postgresql/src/backend/optimizer/util/relnode.c

2405 lines
77 KiB
C

/*-------------------------------------------------------------------------
*
* relnode.c
* Relation-node lookup/construction routines
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/util/relnode.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/appendinfo.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/inherit.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/placeholder.h"
#include "optimizer/plancat.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/tlist.h"
#include "rewrite/rewriteManip.h"
#include "parser/parse_relation.h"
#include "utils/hsearch.h"
#include "utils/lsyscache.h"
typedef struct JoinHashEntry
{
Relids join_relids; /* hash key --- MUST BE FIRST */
RelOptInfo *join_rel;
} JoinHashEntry;
static void build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
RelOptInfo *input_rel,
SpecialJoinInfo *sjinfo,
List *pushed_down_joins,
bool can_null);
static List *build_joinrel_restrictlist(PlannerInfo *root,
RelOptInfo *joinrel,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel,
SpecialJoinInfo *sjinfo);
static void build_joinrel_joinlist(RelOptInfo *joinrel,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel);
static List *subbuild_joinrel_restrictlist(PlannerInfo *root,
RelOptInfo *joinrel,
RelOptInfo *input_rel,
Relids both_input_relids,
List *new_restrictlist);
static List *subbuild_joinrel_joinlist(RelOptInfo *joinrel,
List *joininfo_list,
List *new_joininfo);
static void set_foreign_rel_properties(RelOptInfo *joinrel,
RelOptInfo *outer_rel, RelOptInfo *inner_rel);
static void add_join_rel(PlannerInfo *root, RelOptInfo *joinrel);
static void build_joinrel_partition_info(PlannerInfo *root,
RelOptInfo *joinrel,
RelOptInfo *outer_rel, RelOptInfo *inner_rel,
SpecialJoinInfo *sjinfo,
List *restrictlist);
static bool have_partkey_equi_join(PlannerInfo *root, RelOptInfo *joinrel,
RelOptInfo *rel1, RelOptInfo *rel2,
JoinType jointype, List *restrictlist);
static int match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel,
bool strict_op);
static void set_joinrel_partition_key_exprs(RelOptInfo *joinrel,
RelOptInfo *outer_rel, RelOptInfo *inner_rel,
JoinType jointype);
static void build_child_join_reltarget(PlannerInfo *root,
RelOptInfo *parentrel,
RelOptInfo *childrel,
int nappinfos,
AppendRelInfo **appinfos);
/*
* setup_simple_rel_arrays
* Prepare the arrays we use for quickly accessing base relations
* and AppendRelInfos.
*/
void
setup_simple_rel_arrays(PlannerInfo *root)
{
int size;
Index rti;
ListCell *lc;
/* Arrays are accessed using RT indexes (1..N) */
size = list_length(root->parse->rtable) + 1;
root->simple_rel_array_size = size;
/*
* simple_rel_array is initialized to all NULLs, since no RelOptInfos
* exist yet. It'll be filled by later calls to build_simple_rel().
*/
root->simple_rel_array = (RelOptInfo **)
palloc0(size * sizeof(RelOptInfo *));
/* simple_rte_array is an array equivalent of the rtable list */
root->simple_rte_array = (RangeTblEntry **)
palloc0(size * sizeof(RangeTblEntry *));
rti = 1;
foreach(lc, root->parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
root->simple_rte_array[rti++] = rte;
}
/* append_rel_array is not needed if there are no AppendRelInfos */
if (root->append_rel_list == NIL)
{
root->append_rel_array = NULL;
return;
}
root->append_rel_array = (AppendRelInfo **)
palloc0(size * sizeof(AppendRelInfo *));
/*
* append_rel_array is filled with any already-existing AppendRelInfos,
* which currently could only come from UNION ALL flattening. We might
* add more later during inheritance expansion, but it's the
* responsibility of the expansion code to update the array properly.
*/
foreach(lc, root->append_rel_list)
{
AppendRelInfo *appinfo = lfirst_node(AppendRelInfo, lc);
int child_relid = appinfo->child_relid;
/* Sanity check */
Assert(child_relid < size);
if (root->append_rel_array[child_relid])
elog(ERROR, "child relation already exists");
root->append_rel_array[child_relid] = appinfo;
}
}
/*
* expand_planner_arrays
* Expand the PlannerInfo's per-RTE arrays by add_size members
* and initialize the newly added entries to NULLs
*
* Note: this causes the append_rel_array to become allocated even if
* it was not before. This is okay for current uses, because we only call
* this when adding child relations, which always have AppendRelInfos.
*/
void
expand_planner_arrays(PlannerInfo *root, int add_size)
{
int new_size;
Assert(add_size > 0);
new_size = root->simple_rel_array_size + add_size;
root->simple_rel_array =
repalloc0_array(root->simple_rel_array, RelOptInfo *, root->simple_rel_array_size, new_size);
root->simple_rte_array =
repalloc0_array(root->simple_rte_array, RangeTblEntry *, root->simple_rel_array_size, new_size);
if (root->append_rel_array)
root->append_rel_array =
repalloc0_array(root->append_rel_array, AppendRelInfo *, root->simple_rel_array_size, new_size);
else
root->append_rel_array =
palloc0_array(AppendRelInfo *, new_size);
root->simple_rel_array_size = new_size;
}
/*
* build_simple_rel
* Construct a new RelOptInfo for a base relation or 'other' relation.
*/
RelOptInfo *
build_simple_rel(PlannerInfo *root, int relid, RelOptInfo *parent)
{
RelOptInfo *rel;
RangeTblEntry *rte;
/* Rel should not exist already */
Assert(relid > 0 && relid < root->simple_rel_array_size);
if (root->simple_rel_array[relid] != NULL)
elog(ERROR, "rel %d already exists", relid);
/* Fetch RTE for relation */
rte = root->simple_rte_array[relid];
Assert(rte != NULL);
rel = makeNode(RelOptInfo);
rel->reloptkind = parent ? RELOPT_OTHER_MEMBER_REL : RELOPT_BASEREL;
rel->relids = bms_make_singleton(relid);
rel->rows = 0;
/* cheap startup cost is interesting iff not all tuples to be retrieved */
rel->consider_startup = (root->tuple_fraction > 0);
rel->consider_param_startup = false; /* might get changed later */
rel->consider_parallel = false; /* might get changed later */
rel->reltarget = create_empty_pathtarget();
rel->pathlist = NIL;
rel->ppilist = NIL;
rel->partial_pathlist = NIL;
rel->cheapest_startup_path = NULL;
rel->cheapest_total_path = NULL;
rel->cheapest_unique_path = NULL;
rel->cheapest_parameterized_paths = NIL;
rel->relid = relid;
rel->rtekind = rte->rtekind;
/* min_attr, max_attr, attr_needed, attr_widths are set below */
rel->lateral_vars = NIL;
rel->indexlist = NIL;
rel->statlist = NIL;
rel->pages = 0;
rel->tuples = 0;
rel->allvisfrac = 0;
rel->eclass_indexes = NULL;
rel->subroot = NULL;
rel->subplan_params = NIL;
rel->rel_parallel_workers = -1; /* set up in get_relation_info */
rel->amflags = 0;
rel->serverid = InvalidOid;
if (rte->rtekind == RTE_RELATION)
{
Assert(parent == NULL ||
parent->rtekind == RTE_RELATION ||
parent->rtekind == RTE_SUBQUERY);
/*
* For any RELATION rte, we need a userid with which to check
* permission access. Baserels simply use their own
* RTEPermissionInfo's checkAsUser.
*
* For otherrels normally there's no RTEPermissionInfo, so we use the
* parent's, which normally has one. The exceptional case is that the
* parent is a subquery, in which case the otherrel will have its own.
*/
if (rel->reloptkind == RELOPT_BASEREL ||
(rel->reloptkind == RELOPT_OTHER_MEMBER_REL &&
parent->rtekind == RTE_SUBQUERY))
{
RTEPermissionInfo *perminfo;
perminfo = getRTEPermissionInfo(root->parse->rteperminfos, rte);
rel->userid = perminfo->checkAsUser;
}
else
rel->userid = parent->userid;
}
else
rel->userid = InvalidOid;
rel->useridiscurrent = false;
rel->fdwroutine = NULL;
rel->fdw_private = NULL;
rel->unique_for_rels = NIL;
rel->non_unique_for_rels = NIL;
rel->baserestrictinfo = NIL;
rel->baserestrictcost.startup = 0;
rel->baserestrictcost.per_tuple = 0;
rel->baserestrict_min_security = UINT_MAX;
rel->joininfo = NIL;
rel->has_eclass_joins = false;
rel->consider_partitionwise_join = false; /* might get changed later */
rel->part_scheme = NULL;
rel->nparts = -1;
rel->boundinfo = NULL;
rel->partbounds_merged = false;
rel->partition_qual = NIL;
rel->part_rels = NULL;
rel->live_parts = NULL;
rel->all_partrels = NULL;
rel->partexprs = NULL;
rel->nullable_partexprs = NULL;
/*
* Pass assorted information down the inheritance hierarchy.
*/
if (parent)
{
/* We keep back-links to immediate parent and topmost parent. */
rel->parent = parent;
rel->top_parent = parent->top_parent ? parent->top_parent : parent;
rel->top_parent_relids = rel->top_parent->relids;
/*
* A child rel is below the same outer joins as its parent. (We
* presume this info was already calculated for the parent.)
*/
rel->nulling_relids = parent->nulling_relids;
/*
* Also propagate lateral-reference information from appendrel parent
* rels to their child rels. We intentionally give each child rel the
* same minimum parameterization, even though it's quite possible that
* some don't reference all the lateral rels. This is because any
* append path for the parent will have to have the same
* parameterization for every child anyway, and there's no value in
* forcing extra reparameterize_path() calls. Similarly, a lateral
* reference to the parent prevents use of otherwise-movable join rels
* for each child.
