint.nextXid =
FullTransactionIdFromEpochAndXid(0, FirstNormalTransactionId);
checkPoint.nextOid = FirstGenbkiObjectId;
checkPoint.nextMulti = FirstMultiXactId;
checkPoint.nextMultiOffset = 0;
checkPoint.oldestXid = FirstNormalTransactionId;
checkPoint.oldestXidDB = Template1DbOid;
checkPoint.oldestMulti = FirstMultiXactId;
checkPoint.oldestMultiDB = Template1DbOid;
checkPoint.oldestCommitTsXid = InvalidTransactionId;
checkPoint.newestCommitTsXid = InvalidTransactionId;
checkPoint.time = (pg_time_t) time(NULL);
checkPoint.oldestActiveXid = InvalidTransactionId;
ShmemVariableCache->nextXid = checkPoint.nextXid;
ShmemVariableCache->nextOid = checkPoint.nextOid;
ShmemVariableCache->oidCount = 0;
MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
AdvanceOldestClogXid(checkPoint.oldestXid);
SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true);
SetCommitTsLimit(InvalidTransactionId, InvalidTransactionId);
/* Set up the XLOG page header */
page->xlp_magic = XLOG_PAGE_MAGIC;
page->xlp_info = XLP_LONG_HEADER;
page->xlp_tli = BootstrapTimeLineID;
page->xlp_pageaddr = wal_segment_size;
longpage = (XLogLongPageHeader) page;
longpage->xlp_sysid = sysidentifier;
longpage->xlp_seg_size = wal_segment_size;
longpage->xlp_xlog_blcksz = XLOG_BLCKSZ;
/* Insert the initial checkpoint record */
recptr = ((char *) page + SizeOfXLogLongPHD);
record = (XLogRecord *) recptr;
record->xl_prev = 0;
record->xl_xid = InvalidTransactionId;
record->xl_tot_len = SizeOfXLogRecord + SizeOfXLogRecordDataHeaderShort + sizeof(checkPoint);
record->xl_info = XLOG_CHECKPOINT_SHUTDOWN;
record->xl_rmid = RM_XLOG_ID;
recptr += SizeOfXLogRecord;
/* fill the XLogRecordDataHeaderShort struct */
*(recptr++) = (char) XLR_BLOCK_ID_DATA_SHORT;
*(recptr++) = sizeof(checkPoint);
memcpy(recptr, &checkPoint, sizeof(checkPoint));
recptr += sizeof(checkPoint);
Assert(recptr - (char *) record == record->xl_tot_len);
INIT_CRC32C(crc);
COMP_CRC32C(crc, ((char *) record) + SizeOfXLogRecord, record->xl_tot_len - SizeOfXLogRecord);
COMP_CRC32C(crc, (char *) record, offsetof(XLogRecord, xl_crc));
FIN_CRC32C(crc);
record->xl_crc = crc;
/* Create first XLOG segment file */
openLogTLI = BootstrapTimeLineID;
openLogFile = XLogFileInit(1, BootstrapTimeLineID);
/*
* We needn't bother with Reserve/ReleaseExternalFD here, since we'll
* close the file again in a moment.
*/
/* Write the first page with the initial record */
errno = 0;
pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_WRITE);
if (write(openLogFile, page, XLOG_BLCKSZ) != XLOG_BLCKSZ)
{
/* if write didn't set errno, assume problem is no disk space */
if (errno == 0)
errno = ENOSPC;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not write bootstrap write-ahead log file: %m")));
}
pgstat_report_wait_end();
pgstat_report_wait_start(WAIT_EVENT_WAL_BOOTSTRAP_SYNC);
if (pg_fsync(openLogFile) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not fsync bootstrap write-ahead log file: %m")));
pgstat_report_wait_end();
if (close(openLogFile) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not close bootstrap write-ahead log file: %m")));
openLogFile = -1;
/* Now create pg_control */
InitControlFile(sysidentifier);
ControlFile->time = checkPoint.time;
ControlFile->checkPoint = checkPoint.redo;
ControlFile->checkPointCopy = checkPoint;
/* some additional ControlFile fields are set in WriteControlFile() */
WriteControlFile();
/* Bootstrap the commit log, too */
BootStrapCLOG();
BootStrapCommitTs();
BootStrapSUBTRANS();
BootStrapMultiXact();
pfree(buffer);
/*
* Force control file to be read - in contrast to normal processing we'd
* otherwise never run the checks and GUC related initializations therein.
*/
ReadControlFile();
}
static char *
str_time(pg_time_t tnow)
{
static char buf[128];
pg_strftime(buf, sizeof(buf),
"%Y-%m-%d %H:%M:%S %Z",
pg_localtime(&tnow, log_timezone));
return buf;
}
/*
* Initialize the first WAL segment on new timeline.
*/
static void
XLogInitNewTimeline(TimeLineID endTLI, XLogRecPtr endOfLog, TimeLineID newTLI)
{
char xlogfname[MAXFNAMELEN];
XLogSegNo endLogSegNo;
XLogSegNo startLogSegNo;
/* we always switch to a new timeline after archive recovery */
Assert(endTLI != newTLI);
/*
* Update min recovery point one last time.
*/
UpdateMinRecoveryPoint(InvalidXLogRecPtr, true);
/*
* Calculate the last segment on the old timeline, and the first segment
* on the new timeline. If the switch happens in the middle of a segment,
* they are the same, but if the switch happens exactly at a segment
* boundary, startLogSegNo will be endLogSegNo + 1.
*/
XLByteToPrevSeg(endOfLog, endLogSegNo, wal_segment_size);
XLByteToSeg(endOfLog, startLogSegNo, wal_segment_size);
/*
* Initialize the starting WAL segment for the new timeline. If the switch
* happens in the middle of a segment, copy data from the last WAL segment
* of the old timeline up to the switch point, to the starting WAL segment
* on the new timeline.
*/
if (endLogSegNo == startLogSegNo)
{
/*
* Make a copy of the file on the new timeline.
*
* Writing WAL isn't allowed yet, so there are no locking
* considerations. But we should be just as tense as XLogFileInit to
* avoid emplacing a bogus file.
*/
XLogFileCopy(newTLI, endLogSegNo, endTLI, endLogSegNo,
XLogSegmentOffset(endOfLog, wal_segment_size));
}
else
{
/*
* The switch happened at a segment boundary, so just create the next
* segment on the new timeline.
*/
int fd;
fd = XLogFileInit(startLogSegNo, newTLI);
if (close(fd) != 0)
{
int save_errno = errno;
XLogFileName(xlogfname, newTLI, startLogSegNo, wal_segment_size);
errno = save_errno;
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m", xlogfname)));
}
}
/*
* Let's just make real sure there are not .ready or .done flags posted
* for the new segment.
*/
XLogFileName(xlogfname, newTLI, startLogSegNo, wal_segment_size);
XLogArchiveCleanup(xlogfname);
}
/*
* Perform cleanup actions at the conclusion of archive recovery.
*/
static void
CleanupAfterArchiveRecovery(TimeLineID EndOfLogTLI, XLogRecPtr EndOfLog,
TimeLineID newTLI)
{
/*
* Execute the recovery_end_command, if any.
*/
if (recoveryEndCommand && strcmp(recoveryEndCommand, "") != 0)
ExecuteRecoveryCommand(recoveryEndCommand,
"recovery_end_command",
true,
WAIT_EVENT_RECOVERY_END_COMMAND);
/*
* We switched to a new timeline. Clean up segments on the old timeline.
*
* If there are any higher-numbered segments on the old timeline, remove
* them. They might contain valid WAL, but they might also be
* pre-allocated files containing garbage. In any case, they are not part
* of the new timeline's history so we don't need them.
*/
RemoveNonParentXlogFiles(EndOfLog, newTLI);
/*
* If the switch happened in the middle of a segment, what to do with the
* last, partial segment on the old timeline? If we don't archive it, and
* the server that created the WAL never archives it either (e.g. because
* it was hit by a meteor), it will never make it to the archive. That's
* OK from our point of view, because the new segment that we created with
* the new TLI contains all the WAL from the old timeline up to the switch
* point. But if you later try to do PITR to the "missing" WAL on the old
* timeline, recovery won't find it in the archive. It's physically
* present in the new file with new TLI, but recovery won't look there
* when it's recovering to the older timeline. On the other hand, if we
* archive the partial segment, and the original server on that timeline
* is still running and archives the completed version of the same segment
* later, it will fail. (We used to do that in 9.4 and below, and it
* caused such problems).
*
* As a compromise, we rename the last segment with the .partial suffix,
* and archive it. Archive recovery will never try to read .partial
* segments, so they will normally go unused. But in the odd PITR case,
* the administrator can copy them manually to the pg_wal directory
* (removing the suffix). They can be useful in debugging, too.
*
* If a .done or .ready file already exists for the old timeline, however,
* we had already determined that the segment is complete, so we can let
* it be archived normally. (In particular, if it was restored from the
* archive to begin with, it's expected to have a .done file).
*/
if (XLogSegmentOffset(EndOfLog, wal_segment_size) != 0 &&
XLogArchivingActive())
{
char origfname[MAXFNAMELEN];
XLogSegNo endLogSegNo;
XLByteToPrevSeg(EndOfLog, endLogSegNo, wal_segment_size);
XLogFileName(origfname, EndOfLogTLI, endLogSegNo, wal_segment_size);
if (!XLogArchiveIsReadyOrDone(origfname))
{
char origpath[MAXPGPATH];
char partialfname[MAXFNAMELEN];
char partialpath[MAXPGPATH];
XLogFilePath(origpath, EndOfLogTLI, endLogSegNo, wal_segment_size);
snprintf(partialfname, MAXFNAMELEN, "%s.partial", origfname);
snprintf(partialpath, MAXPGPATH, "%s.partial", origpath);
/*
* Make sure there's no .done or .ready file for the .partial
* file.
*/
XLogArchiveCleanup(partialfname);
durable_rename(origpath, partialpath, ERROR);
XLogArchiveNotify(partialfname);
}
}
}
/*
* Check to see if required parameters are set high enough on this server
* for various aspects of recovery operation.
*
* Note that all the parameters which this function tests need to be
* listed in Administrator's Overview section in high-availability.sgml.
* If you change them, don't forget to update the list.
*/
static void
CheckRequiredParameterValues(void)
{
/*
* For archive recovery, the WAL must be generated with at least 'replica'
* wal_level.
*/
if (ArchiveRecoveryRequested && ControlFile->wal_level == WAL_LEVEL_MINIMAL)
{
ereport(FATAL,
(errmsg("WAL was generated with wal_level=minimal, cannot continue recovering"),
errdetail("This happens if you temporarily set wal_level=minimal on the server."),
errhint("Use a backup taken after setting wal_level to higher than minimal.")));
}
/*
* For Hot Standby, the WAL must be generated with 'replica' mode, and we
* must have at least as many backend slots as the primary.
*/
if (ArchiveRecoveryRequested && EnableHotStandby)
{
/* We ignore autovacuum_max_workers when we make this test. */
RecoveryRequiresIntParameter("max_connections",
MaxConnections,
ControlFile->MaxConnections);
RecoveryRequiresIntParameter("max_worker_processes",
max_worker_processes,
ControlFile->max_worker_processes);
RecoveryRequiresIntParameter("max_wal_senders",
max_wal_senders,
ControlFile->max_wal_senders);
RecoveryRequiresIntParameter("max_prepared_transactions",
max_prepared_xacts,
ControlFile->max_prepared_xacts);
RecoveryRequiresIntParameter("max_locks_per_transaction",
max_locks_per_xact,
ControlFile->max_locks_per_xact);
}
}
/*
* This must be called ONCE during postmaster or standalone-backend startup
*/
void
StartupXLOG(void)
{
XLogCtlInsert *Insert;
CheckPoint checkPoint;
bool wasShutdown;
bool didCrash;
bool haveTblspcMap;
bool haveBackupLabel;
XLogRecPtr EndOfLog;
TimeLineID EndOfLogTLI;
TimeLineID newTLI;
bool performedWalRecovery;
EndOfWalRecoveryInfo *endOfRecoveryInfo;
XLogRecPtr abortedRecPtr;
XLogRecPtr missingContrecPtr;
TransactionId oldestActiveXID;
bool promoted = false;
/*
* We should have an aux process resource owner to use, and we should not
* be in a transaction that's installed some other resowner.
*/
Assert(AuxProcessResourceOwner != NULL);
Assert(CurrentResourceOwner == NULL ||
CurrentResourceOwner == AuxProcessResourceOwner);
CurrentResourceOwner = AuxProcessResourceOwner;
/*
* Check that contents look valid.
*/
if (!XRecOffIsValid(ControlFile->checkPoint))
ereport(FATAL,
(errmsg("control file contains invalid checkpoint location")));
switch (ControlFile->state)
{
case DB_SHUTDOWNED:
/*
* This is the expected case, so don't be chatty in standalone
* mode
*/
ereport(IsPostmasterEnvironment ? LOG : NOTICE,
(errmsg("database system was shut down at %s",
str_time(ControlFile->time))));
break;
case DB_SHUTDOWNED_IN_RECOVERY:
ereport(LOG,
(errmsg("database system was shut down in recovery at %s",
str_time(ControlFile->time))));
break;
case DB_SHUTDOWNING:
ereport(LOG,
(errmsg("database system shutdown was interrupted; last known up at %s",
str_time(ControlFile->time))));
break;
case DB_IN_CRASH_RECOVERY:
ereport(LOG,
(errmsg("database system was interrupted while in recovery at %s",
str_time(ControlFile->time)),
errhint("This probably means that some data is corrupted and"
" you will have to use the last backup for recovery.")));
break;
case DB_IN_ARCHIVE_RECOVERY:
ereport(LOG,
(errmsg("database system was interrupted while in recovery at log time %s",
str_time(ControlFile->checkPointCopy.time)),
errhint("If this has occurred more than once some data might be corrupted"
" and you might need to choose an earlier recovery target.")));
break;
case DB_IN_PRODUCTION:
ereport(LOG,
(errmsg("database system was interrupted; last known up at %s",
str_time(ControlFile->time))));
break;
default:
ereport(FATAL,
(errmsg("control file contains invalid database cluster state")));
}
/* This is just to allow attaching to startup process with a debugger */
#ifdef XLOG_REPLAY_DELAY
if (ControlFile->state != DB_SHUTDOWNED)
pg_usleep(60000000L);
#endif
/*
* Verify that pg_wal and pg_wal/archive_status exist. In cases where
* someone has performed a copy for PITR, these directories may have been
* excluded and need to be re-created.
*/
ValidateXLOGDirectoryStructure();
/* Set up timeout handler needed to report startup progress. */
if (!IsBootstrapProcessingMode())
RegisterTimeout(STARTUP_PROGRESS_TIMEOUT,
startup_progress_timeout_handler);
/*----------
* If we previously crashed, perform a couple of actions:
*
* - The pg_wal directory may still include some temporary WAL segments
* used when creating a new segment, so perform some clean up to not
* bloat this path. This is done first as there is no point to sync
* this temporary data.
*
* - There might be data which we had written, intending to fsync it, but
* which we had not actually fsync'd yet. Therefore, a power failure in
* the near future might cause earlier unflushed writes to be lost, even
* though more recent data written to disk from here on would be
* persisted. To avoid that, fsync the entire data directory.
*/
if (ControlFile->state != DB_SHUTDOWNED &&
ControlFile->state != DB_SHUTDOWNED_IN_RECOVERY)
{
RemoveTempXlogFiles();
SyncDataDirectory();
didCrash = true;
}
else
didCrash = false;
/*
* Prepare for WAL recovery if needed.
*
* InitWalRecovery analyzes the control file and the backup label file, if
* any. It updates the in-memory ControlFile buffer according to the
* starting checkpoint, and sets InRecovery and ArchiveRecoveryRequested.
* It also applies the tablespace map file, if any.
*/
InitWalRecovery(ControlFile, &wasShutdown,
&haveBackupLabel, &haveTblspcMap);
checkPoint = ControlFile->checkPointCopy;
/* initialize shared memory variables from the checkpoint record */
ShmemVariableCache->nextXid = checkPoint.nextXid;
ShmemVariableCache->nextOid = checkPoint.nextOid;
ShmemVariableCache->oidCount = 0;
MultiXactSetNextMXact(checkPoint.nextMulti, checkPoint.nextMultiOffset);
AdvanceOldestClogXid(checkPoint.oldestXid);
SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
SetMultiXactIdLimit(checkPoint.oldestMulti, checkPoint.oldestMultiDB, true);
SetCommitTsLimit(checkPoint.oldestCommitTsXid,
checkPoint.newestCommitTsXid);
XLogCtl->ckptFullXid = checkPoint.nextXid;
/*
* Clear out any old relcache cache files. This is *necessary* if we do
* any WAL replay, since that would probably result in the cache files
* being out of sync with database reality. In theory we could leave them
* in place if the database had been cleanly shut down, but it seems
* safest to just remove them always and let them be rebuilt during the
* first backend startup. These files needs to be removed from all
* directories including pg_tblspc, however the symlinks are created only
* after reading tablespace_map file in case of archive recovery from
* backup, so needs to clear old relcache files here after creating
* symlinks.
*/
RelationCacheInitFileRemove();
/*
* Initialize replication slots, before there's a chance to remove
* required resources.
*/
StartupReplicationSlots();
/*
* Startup logical state, needs to be setup now so we have proper data
* during crash recovery.
*/
StartupReorderBuffer();
/*
* Startup CLOG. This must be done after ShmemVariableCache->nextXid has
* been initialized and before we accept connections or begin WAL replay.
*/
StartupCLOG();
/*
* Startup MultiXact. We need to do this early to be able to replay
* truncations.
*/
StartupMultiXact();
/*
* Ditto for commit timestamps. Activate the facility if the setting is
* enabled in the control file, as there should be no tracking of commit
* timestamps done when the setting was disabled. This facility can be
* started or stopped when replaying a XLOG_PARAMETER_CHANGE record.
*/
if (ControlFile->track_commit_timestamp)
StartupCommitTs();
/*
* Recover knowledge about replay progress of known replication partners.
