postgresql/src/backend/parser/parse_node.c

541 lines
14 KiB
C

/*-------------------------------------------------------------------------
*
* parse_node.c
* various routines that make nodes for query plans
*
* Portions Copyright (c) 1996-2000, PostgreSQL, Inc
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/parser/parse_node.c,v 1.43 2000/07/05 23:11:32 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include <ctype.h>
#include <errno.h>
#include <float.h>
#include "postgres.h"
#include "access/heapam.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_type.h"
#include "fmgr.h"
#include "nodes/makefuncs.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parse_node.h"
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "parser/parse_target.h"
#include "parser/parse_type.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
static void disallow_setop(char *op, Type optype, Node *operand);
static bool fitsInFloat(Value *value);
/* make_parsestate()
* Allocate and initialize a new ParseState.
* The CALLER is responsible for freeing the ParseState* returned.
*/
ParseState *
make_parsestate(ParseState *parentParseState)
{
ParseState *pstate;
pstate = palloc(sizeof(ParseState));
MemSet(pstate, 0, sizeof(ParseState));
pstate->p_last_resno = 1;
pstate->parentParseState = parentParseState;
return pstate;
}
/* make_operand()
* Ensure argument type match by forcing conversion of constants.
*/
Node *
make_operand(char *opname,
Node *tree,
Oid orig_typeId,
Oid target_typeId)
{
Node *result;
Type target_type = typeidType(target_typeId);
if (tree != NULL)
{
disallow_setop(opname, target_type, tree);
/* must coerce? */
if (target_typeId != orig_typeId)
result = coerce_type(NULL, tree, orig_typeId, target_typeId, -1);
else
result = tree;
}
else
{
/* otherwise, this is a NULL value */
Const *con = makeNode(Const);
con->consttype = target_typeId;
con->constlen = typeLen(target_type);
con->constvalue = (Datum) NULL;
con->constisnull = true;
con->constbyval = typeByVal(target_type);
con->constisset = false;
result = (Node *) con;
}
return result;
} /* make_operand() */
static void
disallow_setop(char *op, Type optype, Node *operand)
{
if (operand == NULL)
return;
if (nodeTag(operand) == T_Iter)
{
elog(ERROR, "An operand to the '%s' operator returns a set of %s,"
"\n\tbut '%s' takes single values, not sets.",
op, typeTypeName(optype), op);
}
}
/* make_op()
* Operator construction.
*
* Transform operator expression ensuring type compatibility.
* This is where some type conversion happens.
*/
Expr *
make_op(char *opname, Node *ltree, Node *rtree)
{
Oid ltypeId,
rtypeId;
Operator tup;
Form_pg_operator opform;
Oper *newop;
Node *left,
*right;
Expr *result;
ltypeId = (ltree == NULL) ? UNKNOWNOID : exprType(ltree);
rtypeId = (rtree == NULL) ? UNKNOWNOID : exprType(rtree);
/* right operator? */
if (rtree == NULL)
{
tup = right_oper(opname, ltypeId);
opform = (Form_pg_operator) GETSTRUCT(tup);
left = make_operand(opname, ltree, ltypeId, opform->oprleft);
right = NULL;
}
/* left operator? */
else if (ltree == NULL)
{
tup = left_oper(opname, rtypeId);
opform = (Form_pg_operator) GETSTRUCT(tup);
right = make_operand(opname, rtree, rtypeId, opform->oprright);
left = NULL;
}
/* otherwise, binary operator */
else
{
tup = oper(opname, ltypeId, rtypeId, FALSE);
opform = (Form_pg_operator) GETSTRUCT(tup);
left = make_operand(opname, ltree, ltypeId, opform->oprleft);
right = make_operand(opname, rtree, rtypeId, opform->oprright);
}
newop = makeOper(oprid(tup),/* opno */
InvalidOid,/* opid */
opform->oprresult, /* operator result type */
0,
NULL);
result = makeNode(Expr);
result->typeOid = opform->oprresult;
result->opType = OP_EXPR;
result->oper = (Node *) newop;
if (!left)
result->args = lcons(right, NIL);
else if (!right)
result->args = lcons(left, NIL);
else
result->args = lcons(left, lcons(right, NIL));
return result;
} /* make_op() */
/*
* make_var
* Build a Var node for an attribute identified by name
*/
Var *
make_var(ParseState *pstate, Oid relid, char *refname,
char *attrname)
{
HeapTuple tp;
Form_pg_attribute att_tup;
int vnum,
attid;
Oid vartypeid;
int32 type_mod;
int sublevels_up;
vnum = refnameRangeTablePosn(pstate, refname, &sublevels_up);
tp = SearchSysCacheTuple(ATTNAME,
ObjectIdGetDatum(relid),
PointerGetDatum(attrname),
0, 0);
if (!HeapTupleIsValid(tp))
elog(ERROR, "Relation %s does not have attribute %s",
refname, attrname);
att_tup = (Form_pg_attribute) GETSTRUCT(tp);
attid = att_tup->attnum;
vartypeid = att_tup->atttypid;
type_mod = att_tup->atttypmod;
return makeVar(vnum, attid, vartypeid, type_mod, sublevels_up);
}
/*
* transformArraySubscripts()
* Transform array subscripting. This is used for both
* array fetch and array assignment.