*
* It's possible for child rels to have their own children, in which
* case the topmost parent's lateral info propagates all the way down.
*/
rel->direct_lateral_relids = parent->direct_lateral_relids;
rel->lateral_relids = parent->lateral_relids;
rel->lateral_referencers = parent->lateral_referencers;
}
else
{
rel->parent = NULL;
rel->top_parent = NULL;
rel->top_parent_relids = NULL;
rel->nulling_relids = NULL;
rel->direct_lateral_relids = NULL;
rel->lateral_relids = NULL;
rel->lateral_referencers = NULL;
}
/* Check type of rtable entry */
switch (rte->rtekind)
{
case RTE_RELATION:
/* Table --- retrieve statistics from the system catalogs */
get_relation_info(root, rte->relid, rte->inh, rel);
break;
case RTE_SUBQUERY:
case RTE_FUNCTION:
case RTE_TABLEFUNC:
case RTE_VALUES:
case RTE_CTE:
case RTE_NAMEDTUPLESTORE:
/*
* Subquery, function, tablefunc, values list, CTE, or ENR --- set
* up attr range and arrays
*
* Note: 0 is included in range to support whole-row Vars
*/
rel->min_attr = 0;
rel->max_attr = list_length(rte->eref->colnames);
rel->attr_needed = (Relids *)
palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(Relids));
rel->attr_widths = (int32 *)
palloc0((rel->max_attr - rel->min_attr + 1) * sizeof(int32));
break;
case RTE_RESULT:
/* RTE_RESULT has no columns, nor could it have whole-row Var */
rel->min_attr = 0;
rel->max_attr = -1;
rel->attr_needed = NULL;
rel->attr_widths = NULL;
break;
default:
elog(ERROR, "unrecognized RTE kind: %d",
(int) rte->rtekind);
break;
}
/*
* Copy the parent's quals to the child, with appropriate substitution of
* variables. If any constant false or NULL clauses turn up, we can mark
* the child as dummy right away. (We must do this immediately so that
* pruning works correctly when recursing in expand_partitioned_rtentry.)
*/
if (parent)
{
AppendRelInfo *appinfo = root->append_rel_array[relid];
Assert(appinfo != NULL);
if (!apply_child_basequals(root, parent, rel, rte, appinfo))
{
/*
* Some restriction clause reduced to constant FALSE or NULL after
* substitution, so this child need not be scanned.
*/
mark_dummy_rel(rel);
}
}
/* Save the finished struct in the query's simple_rel_array */
root->simple_rel_array[relid] = rel;
return rel;
}
/*
* find_base_rel
* Find a base or otherrel relation entry, which must already exist.
*/
RelOptInfo *
find_base_rel(PlannerInfo *root, int relid)
{
RelOptInfo *rel;
Assert(relid > 0);
if (relid < root->simple_rel_array_size)
{
rel = root->simple_rel_array[relid];
if (rel)
return rel;
}
elog(ERROR, "no relation entry for relid %d", relid);
return NULL; /* keep compiler quiet */
}
/*
* find_base_rel_ignore_join
* Find a base or otherrel relation entry, which must already exist.
*
* Unlike find_base_rel, if relid references an outer join then this
* will return NULL rather than raising an error. This is convenient
* for callers that must deal with relid sets including both base and
* outer joins.
*/
RelOptInfo *
find_base_rel_ignore_join(PlannerInfo *root, int relid)
{
Assert(relid > 0);
if (relid < root->simple_rel_array_size)
{
RelOptInfo *rel;
RangeTblEntry *rte;
rel = root->simple_rel_array[relid];
if (rel)
return rel;
/*
* We could just return NULL here, but for debugging purposes it seems
* best to actually verify that the relid is an outer join and not
* something weird.
*/
rte = root->simple_rte_array[relid];
if (rte && rte->rtekind == RTE_JOIN && rte->jointype != JOIN_INNER)
return NULL;
}
elog(ERROR, "no relation entry for relid %d", relid);
return NULL; /* keep compiler quiet */
}
/*
* build_join_rel_hash
* Construct the auxiliary hash table for join relations.
*/
static void
build_join_rel_hash(PlannerInfo *root)
{
HTAB *hashtab;
HASHCTL hash_ctl;
ListCell *l;
/* Create the hash table */
hash_ctl.keysize = sizeof(Relids);
hash_ctl.entrysize = sizeof(JoinHashEntry);
hash_ctl.hash = bitmap_hash;
hash_ctl.match = bitmap_match;
hash_ctl.hcxt = CurrentMemoryContext;
hashtab = hash_create("JoinRelHashTable",
256L,
&hash_ctl,
HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);
/* Insert all the already-existing joinrels */
foreach(l, root->join_rel_list)
{
RelOptInfo *rel = (RelOptInfo *) lfirst(l);
JoinHashEntry *hentry;
bool found;
hentry = (JoinHashEntry *) hash_search(hashtab,
&(rel->relids),
HASH_ENTER,
&found);
Assert(!found);
hentry->join_rel = rel;
}
root->join_rel_hash = hashtab;
}
/*
* find_join_rel
* Returns relation entry corresponding to 'relids' (a set of RT indexes),
* or NULL if none exists. This is for join relations.
*/
RelOptInfo *
find_join_rel(PlannerInfo *root, Relids relids)
{
/*
* Switch to using hash lookup when list grows "too long". The threshold
* is arbitrary and is known only here.
*/
if (!root->join_rel_hash && list_length(root->join_rel_list) > 32)
build_join_rel_hash(root);
/*
* Use either hashtable lookup or linear search, as appropriate.
*
* Note: the seemingly redundant hashkey variable is used to avoid taking
* the address of relids; unless the compiler is exceedingly smart, doing
* so would force relids out of a register and thus probably slow down the
* list-search case.
*/
if (root->join_rel_hash)
{
Relids hashkey = relids;
JoinHashEntry *hentry;
hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
&hashkey,
HASH_FIND,
NULL);
if (hentry)
return hentry->join_rel;
}
else
{
ListCell *l;
foreach(l, root->join_rel_list)
{
RelOptInfo *rel = (RelOptInfo *) lfirst(l);
if (bms_equal(rel->relids, relids))
return rel;
}
}
return NULL;
}
/*
* set_foreign_rel_properties
* Set up foreign-join fields if outer and inner relation are foreign
* tables (or joins) belonging to the same server and assigned to the same
* user to check access permissions as.
*
* In addition to an exact match of userid, we allow the case where one side
* has zero userid (implying current user) and the other side has explicit
* userid that happens to equal the current user; but in that case, pushdown of
* the join is only valid for the current user. The useridiscurrent field
* records whether we had to make such an assumption for this join or any
* sub-join.
*
* Otherwise these fields are left invalid, so GetForeignJoinPaths will not be
* called for the join relation.
*/
static void
set_foreign_rel_properties(RelOptInfo *joinrel, RelOptInfo *outer_rel,
RelOptInfo *inner_rel)
{
if (OidIsValid(outer_rel->serverid) &&
inner_rel->serverid == outer_rel->serverid)
{
if (inner_rel->userid == outer_rel->userid)
{
joinrel->serverid = outer_rel->serverid;
joinrel->userid = outer_rel->userid;
joinrel->useridiscurrent = outer_rel->useridiscurrent || inner_rel->useridiscurrent;
joinrel->fdwroutine = outer_rel->fdwroutine;
}
else if (!OidIsValid(inner_rel->userid) &&
outer_rel->userid == GetUserId())
{
joinrel->serverid = outer_rel->serverid;
joinrel->userid = outer_rel->userid;
joinrel->useridiscurrent = true;
joinrel->fdwroutine = outer_rel->fdwroutine;
}
else if (!OidIsValid(outer_rel->userid) &&
inner_rel->userid == GetUserId())
{
joinrel->serverid = outer_rel->serverid;
joinrel->userid = inner_rel->userid;
joinrel->useridiscurrent = true;
joinrel->fdwroutine = outer_rel->fdwroutine;
}
}
}
/*
* add_join_rel
* Add given join relation to the list of join relations in the given
* PlannerInfo. Also add it to the auxiliary hashtable if there is one.
*/
static void
add_join_rel(PlannerInfo *root, RelOptInfo *joinrel)
{
/* GEQO requires us to append the new joinrel to the end of the list! */
root->join_rel_list = lappend(root->join_rel_list, joinrel);
/* store it into the auxiliary hashtable if there is one. */
if (root->join_rel_hash)
{
JoinHashEntry *hentry;
bool found;
hentry = (JoinHashEntry *) hash_search(root->join_rel_hash,
&(joinrel->relids),
HASH_ENTER,
&found);
Assert(!found);
hentry->join_rel = joinrel;
}
}
/*
* build_join_rel
* Returns relation entry corresponding to the union of two given rels,
* creating a new relation entry if none already exists.
*
* 'joinrelids' is the Relids set that uniquely identifies the join
* 'outer_rel' and 'inner_rel' are relation nodes for the relations to be
* joined
* 'sjinfo': join context info
* 'pushed_down_joins': any pushed-down outer joins that are now completed
* 'restrictlist_ptr': result variable. If not NULL, *restrictlist_ptr
* receives the list of RestrictInfo nodes that apply to this
* particular pair of joinable relations.
*
* restrictlist_ptr makes the routine's API a little grotty, but it saves
* duplicated calculation of the restrictlist...