*/
StartupReplicationOrigin();
/*
* Initialize unlogged LSN. On a clean shutdown, it's restored from the
* control file. On recovery, all unlogged relations are blown away, so
* the unlogged LSN counter can be reset too.
*/
if (ControlFile->state == DB_SHUTDOWNED)
XLogCtl->unloggedLSN = ControlFile->unloggedLSN;
else
XLogCtl->unloggedLSN = FirstNormalUnloggedLSN;
/*
* Copy any missing timeline history files between 'now' and the recovery
* target timeline from archive to pg_wal. While we don't need those files
* ourselves - the history file of the recovery target timeline covers all
* the previous timelines in the history too - a cascading standby server
* might be interested in them. Or, if you archive the WAL from this
* server to a different archive than the primary, it'd be good for all
* the history files to get archived there after failover, so that you can
* use one of the old timelines as a PITR target. Timeline history files
* are small, so it's better to copy them unnecessarily than not copy them
* and regret later.
*/
restoreTimeLineHistoryFiles(checkPoint.ThisTimeLineID, recoveryTargetTLI);
/*
* Before running in recovery, scan pg_twophase and fill in its status to
* be able to work on entries generated by redo. Doing a scan before
* taking any recovery action has the merit to discard any 2PC files that
* are newer than the first record to replay, saving from any conflicts at
* replay. This avoids as well any subsequent scans when doing recovery
* of the on-disk two-phase data.
*/
restoreTwoPhaseData();
/*
* When starting with crash recovery, reset pgstat data - it might not be
* valid. Otherwise restore pgstat data. It's safe to do this here,
* because postmaster will not yet have started any other processes.
*
* NB: Restoring replication slot stats relies on slot state to have
* already been restored from disk.
*
* TODO: With a bit of extra work we could just start with a pgstat file
* associated with the checkpoint redo location we're starting from.
*/
if (didCrash)
pgstat_discard_stats();
else
pgstat_restore_stats();
lastFullPageWrites = checkPoint.fullPageWrites;
RedoRecPtr = XLogCtl->RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo;
doPageWrites = lastFullPageWrites;
/* REDO */
if (InRecovery)
{
/* Initialize state for RecoveryInProgress() */
SpinLockAcquire(&XLogCtl->info_lck);
if (InArchiveRecovery)
XLogCtl->SharedRecoveryState = RECOVERY_STATE_ARCHIVE;
else
XLogCtl->SharedRecoveryState = RECOVERY_STATE_CRASH;
SpinLockRelease(&XLogCtl->info_lck);
/*
* Update pg_control to show that we are recovering and to show the
* selected checkpoint as the place we are starting from. We also mark
* pg_control with any minimum recovery stop point obtained from a
* backup history file.
*
* No need to hold ControlFileLock yet, we aren't up far enough.
*/
UpdateControlFile();
/*
* If there was a backup label file, it's done its job and the info
* has now been propagated into pg_control. We must get rid of the
* label file so that if we crash during recovery, we'll pick up at
* the latest recovery restartpoint instead of going all the way back
* to the backup start point. It seems prudent though to just rename
* the file out of the way rather than delete it completely.
*/
if (haveBackupLabel)
{
unlink(BACKUP_LABEL_OLD);
durable_rename(BACKUP_LABEL_FILE, BACKUP_LABEL_OLD, FATAL);
}
/*
* If there was a tablespace_map file, it's done its job and the
* symlinks have been created. We must get rid of the map file so
* that if we crash during recovery, we don't create symlinks again.
* It seems prudent though to just rename the file out of the way
* rather than delete it completely.
*/
if (haveTblspcMap)
{
unlink(TABLESPACE_MAP_OLD);
durable_rename(TABLESPACE_MAP, TABLESPACE_MAP_OLD, FATAL);
}
/*
* Initialize our local copy of minRecoveryPoint. When doing crash
* recovery we want to replay up to the end of WAL. Particularly, in
* the case of a promoted standby minRecoveryPoint value in the
* control file is only updated after the first checkpoint. However,
* if the instance crashes before the first post-recovery checkpoint
* is completed then recovery will use a stale location causing the
* startup process to think that there are still invalid page
* references when checking for data consistency.
*/
if (InArchiveRecovery)
{
LocalMinRecoveryPoint = ControlFile->minRecoveryPoint;
LocalMinRecoveryPointTLI = ControlFile->minRecoveryPointTLI;
}
else
{
LocalMinRecoveryPoint = InvalidXLogRecPtr;
LocalMinRecoveryPointTLI = 0;
}
/* Check that the GUCs used to generate the WAL allow recovery */
CheckRequiredParameterValues();
/*
* We're in recovery, so unlogged relations may be trashed and must be
* reset. This should be done BEFORE allowing Hot Standby
* connections, so that read-only backends don't try to read whatever
* garbage is left over from before.
*/
ResetUnloggedRelations(UNLOGGED_RELATION_CLEANUP);
/*
* Likewise, delete any saved transaction snapshot files that got left
* behind by crashed backends.
*/
DeleteAllExportedSnapshotFiles();
/*
* Initialize for Hot Standby, if enabled. We won't let backends in
* yet, not until we've reached the min recovery point specified in
* control file and we've established a recovery snapshot from a
* running-xacts WAL record.
*/
if (ArchiveRecoveryRequested && EnableHotStandby)
{
TransactionId *xids;
int nxids;
ereport(DEBUG1,
(errmsg_internal("initializing for hot standby")));
InitRecoveryTransactionEnvironment();
if (wasShutdown)
oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
else
oldestActiveXID = checkPoint.oldestActiveXid;
Assert(TransactionIdIsValid(oldestActiveXID));
/* Tell procarray about the range of xids it has to deal with */
ProcArrayInitRecovery(XidFromFullTransactionId(ShmemVariableCache->nextXid));
/*
* Startup subtrans only. CLOG, MultiXact and commit timestamp
* have already been started up and other SLRUs are not maintained
* during recovery and need not be started yet.
*/
StartupSUBTRANS(oldestActiveXID);
/*
* If we're beginning at a shutdown checkpoint, we know that
* nothing was running on the primary at this point. So fake-up an
* empty running-xacts record and use that here and now. Recover
* additional standby state for prepared transactions.
*/
if (wasShutdown)
{
RunningTransactionsData running;
TransactionId latestCompletedXid;
/*
* Construct a RunningTransactions snapshot representing a
* shut down server, with only prepared transactions still
* alive. We're never overflowed at this point because all
* subxids are listed with their parent prepared transactions.
*/
running.xcnt = nxids;
running.subxcnt = 0;
running.subxid_overflow = false;
running.nextXid = XidFromFullTransactionId(checkPoint.nextXid);
running.oldestRunningXid = oldestActiveXID;
latestCompletedXid = XidFromFullTransactionId(checkPoint.nextXid);
TransactionIdRetreat(latestCompletedXid);
Assert(TransactionIdIsNormal(latestCompletedXid));
running.latestCompletedXid = latestCompletedXid;
running.xids = xids;
ProcArrayApplyRecoveryInfo(&running);
StandbyRecoverPreparedTransactions();
}
}
/*
* We're all set for replaying the WAL now. Do it.
*/
PerformWalRecovery();
performedWalRecovery = true;
}
else
performedWalRecovery = false;
/*
* Finish WAL recovery.
*/
endOfRecoveryInfo = FinishWalRecovery();
EndOfLog = endOfRecoveryInfo->endOfLog;
EndOfLogTLI = endOfRecoveryInfo->endOfLogTLI;
abortedRecPtr = endOfRecoveryInfo->abortedRecPtr;
missingContrecPtr = endOfRecoveryInfo->missingContrecPtr;
/*
* Reset ps status display, so as no information related to recovery shows
* up.
*/
set_ps_display("");
/*
* When recovering from a backup (we are in recovery, and archive recovery
* was requested), complain if we did not roll forward far enough to reach
* the point where the database is consistent. For regular online
* backup-from-primary, that means reaching the end-of-backup WAL record
* (at which point we reset backupStartPoint to be Invalid), for
* backup-from-replica (which can't inject records into the WAL stream),
* that point is when we reach the minRecoveryPoint in pg_control (which
* we purposefully copy last when backing up from a replica). For
* pg_rewind (which creates a backup_label with a method of "pg_rewind")
* or snapshot-style backups (which don't), backupEndRequired will be set
* to false.
*
* Note: it is indeed okay to look at the local variable
* LocalMinRecoveryPoint here, even though ControlFile->minRecoveryPoint
* might be further ahead --- ControlFile->minRecoveryPoint cannot have
* been advanced beyond the WAL we processed.
*/
if (InRecovery &&
(EndOfLog < LocalMinRecoveryPoint ||
!XLogRecPtrIsInvalid(ControlFile->backupStartPoint)))
{
/*
* Ran off end of WAL before reaching end-of-backup WAL record, or
* minRecoveryPoint. That's a bad sign, indicating that you tried to
* recover from an online backup but never called pg_backup_stop(), or
* you didn't archive all the WAL needed.
*/
if (ArchiveRecoveryRequested || ControlFile->backupEndRequired)
{
if (!XLogRecPtrIsInvalid(ControlFile->backupStartPoint) || ControlFile->backupEndRequired)
ereport(FATAL,
(errmsg("WAL ends before end of online backup"),
errhint("All WAL generated while online backup was taken must be available at recovery.")));
else
ereport(FATAL,
(errmsg("WAL ends before consistent recovery point")));
}
}
/*
* Reset unlogged relations to the contents of their INIT fork. This is
* done AFTER recovery is complete so as to include any unlogged relations
* created during recovery, but BEFORE recovery is marked as having
* completed successfully. Otherwise we'd not retry if any of the post
* end-of-recovery steps fail.
*/
if (InRecovery)
ResetUnloggedRelations(UNLOGGED_RELATION_INIT);
/*
* Pre-scan prepared transactions to find out the range of XIDs present.
* This information is not quite needed yet, but it is positioned here so
* as potential problems are detected before any on-disk change is done.
*/
oldestActiveXID = PrescanPreparedTransactions(NULL, NULL);
/*
* Allow ordinary WAL segment creation before possibly switching to a new
* timeline, which creates a new segment, and after the last ReadRecord().
*/
SetInstallXLogFileSegmentActive();
/*
* Consider whether we need to assign a new timeline ID.
*
* If we did archive recovery, we always assign a new ID. This handles a
* couple of issues. If we stopped short of the end of WAL during
* recovery, then we are clearly generating a new timeline and must assign
* it a unique new ID. Even if we ran to the end, modifying the current
* last segment is problematic because it may result in trying to
* overwrite an already-archived copy of that segment, and we encourage
* DBAs to make their archive_commands reject that. We can dodge the
* problem by making the new active segment have a new timeline ID.
*
* In a normal crash recovery, we can just extend the timeline we were in.
*/
newTLI = endOfRecoveryInfo->lastRecTLI;
if (ArchiveRecoveryRequested)
{
newTLI = findNewestTimeLine(recoveryTargetTLI) + 1;
ereport(LOG,
(errmsg("selected new timeline ID: %u", newTLI)));
/*
* Make a writable copy of the last WAL segment. (Note that we also
* have a copy of the last block of the old WAL in
* endOfRecovery->lastPage; we will use that below.)
*/
XLogInitNewTimeline(EndOfLogTLI, EndOfLog, newTLI);
/*
* Remove the signal files out of the way, so that we don't
* accidentally re-enter archive recovery mode in a subsequent crash.
*/
if (endOfRecoveryInfo->standby_signal_file_found)
durable_unlink(STANDBY_SIGNAL_FILE, FATAL);
if (endOfRecoveryInfo->recovery_signal_file_found)
durable_unlink(RECOVERY_SIGNAL_FILE, FATAL);
/*
* Write the timeline history file, and have it archived. After this
* point (or rather, as soon as the file is archived), the timeline
* will appear as "taken" in the WAL archive and to any standby
* servers. If we crash before actually switching to the new
* timeline, standby servers will nevertheless think that we switched
* to the new timeline, and will try to connect to the new timeline.
* To minimize the window for that, try to do as little as possible
* between here and writing the end-of-recovery record.
*/
writeTimeLineHistory(newTLI, recoveryTargetTLI,
EndOfLog, endOfRecoveryInfo->recoveryStopReason);
ereport(LOG,
(errmsg("archive recovery complete")));
}
/* Save the selected TimeLineID in shared memory, too */
XLogCtl->InsertTimeLineID = newTLI;
XLogCtl->PrevTimeLineID = endOfRecoveryInfo->lastRecTLI;
/*
* Actually, if WAL ended in an incomplete record, skip the parts that
* made it through and start writing after the portion that persisted.
* (It's critical to first write an OVERWRITE_CONTRECORD message, which
* we'll do as soon as we're open for writing new WAL.)
*/
if (!XLogRecPtrIsInvalid(missingContrecPtr))
{
/*
* We should only have a missingContrecPtr if we're not switching to a
* new timeline. When a timeline switch occurs, WAL is copied from the
* old timeline to the new only up to the end of the last complete
* record, so there can't be an incomplete WAL record that we need to
* disregard.
*/
Assert(newTLI == endOfRecoveryInfo->lastRecTLI);
Assert(!XLogRecPtrIsInvalid(abortedRecPtr));
EndOfLog = missingContrecPtr;
}
/*
* Prepare to write WAL starting at EndOfLog location, and init xlog
* buffer cache using the block containing the last record from the
* previous incarnation.
*/
Insert = &XLogCtl->Insert;
Insert->PrevBytePos = XLogRecPtrToBytePos(endOfRecoveryInfo->lastRec);
Insert->CurrBytePos = XLogRecPtrToBytePos(EndOfLog);
/*
* Tricky point here: lastPage contains the *last* block that the LastRec
* record spans, not the one it starts in. The last block is indeed the
* one we want to use.
*/
if (EndOfLog % XLOG_BLCKSZ != 0)
{
char *page;
int len;
int firstIdx;
firstIdx = XLogRecPtrToBufIdx(EndOfLog);
len = EndOfLog - endOfRecoveryInfo->lastPageBeginPtr;
Assert(len < XLOG_BLCKSZ);
/* Copy the valid part of the last block, and zero the rest */
page = &XLogCtl->pages[firstIdx * XLOG_BLCKSZ];
memcpy(page, endOfRecoveryInfo->lastPage, len);
memset(page + len, 0, XLOG_BLCKSZ - len);
XLogCtl->xlblocks[firstIdx] = endOfRecoveryInfo->lastPageBeginPtr + XLOG_BLCKSZ;
XLogCtl->InitializedUpTo = endOfRecoveryInfo->lastPageBeginPtr + XLOG_BLCKSZ;
}
else
{
/*
* There is no partial block to copy. Just set InitializedUpTo, and
* let the first attempt to insert a log record to initialize the next
* buffer.
*/
XLogCtl->InitializedUpTo = EndOfLog;
}
LogwrtResult.Write = LogwrtResult.Flush = EndOfLog;
XLogCtl->LogwrtResult = LogwrtResult;
XLogCtl->LogwrtRqst.Write = EndOfLog;
XLogCtl->LogwrtRqst.Flush = EndOfLog;
/*
* Preallocate additional log files, if wanted.
*/
PreallocXlogFiles(EndOfLog, newTLI);
/*
* Okay, we're officially UP.
*/
InRecovery = false;
/* start the archive_timeout timer and LSN running */
XLogCtl->lastSegSwitchTime = (pg_time_t) time(NULL);
XLogCtl->lastSegSwitchLSN = EndOfLog;
/* also initialize latestCompletedXid, to nextXid - 1 */
LWLockAcquire(ProcArrayLock, LW_EXCLUSIVE);
ShmemVariableCache->latestCompletedXid = ShmemVariableCache->nextXid;
FullTransactionIdRetreat(&ShmemVariableCache->latestCompletedXid);
LWLockRelease(ProcArrayLock);
/*
* Start up subtrans, if not already done for hot standby. (commit
* timestamps are started below, if necessary.)
*/
if (standbyState == STANDBY_DISABLED)
StartupSUBTRANS(oldestActiveXID);
/*
* Perform end of recovery actions for any SLRUs that need it.
*/
TrimCLOG();
TrimMultiXact();
/* Reload shared-memory state for prepared transactions */
RecoverPreparedTransactions();
/* Shut down xlogreader */
ShutdownWalRecovery();
/* Enable WAL writes for this backend only. */
LocalSetXLogInsertAllowed();
/* If necessary, write overwrite-contrecord before doing anything else */
if (!XLogRecPtrIsInvalid(abortedRecPtr))
{
Assert(!XLogRecPtrIsInvalid(missingContrecPtr));
CreateOverwriteContrecordRecord(abortedRecPtr, missingContrecPtr, newTLI);
}
/*
* Update full_page_writes in shared memory and write an XLOG_FPW_CHANGE
* record before resource manager writes cleanup WAL records or checkpoint
* record is written.
*/
Insert->fullPageWrites = lastFullPageWrites;
UpdateFullPageWrites();
/*
* Emit checkpoint or end-of-recovery record in XLOG, if required.
*/
if (performedWalRecovery)
promoted = PerformRecoveryXLogAction();
/*
* If any of the critical GUCs have changed, log them before we allow
* backends to write WAL.
*/
XLogReportParameters();
/* If this is archive recovery, perform post-recovery cleanup actions. */
if (ArchiveRecoveryRequested)
CleanupAfterArchiveRecovery(EndOfLogTLI, EndOfLog, newTLI);
/*
* Local WAL inserts enabled, so it's time to finish initialization of
* commit timestamp.
*/
CompleteCommitTsInitialization();
/*
* All done with end-of-recovery actions.
*
* Now allow backends to write WAL and update the control file status in
* consequence. SharedRecoveryState, that controls if backends can write
* WAL, is updated while holding ControlFileLock to prevent other backends
* to look at an inconsistent state of the control file in shared memory.
* There is still a small window during which backends can write WAL and
* the control file is still referring to a system not in DB_IN_PRODUCTION
* state while looking at the on-disk control file.
*
* Also, we use info_lck to update SharedRecoveryState to ensure that
* there are no race conditions concerning visibility of other recent
* updates to shared memory.