*
* In an array fetch, we are given a source array value and we produce an
* expression that represents the result of extracting a single array element
* or an array slice.
*
* In an array assignment, we are given a destination array value plus a
* source value that is to be assigned to a single element or a slice of
* that array. We produce an expression that represents the new array value
* with the source data inserted into the right part of the array.
*
* pstate Parse state
* arrayBase Already-transformed expression for the array as a whole
* indirection Untransformed list of subscripts (must not be NIL)
* forceSlice If true, treat subscript as array slice in all cases
* assignFrom NULL for array fetch, else transformed expression for source.
*/
ArrayRef *
transformArraySubscripts(ParseState *pstate,
Node *arrayBase,
List *indirection,
bool forceSlice,
Node *assignFrom)
{
Oid typearray,
typeelement,
typeresult;
HeapTuple type_tuple;
Form_pg_type type_struct_array,
type_struct_element;
bool isSlice = forceSlice;
List *upperIndexpr = NIL;
List *lowerIndexpr = NIL;
List *idx;
ArrayRef *aref;
/* Get the type tuple for the array */
typearray = exprType(arrayBase);
type_tuple = SearchSysCacheTuple(TYPEOID,
ObjectIdGetDatum(typearray),
0, 0, 0);
if (!HeapTupleIsValid(type_tuple))
elog(ERROR, "transformArraySubscripts: Cache lookup failed for array type %u",
typearray);
type_struct_array = (Form_pg_type) GETSTRUCT(type_tuple);
typeelement = type_struct_array->typelem;
if (typeelement == InvalidOid)
elog(ERROR, "transformArraySubscripts: type %s is not an array",
NameStr(type_struct_array->typname));
/* Get the type tuple for the array element type */
type_tuple = SearchSysCacheTuple(TYPEOID,
ObjectIdGetDatum(typeelement),
0, 0, 0);
if (!HeapTupleIsValid(type_tuple))
elog(ERROR, "transformArraySubscripts: Cache lookup failed for array element type %u",
typeelement);
type_struct_element = (Form_pg_type) GETSTRUCT(type_tuple);
/*
* A list containing only single subscripts refers to a single array
* element. If any of the items are double subscripts (lower:upper),
* then the subscript expression means an array slice operation. In
* this case, we supply a default lower bound of 1 for any items that
* contain only a single subscript. The forceSlice parameter forces us
* to treat the operation as a slice, even if no lower bounds are
* mentioned. Otherwise, we have to prescan the indirection list to
* see if there are any double subscripts.
*/
if (!isSlice)
{
foreach(idx, indirection)
{
A_Indices *ai = (A_Indices *) lfirst(idx);
if (ai->lidx != NULL)
{
isSlice = true;
break;
}
}
}
/*
* The type represented by the subscript expression is the element
* type if we are fetching a single element, but it is the same as the
* array type if we are fetching a slice or storing.
*/
if (isSlice || assignFrom != NULL)
typeresult = typearray;
else
typeresult = typeelement;
/*
* Transform the subscript expressions.
*/
foreach(idx, indirection)
{
A_Indices *ai = (A_Indices *) lfirst(idx);
Node *subexpr;
if (isSlice)
{
if (ai->lidx)
{
subexpr = transformExpr(pstate, ai->lidx, EXPR_COLUMN_FIRST);
/* If it's not int4 already, try to coerce */
subexpr = CoerceTargetExpr(pstate, subexpr, exprType(subexpr),
INT4OID, -1);
if (subexpr == NULL)
elog(ERROR, "array index expressions must be integers");
}
else
{
/* Make a constant 1 */
subexpr = (Node *) makeConst(INT4OID,
sizeof(int32),
Int32GetDatum(1),
false,
true, /* pass by value */
false,
false);
}
lowerIndexpr = lappend(lowerIndexpr, subexpr);
}
subexpr = transformExpr(pstate, ai->uidx, EXPR_COLUMN_FIRST);
/* If it's not int4 already, try to coerce */
subexpr = CoerceTargetExpr(pstate, subexpr, exprType(subexpr),
INT4OID, -1);
if (subexpr == NULL)
elog(ERROR, "array index expressions must be integers");
upperIndexpr = lappend(upperIndexpr, subexpr);
}
/*
* If doing an array store, coerce the source value to the right type.