*/
RelOptInfo *
build_join_rel(PlannerInfo *root,
Relids joinrelids,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel,
SpecialJoinInfo *sjinfo,
List *pushed_down_joins,
List **restrictlist_ptr)
{
RelOptInfo *joinrel;
List *restrictlist;
/* This function should be used only for join between parents. */
Assert(!IS_OTHER_REL(outer_rel) && !IS_OTHER_REL(inner_rel));
/*
* See if we already have a joinrel for this set of base rels.
*/
joinrel = find_join_rel(root, joinrelids);
if (joinrel)
{
/*
* Yes, so we only need to figure the restrictlist for this particular
* pair of component relations.
*/
if (restrictlist_ptr)
*restrictlist_ptr = build_joinrel_restrictlist(root,
joinrel,
outer_rel,
inner_rel,
sjinfo);
return joinrel;
}
/*
* Nope, so make one.
*/
joinrel = makeNode(RelOptInfo);
joinrel->reloptkind = RELOPT_JOINREL;
joinrel->relids = bms_copy(joinrelids);
joinrel->rows = 0;
/* cheap startup cost is interesting iff not all tuples to be retrieved */
joinrel->consider_startup = (root->tuple_fraction > 0);
joinrel->consider_param_startup = false;
joinrel->consider_parallel = false;
joinrel->reltarget = create_empty_pathtarget();
joinrel->pathlist = NIL;
joinrel->ppilist = NIL;
joinrel->partial_pathlist = NIL;
joinrel->cheapest_startup_path = NULL;
joinrel->cheapest_total_path = NULL;
joinrel->cheapest_unique_path = NULL;
joinrel->cheapest_parameterized_paths = NIL;
/* init direct_lateral_relids from children; we'll finish it up below */
joinrel->direct_lateral_relids =
bms_union(outer_rel->direct_lateral_relids,
inner_rel->direct_lateral_relids);
joinrel->lateral_relids = min_join_parameterization(root, joinrel->relids,
outer_rel, inner_rel);
joinrel->relid = 0; /* indicates not a baserel */
joinrel->rtekind = RTE_JOIN;
joinrel->min_attr = 0;
joinrel->max_attr = 0;
joinrel->attr_needed = NULL;
joinrel->attr_widths = NULL;
joinrel->nulling_relids = NULL;
joinrel->lateral_vars = NIL;
joinrel->lateral_referencers = NULL;
joinrel->indexlist = NIL;
joinrel->statlist = NIL;
joinrel->pages = 0;
joinrel->tuples = 0;
joinrel->allvisfrac = 0;
joinrel->eclass_indexes = NULL;
joinrel->subroot = NULL;
joinrel->subplan_params = NIL;
joinrel->rel_parallel_workers = -1;
joinrel->amflags = 0;
joinrel->serverid = InvalidOid;
joinrel->userid = InvalidOid;
joinrel->useridiscurrent = false;
joinrel->fdwroutine = NULL;
joinrel->fdw_private = NULL;
joinrel->unique_for_rels = NIL;
joinrel->non_unique_for_rels = NIL;
joinrel->baserestrictinfo = NIL;
joinrel->baserestrictcost.startup = 0;
joinrel->baserestrictcost.per_tuple = 0;
joinrel->baserestrict_min_security = UINT_MAX;
joinrel->joininfo = NIL;
joinrel->has_eclass_joins = false;
joinrel->consider_partitionwise_join = false; /* might get changed later */
joinrel->parent = NULL;
joinrel->top_parent = NULL;
joinrel->top_parent_relids = NULL;
joinrel->part_scheme = NULL;
joinrel->nparts = -1;
joinrel->boundinfo = NULL;
joinrel->partbounds_merged = false;
joinrel->partition_qual = NIL;
joinrel->part_rels = NULL;
joinrel->live_parts = NULL;
joinrel->all_partrels = NULL;
joinrel->partexprs = NULL;
joinrel->nullable_partexprs = NULL;
/* Compute information relevant to the foreign relations. */
set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
/*
* Fill the joinrel's tlist with just the Vars and PHVs that need to be
* output from this join (ie, are needed for higher joinclauses or final
* output).
*
* NOTE: the tlist order for a join rel will depend on which pair of outer
* and inner rels we first try to build it from. But the contents should
* be the same regardless.
*/
build_joinrel_tlist(root, joinrel, outer_rel, sjinfo, pushed_down_joins,
(sjinfo->jointype == JOIN_FULL));
build_joinrel_tlist(root, joinrel, inner_rel, sjinfo, pushed_down_joins,
(sjinfo->jointype != JOIN_INNER));
add_placeholders_to_joinrel(root, joinrel, outer_rel, inner_rel, sjinfo);
/*
* add_placeholders_to_joinrel also took care of adding the ph_lateral
* sets of any PlaceHolderVars computed here to direct_lateral_relids, so
* now we can finish computing that. This is much like the computation of
* the transitively-closed lateral_relids in min_join_parameterization,
* except that here we *do* have to consider the added PHVs.
*/
joinrel->direct_lateral_relids =
bms_del_members(joinrel->direct_lateral_relids, joinrel->relids);
/*
* Construct restrict and join clause lists for the new joinrel. (The
* caller might or might not need the restrictlist, but I need it anyway
* for set_joinrel_size_estimates().)
*/
restrictlist = build_joinrel_restrictlist(root, joinrel,
outer_rel, inner_rel,
sjinfo);
if (restrictlist_ptr)
*restrictlist_ptr = restrictlist;
build_joinrel_joinlist(joinrel, outer_rel, inner_rel);
/*
* This is also the right place to check whether the joinrel has any
* pending EquivalenceClass joins.
*/
joinrel->has_eclass_joins = has_relevant_eclass_joinclause(root, joinrel);
/* Store the partition information. */
build_joinrel_partition_info(root, joinrel, outer_rel, inner_rel, sjinfo,
restrictlist);
/*
* Set estimates of the joinrel's size.
*/
set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
sjinfo, restrictlist);
/*
* Set the consider_parallel flag if this joinrel could potentially be
* scanned within a parallel worker. If this flag is false for either
* inner_rel or outer_rel, then it must be false for the joinrel also.
* Even if both are true, there might be parallel-restricted expressions
* in the targetlist or quals.
*
* Note that if there are more than two rels in this relation, they could
* be divided between inner_rel and outer_rel in any arbitrary way. We
* assume this doesn't matter, because we should hit all the same baserels
* and joinclauses while building up to this joinrel no matter which we
* take; therefore, we should make the same decision here however we get
* here.
*/
if (inner_rel->consider_parallel && outer_rel->consider_parallel &&
is_parallel_safe(root, (Node *) restrictlist) &&
is_parallel_safe(root, (Node *) joinrel->reltarget->exprs))
joinrel->consider_parallel = true;
/* Add the joinrel to the PlannerInfo. */
add_join_rel(root, joinrel);
/*
* Also, if dynamic-programming join search is active, add the new joinrel
* to the appropriate sublist. Note: you might think the Assert on number
* of members should be for equality, but some of the level 1 rels might
* have been joinrels already, so we can only assert <=.
*/
if (root->join_rel_level)
{
Assert(root->join_cur_level > 0);
Assert(root->join_cur_level <= bms_num_members(joinrel->relids));
root->join_rel_level[root->join_cur_level] =
lappend(root->join_rel_level[root->join_cur_level], joinrel);
}
return joinrel;
}
/*
* build_child_join_rel
* Builds RelOptInfo representing join between given two child relations.
*
* 'outer_rel' and 'inner_rel' are the RelOptInfos of child relations being
* joined
* 'parent_joinrel' is the RelOptInfo representing the join between parent
* relations. Some of the members of new RelOptInfo are produced by
* translating corresponding members of this RelOptInfo
* 'restrictlist': list of RestrictInfo nodes that apply to this particular
* pair of joinable relations
* 'sjinfo': child join's join-type details
*/
RelOptInfo *
build_child_join_rel(PlannerInfo *root, RelOptInfo *outer_rel,
RelOptInfo *inner_rel, RelOptInfo *parent_joinrel,
List *restrictlist, SpecialJoinInfo *sjinfo)
{
RelOptInfo *joinrel = makeNode(RelOptInfo);
AppendRelInfo **appinfos;
int nappinfos;
/* Only joins between "other" relations land here. */
Assert(IS_OTHER_REL(outer_rel) && IS_OTHER_REL(inner_rel));
/* The parent joinrel should have consider_partitionwise_join set. */
Assert(parent_joinrel->consider_partitionwise_join);
joinrel->reloptkind = RELOPT_OTHER_JOINREL;
joinrel->relids = bms_union(outer_rel->relids, inner_rel->relids);
joinrel->relids = add_outer_joins_to_relids(root, joinrel->relids, sjinfo,
NULL);
joinrel->rows = 0;
/* cheap startup cost is interesting iff not all tuples to be retrieved */
joinrel->consider_startup = (root->tuple_fraction > 0);
joinrel->consider_param_startup = false;
joinrel->consider_parallel = false;
joinrel->reltarget = create_empty_pathtarget();
joinrel->pathlist = NIL;
joinrel->ppilist = NIL;
joinrel->partial_pathlist = NIL;
joinrel->cheapest_startup_path = NULL;
joinrel->cheapest_total_path = NULL;
joinrel->cheapest_unique_path = NULL;
joinrel->cheapest_parameterized_paths = NIL;
joinrel->direct_lateral_relids = NULL;
joinrel->lateral_relids = NULL;
joinrel->relid = 0; /* indicates not a baserel */
joinrel->rtekind = RTE_JOIN;
joinrel->min_attr = 0;
joinrel->max_attr = 0;
joinrel->attr_needed = NULL;
joinrel->attr_widths = NULL;
joinrel->nulling_relids = NULL;
joinrel->lateral_vars = NIL;
joinrel->lateral_referencers = NULL;
joinrel->indexlist = NIL;
joinrel->pages = 0;
joinrel->tuples = 0;
joinrel->allvisfrac = 0;
joinrel->eclass_indexes = NULL;
joinrel->subroot = NULL;
joinrel->subplan_params = NIL;
joinrel->amflags = 0;
joinrel->serverid = InvalidOid;
joinrel->userid = InvalidOid;
joinrel->useridiscurrent = false;
joinrel->fdwroutine = NULL;
joinrel->fdw_private = NULL;
joinrel->baserestrictinfo = NIL;
joinrel->baserestrictcost.startup = 0;
joinrel->baserestrictcost.per_tuple = 0;
joinrel->joininfo = NIL;
joinrel->has_eclass_joins = false;
joinrel->consider_partitionwise_join = false; /* might get changed later */
joinrel->parent = parent_joinrel;
joinrel->top_parent = parent_joinrel->top_parent ? parent_joinrel->top_parent : parent_joinrel;
joinrel->top_parent_relids = joinrel->top_parent->relids;
joinrel->part_scheme = NULL;
joinrel->nparts = -1;
joinrel->boundinfo = NULL;
joinrel->partbounds_merged = false;
joinrel->partition_qual = NIL;
joinrel->part_rels = NULL;
joinrel->live_parts = NULL;
joinrel->all_partrels = NULL;
joinrel->partexprs = NULL;
joinrel->nullable_partexprs = NULL;
/* Compute information relevant to foreign relations. */
set_foreign_rel_properties(joinrel, outer_rel, inner_rel);
/* Compute information needed for mapping Vars to the child rel */
appinfos = find_appinfos_by_relids(root, joinrel->relids, &nappinfos);
/* Set up reltarget struct */
build_child_join_reltarget(root, parent_joinrel, joinrel,
nappinfos, appinfos);
/* Construct joininfo list. */
joinrel->joininfo = (List *) adjust_appendrel_attrs(root,
(Node *) parent_joinrel->joininfo,
nappinfos,
appinfos);
/*
* Lateral relids referred in child join will be same as that referred in
* the parent relation.