*/
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->state = DB_IN_PRODUCTION;
SpinLockAcquire(&XLogCtl->info_lck);
XLogCtl->SharedRecoveryState = RECOVERY_STATE_DONE;
SpinLockRelease(&XLogCtl->info_lck);
UpdateControlFile();
LWLockRelease(ControlFileLock);
/*
* Shutdown the recovery environment. This must occur after
* RecoverPreparedTransactions() (see notes in lock_twophase_recover())
* and after switching SharedRecoveryState to RECOVERY_STATE_DONE so as
* any session building a snapshot will not rely on KnownAssignedXids as
* RecoveryInProgress() would return false at this stage. This is
* particularly critical for prepared 2PC transactions, that would still
* need to be included in snapshots once recovery has ended.
*/
if (standbyState != STANDBY_DISABLED)
ShutdownRecoveryTransactionEnvironment();
/*
* If there were cascading standby servers connected to us, nudge any wal
* sender processes to notice that we've been promoted.
*/
WalSndWakeup(true, true);
/*
* If this was a promotion, request an (online) checkpoint now. This isn't
* required for consistency, but the last restartpoint might be far back,
* and in case of a crash, recovering from it might take a longer than is
* appropriate now that we're not in standby mode anymore.
*/
if (promoted)
RequestCheckpoint(CHECKPOINT_FORCE);
}
/*
* Callback from PerformWalRecovery(), called when we switch from crash
* recovery to archive recovery mode. Updates the control file accordingly.
*/
void
SwitchIntoArchiveRecovery(XLogRecPtr EndRecPtr, TimeLineID replayTLI)
{
/* initialize minRecoveryPoint to this record */
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->state = DB_IN_ARCHIVE_RECOVERY;
if (ControlFile->minRecoveryPoint < EndRecPtr)
{
ControlFile->minRecoveryPoint = EndRecPtr;
ControlFile->minRecoveryPointTLI = replayTLI;
}
/* update local copy */
LocalMinRecoveryPoint = ControlFile->minRecoveryPoint;
LocalMinRecoveryPointTLI = ControlFile->minRecoveryPointTLI;
/*
* The startup process can update its local copy of minRecoveryPoint from
* this point.
*/
updateMinRecoveryPoint = true;
UpdateControlFile();
/*
* We update SharedRecoveryState while holding the lock on ControlFileLock
* so both states are consistent in shared memory.
*/
SpinLockAcquire(&XLogCtl->info_lck);
XLogCtl->SharedRecoveryState = RECOVERY_STATE_ARCHIVE;
SpinLockRelease(&XLogCtl->info_lck);
LWLockRelease(ControlFileLock);
}
/*
* Callback from PerformWalRecovery(), called when we reach the end of backup.
* Updates the control file accordingly.
*/
void
ReachedEndOfBackup(XLogRecPtr EndRecPtr, TimeLineID tli)
{
/*
* We have reached the end of base backup, as indicated by pg_control. The
* data on disk is now consistent (unless minRecoveryPoint is further
* ahead, which can happen if we crashed during previous recovery). Reset
* backupStartPoint and backupEndPoint, and update minRecoveryPoint to
* make sure we don't allow starting up at an earlier point even if
* recovery is stopped and restarted soon after this.
*/
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
if (ControlFile->minRecoveryPoint < EndRecPtr)
{
ControlFile->minRecoveryPoint = EndRecPtr;
ControlFile->minRecoveryPointTLI = tli;
}
ControlFile->backupStartPoint = InvalidXLogRecPtr;
ControlFile->backupEndPoint = InvalidXLogRecPtr;
ControlFile->backupEndRequired = false;
UpdateControlFile();
LWLockRelease(ControlFileLock);
}
/*
* Perform whatever XLOG actions are necessary at end of REDO.
*
* The goal here is to make sure that we'll be able to recover properly if
* we crash again. If we choose to write a checkpoint, we'll write a shutdown
* checkpoint rather than an on-line one. This is not particularly critical,
* but since we may be assigning a new TLI, using a shutdown checkpoint allows
* us to have the rule that TLI only changes in shutdown checkpoints, which
* allows some extra error checking in xlog_redo.
*/
static bool
PerformRecoveryXLogAction(void)
{
bool promoted = false;
/*
* Perform a checkpoint to update all our recovery activity to disk.
*
* Note that we write a shutdown checkpoint rather than an on-line one.
* This is not particularly critical, but since we may be assigning a new
* TLI, using a shutdown checkpoint allows us to have the rule that TLI
* only changes in shutdown checkpoints, which allows some extra error
* checking in xlog_redo.
*
* In promotion, only create a lightweight end-of-recovery record instead
* of a full checkpoint. A checkpoint is requested later, after we're
* fully out of recovery mode and already accepting queries.
*/
if (ArchiveRecoveryRequested && IsUnderPostmaster &&
PromoteIsTriggered())
{
promoted = true;
/*
* Insert a special WAL record to mark the end of recovery, since we
* aren't doing a checkpoint. That means that the checkpointer process
* may likely be in the middle of a time-smoothed restartpoint and
* could continue to be for minutes after this. That sounds strange,
* but the effect is roughly the same and it would be stranger to try
* to come out of the restartpoint and then checkpoint. We request a
* checkpoint later anyway, just for safety.
*/
CreateEndOfRecoveryRecord();
}
else
{
RequestCheckpoint(CHECKPOINT_END_OF_RECOVERY |
CHECKPOINT_IMMEDIATE |
CHECKPOINT_WAIT);
}
return promoted;
}
/*
* Is the system still in recovery?
*
* Unlike testing InRecovery, this works in any process that's connected to
* shared memory.
*/
bool
RecoveryInProgress(void)
{
/*
* We check shared state each time only until we leave recovery mode. We
* can't re-enter recovery, so there's no need to keep checking after the
* shared variable has once been seen false.
*/
if (!LocalRecoveryInProgress)
return false;
else
{
/*
* use volatile pointer to make sure we make a fresh read of the
* shared variable.
*/
volatile XLogCtlData *xlogctl = XLogCtl;
LocalRecoveryInProgress = (xlogctl->SharedRecoveryState != RECOVERY_STATE_DONE);
/*
* Note: We don't need a memory barrier when we're still in recovery.
* We might exit recovery immediately after return, so the caller
* can't rely on 'true' meaning that we're still in recovery anyway.
*/
return LocalRecoveryInProgress;
}
}
/*
* Returns current recovery state from shared memory.
*
* This returned state is kept consistent with the contents of the control
* file. See details about the possible values of RecoveryState in xlog.h.
*/
RecoveryState
GetRecoveryState(void)
{
RecoveryState retval;
SpinLockAcquire(&XLogCtl->info_lck);
retval = XLogCtl->SharedRecoveryState;
SpinLockRelease(&XLogCtl->info_lck);
return retval;
}
/*
* Is this process allowed to insert new WAL records?
*
* Ordinarily this is essentially equivalent to !RecoveryInProgress().
* But we also have provisions for forcing the result "true" or "false"
* within specific processes regardless of the global state.
*/
bool
XLogInsertAllowed(void)
{
/*
* If value is "unconditionally true" or "unconditionally false", just
* return it. This provides the normal fast path once recovery is known
* done.
*/
if (LocalXLogInsertAllowed >= 0)
return (bool) LocalXLogInsertAllowed;
/*
* Else, must check to see if we're still in recovery.
*/
if (RecoveryInProgress())
return false;
/*
* On exit from recovery, reset to "unconditionally true", since there is
* no need to keep checking.
*/
LocalXLogInsertAllowed = 1;
return true;
}
/*
* Make XLogInsertAllowed() return true in the current process only.
*
* Note: it is allowed to switch LocalXLogInsertAllowed back to -1 later,
* and even call LocalSetXLogInsertAllowed() again after that.
*
* Returns the previous value of LocalXLogInsertAllowed.
*/
static int
LocalSetXLogInsertAllowed(void)
{
int oldXLogAllowed = LocalXLogInsertAllowed;
LocalXLogInsertAllowed = 1;
return oldXLogAllowed;
}
/*
* Return the current Redo pointer from shared memory.
*
* As a side-effect, the local RedoRecPtr copy is updated.
*/
XLogRecPtr
GetRedoRecPtr(void)
{
XLogRecPtr ptr;
/*
* The possibly not up-to-date copy in XlogCtl is enough. Even if we
* grabbed a WAL insertion lock to read the authoritative value in
* Insert->RedoRecPtr, someone might update it just after we've released
* the lock.
*/
SpinLockAcquire(&XLogCtl->info_lck);
ptr = XLogCtl->RedoRecPtr;
SpinLockRelease(&XLogCtl->info_lck);
if (RedoRecPtr < ptr)
RedoRecPtr = ptr;
return RedoRecPtr;
}
/*
* Return information needed to decide whether a modified block needs a
* full-page image to be included in the WAL record.
*
* The returned values are cached copies from backend-private memory, and
* possibly out-of-date or, indeed, uninitialized, in which case they will
* be InvalidXLogRecPtr and false, respectively. XLogInsertRecord will
* re-check them against up-to-date values, while holding the WAL insert lock.
*/
void
GetFullPageWriteInfo(XLogRecPtr *RedoRecPtr_p, bool *doPageWrites_p)
{
*RedoRecPtr_p = RedoRecPtr;
*doPageWrites_p = doPageWrites;
}
/*
* GetInsertRecPtr -- Returns the current insert position.
*
* NOTE: The value *actually* returned is the position of the last full
* xlog page. It lags behind the real insert position by at most 1 page.
* For that, we don't need to scan through WAL insertion locks, and an
* approximation is enough for the current usage of this function.
*/
XLogRecPtr
GetInsertRecPtr(void)
{
XLogRecPtr recptr;
SpinLockAcquire(&XLogCtl->info_lck);
recptr = XLogCtl->LogwrtRqst.Write;
SpinLockRelease(&XLogCtl->info_lck);
return recptr;
}
/*
* GetFlushRecPtr -- Returns the current flush position, ie, the last WAL
* position known to be fsync'd to disk. This should only be used on a
* system that is known not to be in recovery.
*/
XLogRecPtr
GetFlushRecPtr(TimeLineID *insertTLI)
{
Assert(XLogCtl->SharedRecoveryState == RECOVERY_STATE_DONE);
SpinLockAcquire(&XLogCtl->info_lck);
LogwrtResult = XLogCtl->LogwrtResult;
SpinLockRelease(&XLogCtl->info_lck);
/*
* If we're writing and flushing WAL, the time line can't be changing, so
* no lock is required.
*/
if (insertTLI)
*insertTLI = XLogCtl->InsertTimeLineID;
return LogwrtResult.Flush;
}
/*
* GetWALInsertionTimeLine -- Returns the current timeline of a system that
* is not in recovery.
*/
TimeLineID
GetWALInsertionTimeLine(void)
{
Assert(XLogCtl->SharedRecoveryState == RECOVERY_STATE_DONE);
/* Since the value can't be changing, no lock is required. */
return XLogCtl->InsertTimeLineID;
}
/*
* GetLastImportantRecPtr -- Returns the LSN of the last important record
* inserted. All records not explicitly marked as unimportant are considered
* important.
*
* The LSN is determined by computing the maximum of
* WALInsertLocks[i].lastImportantAt.
*/
XLogRecPtr
GetLastImportantRecPtr(void)
{
XLogRecPtr res = InvalidXLogRecPtr;
int i;
for (i = 0; i < NUM_XLOGINSERT_LOCKS; i++)
{
XLogRecPtr last_important;
/*
* Need to take a lock to prevent torn reads of the LSN, which are
* possible on some of the supported platforms. WAL insert locks only
* support exclusive mode, so we have to use that.
*/
LWLockAcquire(&WALInsertLocks[i].l.lock, LW_EXCLUSIVE);
last_important = WALInsertLocks[i].l.lastImportantAt;
LWLockRelease(&WALInsertLocks[i].l.lock);
if (res < last_important)
res = last_important;
}
return res;
}
/*
* Get the time and LSN of the last xlog segment switch
*/
pg_time_t
GetLastSegSwitchData(XLogRecPtr *lastSwitchLSN)
{
pg_time_t result;
/* Need WALWriteLock, but shared lock is sufficient */
LWLockAcquire(WALWriteLock, LW_SHARED);
result = XLogCtl->lastSegSwitchTime;
*lastSwitchLSN = XLogCtl->lastSegSwitchLSN;
LWLockRelease(WALWriteLock);
return result;
}
/*
* This must be called ONCE during postmaster or standalone-backend shutdown
*/
void
ShutdownXLOG(int code, Datum arg)
{
/*
* We should have an aux process resource owner to use, and we should not
* be in a transaction that's installed some other resowner.
*/
Assert(AuxProcessResourceOwner != NULL);
Assert(CurrentResourceOwner == NULL ||
CurrentResourceOwner == AuxProcessResourceOwner);
CurrentResourceOwner = AuxProcessResourceOwner;
/* Don't be chatty in standalone mode */
ereport(IsPostmasterEnvironment ? LOG : NOTICE,
(errmsg("shutting down")));
/*
* Signal walsenders to move to stopping state.
*/
WalSndInitStopping();
/*
* Wait for WAL senders to be in stopping state. This prevents commands
* from writing new WAL.
*/
WalSndWaitStopping();
if (RecoveryInProgress())
CreateRestartPoint(CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_IMMEDIATE);
else
{
/*
* If archiving is enabled, rotate the last XLOG file so that all the
* remaining records are archived (postmaster wakes up the archiver
* process one more time at the end of shutdown). The checkpoint
* record will go to the next XLOG file and won't be archived (yet).
*/
if (XLogArchivingActive())
RequestXLogSwitch(false);
CreateCheckPoint(CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_IMMEDIATE);
}
}
/*
* Log start of a checkpoint.
*/
static void
LogCheckpointStart(int flags, bool restartpoint)
{
if (restartpoint)
ereport(LOG,
/* translator: the placeholders show checkpoint options */
(errmsg("restartpoint starting:%s%s%s%s%s%s%s%s",
(flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
(flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
(flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "",
(flags & CHECKPOINT_FORCE) ? " force" : "",
(flags & CHECKPOINT_WAIT) ? " wait" : "",
(flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "",
(flags & CHECKPOINT_CAUSE_TIME) ? " time" : "",
(flags & CHECKPOINT_FLUSH_ALL) ? " flush-all" : "")));
else
ereport(LOG,
/* translator: the placeholders show checkpoint options */
(errmsg("checkpoint starting:%s%s%s%s%s%s%s%s",
(flags & CHECKPOINT_IS_SHUTDOWN) ? " shutdown" : "",
(flags & CHECKPOINT_END_OF_RECOVERY) ? " end-of-recovery" : "",
(flags & CHECKPOINT_IMMEDIATE) ? " immediate" : "",
(flags & CHECKPOINT_FORCE) ? " force" : "",
(flags & CHECKPOINT_WAIT) ? " wait" : "",
(flags & CHECKPOINT_CAUSE_XLOG) ? " wal" : "",
(flags & CHECKPOINT_CAUSE_TIME) ? " time" : "",
(flags & CHECKPOINT_FLUSH_ALL) ? " flush-all" : "")));
}
/*
* Log end of a checkpoint.
*/
static void
LogCheckpointEnd(bool restartpoint)
{
long write_msecs,
sync_msecs,
total_msecs,
longest_msecs,
average_msecs;
uint64 average_sync_time;
CheckpointStats.ckpt_end_t = GetCurrentTimestamp();
write_msecs = TimestampDifferenceMilliseconds(CheckpointStats.ckpt_write_t,
CheckpointStats.ckpt_sync_t);
sync_msecs = TimestampDifferenceMilliseconds(CheckpointStats.ckpt_sync_t,
CheckpointStats.ckpt_sync_end_t);
/* Accumulate checkpoint timing summary data, in milliseconds. */
PendingCheckpointerStats.checkpoint_write_time += write_msecs;
PendingCheckpointerStats.checkpoint_sync_time += sync_msecs;
/*
* All of the published timing statistics are accounted for. Only
* continue if a log message is to be written.
*/
if (!log_checkpoints)
return;
total_msecs = TimestampDifferenceMilliseconds(CheckpointStats.ckpt_start_t,
CheckpointStats.ckpt_end_t);
/*
* Timing values returned from CheckpointStats are in microseconds.
* Convert to milliseconds for consistent printing.
*/
longest_msecs = (long) ((CheckpointStats.ckpt_longest_sync + 999) / 1000);
average_sync_time = 0;
if (CheckpointStats.ckpt_sync_rels > 0)
average_sync_time = CheckpointStats.ckpt_agg_sync_time /
CheckpointStats.ckpt_sync_rels;
average_msecs = (long) ((average_sync_time + 999) / 1000);
/*
* ControlFileLock is not required to see ControlFile->checkPoint and
* ->checkPointCopy here as we are the only updator of those variables at
* this moment.