*/
if (assignFrom != NULL)
{
Oid typesource = exprType(assignFrom);
Oid typeneeded = isSlice ? typearray : typeelement;
if (typesource != InvalidOid)
{
if (typesource != typeneeded)
{
/* XXX fixme: need to get the array's atttypmod? */
assignFrom = CoerceTargetExpr(pstate, assignFrom,
typesource, typeneeded,
-1);
if (assignFrom == NULL)
elog(ERROR, "Array assignment requires type '%s'"
" but expression is of type '%s'"
"\n\tYou will need to rewrite or cast the expression",
typeidTypeName(typeneeded),
typeidTypeName(typesource));
}
}
}
/*
* Ready to build the ArrayRef node.
*/
aref = makeNode(ArrayRef);
aref->refattrlength = type_struct_array->typlen;
aref->refelemlength = type_struct_element->typlen;
aref->refelemtype = typeresult; /* XXX should save element type
* too */
aref->refelembyval = type_struct_element->typbyval;
aref->refupperindexpr = upperIndexpr;
aref->reflowerindexpr = lowerIndexpr;
aref->refexpr = arrayBase;
aref->refassgnexpr = assignFrom;
return aref;
}
/*
* make_const
*
* Convert a Value node (as returned by the grammar) to a Const node
* of the "natural" type for the constant. Note that this routine is
* only used when there is no explicit cast for the constant, so we
* have to guess what type is wanted.
*
* For string literals we produce a constant of type UNKNOWN ---- whose
* representation is the same as text, but it indicates to later type
* resolution that we're not sure that it should be considered text.
* Explicit "NULL" constants are also typed as UNKNOWN.
*
* For integers and floats we produce int4, float8, or numeric depending
* on the value of the number. XXX In some cases it would be nice to take
* context into account when determining the type to convert to, but in
* other cases we can't delay the type choice. One possibility is to invent
* a dummy type "UNKNOWNNUMERIC" that's treated similarly to UNKNOWN;
* that would allow us to do the right thing in examples like a simple
* INSERT INTO table (numericcolumn) VALUES (1.234), since we wouldn't
* have to resolve the unknown type until we knew the destination column
* type. On the other hand UNKNOWN has considerable problems of its own.
* We would not like "SELECT 1.2 + 3.4" to claim it can't choose a type.
*/
Const *
make_const(Value *value)
{
Datum val;
Oid typeid;
int typelen;
bool typebyval;
Const *con;
switch (nodeTag(value))
{
case T_Integer:
val = Int32GetDatum(intVal(value));
typeid = INT4OID;
typelen = sizeof(int32);
typebyval = true;
break;
case T_Float:
if (fitsInFloat(value))
{
val = Float8GetDatum(floatVal(value));
typeid = FLOAT8OID;
typelen = sizeof(float8);
typebyval = false; /* XXX might change someday */
}
else
{
val = DirectFunctionCall3(numeric_in,
CStringGetDatum(strVal(value)),
ObjectIdGetDatum(InvalidOid),
Int32GetDatum(-1));
typeid = NUMERICOID;
typelen = -1; /* variable len */
typebyval = false;
}
break;
case T_String:
val = DirectFunctionCall1(textin, CStringGetDatum(strVal(value)));
typeid = UNKNOWNOID;/* will be coerced later */
typelen = -1; /* variable len */
typebyval = false;
break;
default:
elog(NOTICE, "make_const: unknown type %d", nodeTag(value));
/* FALLTHROUGH */
case T_Null:
/* return a null const */
con = makeConst(UNKNOWNOID,
-1,
(Datum) NULL,
true,
false,
false,
false);
return con;
}
con = makeConst(typeid,
typelen,
val,
false,
typebyval,
false, /* not a set */
false); /* not coerced */
return con;
}
/*
* Decide whether a T_Float value fits in float8, or must be treated as
* type "numeric". We check the number of digits and check for overflow/
* underflow. (With standard compilation options, Postgres' NUMERIC type
* can handle decimal exponents up to 1000, considerably more than most
* implementations of float8, so this is a sensible test.)
*/
static bool
fitsInFloat(Value *value)
{
const char *ptr;
int ndigits;
char *endptr;
/*
* Count digits, ignoring leading zeroes (but not trailing zeroes).
* DBL_DIG is the maximum safe number of digits for "double".
*/
ptr = strVal(value);
while (*ptr == '+' || *ptr == '-' || *ptr == '0' || *ptr == '.')
ptr++;
ndigits = 0;
for (; *ptr; ptr++)
{
if (isdigit((int) *ptr))
ndigits++;
else if (*ptr == 'e' || *ptr == 'E')
break; /* don't count digits in exponent */
}
if (ndigits > DBL_DIG)
return false;
/*
* Use strtod() to check for overflow/underflow.
*/
errno = 0;
(void) strtod(strVal(value), &endptr);
if (*endptr != '\0' || errno != 0)
return false;
return true;
}