*/
joinrel->direct_lateral_relids = (Relids) bms_copy(parent_joinrel->direct_lateral_relids);
joinrel->lateral_relids = (Relids) bms_copy(parent_joinrel->lateral_relids);
/*
* If the parent joinrel has pending equivalence classes, so does the
* child.
*/
joinrel->has_eclass_joins = parent_joinrel->has_eclass_joins;
/* Is the join between partitions itself partitioned? */
build_joinrel_partition_info(root, joinrel, outer_rel, inner_rel, sjinfo,
restrictlist);
/* Child joinrel is parallel safe if parent is parallel safe. */
joinrel->consider_parallel = parent_joinrel->consider_parallel;
/* Set estimates of the child-joinrel's size. */
set_joinrel_size_estimates(root, joinrel, outer_rel, inner_rel,
sjinfo, restrictlist);
/* We build the join only once. */
Assert(!find_join_rel(root, joinrel->relids));
/* Add the relation to the PlannerInfo. */
add_join_rel(root, joinrel);
/*
* We might need EquivalenceClass members corresponding to the child join,
* so that we can represent sort pathkeys for it. As with children of
* baserels, we shouldn't need this unless there are relevant eclass joins
* (implying that a merge join might be possible) or pathkeys to sort by.
*/
if (joinrel->has_eclass_joins || has_useful_pathkeys(root, parent_joinrel))
add_child_join_rel_equivalences(root,
nappinfos, appinfos,
parent_joinrel, joinrel);
pfree(appinfos);
return joinrel;
}
/*
* min_join_parameterization
*
* Determine the minimum possible parameterization of a joinrel, that is, the
* set of other rels it contains LATERAL references to. We save this value in
* the join's RelOptInfo. This function is split out of build_join_rel()
* because join_is_legal() needs the value to check a prospective join.
*/
Relids
min_join_parameterization(PlannerInfo *root,
Relids joinrelids,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel)
{
Relids result;
/*
* Basically we just need the union of the inputs' lateral_relids, less
* whatever is already in the join.
*
* It's not immediately obvious that this is a valid way to compute the
* result, because it might seem that we're ignoring possible lateral refs
* of PlaceHolderVars that are due to be computed at the join but not in
* either input. However, because create_lateral_join_info() already
* charged all such PHV refs to each member baserel of the join, they'll
* be accounted for already in the inputs' lateral_relids. Likewise, we
* do not need to worry about doing transitive closure here, because that
* was already accounted for in the original baserel lateral_relids.
*/
result = bms_union(outer_rel->lateral_relids, inner_rel->lateral_relids);
result = bms_del_members(result, joinrelids);
return result;
}
/*
* build_joinrel_tlist
* Builds a join relation's target list from an input relation.
* (This is invoked twice to handle the two input relations.)
*
* The join's targetlist includes all Vars of its member relations that
* will still be needed above the join. This subroutine adds all such
* Vars from the specified input rel's tlist to the join rel's tlist.
* Likewise for any PlaceHolderVars emitted by the input rel.
*
* We also compute the expected width of the join's output, making use
* of data that was cached at the baserel level by set_rel_width().
*
* Pass can_null as true if the join is an outer join that can null Vars
* from this input relation. If so, we will (normally) add the join's relid
* to the nulling bitmaps of Vars and PHVs bubbled up from the input.
*
* When forming an outer join's target list, special handling is needed in
* case the outer join was commuted with another one per outer join identity 3
* (see optimizer/README). We must take steps to ensure that the output Vars
* have the same nulling bitmaps that they would if the two joins had been
* done in syntactic order; else they won't match Vars appearing higher in
* the query tree. An exception to the match-the-syntactic-order rule is
* that when an outer join is pushed down into another one's RHS per identity
* 3, we can't mark its Vars as nulled until the now-upper outer join is also
* completed. So we need to do three things:
*
* First, we add the outer join's relid to the nulling bitmap only if the
* outer join has been completely performed and the Var or PHV actually
* comes from within the syntactically nullable side(s) of the outer join.
* This takes care of the possibility that we have transformed
* (A leftjoin B on (Pab)) leftjoin C on (Pbc)
* to
* A leftjoin (B leftjoin C on (Pbc)) on (Pab)
* Here the pushed-down B/C join cannot mark C columns as nulled yet,
* while the now-upper A/B join must not mark C columns as nulled by itself.
*
* Second, perform the same operation for each SpecialJoinInfo listed in
* pushed_down_joins (which, in this example, would be the B/C join when
* we are at the now-upper A/B join). This allows the now-upper join to
* complete the marking of "C" Vars that now have fully valid values.
*
* Third, any relid in sjinfo->commute_above_r that is already part of
* the joinrel is added to the nulling bitmaps of nullable Vars and PHVs.
* This takes care of the reverse case where we implement
* A leftjoin (B leftjoin C on (Pbc)) on (Pab)
* as
* (A leftjoin B on (Pab)) leftjoin C on (Pbc)
* The C columns emitted by the B/C join need to be shown as nulled by both
* the B/C and A/B joins, even though they've not physically traversed the
* A/B join.
*/
static void
build_joinrel_tlist(PlannerInfo *root, RelOptInfo *joinrel,
RelOptInfo *input_rel,
SpecialJoinInfo *sjinfo,
List *pushed_down_joins,
bool can_null)
{
Relids relids = joinrel->relids;
ListCell *vars;
ListCell *lc;
foreach(vars, input_rel->reltarget->exprs)
{
Var *var = (Var *) lfirst(vars);
/*
* For a PlaceHolderVar, we have to look up the PlaceHolderInfo.
*/
if (IsA(var, PlaceHolderVar))
{
PlaceHolderVar *phv = (PlaceHolderVar *) var;
PlaceHolderInfo *phinfo = find_placeholder_info(root, phv);
/* Is it still needed above this joinrel? */
if (bms_nonempty_difference(phinfo->ph_needed, relids))
{
/*
* Yup, add it to the output. If this join potentially nulls
* this input, we have to update the PHV's phnullingrels,
* which means making a copy.
*/
if (can_null)
{
phv = copyObject(phv);
/* See comments above to understand this logic */
if (sjinfo->ojrelid != 0 &&
bms_is_member(sjinfo->ojrelid, relids) &&
(bms_is_subset(phv->phrels, sjinfo->syn_righthand) ||
(sjinfo->jointype == JOIN_FULL &&
bms_is_subset(phv->phrels, sjinfo->syn_lefthand))))
phv->phnullingrels = bms_add_member(phv->phnullingrels,
sjinfo->ojrelid);
foreach(lc, pushed_down_joins)
{
SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
Assert(bms_is_member(othersj->ojrelid, relids));
if (bms_is_subset(phv->phrels, othersj->syn_righthand))
phv->phnullingrels = bms_add_member(phv->phnullingrels,
othersj->ojrelid);
}
phv->phnullingrels =
bms_join(phv->phnullingrels,
bms_intersect(sjinfo->commute_above_r,
relids));
}
joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
phv);
/* Bubbling up the precomputed result has cost zero */
joinrel->reltarget->width += phinfo->ph_width;
}
continue;
}
/*
* Otherwise, anything in a baserel or joinrel targetlist ought to be
* a Var. (More general cases can only appear in appendrel child
* rels, which will never be seen here.)