*/
if (restartpoint)
ereport(LOG,
(errmsg("restartpoint complete: wrote %d buffers (%.1f%%); "
"%d WAL file(s) added, %d removed, %d recycled; "
"write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s; "
"sync files=%d, longest=%ld.%03d s, average=%ld.%03d s; "
"distance=%d kB, estimate=%d kB; "
"lsn=%X/%X, redo lsn=%X/%X",
CheckpointStats.ckpt_bufs_written,
(double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers,
CheckpointStats.ckpt_segs_added,
CheckpointStats.ckpt_segs_removed,
CheckpointStats.ckpt_segs_recycled,
write_msecs / 1000, (int) (write_msecs % 1000),
sync_msecs / 1000, (int) (sync_msecs % 1000),
total_msecs / 1000, (int) (total_msecs % 1000),
CheckpointStats.ckpt_sync_rels,
longest_msecs / 1000, (int) (longest_msecs % 1000),
average_msecs / 1000, (int) (average_msecs % 1000),
(int) (PrevCheckPointDistance / 1024.0),
(int) (CheckPointDistanceEstimate / 1024.0),
LSN_FORMAT_ARGS(ControlFile->checkPoint),
LSN_FORMAT_ARGS(ControlFile->checkPointCopy.redo))));
else
ereport(LOG,
(errmsg("checkpoint complete: wrote %d buffers (%.1f%%); "
"%d WAL file(s) added, %d removed, %d recycled; "
"write=%ld.%03d s, sync=%ld.%03d s, total=%ld.%03d s; "
"sync files=%d, longest=%ld.%03d s, average=%ld.%03d s; "
"distance=%d kB, estimate=%d kB; "
"lsn=%X/%X, redo lsn=%X/%X",
CheckpointStats.ckpt_bufs_written,
(double) CheckpointStats.ckpt_bufs_written * 100 / NBuffers,
CheckpointStats.ckpt_segs_added,
CheckpointStats.ckpt_segs_removed,
CheckpointStats.ckpt_segs_recycled,
write_msecs / 1000, (int) (write_msecs % 1000),
sync_msecs / 1000, (int) (sync_msecs % 1000),
total_msecs / 1000, (int) (total_msecs % 1000),
CheckpointStats.ckpt_sync_rels,
longest_msecs / 1000, (int) (longest_msecs % 1000),
average_msecs / 1000, (int) (average_msecs % 1000),
(int) (PrevCheckPointDistance / 1024.0),
(int) (CheckPointDistanceEstimate / 1024.0),
LSN_FORMAT_ARGS(ControlFile->checkPoint),
LSN_FORMAT_ARGS(ControlFile->checkPointCopy.redo))));
}
/*
* Update the estimate of distance between checkpoints.
*
* The estimate is used to calculate the number of WAL segments to keep
* preallocated, see XLOGfileslop().
*/
static void
UpdateCheckPointDistanceEstimate(uint64 nbytes)
{
/*
* To estimate the number of segments consumed between checkpoints, keep a
* moving average of the amount of WAL generated in previous checkpoint
* cycles. However, if the load is bursty, with quiet periods and busy
* periods, we want to cater for the peak load. So instead of a plain
* moving average, let the average decline slowly if the previous cycle
* used less WAL than estimated, but bump it up immediately if it used
* more.
*
* When checkpoints are triggered by max_wal_size, this should converge to
* CheckpointSegments * wal_segment_size,
*
* Note: This doesn't pay any attention to what caused the checkpoint.
* Checkpoints triggered manually with CHECKPOINT command, or by e.g.
* starting a base backup, are counted the same as those created
* automatically. The slow-decline will largely mask them out, if they are
* not frequent. If they are frequent, it seems reasonable to count them
* in as any others; if you issue a manual checkpoint every 5 minutes and
* never let a timed checkpoint happen, it makes sense to base the
* preallocation on that 5 minute interval rather than whatever
* checkpoint_timeout is set to.
*/
PrevCheckPointDistance = nbytes;
if (CheckPointDistanceEstimate < nbytes)
CheckPointDistanceEstimate = nbytes;
else
CheckPointDistanceEstimate =
(0.90 * CheckPointDistanceEstimate + 0.10 * (double) nbytes);
}
/*
* Update the ps display for a process running a checkpoint. Note that
* this routine should not do any allocations so as it can be called
* from a critical section.
*/
static void
update_checkpoint_display(int flags, bool restartpoint, bool reset)
{
/*
* The status is reported only for end-of-recovery and shutdown
* checkpoints or shutdown restartpoints. Updating the ps display is
* useful in those situations as it may not be possible to rely on
* pg_stat_activity to see the status of the checkpointer or the startup
* process.
*/
if ((flags & (CHECKPOINT_END_OF_RECOVERY | CHECKPOINT_IS_SHUTDOWN)) == 0)
return;
if (reset)
set_ps_display("");
else
{
char activitymsg[128];
snprintf(activitymsg, sizeof(activitymsg), "performing %s%s%s",
(flags & CHECKPOINT_END_OF_RECOVERY) ? "end-of-recovery " : "",
(flags & CHECKPOINT_IS_SHUTDOWN) ? "shutdown " : "",
restartpoint ? "restartpoint" : "checkpoint");
set_ps_display(activitymsg);
}
}
/*
* Perform a checkpoint --- either during shutdown, or on-the-fly
*
* flags is a bitwise OR of the following:
* CHECKPOINT_IS_SHUTDOWN: checkpoint is for database shutdown.
* CHECKPOINT_END_OF_RECOVERY: checkpoint is for end of WAL recovery.
* CHECKPOINT_IMMEDIATE: finish the checkpoint ASAP,
* ignoring checkpoint_completion_target parameter.
* CHECKPOINT_FORCE: force a checkpoint even if no XLOG activity has occurred
* since the last one (implied by CHECKPOINT_IS_SHUTDOWN or
* CHECKPOINT_END_OF_RECOVERY).
* CHECKPOINT_FLUSH_ALL: also flush buffers of unlogged tables.
*
* Note: flags contains other bits, of interest here only for logging purposes.
* In particular note that this routine is synchronous and does not pay
* attention to CHECKPOINT_WAIT.
*
* If !shutdown then we are writing an online checkpoint. This is a very special
* kind of operation and WAL record because the checkpoint action occurs over
* a period of time yet logically occurs at just a single LSN. The logical
* position of the WAL record (redo ptr) is the same or earlier than the
* physical position. When we replay WAL we locate the checkpoint via its
* physical position then read the redo ptr and actually start replay at the
* earlier logical position. Note that we don't write *anything* to WAL at
* the logical position, so that location could be any other kind of WAL record.
* All of this mechanism allows us to continue working while we checkpoint.
* As a result, timing of actions is critical here and be careful to note that
* this function will likely take minutes to execute on a busy system.
*/
void
CreateCheckPoint(int flags)
{
bool shutdown;
CheckPoint checkPoint;
XLogRecPtr recptr;
XLogSegNo _logSegNo;
XLogCtlInsert *Insert = &XLogCtl->Insert;
uint32 freespace;
XLogRecPtr PriorRedoPtr;
XLogRecPtr curInsert;
XLogRecPtr last_important_lsn;
VirtualTransactionId *vxids;
int nvxids;
int oldXLogAllowed = 0;
/*
* An end-of-recovery checkpoint is really a shutdown checkpoint, just
* issued at a different time.
*/
if (flags & (CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_END_OF_RECOVERY))
shutdown = true;
else
shutdown = false;
/* sanity check */
if (RecoveryInProgress() && (flags & CHECKPOINT_END_OF_RECOVERY) == 0)
elog(ERROR, "can't create a checkpoint during recovery");
/*
* Prepare to accumulate statistics.
*
* Note: because it is possible for log_checkpoints to change while a
* checkpoint proceeds, we always accumulate stats, even if
* log_checkpoints is currently off.
*/
MemSet(&CheckpointStats, 0, sizeof(CheckpointStats));
CheckpointStats.ckpt_start_t = GetCurrentTimestamp();
/*
* Let smgr prepare for checkpoint; this has to happen outside the
* critical section and before we determine the REDO pointer. Note that
* smgr must not do anything that'd have to be undone if we decide no
* checkpoint is needed.
*/
SyncPreCheckpoint();
/*
* Use a critical section to force system panic if we have trouble.
*/
START_CRIT_SECTION();
if (shutdown)
{
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->state = DB_SHUTDOWNING;
UpdateControlFile();
LWLockRelease(ControlFileLock);
}
/* Begin filling in the checkpoint WAL record */
MemSet(&checkPoint, 0, sizeof(checkPoint));
checkPoint.time = (pg_time_t) time(NULL);
/*
* For Hot Standby, derive the oldestActiveXid before we fix the redo
* pointer. This allows us to begin accumulating changes to assemble our
* starting snapshot of locks and transactions.
*/
if (!shutdown && XLogStandbyInfoActive())
checkPoint.oldestActiveXid = GetOldestActiveTransactionId();
else
checkPoint.oldestActiveXid = InvalidTransactionId;
/*
* Get location of last important record before acquiring insert locks (as
* GetLastImportantRecPtr() also locks WAL locks).
*/
last_important_lsn = GetLastImportantRecPtr();
/*
* We must block concurrent insertions while examining insert state to
* determine the checkpoint REDO pointer.
*/
WALInsertLockAcquireExclusive();
curInsert = XLogBytePosToRecPtr(Insert->CurrBytePos);
/*
* If this isn't a shutdown or forced checkpoint, and if there has been no
* WAL activity requiring a checkpoint, skip it. The idea here is to
* avoid inserting duplicate checkpoints when the system is idle.
*/
if ((flags & (CHECKPOINT_IS_SHUTDOWN | CHECKPOINT_END_OF_RECOVERY |
CHECKPOINT_FORCE)) == 0)
{
if (last_important_lsn == ControlFile->checkPoint)
{
WALInsertLockRelease();
END_CRIT_SECTION();
ereport(DEBUG1,
(errmsg_internal("checkpoint skipped because system is idle")));
return;
}
}
/*
* An end-of-recovery checkpoint is created before anyone is allowed to
* write WAL. To allow us to write the checkpoint record, temporarily
* enable XLogInsertAllowed.
*/
if (flags & CHECKPOINT_END_OF_RECOVERY)
oldXLogAllowed = LocalSetXLogInsertAllowed();
checkPoint.ThisTimeLineID = XLogCtl->InsertTimeLineID;
if (flags & CHECKPOINT_END_OF_RECOVERY)
checkPoint.PrevTimeLineID = XLogCtl->PrevTimeLineID;
else
checkPoint.PrevTimeLineID = checkPoint.ThisTimeLineID;
checkPoint.fullPageWrites = Insert->fullPageWrites;
/*
* Compute new REDO record ptr = location of next XLOG record.
*
* NB: this is NOT necessarily where the checkpoint record itself will be,
* since other backends may insert more XLOG records while we're off doing
* the buffer flush work. Those XLOG records are logically after the
* checkpoint, even though physically before it. Got that?
*/
freespace = INSERT_FREESPACE(curInsert);
if (freespace == 0)
{
if (XLogSegmentOffset(curInsert, wal_segment_size) == 0)
curInsert += SizeOfXLogLongPHD;
else
curInsert += SizeOfXLogShortPHD;
}
checkPoint.redo = curInsert;
/*
* Here we update the shared RedoRecPtr for future XLogInsert calls; this
* must be done while holding all the insertion locks.
*
* Note: if we fail to complete the checkpoint, RedoRecPtr will be left
* pointing past where it really needs to point. This is okay; the only
* consequence is that XLogInsert might back up whole buffers that it
* didn't really need to. We can't postpone advancing RedoRecPtr because
* XLogInserts that happen while we are dumping buffers must assume that
* their buffer changes are not included in the checkpoint.
*/
RedoRecPtr = XLogCtl->Insert.RedoRecPtr = checkPoint.redo;
/*
* Now we can release the WAL insertion locks, allowing other xacts to
* proceed while we are flushing disk buffers.
*/
WALInsertLockRelease();
/* Update the info_lck-protected copy of RedoRecPtr as well */
SpinLockAcquire(&XLogCtl->info_lck);
XLogCtl->RedoRecPtr = checkPoint.redo;
SpinLockRelease(&XLogCtl->info_lck);
/*
* If enabled, log checkpoint start. We postpone this until now so as not
* to log anything if we decided to skip the checkpoint.
*/
if (log_checkpoints)
LogCheckpointStart(flags, false);
/* Update the process title */
update_checkpoint_display(flags, false, false);
TRACE_POSTGRESQL_CHECKPOINT_START(flags);
/*
* Get the other info we need for the checkpoint record.
*
* We don't need to save oldestClogXid in the checkpoint, it only matters
* for the short period in which clog is being truncated, and if we crash
* during that we'll redo the clog truncation and fix up oldestClogXid
* there.
*/
LWLockAcquire(XidGenLock, LW_SHARED);
checkPoint.nextXid = ShmemVariableCache->nextXid;
checkPoint.oldestXid = ShmemVariableCache->oldestXid;
checkPoint.oldestXidDB = ShmemVariableCache->oldestXidDB;
LWLockRelease(XidGenLock);
LWLockAcquire(CommitTsLock, LW_SHARED);
checkPoint.oldestCommitTsXid = ShmemVariableCache->oldestCommitTsXid;
checkPoint.newestCommitTsXid = ShmemVariableCache->newestCommitTsXid;
LWLockRelease(CommitTsLock);
LWLockAcquire(OidGenLock, LW_SHARED);
checkPoint.nextOid = ShmemVariableCache->nextOid;
if (!shutdown)
checkPoint.nextOid += ShmemVariableCache->oidCount;
LWLockRelease(OidGenLock);
MultiXactGetCheckptMulti(shutdown,
&checkPoint.nextMulti,
&checkPoint.nextMultiOffset,
&checkPoint.oldestMulti,
&checkPoint.oldestMultiDB);
/*
* Having constructed the checkpoint record, ensure all shmem disk buffers
* and commit-log buffers are flushed to disk.
*
* This I/O could fail for various reasons. If so, we will fail to
* complete the checkpoint, but there is no reason to force a system
* panic. Accordingly, exit critical section while doing it.
*/
END_CRIT_SECTION();
/*
* In some cases there are groups of actions that must all occur on one
* side or the other of a checkpoint record. Before flushing the
* checkpoint record we must explicitly wait for any backend currently
* performing those groups of actions.
*
* One example is end of transaction, so we must wait for any transactions
* that are currently in commit critical sections. If an xact inserted
* its commit record into XLOG just before the REDO point, then a crash
* restart from the REDO point would not replay that record, which means
* that our flushing had better include the xact's update of pg_xact. So
* we wait till he's out of his commit critical section before proceeding.
* See notes in RecordTransactionCommit().
*
* Because we've already released the insertion locks, this test is a bit
* fuzzy: it is possible that we will wait for xacts we didn't really need
* to wait for. But the delay should be short and it seems better to make
* checkpoint take a bit longer than to hold off insertions longer than
* necessary. (In fact, the whole reason we have this issue is that xact.c
* does commit record XLOG insertion and clog update as two separate steps
* protected by different locks, but again that seems best on grounds of
* minimizing lock contention.)
*
* A transaction that has not yet set delayChkptFlags when we look cannot
* be at risk, since it has not inserted its commit record yet; and one
* that's already cleared it is not at risk either, since it's done fixing
* clog and we will correctly flush the update below. So we cannot miss
* any xacts we need to wait for.
*/
vxids = GetVirtualXIDsDelayingChkpt(&nvxids, DELAY_CHKPT_START);
if (nvxids > 0)
{
do
{
pg_usleep(10000L); /* wait for 10 msec */
} while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids,
DELAY_CHKPT_START));
}
pfree(vxids);
CheckPointGuts(checkPoint.redo, flags);
vxids = GetVirtualXIDsDelayingChkpt(&nvxids, DELAY_CHKPT_COMPLETE);
if (nvxids > 0)
{
do
{
pg_usleep(10000L); /* wait for 10 msec */
} while (HaveVirtualXIDsDelayingChkpt(vxids, nvxids,
DELAY_CHKPT_COMPLETE));
}
pfree(vxids);
/*
* Take a snapshot of running transactions and write this to WAL. This
* allows us to reconstruct the state of running transactions during
* archive recovery, if required. Skip, if this info disabled.
*
* If we are shutting down, or Startup process is completing crash
* recovery we don't need to write running xact data.
*/
if (!shutdown && XLogStandbyInfoActive())
LogStandbySnapshot();
START_CRIT_SECTION();
/*
* Now insert the checkpoint record into XLOG.
*/
XLogBeginInsert();
XLogRegisterData((char *) (&checkPoint), sizeof(checkPoint));
recptr = XLogInsert(RM_XLOG_ID,
shutdown ? XLOG_CHECKPOINT_SHUTDOWN :
XLOG_CHECKPOINT_ONLINE);
XLogFlush(recptr);
/*
* We mustn't write any new WAL after a shutdown checkpoint, or it will be
* overwritten at next startup. No-one should even try, this just allows
* sanity-checking. In the case of an end-of-recovery checkpoint, we want
* to just temporarily disable writing until the system has exited
* recovery.
*/
if (shutdown)
{
if (flags & CHECKPOINT_END_OF_RECOVERY)
LocalXLogInsertAllowed = oldXLogAllowed;
else
LocalXLogInsertAllowed = 0; /* never again write WAL */
}
/*
* We now have ProcLastRecPtr = start of actual checkpoint record, recptr
* = end of actual checkpoint record.
*/
if (shutdown && checkPoint.redo != ProcLastRecPtr)
ereport(PANIC,
(errmsg("concurrent write-ahead log activity while database system is shutting down")));
/*
* Remember the prior checkpoint's redo ptr for
* UpdateCheckPointDistanceEstimate()
*/
PriorRedoPtr = ControlFile->checkPointCopy.redo;
/*
* Update the control file.
*/
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
if (shutdown)
ControlFile->state = DB_SHUTDOWNED;
ControlFile->checkPoint = ProcLastRecPtr;
ControlFile->checkPointCopy = checkPoint;
/* crash recovery should always recover to the end of WAL */
ControlFile->minRecoveryPoint = InvalidXLogRecPtr;
ControlFile->minRecoveryPointTLI = 0;
/*
* Persist unloggedLSN value. It's reset on crash recovery, so this goes
* unused on non-shutdown checkpoints, but seems useful to store it always
* for debugging purposes.
*/
SpinLockAcquire(&XLogCtl->ulsn_lck);
ControlFile->unloggedLSN = XLogCtl->unloggedLSN;
SpinLockRelease(&XLogCtl->ulsn_lck);
UpdateControlFile();
LWLockRelease(ControlFileLock);
/* Update shared-memory copy of checkpoint XID/epoch */
SpinLockAcquire(&XLogCtl->info_lck);
XLogCtl->ckptFullXid = checkPoint.nextXid;
SpinLockRelease(&XLogCtl->info_lck);
/*
* We are now done with critical updates; no need for system panic if we
* have trouble while fooling with old log segments.
*/
END_CRIT_SECTION();
/*
* Let smgr do post-checkpoint cleanup (eg, deleting old files).
*/
SyncPostCheckpoint();
/*
* Update the average distance between checkpoints if the prior checkpoint
* exists.
*/
if (PriorRedoPtr != InvalidXLogRecPtr)
UpdateCheckPointDistanceEstimate(RedoRecPtr - PriorRedoPtr);
/*
* Delete old log files, those no longer needed for last checkpoint to
* prevent the disk holding the xlog from growing full.
*/
XLByteToSeg(RedoRecPtr, _logSegNo, wal_segment_size);
KeepLogSeg(recptr, &_logSegNo);
if (InvalidateObsoleteReplicationSlots(RS_INVAL_WAL_REMOVED,
_logSegNo, InvalidOid,
InvalidTransactionId))
{
/*
* Some slots have been invalidated; recalculate the old-segment
* horizon, starting again from RedoRecPtr.
*/
XLByteToSeg(RedoRecPtr, _logSegNo, wal_segment_size);
KeepLogSeg(recptr, &_logSegNo);
}
_logSegNo--;
RemoveOldXlogFiles(_logSegNo, RedoRecPtr, recptr,
checkPoint.ThisTimeLineID);
/*
* Make more log segments if needed. (Do this after recycling old log
* segments, since that may supply some of the needed files.)
*/
if (!shutdown)
PreallocXlogFiles(recptr, checkPoint.ThisTimeLineID);
/*
* Truncate pg_subtrans if possible. We can throw away all data before
* the oldest XMIN of any running transaction. No future transaction will
* attempt to reference any pg_subtrans entry older than that (see Asserts
* in subtrans.c). During recovery, though, we mustn't do this because
* StartupSUBTRANS hasn't been called yet.
*/
if (!RecoveryInProgress())
TruncateSUBTRANS(GetOldestTransactionIdConsideredRunning());
/* Real work is done; log and update stats. */
LogCheckpointEnd(false);
/* Reset the process title */
update_checkpoint_display(flags, false, true);
TRACE_POSTGRESQL_CHECKPOINT_DONE(CheckpointStats.ckpt_bufs_written,
NBuffers,
CheckpointStats.ckpt_segs_added,
CheckpointStats.ckpt_segs_removed,
CheckpointStats.ckpt_segs_recycled);
}
/*
* Mark the end of recovery in WAL though without running a full checkpoint.
* We can expect that a restartpoint is likely to be in progress as we
* do this, though we are unwilling to wait for it to complete.
*
* CreateRestartPoint() allows for the case where recovery may end before
* the restartpoint completes so there is no concern of concurrent behaviour.
*/
static void
CreateEndOfRecoveryRecord(void)
{
xl_end_of_recovery xlrec;
XLogRecPtr recptr;
/* sanity check */
if (!RecoveryInProgress())
elog(ERROR, "can only be used to end recovery");
xlrec.end_time = GetCurrentTimestamp();
WALInsertLockAcquireExclusive();
xlrec.ThisTimeLineID = XLogCtl->InsertTimeLineID;
xlrec.PrevTimeLineID = XLogCtl->PrevTimeLineID;
WALInsertLockRelease();
START_CRIT_SECTION();
XLogBeginInsert();
XLogRegisterData((char *) &xlrec, sizeof(xl_end_of_recovery));
recptr = XLogInsert(RM_XLOG_ID, XLOG_END_OF_RECOVERY);
XLogFlush(recptr);
/*
* Update the control file so that crash recovery can follow the timeline
* changes to this point.
*/
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->minRecoveryPoint = recptr;
ControlFile->minRecoveryPointTLI = xlrec.ThisTimeLineID;
UpdateControlFile();
LWLockRelease(ControlFileLock);
END_CRIT_SECTION();
}
/*
* Write an OVERWRITE_CONTRECORD message.
*
* When on WAL replay we expect a continuation record at the start of a page
* that is not there, recovery ends and WAL writing resumes at that point.
* But it's wrong to resume writing new WAL back at the start of the record
* that was broken, because downstream consumers of that WAL (physical
* replicas) are not prepared to "rewind". So the first action after
* finishing replay of all valid WAL must be to write a record of this type
* at the point where the contrecord was missing; to support xlogreader
* detecting the special case, XLP_FIRST_IS_OVERWRITE_CONTRECORD is also added
* to the page header where the record occurs. xlogreader has an ad-hoc
* mechanism to report metadata about the broken record, which is what we
* use here.
*
* At replay time, XLP_FIRST_IS_OVERWRITE_CONTRECORD instructs xlogreader to
* skip the record it was reading, and pass back the LSN of the skipped
* record, so that its caller can verify (on "replay" of that record) that the
* XLOG_OVERWRITE_CONTRECORD matches what was effectively overwritten.
*
* 'aborted_lsn' is the beginning position of the record that was incomplete.
* It is included in the WAL record. 'pagePtr' and 'newTLI' point to the
* beginning of the XLOG page where the record is to be inserted. They must
* match the current WAL insert position, they're passed here just so that we
* can verify that.
*/
static XLogRecPtr
CreateOverwriteContrecordRecord(XLogRecPtr aborted_lsn, XLogRecPtr pagePtr,
TimeLineID newTLI)
{
xl_overwrite_contrecord xlrec;
XLogRecPtr recptr;
XLogPageHeader pagehdr;
XLogRecPtr startPos;
/* sanity checks */
if (!RecoveryInProgress())
elog(ERROR, "can only be used at end of recovery");
if (pagePtr % XLOG_BLCKSZ != 0)
elog(ERROR, "invalid position for missing continuation record %X/%X",
LSN_FORMAT_ARGS(pagePtr));
/* The current WAL insert position should be right after the page header */
startPos = pagePtr;
if (XLogSegmentOffset(startPos, wal_segment_size) == 0)
startPos += SizeOfXLogLongPHD;
else
startPos += SizeOfXLogShortPHD;
recptr = GetXLogInsertRecPtr();
if (recptr != startPos)
elog(ERROR, "invalid WAL insert position %X/%X for OVERWRITE_CONTRECORD",
LSN_FORMAT_ARGS(recptr));
START_CRIT_SECTION();
/*
* Initialize the XLOG page header (by GetXLogBuffer), and set the
* XLP_FIRST_IS_OVERWRITE_CONTRECORD flag.
*
* No other backend is allowed to write WAL yet, so acquiring the WAL
* insertion lock is just pro forma.
*/
WALInsertLockAcquire();
pagehdr = (XLogPageHeader) GetXLogBuffer(pagePtr, newTLI);
pagehdr->xlp_info |= XLP_FIRST_IS_OVERWRITE_CONTRECORD;
WALInsertLockRelease();
/*
* Insert the XLOG_OVERWRITE_CONTRECORD record as the first record on the
* page. We know it becomes the first record, because no other backend is
* allowed to write WAL yet.
*/
XLogBeginInsert();
xlrec.overwritten_lsn = aborted_lsn;
xlrec.overwrite_time = GetCurrentTimestamp();
XLogRegisterData((char *) &xlrec, sizeof(xl_overwrite_contrecord));
recptr = XLogInsert(RM_XLOG_ID, XLOG_OVERWRITE_CONTRECORD);
/* check that the record was inserted to the right place */
if (ProcLastRecPtr != startPos)
elog(ERROR, "OVERWRITE_CONTRECORD was inserted to unexpected position %X/%X",
LSN_FORMAT_ARGS(ProcLastRecPtr));
XLogFlush(recptr);
END_CRIT_SECTION();
return recptr;
}
/*
* Flush all data in shared memory to disk, and fsync
*
* This is the common code shared between regular checkpoints and
* recovery restartpoints.
*/
static void
CheckPointGuts(XLogRecPtr checkPointRedo, int flags)
{
CheckPointRelationMap();
CheckPointReplicationSlots();
CheckPointSnapBuild();
CheckPointLogicalRewriteHeap();
CheckPointReplicationOrigin();
/* Write out all dirty data in SLRUs and the main buffer pool */
TRACE_POSTGRESQL_BUFFER_CHECKPOINT_START(flags);
CheckpointStats.ckpt_write_t = GetCurrentTimestamp();
CheckPointCLOG();
CheckPointCommitTs();
CheckPointSUBTRANS();
CheckPointMultiXact();
CheckPointPredicate();
CheckPointBuffers(flags);
/* Perform all queued up fsyncs */
TRACE_POSTGRESQL_BUFFER_CHECKPOINT_SYNC_START();
CheckpointStats.ckpt_sync_t = GetCurrentTimestamp();
ProcessSyncRequests();
CheckpointStats.ckpt_sync_end_t = GetCurrentTimestamp();
TRACE_POSTGRESQL_BUFFER_CHECKPOINT_DONE();
/* We deliberately delay 2PC checkpointing as long as possible */
CheckPointTwoPhase(checkPointRedo);
}
/*
* Save a checkpoint for recovery restart if appropriate
*
* This function is called each time a checkpoint record is read from XLOG.
* It must determine whether the checkpoint represents a safe restartpoint or
* not. If so, the checkpoint record is stashed in shared memory so that
* CreateRestartPoint can consult it. (Note that the latter function is
* executed by the checkpointer, while this one will be executed by the
* startup process.)
*/
static void
RecoveryRestartPoint(const CheckPoint *checkPoint, XLogReaderState *record)
{
/*
* Also refrain from creating a restartpoint if we have seen any
* references to non-existent pages. Restarting recovery from the
* restartpoint would not see the references, so we would lose the
* cross-check that the pages belonged to a relation that was dropped
* later.
*/
if (XLogHaveInvalidPages())
{
elog(trace_recovery(DEBUG2),
"could not record restart point at %X/%X because there "
"are unresolved references to invalid pages",
LSN_FORMAT_ARGS(checkPoint->redo));
return;
}
/*
* Copy the checkpoint record to shared memory, so that checkpointer can
* work out the next time it wants to perform a restartpoint.
*/
SpinLockAcquire(&XLogCtl->info_lck);
XLogCtl->lastCheckPointRecPtr = record->ReadRecPtr;
XLogCtl->lastCheckPointEndPtr = record->EndRecPtr;
XLogCtl->lastCheckPoint = *checkPoint;
SpinLockRelease(&XLogCtl->info_lck);
}
/*
* Establish a restartpoint if possible.
*
* This is similar to CreateCheckPoint, but is used during WAL recovery
* to establish a point from which recovery can roll forward without
* replaying the entire recovery log.
*
* Returns true if a new restartpoint was established. We can only establish
* a restartpoint if we have replayed a safe checkpoint record since last
* restartpoint.
*/
bool
CreateRestartPoint(int flags)
{
XLogRecPtr lastCheckPointRecPtr;
XLogRecPtr lastCheckPointEndPtr;
CheckPoint lastCheckPoint;
XLogRecPtr PriorRedoPtr;
XLogRecPtr receivePtr;
XLogRecPtr replayPtr;
TimeLineID replayTLI;
XLogRecPtr endptr;
XLogSegNo _logSegNo;
TimestampTz xtime;
/* Concurrent checkpoint/restartpoint cannot happen */
Assert(!IsUnderPostmaster || MyBackendType == B_CHECKPOINTER);
/* Get a local copy of the last safe checkpoint record. */
SpinLockAcquire(&XLogCtl->info_lck);
lastCheckPointRecPtr = XLogCtl->lastCheckPointRecPtr;
lastCheckPointEndPtr = XLogCtl->lastCheckPointEndPtr;
lastCheckPoint = XLogCtl->lastCheckPoint;
SpinLockRelease(&XLogCtl->info_lck);
/*
* Check that we're still in recovery mode. It's ok if we exit recovery
* mode after this check, the restart point is valid anyway.
*/
if (!RecoveryInProgress())
{
ereport(DEBUG2,
(errmsg_internal("skipping restartpoint, recovery has already ended")));
return false;
}
/*
* If the last checkpoint record we've replayed is already our last
* restartpoint, we can't perform a new restart point. We still update
* minRecoveryPoint in that case, so that if this is a shutdown restart
* point, we won't start up earlier than before. That's not strictly
* necessary, but when hot standby is enabled, it would be rather weird if
* the database opened up for read-only connections at a point-in-time
* before the last shutdown. Such time travel is still possible in case of
* immediate shutdown, though.
*
* We don't explicitly advance minRecoveryPoint when we do create a
* restartpoint. It's assumed that flushing the buffers will do that as a
* side-effect.
*/
if (XLogRecPtrIsInvalid(lastCheckPointRecPtr) ||
lastCheckPoint.redo <= ControlFile->checkPointCopy.redo)
{
ereport(DEBUG2,
(errmsg_internal("skipping restartpoint, already performed at %X/%X",
LSN_FORMAT_ARGS(lastCheckPoint.redo))));
UpdateMinRecoveryPoint(InvalidXLogRecPtr, true);
if (flags & CHECKPOINT_IS_SHUTDOWN)
{
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->state = DB_SHUTDOWNED_IN_RECOVERY;
UpdateControlFile();
LWLockRelease(ControlFileLock);
}
return false;
}
/*
* Update the shared RedoRecPtr so that the startup process can calculate
* the number of segments replayed since last restartpoint, and request a
* restartpoint if it exceeds CheckPointSegments.
*
* Like in CreateCheckPoint(), hold off insertions to update it, although
* during recovery this is just pro forma, because no WAL insertions are
* happening.
*/
WALInsertLockAcquireExclusive();
RedoRecPtr = XLogCtl->Insert.RedoRecPtr = lastCheckPoint.redo;
WALInsertLockRelease();
/* Also update the info_lck-protected copy */
SpinLockAcquire(&XLogCtl->info_lck);
XLogCtl->RedoRecPtr = lastCheckPoint.redo;
SpinLockRelease(&XLogCtl->info_lck);
/*
* Prepare to accumulate statistics.
*
* Note: because it is possible for log_checkpoints to change while a
* checkpoint proceeds, we always accumulate stats, even if
* log_checkpoints is currently off.
*/
MemSet(&CheckpointStats, 0, sizeof(CheckpointStats));
CheckpointStats.ckpt_start_t = GetCurrentTimestamp();
if (log_checkpoints)
LogCheckpointStart(flags, true);
/* Update the process title */
update_checkpoint_display(flags, true, false);
CheckPointGuts(lastCheckPoint.redo, flags);
/*
* Remember the prior checkpoint's redo ptr for
* UpdateCheckPointDistanceEstimate()
*/
PriorRedoPtr = ControlFile->checkPointCopy.redo;
/*
* Update pg_control, using current time. Check that it still shows an
* older checkpoint, else do nothing; this is a quick hack to make sure
* nothing really bad happens if somehow we get here after the
* end-of-recovery checkpoint.
*/
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
if (ControlFile->checkPointCopy.redo < lastCheckPoint.redo)
{
/*
* Update the checkpoint information. We do this even if the cluster
* does not show DB_IN_ARCHIVE_RECOVERY to match with the set of WAL
* segments recycled below.
*/
ControlFile->checkPoint = lastCheckPointRecPtr;
ControlFile->checkPointCopy = lastCheckPoint;
/*
* Ensure minRecoveryPoint is past the checkpoint record and update it
* if the control file still shows DB_IN_ARCHIVE_RECOVERY. Normally,
* this will have happened already while writing out dirty buffers,
* but not necessarily - e.g. because no buffers were dirtied. We do
* this because a backup performed in recovery uses minRecoveryPoint
* to determine which WAL files must be included in the backup, and
* the file (or files) containing the checkpoint record must be
* included, at a minimum. Note that for an ordinary restart of
* recovery there's no value in having the minimum recovery point any
* earlier than this anyway, because redo will begin just after the
* checkpoint record.
*/
if (ControlFile->state == DB_IN_ARCHIVE_RECOVERY)
{
if (ControlFile->minRecoveryPoint < lastCheckPointEndPtr)
{
ControlFile->minRecoveryPoint = lastCheckPointEndPtr;
ControlFile->minRecoveryPointTLI = lastCheckPoint.ThisTimeLineID;
/* update local copy */
LocalMinRecoveryPoint = ControlFile->minRecoveryPoint;
LocalMinRecoveryPointTLI = ControlFile->minRecoveryPointTLI;
}
if (flags & CHECKPOINT_IS_SHUTDOWN)
ControlFile->state = DB_SHUTDOWNED_IN_RECOVERY;
}
UpdateControlFile();
}
LWLockRelease(ControlFileLock);
/*
* Update the average distance between checkpoints/restartpoints if the
* prior checkpoint exists.
*/
if (PriorRedoPtr != InvalidXLogRecPtr)
UpdateCheckPointDistanceEstimate(RedoRecPtr - PriorRedoPtr);
/*
* Delete old log files, those no longer needed for last restartpoint to
* prevent the disk holding the xlog from growing full.
*/
XLByteToSeg(RedoRecPtr, _logSegNo, wal_segment_size);
/*
* Retreat _logSegNo using the current end of xlog replayed or received,
* whichever is later.
*/
receivePtr = GetWalRcvFlushRecPtr(NULL, NULL);
replayPtr = GetXLogReplayRecPtr(&replayTLI);
endptr = (receivePtr < replayPtr) ? replayPtr : receivePtr;
KeepLogSeg(endptr, &_logSegNo);
if (InvalidateObsoleteReplicationSlots(RS_INVAL_WAL_REMOVED,
_logSegNo, InvalidOid,
InvalidTransactionId))
{
/*
* Some slots have been invalidated; recalculate the old-segment
* horizon, starting again from RedoRecPtr.
*/
XLByteToSeg(RedoRecPtr, _logSegNo, wal_segment_size);
KeepLogSeg(endptr, &_logSegNo);
}
_logSegNo--;
/*
* Try to recycle segments on a useful timeline. If we've been promoted
* since the beginning of this restartpoint, use the new timeline chosen
* at end of recovery. If we're still in recovery, use the timeline we're
* currently replaying.
*
* There is no guarantee that the WAL segments will be useful on the
* current timeline; if recovery proceeds to a new timeline right after
* this, the pre-allocated WAL segments on this timeline will not be used,
* and will go wasted until recycled on the next restartpoint. We'll live
* with that.
*/
if (!RecoveryInProgress())
replayTLI = XLogCtl->InsertTimeLineID;
RemoveOldXlogFiles(_logSegNo, RedoRecPtr, endptr, replayTLI);
/*
* Make more log segments if needed. (Do this after recycling old log
* segments, since that may supply some of the needed files.)