*/
if (!IsA(var, Var))
elog(ERROR, "unexpected node type in rel targetlist: %d",
(int) nodeTag(var));
if (var->varno == ROWID_VAR)
{
/* UPDATE/DELETE/MERGE row identity vars are always needed */
RowIdentityVarInfo *ridinfo = (RowIdentityVarInfo *)
list_nth(root->row_identity_vars, var->varattno - 1);
/* Update reltarget width estimate from RowIdentityVarInfo */
joinrel->reltarget->width += ridinfo->rowidwidth;
}
else
{
RelOptInfo *baserel;
int ndx;
/* Get the Var's original base rel */
baserel = find_base_rel(root, var->varno);
/* Is it still needed above this joinrel? */
ndx = var->varattno - baserel->min_attr;
if (!bms_nonempty_difference(baserel->attr_needed[ndx], relids))
continue; /* nope, skip it */
/* Update reltarget width estimate from baserel's attr_widths */
joinrel->reltarget->width += baserel->attr_widths[ndx];
}
/*
* Add the Var to the output. If this join potentially nulls this
* input, we have to update the Var's varnullingrels, which means
* making a copy. But note that we don't ever add nullingrel bits to
* row identity Vars (cf. comments in setrefs.c).
*/
if (can_null && var->varno != ROWID_VAR)
{
var = copyObject(var);
/* See comments above to understand this logic */
if (sjinfo->ojrelid != 0 &&
bms_is_member(sjinfo->ojrelid, relids) &&
(bms_is_member(var->varno, sjinfo->syn_righthand) ||
(sjinfo->jointype == JOIN_FULL &&
bms_is_member(var->varno, sjinfo->syn_lefthand))))
var->varnullingrels = bms_add_member(var->varnullingrels,
sjinfo->ojrelid);
foreach(lc, pushed_down_joins)
{
SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
Assert(bms_is_member(othersj->ojrelid, relids));
if (bms_is_member(var->varno, othersj->syn_righthand))
var->varnullingrels = bms_add_member(var->varnullingrels,
othersj->ojrelid);
}
var->varnullingrels =
bms_join(var->varnullingrels,
bms_intersect(sjinfo->commute_above_r,
relids));
}
joinrel->reltarget->exprs = lappend(joinrel->reltarget->exprs,
var);
/* Vars have cost zero, so no need to adjust reltarget->cost */
}
}
/*
* build_joinrel_restrictlist
* build_joinrel_joinlist
* These routines build lists of restriction and join clauses for a
* join relation from the joininfo lists of the relations it joins.
*
* These routines are separate because the restriction list must be
* built afresh for each pair of input sub-relations we consider, whereas
* the join list need only be computed once for any join RelOptInfo.
* The join list is fully determined by the set of rels making up the
* joinrel, so we should get the same results (up to ordering) from any
* candidate pair of sub-relations. But the restriction list is whatever
* is not handled in the sub-relations, so it depends on which
* sub-relations are considered.
*
* If a join clause from an input relation refers to base+OJ rels still not
* present in the joinrel, then it is still a join clause for the joinrel;
* we put it into the joininfo list for the joinrel. Otherwise,
* the clause is now a restrict clause for the joined relation, and we
* return it to the caller of build_joinrel_restrictlist() to be stored in
* join paths made from this pair of sub-relations. (It will not need to
* be considered further up the join tree.)
*
* In many cases we will find the same RestrictInfos in both input
* relations' joinlists, so be careful to eliminate duplicates.
* Pointer equality should be a sufficient test for dups, since all
* the various joinlist entries ultimately refer to RestrictInfos
* pushed into them by distribute_restrictinfo_to_rels().
*
* 'joinrel' is a join relation node
* 'outer_rel' and 'inner_rel' are a pair of relations that can be joined
* to form joinrel.
* 'sjinfo': join context info
*
* build_joinrel_restrictlist() returns a list of relevant restrictinfos,
* whereas build_joinrel_joinlist() stores its results in the joinrel's
* joininfo list. One or the other must accept each given clause!
*
* NB: Formerly, we made deep(!) copies of each input RestrictInfo to pass
* up to the join relation. I believe this is no longer necessary, because
* RestrictInfo nodes are no longer context-dependent. Instead, just include
* the original nodes in the lists made for the join relation.
*/
static List *
build_joinrel_restrictlist(PlannerInfo *root,
RelOptInfo *joinrel,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel,
SpecialJoinInfo *sjinfo)
{
List *result;
Relids both_input_relids;
both_input_relids = bms_union(outer_rel->relids, inner_rel->relids);
/*
* Collect all the clauses that syntactically belong at this level,
* eliminating any duplicates (important since we will see many of the
* same clauses arriving from both input relations).
*/
result = subbuild_joinrel_restrictlist(root, joinrel, outer_rel,
both_input_relids, NIL);
result = subbuild_joinrel_restrictlist(root, joinrel, inner_rel,
both_input_relids, result);
/*
* Add on any clauses derived from EquivalenceClasses. These cannot be
* redundant with the clauses in the joininfo lists, so don't bother
* checking.
*/
result = list_concat(result,
generate_join_implied_equalities(root,
joinrel->relids,
outer_rel->relids,
inner_rel,
sjinfo));
return result;
}
static void
build_joinrel_joinlist(RelOptInfo *joinrel,
RelOptInfo *outer_rel,
RelOptInfo *inner_rel)
{
List *result;
/*
* Collect all the clauses that syntactically belong above this level,
* eliminating any duplicates (important since we will see many of the
* same clauses arriving from both input relations).
*/
result = subbuild_joinrel_joinlist(joinrel, outer_rel->joininfo, NIL);
result = subbuild_joinrel_joinlist(joinrel, inner_rel->joininfo, result);
joinrel->joininfo = result;
}
static List *
subbuild_joinrel_restrictlist(PlannerInfo *root,
RelOptInfo *joinrel,
RelOptInfo *input_rel,
Relids both_input_relids,
List *new_restrictlist)
{
ListCell *l;
foreach(l, input_rel->joininfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
if (bms_is_subset(rinfo->required_relids, joinrel->relids))
{
/*
* This clause should become a restriction clause for the joinrel,
* since it refers to no outside rels. However, if it's a clone
* clause then it might be too late to evaluate it, so we have to
* check. (If it is too late, just ignore the clause, taking it
* on faith that another clone was or will be selected.) Clone
* clauses should always be outer-join clauses, so we compare
* against both_input_relids.
*/
if (rinfo->has_clone || rinfo->is_clone)
{
Assert(!RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids));
if (!bms_is_subset(rinfo->required_relids, both_input_relids))
continue;
if (!clause_is_computable_at(root, rinfo, both_input_relids))
continue;
}
else
{
/*
* For non-clone clauses, we just Assert it's OK. These might
* be either join or filter clauses.
*/
#ifdef USE_ASSERT_CHECKING
if (RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
Assert(clause_is_computable_at(root, rinfo,
joinrel->relids));
else
{
Assert(bms_is_subset(rinfo->required_relids,
both_input_relids));
Assert(clause_is_computable_at(root, rinfo,
both_input_relids));
}
#endif
}
/*
* OK, so add it to the list, being careful to eliminate
* duplicates. (Since RestrictInfo nodes in different joinlists
* will have been multiply-linked rather than copied, pointer
* equality should be a sufficient test.)
*/
new_restrictlist = list_append_unique_ptr(new_restrictlist, rinfo);
}
else
{
/*
* This clause is still a join clause at this level, so we ignore
* it in this routine.
*/
}
}
return new_restrictlist;
}
static List *
subbuild_joinrel_joinlist(RelOptInfo *joinrel,
List *joininfo_list,
List *new_joininfo)
{
ListCell *l;
/* Expected to be called only for join between parent relations. */
Assert(joinrel->reloptkind == RELOPT_JOINREL);
foreach(l, joininfo_list)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
if (bms_is_subset(rinfo->required_relids, joinrel->relids))
{
/*
* This clause becomes a restriction clause for the joinrel, since
* it refers to no outside rels. So we can ignore it in this
* routine.
*/
}
else
{
/*
* This clause is still a join clause at this level, so add it to
* the new joininfo list, being careful to eliminate duplicates.
* (Since RestrictInfo nodes in different joinlists will have been
* multiply-linked rather than copied, pointer equality should be
* a sufficient test.)
*/
new_joininfo = list_append_unique_ptr(new_joininfo, rinfo);
}
}
return new_joininfo;
}
/*
* fetch_upper_rel
* Build a RelOptInfo describing some post-scan/join query processing,
* or return a pre-existing one if somebody already built it.
*
* An "upper" relation is identified by an UpperRelationKind and a Relids set.
* The meaning of the Relids set is not specified here, and very likely will
* vary for different relation kinds.
*
* Most of the fields in an upper-level RelOptInfo are not used and are not
* set here (though makeNode should ensure they're zeroes). We basically only
* care about fields that are of interest to add_path() and set_cheapest().
*/
RelOptInfo *
fetch_upper_rel(PlannerInfo *root, UpperRelationKind kind, Relids relids)
{
RelOptInfo *upperrel;
ListCell *lc;
/*
* For the moment, our indexing data structure is just a List for each
* relation kind. If we ever get so many of one kind that this stops
* working well, we can improve it. No code outside this function should
* assume anything about how to find a particular upperrel.
*/
/* If we already made this upperrel for the query, return it */
foreach(lc, root->upper_rels[kind])
{
upperrel = (RelOptInfo *) lfirst(lc);
if (bms_equal(upperrel->relids, relids))
return upperrel;
}
upperrel = makeNode(RelOptInfo);
upperrel->reloptkind = RELOPT_UPPER_REL;
upperrel->relids = bms_copy(relids);
/* cheap startup cost is interesting iff not all tuples to be retrieved */
upperrel->consider_startup = (root->tuple_fraction > 0);
upperrel->consider_param_startup = false;
upperrel->consider_parallel = false; /* might get changed later */
upperrel->reltarget = create_empty_pathtarget();
upperrel->pathlist = NIL;
upperrel->cheapest_startup_path = NULL;
upperrel->cheapest_total_path = NULL;
upperrel->cheapest_unique_path = NULL;
upperrel->cheapest_parameterized_paths = NIL;
root->upper_rels[kind] = lappend(root->upper_rels[kind], upperrel);
return upperrel;
}
/*
* find_childrel_parents
* Compute the set of parent relids of an appendrel child rel.
*
* Since appendrels can be nested, a child could have multiple levels of
* appendrel ancestors. This function computes a Relids set of all the
* parent relation IDs.
*/
Relids
find_childrel_parents(PlannerInfo *root, RelOptInfo *rel)
{
Relids result = NULL;
Assert(rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
Assert(rel->relid > 0 && rel->relid < root->simple_rel_array_size);
do
{
AppendRelInfo *appinfo = root->append_rel_array[rel->relid];
Index prelid = appinfo->parent_relid;
result = bms_add_member(result, prelid);
/* traverse up to the parent rel, loop if it's also a child rel */
rel = find_base_rel(root, prelid);
} while (rel->reloptkind == RELOPT_OTHER_MEMBER_REL);
Assert(rel->reloptkind == RELOPT_BASEREL);
return result;
}
/*
* get_baserel_parampathinfo
* Get the ParamPathInfo for a parameterized path for a base relation,
* constructing one if we don't have one already.
*
* This centralizes estimating the rowcounts for parameterized paths.
* We need to cache those to be sure we use the same rowcount for all paths
* of the same parameterization for a given rel. This is also a convenient
* place to determine which movable join clauses the parameterized path will
* be responsible for evaluating.
*/
ParamPathInfo *
get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel,
Relids required_outer)
{
ParamPathInfo *ppi;
Relids joinrelids;
List *pclauses;
Bitmapset *pserials;
double rows;
ListCell *lc;
/* If rel has LATERAL refs, every path for it should account for them */
Assert(bms_is_subset(baserel->lateral_relids, required_outer));
/* Unparameterized paths have no ParamPathInfo */
if (bms_is_empty(required_outer))
return NULL;
Assert(!bms_overlap(baserel->relids, required_outer));
/* If we already have a PPI for this parameterization, just return it */
if ((ppi = find_param_path_info(baserel, required_outer)))
return ppi;
/*
* Identify all joinclauses that are movable to this base rel given this
* parameterization.
*/
joinrelids = bms_union(baserel->relids, required_outer);
pclauses = NIL;
foreach(lc, baserel->joininfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
if (join_clause_is_movable_into(rinfo,
baserel->relids,
joinrelids))
pclauses = lappend(pclauses, rinfo);
}
/*
* Add in joinclauses generated by EquivalenceClasses, too. (These
* necessarily satisfy join_clause_is_movable_into.)
*/
pclauses = list_concat(pclauses,
generate_join_implied_equalities(root,
joinrelids,
required_outer,
baserel,
NULL));
/* Compute set of serial numbers of the enforced clauses */
pserials = NULL;
foreach(lc, pclauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
pserials = bms_add_member(pserials, rinfo->rinfo_serial);
}
/* Estimate the number of rows returned by the parameterized scan */
rows = get_parameterized_baserel_size(root, baserel, pclauses);
/* And now we can build the ParamPathInfo */
ppi = makeNode(ParamPathInfo);
ppi->ppi_req_outer = required_outer;
ppi->ppi_rows = rows;
ppi->ppi_clauses = pclauses;
ppi->ppi_serials = pserials;
baserel->ppilist = lappend(baserel->ppilist, ppi);
return ppi;
}
/*
* get_joinrel_parampathinfo
* Get the ParamPathInfo for a parameterized path for a join relation,
* constructing one if we don't have one already.
*
* This centralizes estimating the rowcounts for parameterized paths.
* We need to cache those to be sure we use the same rowcount for all paths
* of the same parameterization for a given rel. This is also a convenient
* place to determine which movable join clauses the parameterized path will
* be responsible for evaluating.
*
* outer_path and inner_path are a pair of input paths that can be used to
* construct the join, and restrict_clauses is the list of regular join
* clauses (including clauses derived from EquivalenceClasses) that must be
* applied at the join node when using these inputs.
*
* Unlike the situation for base rels, the set of movable join clauses to be
* enforced at a join varies with the selected pair of input paths, so we
* must calculate that and pass it back, even if we already have a matching
* ParamPathInfo. We handle this by adding any clauses moved down to this
* join to *restrict_clauses, which is an in/out parameter. (The addition
* is done in such a way as to not modify the passed-in List structure.)
*
* Note: when considering a nestloop join, the caller must have removed from
* restrict_clauses any movable clauses that are themselves scheduled to be
* pushed into the right-hand path. We do not do that here since it's
* unnecessary for other join types.
*/
ParamPathInfo *
get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel,
Path *outer_path,
Path *inner_path,
SpecialJoinInfo *sjinfo,
Relids required_outer,
List **restrict_clauses)
{
ParamPathInfo *ppi;
Relids join_and_req;
Relids outer_and_req;
Relids inner_and_req;
List *pclauses;
List *eclauses;
List *dropped_ecs;
double rows;
ListCell *lc;
/* If rel has LATERAL refs, every path for it should account for them */
Assert(bms_is_subset(joinrel->lateral_relids, required_outer));
/* Unparameterized paths have no ParamPathInfo or extra join clauses */
if (bms_is_empty(required_outer))
return NULL;
Assert(!bms_overlap(joinrel->relids, required_outer));
/*
* Identify all joinclauses that are movable to this join rel given this
* parameterization. These are the clauses that are movable into this
* join, but not movable into either input path. Treat an unparameterized
* input path as not accepting parameterized clauses (because it won't,
* per the shortcut exit above), even though the joinclause movement rules
* might allow the same clauses to be moved into a parameterized path for
* that rel.
*/
join_and_req = bms_union(joinrel->relids, required_outer);
if (outer_path->param_info)
outer_and_req = bms_union(outer_path->parent->relids,
PATH_REQ_OUTER(outer_path));
else
outer_and_req = NULL; /* outer path does not accept parameters */
if (inner_path->param_info)
inner_and_req = bms_union(inner_path->parent->relids,
PATH_REQ_OUTER(inner_path));
else
inner_and_req = NULL; /* inner path does not accept parameters */
pclauses = NIL;
foreach(lc, joinrel->joininfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
if (join_clause_is_movable_into(rinfo,
joinrel->relids,
join_and_req) &&
!join_clause_is_movable_into(rinfo,
outer_path->parent->relids,
outer_and_req) &&
!join_clause_is_movable_into(rinfo,
inner_path->parent->relids,
inner_and_req))
pclauses = lappend(pclauses, rinfo);
}
/* Consider joinclauses generated by EquivalenceClasses, too */
eclauses = generate_join_implied_equalities(root,
join_and_req,
required_outer,
joinrel,
NULL);
/* We only want ones that aren't movable to lower levels */
dropped_ecs = NIL;
foreach(lc, eclauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
Assert(join_clause_is_movable_into(rinfo,
joinrel->relids,
join_and_req));
if (join_clause_is_movable_into(rinfo,
outer_path->parent->relids,
outer_and_req))
continue; /* drop if movable into LHS */
if (join_clause_is_movable_into(rinfo,
inner_path->parent->relids,
inner_and_req))
{
/* drop if movable into RHS, but remember EC for use below */
Assert(rinfo->left_ec == rinfo->right_ec);
dropped_ecs = lappend(dropped_ecs, rinfo->left_ec);
continue;
}
pclauses = lappend(pclauses, rinfo);
}
/*
* EquivalenceClasses are harder to deal with than we could wish, because
* of the fact that a given EC can generate different clauses depending on
* context. Suppose we have an EC {X.X, Y.Y, Z.Z} where X and Y are the
* LHS and RHS of the current join and Z is in required_outer, and further
* suppose that the inner_path is parameterized by both X and Z. The code
* above will have produced either Z.Z = X.X or Z.Z = Y.Y from that EC,
* and in the latter case will have discarded it as being movable into the
* RHS. However, the EC machinery might have produced either Y.Y = X.X or
* Y.Y = Z.Z as the EC enforcement clause within the inner_path; it will
* not have produced both, and we can't readily tell from here which one
* it did pick. If we add no clause to this join, we'll end up with
* insufficient enforcement of the EC; either Z.Z or X.X will fail to be
* constrained to be equal to the other members of the EC. (When we come
* to join Z to this X/Y path, we will certainly drop whichever EC clause
* is generated at that join, so this omission won't get fixed later.)
*
* To handle this, for each EC we discarded such a clause from, try to
* generate a clause connecting the required_outer rels to the join's LHS
* ("Z.Z = X.X" in the terms of the above example). If successful, and if
* the clause can't be moved to the LHS, add it to the current join's
* restriction clauses. (If an EC cannot generate such a clause then it
* has nothing that needs to be enforced here, while if the clause can be
* moved into the LHS then it should have been enforced within that path.)
*
* Note that we don't need similar processing for ECs whose clause was
* considered to be movable into the LHS, because the LHS can't refer to
* the RHS so there is no comparable ambiguity about what it might
* actually be enforcing internally.