*/
PreallocXlogFiles(endptr, replayTLI);
/*
* Truncate pg_subtrans if possible. We can throw away all data before
* the oldest XMIN of any running transaction. No future transaction will
* attempt to reference any pg_subtrans entry older than that (see Asserts
* in subtrans.c). When hot standby is disabled, though, we mustn't do
* this because StartupSUBTRANS hasn't been called yet.
*/
if (EnableHotStandby)
TruncateSUBTRANS(GetOldestTransactionIdConsideredRunning());
/* Real work is done; log and update stats. */
LogCheckpointEnd(true);
/* Reset the process title */
update_checkpoint_display(flags, true, true);
xtime = GetLatestXTime();
ereport((log_checkpoints ? LOG : DEBUG2),
(errmsg("recovery restart point at %X/%X",
LSN_FORMAT_ARGS(lastCheckPoint.redo)),
xtime ? errdetail("Last completed transaction was at log time %s.",
timestamptz_to_str(xtime)) : 0));
/*
* Finally, execute archive_cleanup_command, if any.
*/
if (archiveCleanupCommand && strcmp(archiveCleanupCommand, "") != 0)
ExecuteRecoveryCommand(archiveCleanupCommand,
"archive_cleanup_command",
false,
WAIT_EVENT_ARCHIVE_CLEANUP_COMMAND);
return true;
}
/*
* Report availability of WAL for the given target LSN
* (typically a slot's restart_lsn)
*
* Returns one of the following enum values:
*
* * WALAVAIL_RESERVED means targetLSN is available and it is in the range of
* max_wal_size.
*
* * WALAVAIL_EXTENDED means it is still available by preserving extra
* segments beyond max_wal_size. If max_slot_wal_keep_size is smaller
* than max_wal_size, this state is not returned.
*
* * WALAVAIL_UNRESERVED means it is being lost and the next checkpoint will
* remove reserved segments. The walsender using this slot may return to the
* above.
*
* * WALAVAIL_REMOVED means it has been removed. A replication stream on
* a slot with this LSN cannot continue. (Any associated walsender
* processes should have been terminated already.)
*
* * WALAVAIL_INVALID_LSN means the slot hasn't been set to reserve WAL.
*/
WALAvailability
GetWALAvailability(XLogRecPtr targetLSN)
{
XLogRecPtr currpos; /* current write LSN */
XLogSegNo currSeg; /* segid of currpos */
XLogSegNo targetSeg; /* segid of targetLSN */
XLogSegNo oldestSeg; /* actual oldest segid */
XLogSegNo oldestSegMaxWalSize; /* oldest segid kept by max_wal_size */
XLogSegNo oldestSlotSeg; /* oldest segid kept by slot */
uint64 keepSegs;
/*
* slot does not reserve WAL. Either deactivated, or has never been active
*/
if (XLogRecPtrIsInvalid(targetLSN))
return WALAVAIL_INVALID_LSN;
/*
* Calculate the oldest segment currently reserved by all slots,
* considering wal_keep_size and max_slot_wal_keep_size. Initialize
* oldestSlotSeg to the current segment.
*/
currpos = GetXLogWriteRecPtr();
XLByteToSeg(currpos, oldestSlotSeg, wal_segment_size);
KeepLogSeg(currpos, &oldestSlotSeg);
/*
* Find the oldest extant segment file. We get 1 until checkpoint removes
* the first WAL segment file since startup, which causes the status being
* wrong under certain abnormal conditions but that doesn't actually harm.
*/
oldestSeg = XLogGetLastRemovedSegno() + 1;
/* calculate oldest segment by max_wal_size */
XLByteToSeg(currpos, currSeg, wal_segment_size);
keepSegs = ConvertToXSegs(max_wal_size_mb, wal_segment_size) + 1;
if (currSeg > keepSegs)
oldestSegMaxWalSize = currSeg - keepSegs;
else
oldestSegMaxWalSize = 1;
/* the segment we care about */
XLByteToSeg(targetLSN, targetSeg, wal_segment_size);
/*
* No point in returning reserved or extended status values if the
* targetSeg is known to be lost.
*/
if (targetSeg >= oldestSlotSeg)
{
/* show "reserved" when targetSeg is within max_wal_size */
if (targetSeg >= oldestSegMaxWalSize)
return WALAVAIL_RESERVED;
/* being retained by slots exceeding max_wal_size */
return WALAVAIL_EXTENDED;
}
/* WAL segments are no longer retained but haven't been removed yet */
if (targetSeg >= oldestSeg)
return WALAVAIL_UNRESERVED;
/* Definitely lost */
return WALAVAIL_REMOVED;
}
/*
* Retreat *logSegNo to the last segment that we need to retain because of
* either wal_keep_size or replication slots.
*
* This is calculated by subtracting wal_keep_size from the given xlog
* location, recptr and by making sure that that result is below the
* requirement of replication slots. For the latter criterion we do consider
* the effects of max_slot_wal_keep_size: reserve at most that much space back
* from recptr.
*
* Note about replication slots: if this function calculates a value
* that's further ahead than what slots need reserved, then affected
* slots need to be invalidated and this function invoked again.
* XXX it might be a good idea to rewrite this function so that
* invalidation is optionally done here, instead.
*/
static void
KeepLogSeg(XLogRecPtr recptr, XLogSegNo *logSegNo)
{
XLogSegNo currSegNo;
XLogSegNo segno;
XLogRecPtr keep;
XLByteToSeg(recptr, currSegNo, wal_segment_size);
segno = currSegNo;
/*
* Calculate how many segments are kept by slots first, adjusting for
* max_slot_wal_keep_size.
*/
keep = XLogGetReplicationSlotMinimumLSN();
if (keep != InvalidXLogRecPtr && keep < recptr)
{
XLByteToSeg(keep, segno, wal_segment_size);
/* Cap by max_slot_wal_keep_size ... */
if (max_slot_wal_keep_size_mb >= 0)
{
uint64 slot_keep_segs;
slot_keep_segs =
ConvertToXSegs(max_slot_wal_keep_size_mb, wal_segment_size);
if (currSegNo - segno > slot_keep_segs)
segno = currSegNo - slot_keep_segs;
}
}
/* but, keep at least wal_keep_size if that's set */
if (wal_keep_size_mb > 0)
{
uint64 keep_segs;
keep_segs = ConvertToXSegs(wal_keep_size_mb, wal_segment_size);
if (currSegNo - segno < keep_segs)
{
/* avoid underflow, don't go below 1 */
if (currSegNo <= keep_segs)
segno = 1;
else
segno = currSegNo - keep_segs;
}
}
/* don't delete WAL segments newer than the calculated segment */
if (segno < *logSegNo)
*logSegNo = segno;
}
/*
* Write a NEXTOID log record
*/
void
XLogPutNextOid(Oid nextOid)
{
XLogBeginInsert();
XLogRegisterData((char *) (&nextOid), sizeof(Oid));
(void) XLogInsert(RM_XLOG_ID, XLOG_NEXTOID);
/*
* We need not flush the NEXTOID record immediately, because any of the
* just-allocated OIDs could only reach disk as part of a tuple insert or
* update that would have its own XLOG record that must follow the NEXTOID
* record. Therefore, the standard buffer LSN interlock applied to those
* records will ensure no such OID reaches disk before the NEXTOID record
* does.
*
* Note, however, that the above statement only covers state "within" the
* database. When we use a generated OID as a file or directory name, we
* are in a sense violating the basic WAL rule, because that filesystem
* change may reach disk before the NEXTOID WAL record does. The impact
* of this is that if a database crash occurs immediately afterward, we
* might after restart re-generate the same OID and find that it conflicts
* with the leftover file or directory. But since for safety's sake we
* always loop until finding a nonconflicting filename, this poses no real
* problem in practice. See pgsql-hackers discussion 27-Sep-2006.
*/
}
/*
* Write an XLOG SWITCH record.
*
* Here we just blindly issue an XLogInsert request for the record.
* All the magic happens inside XLogInsert.
*
* The return value is either the end+1 address of the switch record,
* or the end+1 address of the prior segment if we did not need to
* write a switch record because we are already at segment start.
*/
XLogRecPtr
RequestXLogSwitch(bool mark_unimportant)
{
XLogRecPtr RecPtr;
/* XLOG SWITCH has no data */
XLogBeginInsert();
if (mark_unimportant)
XLogSetRecordFlags(XLOG_MARK_UNIMPORTANT);
RecPtr = XLogInsert(RM_XLOG_ID, XLOG_SWITCH);
return RecPtr;
}
/*
* Write a RESTORE POINT record
*/
XLogRecPtr
XLogRestorePoint(const char *rpName)
{
XLogRecPtr RecPtr;
xl_restore_point xlrec;
xlrec.rp_time = GetCurrentTimestamp();
strlcpy(xlrec.rp_name, rpName, MAXFNAMELEN);
XLogBeginInsert();
XLogRegisterData((char *) &xlrec, sizeof(xl_restore_point));
RecPtr = XLogInsert(RM_XLOG_ID, XLOG_RESTORE_POINT);
ereport(LOG,
(errmsg("restore point \"%s\" created at %X/%X",
rpName, LSN_FORMAT_ARGS(RecPtr))));
return RecPtr;
}
/*
* Check if any of the GUC parameters that are critical for hot standby
* have changed, and update the value in pg_control file if necessary.
*/
static void
XLogReportParameters(void)
{
if (wal_level != ControlFile->wal_level ||
wal_log_hints != ControlFile->wal_log_hints ||
MaxConnections != ControlFile->MaxConnections ||
max_worker_processes != ControlFile->max_worker_processes ||
max_wal_senders != ControlFile->max_wal_senders ||
max_prepared_xacts != ControlFile->max_prepared_xacts ||
max_locks_per_xact != ControlFile->max_locks_per_xact ||
track_commit_timestamp != ControlFile->track_commit_timestamp)
{
/*
* The change in number of backend slots doesn't need to be WAL-logged
* if archiving is not enabled, as you can't start archive recovery
* with wal_level=minimal anyway. We don't really care about the
* values in pg_control either if wal_level=minimal, but seems better
* to keep them up-to-date to avoid confusion.
*/
if (wal_level != ControlFile->wal_level || XLogIsNeeded())
{
xl_parameter_change xlrec;
XLogRecPtr recptr;
xlrec.MaxConnections = MaxConnections;
xlrec.max_worker_processes = max_worker_processes;
xlrec.max_wal_senders = max_wal_senders;
xlrec.max_prepared_xacts = max_prepared_xacts;
xlrec.max_locks_per_xact = max_locks_per_xact;
xlrec.wal_level = wal_level;
xlrec.wal_log_hints = wal_log_hints;
xlrec.track_commit_timestamp = track_commit_timestamp;
XLogBeginInsert();
XLogRegisterData((char *) &xlrec, sizeof(xlrec));
recptr = XLogInsert(RM_XLOG_ID, XLOG_PARAMETER_CHANGE);
XLogFlush(recptr);
}
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->MaxConnections = MaxConnections;
ControlFile->max_worker_processes = max_worker_processes;
ControlFile->max_wal_senders = max_wal_senders;
ControlFile->max_prepared_xacts = max_prepared_xacts;
ControlFile->max_locks_per_xact = max_locks_per_xact;
ControlFile->wal_level = wal_level;
ControlFile->wal_log_hints = wal_log_hints;
ControlFile->track_commit_timestamp = track_commit_timestamp;
UpdateControlFile();
LWLockRelease(ControlFileLock);
}
}
/*
* Update full_page_writes in shared memory, and write an
* XLOG_FPW_CHANGE record if necessary.
*
* Note: this function assumes there is no other process running
* concurrently that could update it.
*/
void
UpdateFullPageWrites(void)
{
XLogCtlInsert *Insert = &XLogCtl->Insert;
bool recoveryInProgress;
/*
* Do nothing if full_page_writes has not been changed.
*
* It's safe to check the shared full_page_writes without the lock,
* because we assume that there is no concurrently running process which
* can update it.
*/
if (fullPageWrites == Insert->fullPageWrites)
return;
/*
* Perform this outside critical section so that the WAL insert
* initialization done by RecoveryInProgress() doesn't trigger an
* assertion failure.
*/
recoveryInProgress = RecoveryInProgress();
START_CRIT_SECTION();
/*
* It's always safe to take full page images, even when not strictly
* required, but not the other round. So if we're setting full_page_writes
* to true, first set it true and then write the WAL record. If we're
* setting it to false, first write the WAL record and then set the global
* flag.
*/
if (fullPageWrites)
{
WALInsertLockAcquireExclusive();
Insert->fullPageWrites = true;
WALInsertLockRelease();
}
/*
* Write an XLOG_FPW_CHANGE record. This allows us to keep track of
* full_page_writes during archive recovery, if required.
*/
if (XLogStandbyInfoActive() && !recoveryInProgress)
{
XLogBeginInsert();
XLogRegisterData((char *) (&fullPageWrites), sizeof(bool));
XLogInsert(RM_XLOG_ID, XLOG_FPW_CHANGE);
}
if (!fullPageWrites)
{
WALInsertLockAcquireExclusive();
Insert->fullPageWrites = false;
WALInsertLockRelease();
}
END_CRIT_SECTION();
}
/*
* XLOG resource manager's routines
*
* Definitions of info values are in include/catalog/pg_control.h, though
* not all record types are related to control file updates.
*
* NOTE: Some XLOG record types that are directly related to WAL recovery
* are handled in xlogrecovery_redo().
*/
void
xlog_redo(XLogReaderState *record)
{
uint8 info = XLogRecGetInfo(record) & ~XLR_INFO_MASK;
XLogRecPtr lsn = record->EndRecPtr;
/*
* In XLOG rmgr, backup blocks are only used by XLOG_FPI and
* XLOG_FPI_FOR_HINT records.
*/
Assert(info == XLOG_FPI || info == XLOG_FPI_FOR_HINT ||
!XLogRecHasAnyBlockRefs(record));
if (info == XLOG_NEXTOID)
{
Oid nextOid;
/*
* We used to try to take the maximum of ShmemVariableCache->nextOid
* and the recorded nextOid, but that fails if the OID counter wraps
* around. Since no OID allocation should be happening during replay
* anyway, better to just believe the record exactly. We still take
* OidGenLock while setting the variable, just in case.
*/
memcpy(&nextOid, XLogRecGetData(record), sizeof(Oid));
LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
ShmemVariableCache->nextOid = nextOid;
ShmemVariableCache->oidCount = 0;
LWLockRelease(OidGenLock);
}
else if (info == XLOG_CHECKPOINT_SHUTDOWN)
{
CheckPoint checkPoint;
TimeLineID replayTLI;
memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
/* In a SHUTDOWN checkpoint, believe the counters exactly */
LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
ShmemVariableCache->nextXid = checkPoint.nextXid;
LWLockRelease(XidGenLock);
LWLockAcquire(OidGenLock, LW_EXCLUSIVE);
ShmemVariableCache->nextOid = checkPoint.nextOid;
ShmemVariableCache->oidCount = 0;
LWLockRelease(OidGenLock);
MultiXactSetNextMXact(checkPoint.nextMulti,
checkPoint.nextMultiOffset);
MultiXactAdvanceOldest(checkPoint.oldestMulti,
checkPoint.oldestMultiDB);
/*
* No need to set oldestClogXid here as well; it'll be set when we
* redo an xl_clog_truncate if it changed since initialization.
*/
SetTransactionIdLimit(checkPoint.oldestXid, checkPoint.oldestXidDB);
/*
* If we see a shutdown checkpoint while waiting for an end-of-backup
* record, the backup was canceled and the end-of-backup record will
* never arrive.
*/
if (ArchiveRecoveryRequested &&
!XLogRecPtrIsInvalid(ControlFile->backupStartPoint) &&
XLogRecPtrIsInvalid(ControlFile->backupEndPoint))
ereport(PANIC,
(errmsg("online backup was canceled, recovery cannot continue")));
/*
* If we see a shutdown checkpoint, we know that nothing was running
* on the primary at this point. So fake-up an empty running-xacts
* record and use that here and now. Recover additional standby state
* for prepared transactions.
*/
if (standbyState >= STANDBY_INITIALIZED)
{
TransactionId *xids;
int nxids;
TransactionId oldestActiveXID;
TransactionId latestCompletedXid;
RunningTransactionsData running;
oldestActiveXID = PrescanPreparedTransactions(&xids, &nxids);
/*
* Construct a RunningTransactions snapshot representing a shut
* down server, with only prepared transactions still alive. We're
* never overflowed at this point because all subxids are listed
* with their parent prepared transactions.
*/
running.xcnt = nxids;
running.subxcnt = 0;
running.subxid_overflow = false;
running.nextXid = XidFromFullTransactionId(checkPoint.nextXid);
running.oldestRunningXid = oldestActiveXID;
latestCompletedXid = XidFromFullTransactionId(checkPoint.nextXid);
TransactionIdRetreat(latestCompletedXid);
Assert(TransactionIdIsNormal(latestCompletedXid));
running.latestCompletedXid = latestCompletedXid;
running.xids = xids;
ProcArrayApplyRecoveryInfo(&running);
StandbyRecoverPreparedTransactions();
}
/* ControlFile->checkPointCopy always tracks the latest ckpt XID */
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->checkPointCopy.nextXid = checkPoint.nextXid;
LWLockRelease(ControlFileLock);
/* Update shared-memory copy of checkpoint XID/epoch */
SpinLockAcquire(&XLogCtl->info_lck);
XLogCtl->ckptFullXid = checkPoint.nextXid;
SpinLockRelease(&XLogCtl->info_lck);
/*
* We should've already switched to the new TLI before replaying this
* record.