*/
if (dropped_ecs)
{
Relids real_outer_and_req;
real_outer_and_req = bms_union(outer_path->parent->relids,
required_outer);
eclauses =
generate_join_implied_equalities_for_ecs(root,
dropped_ecs,
real_outer_and_req,
required_outer,
outer_path->parent);
foreach(lc, eclauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
Assert(join_clause_is_movable_into(rinfo,
outer_path->parent->relids,
real_outer_and_req));
if (!join_clause_is_movable_into(rinfo,
outer_path->parent->relids,
outer_and_req))
pclauses = lappend(pclauses, rinfo);
}
}
/*
* Now, attach the identified moved-down clauses to the caller's
* restrict_clauses list. By using list_concat in this order, we leave
* the original list structure of restrict_clauses undamaged.
*/
*restrict_clauses = list_concat(pclauses, *restrict_clauses);
/* If we already have a PPI for this parameterization, just return it */
if ((ppi = find_param_path_info(joinrel, required_outer)))
return ppi;
/* Estimate the number of rows returned by the parameterized join */
rows = get_parameterized_joinrel_size(root, joinrel,
outer_path,
inner_path,
sjinfo,
*restrict_clauses);
/*
* And now we can build the ParamPathInfo. No point in saving the
* input-pair-dependent clause list, though.
*
* Note: in GEQO mode, we'll be called in a temporary memory context, but
* the joinrel structure is there too, so no problem.
*/
ppi = makeNode(ParamPathInfo);
ppi->ppi_req_outer = required_outer;
ppi->ppi_rows = rows;
ppi->ppi_clauses = NIL;
ppi->ppi_serials = NULL;
joinrel->ppilist = lappend(joinrel->ppilist, ppi);
return ppi;
}
/*
* get_appendrel_parampathinfo
* Get the ParamPathInfo for a parameterized path for an append relation.
*
* For an append relation, the rowcount estimate will just be the sum of
* the estimates for its children. However, we still need a ParamPathInfo
* to flag the fact that the path requires parameters. So this just creates
* a suitable struct with zero ppi_rows (and no ppi_clauses either, since
* the Append node isn't responsible for checking quals).
*/
ParamPathInfo *
get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
{
ParamPathInfo *ppi;
/* If rel has LATERAL refs, every path for it should account for them */
Assert(bms_is_subset(appendrel->lateral_relids, required_outer));
/* Unparameterized paths have no ParamPathInfo */
if (bms_is_empty(required_outer))
return NULL;
Assert(!bms_overlap(appendrel->relids, required_outer));
/* If we already have a PPI for this parameterization, just return it */
if ((ppi = find_param_path_info(appendrel, required_outer)))
return ppi;
/* Else build the ParamPathInfo */
ppi = makeNode(ParamPathInfo);
ppi->ppi_req_outer = required_outer;
ppi->ppi_rows = 0;
ppi->ppi_clauses = NIL;
ppi->ppi_serials = NULL;
appendrel->ppilist = lappend(appendrel->ppilist, ppi);
return ppi;
}
/*
* Returns a ParamPathInfo for the parameterization given by required_outer, if
* already available in the given rel. Returns NULL otherwise.
*/
ParamPathInfo *
find_param_path_info(RelOptInfo *rel, Relids required_outer)
{
ListCell *lc;
foreach(lc, rel->ppilist)
{
ParamPathInfo *ppi = (ParamPathInfo *) lfirst(lc);
if (bms_equal(ppi->ppi_req_outer, required_outer))
return ppi;
}
return NULL;
}
/*
* get_param_path_clause_serials
* Given a parameterized Path, return the set of pushed-down clauses
* (identified by rinfo_serial numbers) enforced within the Path.
*/
Bitmapset *
get_param_path_clause_serials(Path *path)
{
if (path->param_info == NULL)
return NULL; /* not parameterized */
if (IsA(path, NestPath) ||
IsA(path, MergePath) ||
IsA(path, HashPath))
{
/*
* For a join path, combine clauses enforced within either input path
* with those enforced as joinrestrictinfo in this path. Note that
* joinrestrictinfo may include some non-pushed-down clauses, but for
* current purposes it's okay if we include those in the result. (To
* be more careful, we could check for clause_relids overlapping the
* path parameterization, but it's not worth the cycles for now.)
*/
JoinPath *jpath = (JoinPath *) path;
Bitmapset *pserials;
ListCell *lc;
pserials = NULL;
pserials = bms_add_members(pserials,
get_param_path_clause_serials(jpath->outerjoinpath));
pserials = bms_add_members(pserials,
get_param_path_clause_serials(jpath->innerjoinpath));
foreach(lc, jpath->joinrestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
pserials = bms_add_member(pserials, rinfo->rinfo_serial);
}
return pserials;
}
else if (IsA(path, AppendPath))
{
/*
* For an appendrel, take the intersection of the sets of clauses
* enforced in each input path.
*/
AppendPath *apath = (AppendPath *) path;
Bitmapset *pserials;
ListCell *lc;
pserials = NULL;
foreach(lc, apath->subpaths)
{
Path *subpath = (Path *) lfirst(lc);
Bitmapset *subserials;
subserials = get_param_path_clause_serials(subpath);
if (lc == list_head(apath->subpaths))
pserials = bms_copy(subserials);
else
pserials = bms_int_members(pserials, subserials);
}
return pserials;
}
else if (IsA(path, MergeAppendPath))
{
/* Same as AppendPath case */
MergeAppendPath *apath = (MergeAppendPath *) path;
Bitmapset *pserials;
ListCell *lc;
pserials = NULL;
foreach(lc, apath->subpaths)
{
Path *subpath = (Path *) lfirst(lc);
Bitmapset *subserials;
subserials = get_param_path_clause_serials(subpath);
if (lc == list_head(apath->subpaths))
pserials = bms_copy(subserials);
else
pserials = bms_int_members(pserials, subserials);
}
return pserials;
}
else
{
/*
* Otherwise, it's a baserel path and we can use the
* previously-computed set of serial numbers.
*/
return path->param_info->ppi_serials;
}
}
/*
* build_joinrel_partition_info
* Checks if the two relations being joined can use partitionwise join
* and if yes, initialize partitioning information of the resulting
* partitioned join relation.
*/
static void
build_joinrel_partition_info(PlannerInfo *root,
RelOptInfo *joinrel, RelOptInfo *outer_rel,
RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo,
List *restrictlist)
{
PartitionScheme part_scheme;
/* Nothing to do if partitionwise join technique is disabled. */
if (!enable_partitionwise_join)
{
Assert(!IS_PARTITIONED_REL(joinrel));
return;
}
/*
* We can only consider this join as an input to further partitionwise
* joins if (a) the input relations are partitioned and have
* consider_partitionwise_join=true, (b) the partition schemes match, and
* (c) we can identify an equi-join between the partition keys. Note that
* if it were possible for have_partkey_equi_join to return different
* answers for the same joinrel depending on which join ordering we try
* first, this logic would break. That shouldn't happen, though, because
* of the way the query planner deduces implied equalities and reorders
* the joins. Please see optimizer/README for details.
*/
if (outer_rel->part_scheme == NULL || inner_rel->part_scheme == NULL ||
!outer_rel->consider_partitionwise_join ||
!inner_rel->consider_partitionwise_join ||
outer_rel->part_scheme != inner_rel->part_scheme ||
!have_partkey_equi_join(root, joinrel, outer_rel, inner_rel,
sjinfo->jointype, restrictlist))
{
Assert(!IS_PARTITIONED_REL(joinrel));
return;
}
part_scheme = outer_rel->part_scheme;
/*
* This function will be called only once for each joinrel, hence it
* should not have partitioning fields filled yet.
*/
Assert(!joinrel->part_scheme && !joinrel->partexprs &&
!joinrel->nullable_partexprs && !joinrel->part_rels &&
!joinrel->boundinfo);
/*
* If the join relation is partitioned, it uses the same partitioning
* scheme as the joining relations.
*
* Note: we calculate the partition bounds, number of partitions, and
* child-join relations of the join relation in try_partitionwise_join().
*/
joinrel->part_scheme = part_scheme;
set_joinrel_partition_key_exprs(joinrel, outer_rel, inner_rel,
sjinfo->jointype);
/*
* Set the consider_partitionwise_join flag.
*/
Assert(outer_rel->consider_partitionwise_join);
Assert(inner_rel->consider_partitionwise_join);
joinrel->consider_partitionwise_join = true;
}
/*
* have_partkey_equi_join
*
* Returns true if there exist equi-join conditions involving pairs
* of matching partition keys of the relations being joined for all
* partition keys.
*/
static bool
have_partkey_equi_join(PlannerInfo *root, RelOptInfo *joinrel,
RelOptInfo *rel1, RelOptInfo *rel2,
JoinType jointype, List *restrictlist)
{
PartitionScheme part_scheme = rel1->part_scheme;
ListCell *lc;
int cnt_pks;
bool pk_has_clause[PARTITION_MAX_KEYS];
bool strict_op;
/*
* This function must only be called when the joined relations have same
* partitioning scheme.
*/
Assert(rel1->part_scheme == rel2->part_scheme);
Assert(part_scheme);
memset(pk_has_clause, 0, sizeof(pk_has_clause));
foreach(lc, restrictlist)
{
RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
OpExpr *opexpr;
Expr *expr1;
Expr *expr2;
int ipk1;
int ipk2;
/* If processing an outer join, only use its own join clauses. */
if (IS_OUTER_JOIN(jointype) &&
RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
continue;
/* Skip clauses which can not be used for a join. */
if (!rinfo->can_join)
continue;
/* Skip clauses which are not equality conditions. */
if (!rinfo->mergeopfamilies && !OidIsValid(rinfo->hashjoinoperator))
continue;
/* Should be OK to assume it's an OpExpr. */
opexpr = castNode(OpExpr, rinfo->clause);
/* Match the operands to the relation. */
if (bms_is_subset(rinfo->left_relids, rel1->relids) &&
bms_is_subset(rinfo->right_relids, rel2->relids))
{
expr1 = linitial(opexpr->args);
expr2 = lsecond(opexpr->args);
}
else if (bms_is_subset(rinfo->left_relids, rel2->relids) &&
bms_is_subset(rinfo->right_relids, rel1->relids))
{
expr1 = lsecond(opexpr->args);
expr2 = linitial(opexpr->args);
}
else
continue;
/*
* Now we need to know whether the join operator is strict; see
* comments in pathnodes.h.
*/
strict_op = op_strict(opexpr->opno);
/*
* Vars appearing in the relation's partition keys will not have any
* varnullingrels, but those in expr1 and expr2 will if we're above
* outer joins that could null the respective rels. It's okay to
* match anyway, if the join operator is strict.
*/
if (strict_op)
{
if (bms_overlap(rel1->relids, root->outer_join_rels))
expr1 = (Expr *) remove_nulling_relids((Node *) expr1,
root->outer_join_rels,
NULL);
if (bms_overlap(rel2->relids, root->outer_join_rels))
expr2 = (Expr *) remove_nulling_relids((Node *) expr2,
root->outer_join_rels,
NULL);
}
/*
* Only clauses referencing the partition keys are useful for
* partitionwise join.
*/
ipk1 = match_expr_to_partition_keys(expr1, rel1, strict_op);
if (ipk1 < 0)
continue;
ipk2 = match_expr_to_partition_keys(expr2, rel2, strict_op);
if (ipk2 < 0)
continue;
/*
* If the clause refers to keys at different ordinal positions, it can
* not be used for partitionwise join.
*/
if (ipk1 != ipk2)
continue;
/*
* The clause allows partitionwise join only if it uses the same
* operator family as that specified by the partition key.
*/
if (rel1->part_scheme->strategy == PARTITION_STRATEGY_HASH)
{
if (!OidIsValid(rinfo->hashjoinoperator) ||
!op_in_opfamily(rinfo->hashjoinoperator,
part_scheme->partopfamily[ipk1]))
continue;
}
else if (!list_member_oid(rinfo->mergeopfamilies,
part_scheme->partopfamily[ipk1]))
continue;
/* Mark the partition key as having an equi-join clause. */
pk_has_clause[ipk1] = true;
}
/* Check whether every partition key has an equi-join condition. */
for (cnt_pks = 0; cnt_pks < part_scheme->partnatts; cnt_pks++)
{
if (!pk_has_clause[cnt_pks])
return false;
}
return true;
}
/*
* match_expr_to_partition_keys
*
* Tries to match an expression to one of the nullable or non-nullable
* partition keys of "rel". Returns the matched key's ordinal position,
* or -1 if the expression could not be matched to any of the keys.
*
* strict_op must be true if the expression will be compared with the
* partition key using a strict operator. This allows us to consider
* nullable as well as nonnullable partition keys.
*/
static int
match_expr_to_partition_keys(Expr *expr, RelOptInfo *rel, bool strict_op)
{
int cnt;
/* This function should be called only for partitioned relations. */
Assert(rel->part_scheme);
Assert(rel->partexprs);
Assert(rel->nullable_partexprs);
/* Remove any relabel decorations. */
while (IsA(expr, RelabelType))
expr = (Expr *) (castNode(RelabelType, expr))->arg;
for (cnt = 0; cnt < rel->part_scheme->partnatts; cnt++)
{
ListCell *lc;
/* We can always match to the non-nullable partition keys. */
foreach(lc, rel->partexprs[cnt])
{
if (equal(lfirst(lc), expr))
return cnt;
}
if (!strict_op)
continue;
/*
* If it's a strict join operator then a NULL partition key on one
* side will not join to any partition key on the other side, and in
* particular such a row can't join to a row from a different
* partition on the other side. So, it's okay to search the nullable
* partition keys as well.
*/
foreach(lc, rel->nullable_partexprs[cnt])
{
if (equal(lfirst(lc), expr))
return cnt;
}
}
return -1;
}
/*
* set_joinrel_partition_key_exprs
* Initialize partition key expressions for a partitioned joinrel.
*/
static void
set_joinrel_partition_key_exprs(RelOptInfo *joinrel,
RelOptInfo *outer_rel, RelOptInfo *inner_rel,
JoinType jointype)
{
PartitionScheme part_scheme = joinrel->part_scheme;
int partnatts = part_scheme->partnatts;
joinrel->partexprs = (List **) palloc0(sizeof(List *) * partnatts);
joinrel->nullable_partexprs =
(List **) palloc0(sizeof(List *) * partnatts);
/*
* The joinrel's partition expressions are the same as those of the input
* rels, but we must properly classify them as nullable or not in the
* joinrel's output. (Also, we add some more partition expressions if
* it's a FULL JOIN.)
*/
for (int cnt = 0; cnt < partnatts; cnt++)
{
/* mark these const to enforce that we copy them properly */
const List *outer_expr = outer_rel->partexprs[cnt];
const List *outer_null_expr = outer_rel->nullable_partexprs[cnt];
const List *inner_expr = inner_rel->partexprs[cnt];
const List *inner_null_expr = inner_rel->nullable_partexprs[cnt];
List *partexpr = NIL;
List *nullable_partexpr = NIL;
ListCell *lc;
switch (jointype)
{
/*
* A join relation resulting from an INNER join may be
* regarded as partitioned by either of the inner and outer
* relation keys. For example, A INNER JOIN B ON A.a = B.b
* can be regarded as partitioned on either A.a or B.b. So we
* add both keys to the joinrel's partexpr lists. However,
* anything that was already nullable still has to be treated
* as nullable.
*/
case JOIN_INNER:
partexpr = list_concat_copy(outer_expr, inner_expr);
nullable_partexpr = list_concat_copy(outer_null_expr,
inner_null_expr);
break;
/*
* A join relation resulting from a SEMI or ANTI join may be
* regarded as partitioned by the outer relation keys. The
* inner relation's keys are no longer interesting; since they
* aren't visible in the join output, nothing could join to
* them.
*/
case JOIN_SEMI:
case JOIN_ANTI:
partexpr = list_copy(outer_expr);
nullable_partexpr = list_copy(outer_null_expr);
break;
/*
* A join relation resulting from a LEFT OUTER JOIN likewise
* may be regarded as partitioned on the (non-nullable) outer
* relation keys. The inner (nullable) relation keys are okay
* as partition keys for further joins as long as they involve
* strict join operators.
*/
case JOIN_LEFT:
partexpr = list_copy(outer_expr);
nullable_partexpr = list_concat_copy(inner_expr,
outer_null_expr);
nullable_partexpr = list_concat(nullable_partexpr,
inner_null_expr);
break;
/*
* For FULL OUTER JOINs, both relations are nullable, so the
* resulting join relation may be regarded as partitioned on
* either of inner and outer relation keys, but only for joins
* that involve strict join operators.
*/
case JOIN_FULL:
nullable_partexpr = list_concat_copy(outer_expr,
inner_expr);
nullable_partexpr = list_concat(nullable_partexpr,
outer_null_expr);
nullable_partexpr = list_concat(nullable_partexpr,
inner_null_expr);
/*
* Also add CoalesceExprs corresponding to each possible
* full-join output variable (that is, left side coalesced to
* right side), so that we can match equijoin expressions
* using those variables. We really only need these for
* columns merged by JOIN USING, and only with the pairs of
* input items that correspond to the data structures that
* parse analysis would build for such variables. But it's
* hard to tell which those are, so just make all the pairs.
* Extra items in the nullable_partexprs list won't cause big
* problems. (It's possible that such items will get matched
* to user-written COALESCEs, but it should still be valid to
* partition on those, since they're going to be either the
* partition column or NULL; it's the same argument as for
* partitionwise nesting of any outer join.) We assume no
* type coercions are needed to make the coalesce expressions,
* since columns of different types won't have gotten
* classified as the same PartitionScheme. Note that we
* intentionally leave out the varnullingrels decoration that
* would ordinarily appear on the Vars inside these
* CoalesceExprs, because have_partkey_equi_join will strip
* varnullingrels from the expressions it will compare to the
* partexprs.
*/
foreach(lc, list_concat_copy(outer_expr, outer_null_expr))
{
Node *larg = (Node *) lfirst(lc);
ListCell *lc2;
foreach(lc2, list_concat_copy(inner_expr, inner_null_expr))
{
Node *rarg = (Node *) lfirst(lc2);
CoalesceExpr *c = makeNode(CoalesceExpr);
c->coalescetype = exprType(larg);
c->coalescecollid = exprCollation(larg);
c->args = list_make2(larg, rarg);
c->location = -1;
nullable_partexpr = lappend(nullable_partexpr, c);
}
}
break;
default:
elog(ERROR, "unrecognized join type: %d", (int) jointype);
}
joinrel->partexprs[cnt] = partexpr;
joinrel->nullable_partexprs[cnt] = nullable_partexpr;
}
}
/*
* build_child_join_reltarget
* Set up a child-join relation's reltarget from a parent-join relation.
*/
static void
build_child_join_reltarget(PlannerInfo *root,
RelOptInfo *parentrel,
RelOptInfo *childrel,
int nappinfos,
AppendRelInfo **appinfos)
{
/* Build the targetlist */
childrel->reltarget->exprs = (List *)
adjust_appendrel_attrs(root,
(Node *) parentrel->reltarget->exprs,
nappinfos, appinfos);
/* Set the cost and width fields */
childrel->reltarget->cost.startup = parentrel->reltarget->cost.startup;
childrel->reltarget->cost.per_tuple = parentrel->reltarget->cost.per_tuple;
childrel->reltarget->width = parentrel->reltarget->width;
}