*/
(void) GetCurrentReplayRecPtr(&replayTLI);
if (checkPoint.ThisTimeLineID != replayTLI)
ereport(PANIC,
(errmsg("unexpected timeline ID %u (should be %u) in shutdown checkpoint record",
checkPoint.ThisTimeLineID, replayTLI)));
RecoveryRestartPoint(&checkPoint, record);
}
else if (info == XLOG_CHECKPOINT_ONLINE)
{
CheckPoint checkPoint;
TimeLineID replayTLI;
memcpy(&checkPoint, XLogRecGetData(record), sizeof(CheckPoint));
/* In an ONLINE checkpoint, treat the XID counter as a minimum */
LWLockAcquire(XidGenLock, LW_EXCLUSIVE);
if (FullTransactionIdPrecedes(ShmemVariableCache->nextXid,
checkPoint.nextXid))
ShmemVariableCache->nextXid = checkPoint.nextXid;
LWLockRelease(XidGenLock);
/*
* We ignore the nextOid counter in an ONLINE checkpoint, preferring
* to track OID assignment through XLOG_NEXTOID records. The nextOid
* counter is from the start of the checkpoint and might well be stale
* compared to later XLOG_NEXTOID records. We could try to take the
* maximum of the nextOid counter and our latest value, but since
* there's no particular guarantee about the speed with which the OID
* counter wraps around, that's a risky thing to do. In any case,
* users of the nextOid counter are required to avoid assignment of
* duplicates, so that a somewhat out-of-date value should be safe.
*/
/* Handle multixact */
MultiXactAdvanceNextMXact(checkPoint.nextMulti,
checkPoint.nextMultiOffset);
/*
* NB: This may perform multixact truncation when replaying WAL
* generated by an older primary.
*/
MultiXactAdvanceOldest(checkPoint.oldestMulti,
checkPoint.oldestMultiDB);
if (TransactionIdPrecedes(ShmemVariableCache->oldestXid,
checkPoint.oldestXid))
SetTransactionIdLimit(checkPoint.oldestXid,
checkPoint.oldestXidDB);
/* ControlFile->checkPointCopy always tracks the latest ckpt XID */
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->checkPointCopy.nextXid = checkPoint.nextXid;
LWLockRelease(ControlFileLock);
/* Update shared-memory copy of checkpoint XID/epoch */
SpinLockAcquire(&XLogCtl->info_lck);
XLogCtl->ckptFullXid = checkPoint.nextXid;
SpinLockRelease(&XLogCtl->info_lck);
/* TLI should not change in an on-line checkpoint */
(void) GetCurrentReplayRecPtr(&replayTLI);
if (checkPoint.ThisTimeLineID != replayTLI)
ereport(PANIC,
(errmsg("unexpected timeline ID %u (should be %u) in online checkpoint record",
checkPoint.ThisTimeLineID, replayTLI)));
RecoveryRestartPoint(&checkPoint, record);
}
else if (info == XLOG_OVERWRITE_CONTRECORD)
{
/* nothing to do here, handled in xlogrecovery_redo() */
}
else if (info == XLOG_END_OF_RECOVERY)
{
xl_end_of_recovery xlrec;
TimeLineID replayTLI;
memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_end_of_recovery));
/*
* For Hot Standby, we could treat this like a Shutdown Checkpoint,
* but this case is rarer and harder to test, so the benefit doesn't
* outweigh the potential extra cost of maintenance.
*/
/*
* We should've already switched to the new TLI before replaying this
* record.
*/
(void) GetCurrentReplayRecPtr(&replayTLI);
if (xlrec.ThisTimeLineID != replayTLI)
ereport(PANIC,
(errmsg("unexpected timeline ID %u (should be %u) in end-of-recovery record",
xlrec.ThisTimeLineID, replayTLI)));
}
else if (info == XLOG_NOOP)
{
/* nothing to do here */
}
else if (info == XLOG_SWITCH)
{
/* nothing to do here */
}
else if (info == XLOG_RESTORE_POINT)
{
/* nothing to do here, handled in xlogrecovery.c */
}
else if (info == XLOG_FPI || info == XLOG_FPI_FOR_HINT)
{
/*
* XLOG_FPI records contain nothing else but one or more block
* references. Every block reference must include a full-page image
* even if full_page_writes was disabled when the record was generated
* - otherwise there would be no point in this record.
*
* XLOG_FPI_FOR_HINT records are generated when a page needs to be
* WAL-logged because of a hint bit update. They are only generated
* when checksums and/or wal_log_hints are enabled. They may include
* no full-page images if full_page_writes was disabled when they were
* generated. In this case there is nothing to do here.
*
* No recovery conflicts are generated by these generic records - if a
* resource manager needs to generate conflicts, it has to define a
* separate WAL record type and redo routine.
*/
for (uint8 block_id = 0; block_id <= XLogRecMaxBlockId(record); block_id++)
{
Buffer buffer;
if (!XLogRecHasBlockImage(record, block_id))
{
if (info == XLOG_FPI)
elog(ERROR, "XLOG_FPI record did not contain a full-page image");
continue;
}
if (XLogReadBufferForRedo(record, block_id, &buffer) != BLK_RESTORED)
elog(ERROR, "unexpected XLogReadBufferForRedo result when restoring backup block");
UnlockReleaseBuffer(buffer);
}
}
else if (info == XLOG_BACKUP_END)
{
/* nothing to do here, handled in xlogrecovery_redo() */
}
else if (info == XLOG_PARAMETER_CHANGE)
{
xl_parameter_change xlrec;
/* Update our copy of the parameters in pg_control */
memcpy(&xlrec, XLogRecGetData(record), sizeof(xl_parameter_change));
/*
* Invalidate logical slots if we are in hot standby and the primary
* does not have a WAL level sufficient for logical decoding. No need
* to search for potentially conflicting logically slots if standby is
* running with wal_level lower than logical, because in that case, we
* would have either disallowed creation of logical slots or
* invalidated existing ones.
*/
if (InRecovery && InHotStandby &&
xlrec.wal_level < WAL_LEVEL_LOGICAL &&
wal_level >= WAL_LEVEL_LOGICAL)
InvalidateObsoleteReplicationSlots(RS_INVAL_WAL_LEVEL,
0, InvalidOid,
InvalidTransactionId);
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
ControlFile->MaxConnections = xlrec.MaxConnections;
ControlFile->max_worker_processes = xlrec.max_worker_processes;
ControlFile->max_wal_senders = xlrec.max_wal_senders;
ControlFile->max_prepared_xacts = xlrec.max_prepared_xacts;
ControlFile->max_locks_per_xact = xlrec.max_locks_per_xact;
ControlFile->wal_level = xlrec.wal_level;
ControlFile->wal_log_hints = xlrec.wal_log_hints;
/*
* Update minRecoveryPoint to ensure that if recovery is aborted, we
* recover back up to this point before allowing hot standby again.
* This is important if the max_* settings are decreased, to ensure
* you don't run queries against the WAL preceding the change. The
* local copies cannot be updated as long as crash recovery is
* happening and we expect all the WAL to be replayed.
*/
if (InArchiveRecovery)
{
LocalMinRecoveryPoint = ControlFile->minRecoveryPoint;
LocalMinRecoveryPointTLI = ControlFile->minRecoveryPointTLI;
}
if (LocalMinRecoveryPoint != InvalidXLogRecPtr && LocalMinRecoveryPoint < lsn)
{
TimeLineID replayTLI;
(void) GetCurrentReplayRecPtr(&replayTLI);
ControlFile->minRecoveryPoint = lsn;
ControlFile->minRecoveryPointTLI = replayTLI;
}
CommitTsParameterChange(xlrec.track_commit_timestamp,
ControlFile->track_commit_timestamp);
ControlFile->track_commit_timestamp = xlrec.track_commit_timestamp;
UpdateControlFile();
LWLockRelease(ControlFileLock);
/* Check to see if any parameter change gives a problem on recovery */
CheckRequiredParameterValues();
}
else if (info == XLOG_FPW_CHANGE)
{
bool fpw;
memcpy(&fpw, XLogRecGetData(record), sizeof(bool));
/*
* Update the LSN of the last replayed XLOG_FPW_CHANGE record so that
* do_pg_backup_start() and do_pg_backup_stop() can check whether
* full_page_writes has been disabled during online backup.
*/
if (!fpw)
{
SpinLockAcquire(&XLogCtl->info_lck);
if (XLogCtl->lastFpwDisableRecPtr < record->ReadRecPtr)
XLogCtl->lastFpwDisableRecPtr = record->ReadRecPtr;
SpinLockRelease(&XLogCtl->info_lck);
}
/* Keep track of full_page_writes */
lastFullPageWrites = fpw;
}
}
/*
* Return the extra open flags used for opening a file, depending on the
* value of the GUCs wal_sync_method, fsync and io_direct.
*/
static int
get_sync_bit(int method)
{
int o_direct_flag = 0;
/*
* Use O_DIRECT if requested, except in walreceiver process. The WAL
* written by walreceiver is normally read by the startup process soon
* after it's written. Also, walreceiver performs unaligned writes, which
* don't work with O_DIRECT, so it is required for correctness too.
*/
if ((io_direct_flags & IO_DIRECT_WAL) && !AmWalReceiverProcess())
o_direct_flag = PG_O_DIRECT;
/* If fsync is disabled, never open in sync mode */
if (!enableFsync)
return o_direct_flag;
switch (method)
{
/*
* enum values for all sync options are defined even if they are
* not supported on the current platform. But if not, they are
* not included in the enum option array, and therefore will never
* be seen here.
*/
case SYNC_METHOD_FSYNC:
case SYNC_METHOD_FSYNC_WRITETHROUGH:
case SYNC_METHOD_FDATASYNC:
return o_direct_flag;
#ifdef O_SYNC
case SYNC_METHOD_OPEN:
return O_SYNC | o_direct_flag;
#endif
#ifdef O_DSYNC
case SYNC_METHOD_OPEN_DSYNC:
return O_DSYNC | o_direct_flag;
#endif
default:
/* can't happen (unless we are out of sync with option array) */
elog(ERROR, "unrecognized wal_sync_method: %d", method);
return 0; /* silence warning */
}
}
/*
* GUC support
*/
void
assign_xlog_sync_method(int new_sync_method, void *extra)
{
if (sync_method != new_sync_method)
{
/*
* To ensure that no blocks escape unsynced, force an fsync on the
* currently open log segment (if any). Also, if the open flag is
* changing, close the log file so it will be reopened (with new flag
* bit) at next use.
*/
if (openLogFile >= 0)
{
pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC_METHOD_ASSIGN);
if (pg_fsync(openLogFile) != 0)
{
char xlogfname[MAXFNAMELEN];
int save_errno;
save_errno = errno;
XLogFileName(xlogfname, openLogTLI, openLogSegNo,
wal_segment_size);
errno = save_errno;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m", xlogfname)));
}
pgstat_report_wait_end();
if (get_sync_bit(sync_method) != get_sync_bit(new_sync_method))
XLogFileClose();
}
}
}
/*
* Issue appropriate kind of fsync (if any) for an XLOG output file.
*
* 'fd' is a file descriptor for the XLOG file to be fsync'd.
* 'segno' is for error reporting purposes.
*/
void
issue_xlog_fsync(int fd, XLogSegNo segno, TimeLineID tli)
{
char *msg = NULL;
instr_time start;
Assert(tli != 0);
/*
* Quick exit if fsync is disabled or write() has already synced the WAL
* file.
*/
if (!enableFsync ||
sync_method == SYNC_METHOD_OPEN ||
sync_method == SYNC_METHOD_OPEN_DSYNC)
return;
/* Measure I/O timing to sync the WAL file */
if (track_wal_io_timing)
INSTR_TIME_SET_CURRENT(start);
else
INSTR_TIME_SET_ZERO(start);
pgstat_report_wait_start(WAIT_EVENT_WAL_SYNC);
switch (sync_method)
{
case SYNC_METHOD_FSYNC:
if (pg_fsync_no_writethrough(fd) != 0)
msg = _("could not fsync file \"%s\": %m");
break;
#ifdef HAVE_FSYNC_WRITETHROUGH
case SYNC_METHOD_FSYNC_WRITETHROUGH:
if (pg_fsync_writethrough(fd) != 0)
msg = _("could not fsync write-through file \"%s\": %m");
break;
#endif
case SYNC_METHOD_FDATASYNC:
if (pg_fdatasync(fd) != 0)
msg = _("could not fdatasync file \"%s\": %m");
break;
case SYNC_METHOD_OPEN:
case SYNC_METHOD_OPEN_DSYNC:
/* not reachable */
Assert(false);
break;
default:
elog(PANIC, "unrecognized wal_sync_method: %d", sync_method);
break;
}
/* PANIC if failed to fsync */
if (msg)
{
char xlogfname[MAXFNAMELEN];
int save_errno = errno;
XLogFileName(xlogfname, tli, segno, wal_segment_size);
errno = save_errno;
ereport(PANIC,
(errcode_for_file_access(),
errmsg(msg, xlogfname)));
}
pgstat_report_wait_end();
/*
* Increment the I/O timing and the number of times WAL files were synced.
*/
if (track_wal_io_timing)
{
instr_time duration;
INSTR_TIME_SET_CURRENT(duration);
INSTR_TIME_ACCUM_DIFF(PendingWalStats.wal_sync_time, duration, start);
}
PendingWalStats.wal_sync++;
}
/*
* do_pg_backup_start is the workhorse of the user-visible pg_backup_start()
* function. It creates the necessary starting checkpoint and constructs the
* backup state and tablespace map.
*
* Input parameters are "state" (the backup state), "fast" (if true, we do
* the checkpoint in immediate mode to make it faster), and "tablespaces"
* (if non-NULL, indicates a list of tablespaceinfo structs describing the
* cluster's tablespaces.).
*
* The tablespace map contents are appended to passed-in parameter
* tablespace_map and the caller is responsible for including it in the backup
* archive as 'tablespace_map'. The tablespace_map file is required mainly for
* tar format in windows as native windows utilities are not able to create
* symlinks while extracting files from tar. However for consistency and
* platform-independence, we do it the same way everywhere.
*
* It fills in "state" with the information required for the backup, such
* as the minimum WAL location that must be present to restore from this
* backup (starttli) and the corresponding timeline ID (starttli).
*
* Every successfully started backup must be stopped by calling
* do_pg_backup_stop() or do_pg_abort_backup(). There can be many
* backups active at the same time.
*
* It is the responsibility of the caller of this function to verify the
* permissions of the calling user!
*/
void
do_pg_backup_start(const char *backupidstr, bool fast, List **tablespaces,
BackupState *state, StringInfo tblspcmapfile)
{
bool backup_started_in_recovery;
Assert(state != NULL);
backup_started_in_recovery = RecoveryInProgress();
/*
* During recovery, we don't need to check WAL level. Because, if WAL
* level is not sufficient, it's impossible to get here during recovery.
*/
if (!backup_started_in_recovery && !XLogIsNeeded())
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("WAL level not sufficient for making an online backup"),
errhint("wal_level must be set to \"replica\" or \"logical\" at server start.")));
if (strlen(backupidstr) > MAXPGPATH)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("backup label too long (max %d bytes)",
MAXPGPATH)));
memcpy(state->name, backupidstr, strlen(backupidstr));
/*
* Mark backup active in shared memory. We must do full-page WAL writes
* during an on-line backup even if not doing so at other times, because
* it's quite possible for the backup dump to obtain a "torn" (partially
* written) copy of a database page if it reads the page concurrently with
* our write to the same page. This can be fixed as long as the first
* write to the page in the WAL sequence is a full-page write. Hence, we
* increment runningBackups then force a CHECKPOINT, to ensure there are
* no dirty pages in shared memory that might get dumped while the backup
* is in progress without having a corresponding WAL record. (Once the
* backup is complete, we need not force full-page writes anymore, since
* we expect that any pages not modified during the backup interval must
* have been correctly captured by the backup.)
*
* Note that forcing full-page writes has no effect during an online
* backup from the standby.
*
* We must hold all the insertion locks to change the value of
* runningBackups, to ensure adequate interlocking against
* XLogInsertRecord().
*/
WALInsertLockAcquireExclusive();
XLogCtl->Insert.runningBackups++;
WALInsertLockRelease();
/*
* Ensure we decrement runningBackups if we fail below. NB -- for this to
* work correctly, it is critical that sessionBackupState is only updated
* after this block is over.
*/
PG_ENSURE_ERROR_CLEANUP(do_pg_abort_backup, DatumGetBool(true));
{
bool gotUniqueStartpoint = false;
DIR *tblspcdir;
struct dirent *de;
tablespaceinfo *ti;
int datadirpathlen;
/*
* Force an XLOG file switch before the checkpoint, to ensure that the
* WAL segment the checkpoint is written to doesn't contain pages with
* old timeline IDs. That would otherwise happen if you called
* pg_backup_start() right after restoring from a PITR archive: the
* first WAL segment containing the startup checkpoint has pages in
* the beginning with the old timeline ID. That can cause trouble at
* recovery: we won't have a history file covering the old timeline if
* pg_wal directory was not included in the base backup and the WAL
* archive was cleared too before starting the backup.
*
* This also ensures that we have emitted a WAL page header that has
* XLP_BKP_REMOVABLE off before we emit the checkpoint record.
* Therefore, if a WAL archiver (such as pglesslog) is trying to
* compress out removable backup blocks, it won't remove any that
* occur after this point.
*
* During recovery, we skip forcing XLOG file switch, which means that
* the backup taken during recovery is not available for the special
* recovery case described above.
*/
if (!backup_started_in_recovery)
RequestXLogSwitch(false);
do
{
bool checkpointfpw;
/*
* Force a CHECKPOINT. Aside from being necessary to prevent torn
* page problems, this guarantees that two successive backup runs
* will have different checkpoint positions and hence different
* history file names, even if nothing happened in between.
*
* During recovery, establish a restartpoint if possible. We use
* the last restartpoint as the backup starting checkpoint. This
* means that two successive backup runs can have same checkpoint
* positions.
*
* Since the fact that we are executing do_pg_backup_start()
* during recovery means that checkpointer is running, we can use
* RequestCheckpoint() to establish a restartpoint.
*
* We use CHECKPOINT_IMMEDIATE only if requested by user (via
* passing fast = true). Otherwise this can take awhile.
*/
RequestCheckpoint(CHECKPOINT_FORCE | CHECKPOINT_WAIT |
(fast ? CHECKPOINT_IMMEDIATE : 0));
/*
* Now we need to fetch the checkpoint record location, and also
* its REDO pointer. The oldest point in WAL that would be needed
* to restore starting from the checkpoint is precisely the REDO
* pointer.
*/
LWLockAcquire(ControlFileLock, LW_SHARED);
state->checkpointloc = ControlFile->checkPoint;
state->startpoint = ControlFile->checkPointCopy.redo;
state->starttli = ControlFile->checkPointCopy.ThisTimeLineID;
checkpointfpw = ControlFile->checkPointCopy.fullPageWrites;
LWLockRelease(ControlFileLock);
if (backup_started_in_recovery)
{
XLogRecPtr recptr;
/*
* Check to see if all WAL replayed during online backup
* (i.e., since last restartpoint used as backup starting
* checkpoint) contain full-page writes.
*/
SpinLockAcquire(&XLogCtl->info_lck);
recptr = XLogCtl->lastFpwDisableRecPtr;
SpinLockRelease(&XLogCtl->info_lck);
if (!checkpointfpw || state->startpoint <= recptr)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("WAL generated with full_page_writes=off was replayed "
"since last restartpoint"),
errhint("This means that the backup being taken on the standby "
"is corrupt and should not be used. "
"Enable full_page_writes and run CHECKPOINT on the primary, "
"and then try an online backup again.")));
/*
* During recovery, since we don't use the end-of-backup WAL
* record and don't write the backup history file, the
* starting WAL location doesn't need to be unique. This means
* that two base backups started at the same time might use
* the same checkpoint as starting locations.
*/
gotUniqueStartpoint = true;
}
/*
* If two base backups are started at the same time (in WAL sender
* processes), we need to make sure that they use different
* checkpoints as starting locations, because we use the starting
* WAL location as a unique identifier for the base backup in the
* end-of-backup WAL record and when we write the backup history
* file. Perhaps it would be better generate a separate unique ID
* for each backup instead of forcing another checkpoint, but
* taking a checkpoint right after another is not that expensive
* either because only few buffers have been dirtied yet.
*/
WALInsertLockAcquireExclusive();
if (XLogCtl->Insert.lastBackupStart < state->startpoint)
{
XLogCtl->Insert.lastBackupStart = state->startpoint;
gotUniqueStartpoint = true;
}
WALInsertLockRelease();
} while (!gotUniqueStartpoint);
/*
* Construct tablespace_map file.
*/
datadirpathlen = strlen(DataDir);
/* Collect information about all tablespaces */
tblspcdir = AllocateDir("pg_tblspc");
while ((de = ReadDir(tblspcdir, "pg_tblspc")) != NULL)
{
char fullpath[MAXPGPATH + 10];
char linkpath[MAXPGPATH];
char *relpath = NULL;
char *s;
PGFileType de_type;
/* Skip anything that doesn't look like a tablespace */
if (strspn(de->d_name, "0123456789") != strlen(de->d_name))
continue;
snprintf(fullpath, sizeof(fullpath), "pg_tblspc/%s", de->d_name);
de_type = get_dirent_type(fullpath, de, false, ERROR);
if (de_type == PGFILETYPE_LNK)
{
StringInfoData escapedpath;
int rllen;
rllen = readlink(fullpath, linkpath, sizeof(linkpath));
if (rllen < 0)
{
ereport(WARNING,
(errmsg("could not read symbolic link \"%s\": %m",
fullpath)));
continue;
}
else if (rllen >= sizeof(linkpath))
{
ereport(WARNING,
(errmsg("symbolic link \"%s\" target is too long",
fullpath)));
continue;
}
linkpath[rllen] = '\0';
/*
* Relpath holds the relative path of the tablespace directory
* when it's located within PGDATA, or NULL if it's located
* elsewhere.
*/
if (rllen > datadirpathlen &&
strncmp(linkpath, DataDir, datadirpathlen) == 0 &&
IS_DIR_SEP(linkpath[datadirpathlen]))
relpath = pstrdup(linkpath + datadirpathlen + 1);
/*
* Add a backslash-escaped version of the link path to the
* tablespace map file.
*/
initStringInfo(&escapedpath);
for (s = linkpath; *s; s++)
{
if (*s == '\n' || *s == '\r' || *s == '\\')
appendStringInfoChar(&escapedpath, '\\');
appendStringInfoChar(&escapedpath, *s);
}
appendStringInfo(tblspcmapfile, "%s %s\n",
de->d_name, escapedpath.data);
pfree(escapedpath.data);
}
else if (de_type == PGFILETYPE_DIR)
{
/*
* It's possible to use allow_in_place_tablespaces to create
* directories directly under pg_tblspc, for testing purposes
* only.
*
* In this case, we store a relative path rather than an
* absolute path into the tablespaceinfo.
*/
snprintf(linkpath, sizeof(linkpath), "pg_tblspc/%s",
de->d_name);
relpath = pstrdup(linkpath);
}
else
{
/* Skip any other file type that appears here. */
continue;
}
ti = palloc(sizeof(tablespaceinfo));
ti->oid = pstrdup(de->d_name);
ti->path = pstrdup(linkpath);
ti->rpath = relpath;
ti->size = -1;
if (tablespaces)
*tablespaces = lappend(*tablespaces, ti);
}
FreeDir(tblspcdir);
state->starttime = (pg_time_t) time(NULL);
}
PG_END_ENSURE_ERROR_CLEANUP(do_pg_abort_backup, DatumGetBool(true));
state->started_in_recovery = backup_started_in_recovery;
/*
* Mark that the start phase has correctly finished for the backup.
*/
sessionBackupState = SESSION_BACKUP_RUNNING;
}
/*
* Utility routine to fetch the session-level status of a backup running.
*/
SessionBackupState
get_backup_status(void)
{
return sessionBackupState;
}
/*
* do_pg_backup_stop
*
* Utility function called at the end of an online backup. It creates history
* file (if required), resets sessionBackupState and so on. It can optionally
* wait for WAL segments to be archived.
*
* "state" is filled with the information necessary to restore from this
* backup with its stop LSN (stoppoint), its timeline ID (stoptli), etc.
*
* It is the responsibility of the caller of this function to verify the
* permissions of the calling user!
*/
void
do_pg_backup_stop(BackupState *state, bool waitforarchive)
{
bool backup_stopped_in_recovery = false;
char histfilepath[MAXPGPATH];
char lastxlogfilename[MAXFNAMELEN];
char histfilename[MAXFNAMELEN];
XLogSegNo _logSegNo;
FILE *fp;
int seconds_before_warning;
int waits = 0;
bool reported_waiting = false;
Assert(state != NULL);
backup_stopped_in_recovery = RecoveryInProgress();
/*
* During recovery, we don't need to check WAL level. Because, if WAL
* level is not sufficient, it's impossible to get here during recovery.
*/
if (!backup_stopped_in_recovery && !XLogIsNeeded())
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("WAL level not sufficient for making an online backup"),
errhint("wal_level must be set to \"replica\" or \"logical\" at server start.")));
/*
* OK to update backup counter and session-level lock.
*
* Note that CHECK_FOR_INTERRUPTS() must not occur while updating them,
* otherwise they can be updated inconsistently, which might cause
* do_pg_abort_backup() to fail.
*/
WALInsertLockAcquireExclusive();
/*
* It is expected that each do_pg_backup_start() call is matched by
* exactly one do_pg_backup_stop() call.
*/
Assert(XLogCtl->Insert.runningBackups > 0);
XLogCtl->Insert.runningBackups--;
/*
* Clean up session-level lock.
*
* You might think that WALInsertLockRelease() can be called before
* cleaning up session-level lock because session-level lock doesn't need
* to be protected with WAL insertion lock. But since
* CHECK_FOR_INTERRUPTS() can occur in it, session-level lock must be
* cleaned up before it.
*/
sessionBackupState = SESSION_BACKUP_NONE;
WALInsertLockRelease();
/*
* If we are taking an online backup from the standby, we confirm that the
* standby has not been promoted during the backup.
*/
if (state->started_in_recovery && !backup_stopped_in_recovery)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("the standby was promoted during online backup"),
errhint("This means that the backup being taken is corrupt "
"and should not be used. "
"Try taking another online backup.")));
/*
* During recovery, we don't write an end-of-backup record. We assume that
* pg_control was backed up last and its minimum recovery point can be
* available as the backup end location. Since we don't have an
* end-of-backup record, we use the pg_control value to check whether
* we've reached the end of backup when starting recovery from this
* backup. We have no way of checking if pg_control wasn't backed up last
* however.
*
* We don't force a switch to new WAL file but it is still possible to
* wait for all the required files to be archived if waitforarchive is
* true. This is okay if we use the backup to start a standby and fetch
* the missing WAL using streaming replication. But in the case of an
* archive recovery, a user should set waitforarchive to true and wait for
* them to be archived to ensure that all the required files are
* available.
*
* We return the current minimum recovery point as the backup end
* location. Note that it can be greater than the exact backup end
* location if the minimum recovery point is updated after the backup of
* pg_control. This is harmless for current uses.
*
* XXX currently a backup history file is for informational and debug
* purposes only. It's not essential for an online backup. Furthermore,
* even if it's created, it will not be archived during recovery because
* an archiver is not invoked. So it doesn't seem worthwhile to write a
* backup history file during recovery.
*/
if (backup_stopped_in_recovery)
{
XLogRecPtr recptr;
/*
* Check to see if all WAL replayed during online backup contain
* full-page writes.
*/
SpinLockAcquire(&XLogCtl->info_lck);
recptr = XLogCtl->lastFpwDisableRecPtr;
SpinLockRelease(&XLogCtl->info_lck);
if (state->startpoint <= recptr)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("WAL generated with full_page_writes=off was replayed "
"during online backup"),
errhint("This means that the backup being taken on the standby "
"is corrupt and should not be used. "
"Enable full_page_writes and run CHECKPOINT on the primary, "
"and then try an online backup again.")));
LWLockAcquire(ControlFileLock, LW_SHARED);
state->stoppoint = ControlFile->minRecoveryPoint;
state->stoptli = ControlFile->minRecoveryPointTLI;
LWLockRelease(ControlFileLock);
}
else
{
char *history_file;
/*
* Write the backup-end xlog record
*/
XLogBeginInsert();
XLogRegisterData((char *) (&state->startpoint),
sizeof(state->startpoint));
state->stoppoint = XLogInsert(RM_XLOG_ID, XLOG_BACKUP_END);
/*
* Given that we're not in recovery, InsertTimeLineID is set and can't
* change, so we can read it without a lock.
*/
state->stoptli = XLogCtl->InsertTimeLineID;
/*
* Force a switch to a new xlog segment file, so that the backup is
* valid as soon as archiver moves out the current segment file.
*/
RequestXLogSwitch(false);
state->stoptime = (pg_time_t) time(NULL);
/*
* Write the backup history file
*/
XLByteToSeg(state->startpoint, _logSegNo, wal_segment_size);
BackupHistoryFilePath(histfilepath, state->stoptli, _logSegNo,
state->startpoint, wal_segment_size);
fp = AllocateFile(histfilepath, "w");
if (!fp)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not create file \"%s\": %m",
histfilepath)));
/* Build and save the contents of the backup history file */
history_file = build_backup_content(state, true);
fprintf(fp, "%s", history_file);
pfree(history_file);
if (fflush(fp) || ferror(fp) || FreeFile(fp))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not write file \"%s\": %m",
histfilepath)));
/*
* Clean out any no-longer-needed history files. As a side effect,
* this will post a .ready file for the newly created history file,
* notifying the archiver that history file may be archived
* immediately.
*/
CleanupBackupHistory();
}
/*
* If archiving is enabled, wait for all the required WAL files to be
* archived before returning. If archiving isn't enabled, the required WAL
* needs to be transported via streaming replication (hopefully with
* wal_keep_size set high enough), or some more exotic mechanism like
* polling and copying files from pg_wal with script. We have no knowledge
* of those mechanisms, so it's up to the user to ensure that he gets all
* the required WAL.
*
* We wait until both the last WAL file filled during backup and the
* history file have been archived, and assume that the alphabetic sorting
* property of the WAL files ensures any earlier WAL files are safely
* archived as well.
*
* We wait forever, since archive_command is supposed to work and we
* assume the admin wanted his backup to work completely. If you don't
* wish to wait, then either waitforarchive should be passed in as false,
* or you can set statement_timeout. Also, some notices are issued to
* clue in anyone who might be doing this interactively.
*/
if (waitforarchive &&
((!backup_stopped_in_recovery && XLogArchivingActive()) ||
(backup_stopped_in_recovery && XLogArchivingAlways())))
{
XLByteToPrevSeg(state->stoppoint, _logSegNo, wal_segment_size);
XLogFileName(lastxlogfilename, state->stoptli, _logSegNo,
wal_segment_size);
XLByteToSeg(state->startpoint, _logSegNo, wal_segment_size);
BackupHistoryFileName(histfilename, state->stoptli, _logSegNo,
state->startpoint, wal_segment_size);
seconds_before_warning = 60;
waits = 0;
while (XLogArchiveIsBusy(lastxlogfilename) ||
XLogArchiveIsBusy(histfilename))
{
CHECK_FOR_INTERRUPTS();
if (!reported_waiting && waits > 5)
{
ereport(NOTICE,
(errmsg("base backup done, waiting for required WAL segments to be archived")));
reported_waiting = true;
}
(void) WaitLatch(MyLatch,
WL_LATCH_SET | WL_TIMEOUT | WL_EXIT_ON_PM_DEATH,
1000L,
WAIT_EVENT_BACKUP_WAIT_WAL_ARCHIVE);
ResetLatch(MyLatch);
if (++waits >= seconds_before_warning)
{
seconds_before_warning *= 2; /* This wraps in >10 years... */
ereport(WARNING,
(errmsg("still waiting for all required WAL segments to be archived (%d seconds elapsed)",
waits),
errhint("Check that your archive_command is executing properly. "
"You can safely cancel this backup, "
"but the database backup will not be usable without all the WAL segments.")));
}
}
ereport(NOTICE,
(errmsg("all required WAL segments have been archived")));
}
else if (waitforarchive)
ereport(NOTICE,
(errmsg("WAL archiving is not enabled; you must ensure that all required WAL segments are copied through other means to complete the backup")));
}
/*
* do_pg_abort_backup: abort a running backup
*
* This does just the most basic steps of do_pg_backup_stop(), by taking the
* system out of backup mode, thus making it a lot more safe to call from
* an error handler.
*
* 'arg' indicates that it's being called during backup setup; so
* sessionBackupState has not been modified yet, but runningBackups has
* already been incremented. When it's false, then it's invoked as a
* before_shmem_exit handler, and therefore we must not change state
* unless sessionBackupState indicates that a backup is actually running.
*
* NB: This gets used as a PG_ENSURE_ERROR_CLEANUP callback and
* before_shmem_exit handler, hence the odd-looking signature.
*/
void
do_pg_abort_backup(int code, Datum arg)
{
bool during_backup_start = DatumGetBool(arg);
/* If called during backup start, there shouldn't be one already running */
Assert(!during_backup_start || sessionBackupState == SESSION_BACKUP_NONE);
if (during_backup_start || sessionBackupState != SESSION_BACKUP_NONE)
{
WALInsertLockAcquireExclusive();
Assert(XLogCtl->Insert.runningBackups > 0);
XLogCtl->Insert.runningBackups--;
sessionBackupState = SESSION_BACKUP_NONE;
WALInsertLockRelease();
if (!during_backup_start)
ereport(WARNING,
errmsg("aborting backup due to backend exiting before pg_backup_stop was called"));
}
}
/*
* Register a handler that will warn about unterminated backups at end of
* session, unless this has already been done.
*/
void
register_persistent_abort_backup_handler(void)
{
static bool already_done = false;
if (already_done)
return;
before_shmem_exit(do_pg_abort_backup, DatumGetBool(false));
already_done = true;
}
/*
* Get latest WAL insert pointer
*/
XLogRecPtr
GetXLogInsertRecPtr(void)
{
XLogCtlInsert *Insert = &XLogCtl->Insert;
uint64 current_bytepos;
SpinLockAcquire(&Insert->insertpos_lck);
current_bytepos = Insert->CurrBytePos;
SpinLockRelease(&Insert->insertpos_lck);
return XLogBytePosToRecPtr(current_bytepos);
}
/*
* Get latest WAL write pointer
*/
XLogRecPtr
GetXLogWriteRecPtr(void)
{
SpinLockAcquire(&XLogCtl->info_lck);
LogwrtResult = XLogCtl->LogwrtResult;
SpinLockRelease(&XLogCtl->info_lck);
return LogwrtResult.Write;
}
/*
* Returns the redo pointer of the last checkpoint or restartpoint. This is
* the oldest point in WAL that we still need, if we have to restart recovery.
*/
void
GetOldestRestartPoint(XLogRecPtr *oldrecptr, TimeLineID *oldtli)
{
LWLockAcquire(ControlFileLock, LW_SHARED);
*oldrecptr = ControlFile->checkPointCopy.redo;
*oldtli = ControlFile->checkPointCopy.ThisTimeLineID;
LWLockRelease(ControlFileLock);
}
/* Thin wrapper around ShutdownWalRcv(). */
void
XLogShutdownWalRcv(void)
{
ShutdownWalRcv();
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
XLogCtl->InstallXLogFileSegmentActive = false;
LWLockRelease(ControlFileLock);
}
/* Enable WAL file recycling and preallocation. */
void
SetInstallXLogFileSegmentActive(void)
{
LWLockAcquire(ControlFileLock, LW_EXCLUSIVE);
XLogCtl->InstallXLogFileSegmentActive = true;
LWLockRelease(ControlFileLock);
}
bool
IsInstallXLogFileSegmentActive(void)
{
bool result;
LWLockAcquire(ControlFileLock, LW_SHARED);
result = XLogCtl->InstallXLogFileSegmentActive;
LWLockRelease(ControlFileLock);
return result;
}
/*
* Update the WalWriterSleeping flag.
*/
void
SetWalWriterSleeping(bool sleeping)
{
SpinLockAcquire(&XLogCtl->info_lck);
XLogCtl->WalWriterSleeping = sleeping;
SpinLockRelease(&XLogCtl->info_lck);
}