postgresql/src/backend/optimizer/path/indxpath.c

2370 lines
69 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* indxpath.c
* Routines to determine which indices are usable for scanning a
* given relation, and create IndexPaths accordingly.
*
2003-08-04 04:40:20 +02:00
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/optimizer/path/indxpath.c,v 1.158 2004/03/27 00:24:28 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include "access/nbtree.h"
#include "catalog/pg_amop.h"
#include "catalog/pg_namespace.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
1999-07-16 07:00:38 +02:00
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
1999-07-16 07:00:38 +02:00
#include "optimizer/restrictinfo.h"
#include "optimizer/var.h"
#include "parser/parse_expr.h"
#include "rewrite/rewriteManip.h"
#include "utils/builtins.h"
#include "utils/catcache.h"
#include "utils/lsyscache.h"
2003-05-15 21:34:46 +02:00
#include "utils/pg_locale.h"
#include "utils/selfuncs.h"
#include "utils/syscache.h"
/*
* DoneMatchingIndexKeys() - MACRO
*/
#define DoneMatchingIndexKeys(classes) (classes[0] == InvalidOid)
#define is_indexable_operator(clause,opclass,indexkey_on_left) \
(indexable_operator(clause,opclass,indexkey_on_left) != InvalidOid)
static List *group_clauses_by_indexkey(RelOptInfo *rel, IndexOptInfo *index);
static List *group_clauses_by_indexkey_for_join(Query *root,
RelOptInfo *rel, IndexOptInfo *index,
Relids outer_relids,
JoinType jointype, bool isouterjoin);
static bool match_clause_to_indexcol(RelOptInfo *rel, IndexOptInfo *index,
int indexcol, Oid opclass,
RestrictInfo *rinfo);
2003-08-04 02:43:34 +02:00
static bool match_join_clause_to_indexcol(RelOptInfo *rel, IndexOptInfo *index,
int indexcol, Oid opclass,
RestrictInfo *rinfo);
static Oid indexable_operator(Expr *clause, Oid opclass,
bool indexkey_on_left);
static bool pred_test(List *predicate_list, List *restrictinfo_list);
static bool pred_test_restrict_list(Expr *predicate, List *restrictinfo_list);
static bool pred_test_recurse_clause(Expr *predicate, Node *clause);
static bool pred_test_recurse_pred(Expr *predicate, Node *clause);
static bool pred_test_simple_clause(Expr *predicate, Node *clause);
static Relids indexable_outerrelids(RelOptInfo *rel, IndexOptInfo *index);
static Path *make_innerjoin_index_path(Query *root,
2003-08-04 02:43:34 +02:00
RelOptInfo *rel, IndexOptInfo *index,
List *clausegroups);
static bool match_index_to_operand(Node *operand, int indexcol,
RelOptInfo *rel, IndexOptInfo *index);
static bool match_special_index_operator(Expr *clause, Oid opclass,
bool indexkey_on_left);
static List *expand_indexqual_condition(RestrictInfo *rinfo, Oid opclass);
static List *prefix_quals(Node *leftop, Oid opclass,
Const *prefix, Pattern_Prefix_Status pstatus);
static List *network_prefix_quals(Node *leftop, Oid expr_op, Oid opclass,
2003-08-04 02:43:34 +02:00
Datum rightop);
static Datum string_to_datum(const char *str, Oid datatype);
static Const *string_to_const(const char *str, Oid datatype);
/*
* create_index_paths()
* Generate all interesting index paths for the given relation.
* Candidate paths are added to the rel's pathlist (using add_path).
*
* To be considered for an index scan, an index must match one or more
* restriction clauses or join clauses from the query's qual condition,
* or match the query's ORDER BY condition.
*
* There are two basic kinds of index scans. A "plain" index scan uses
* only restriction clauses (possibly none at all) in its indexqual,
* so it can be applied in any context. An "innerjoin" index scan uses
* join clauses (plus restriction clauses, if available) in its indexqual.
* Therefore it can only be used as the inner relation of a nestloop
* join against an outer rel that includes all the other rels mentioned
* in its join clauses. In that context, values for the other rels'
* attributes are available and fixed during any one scan of the indexpath.
*
* An IndexPath is generated and submitted to add_path() for each plain index
* scan this routine deems potentially interesting for the current query.
*
* We also determine the set of other relids that participate in join
2003-08-04 02:43:34 +02:00
* clauses that could be used with each index. The actually best innerjoin
* path will be generated for each outer relation later on, but knowing the
* set of potential otherrels allows us to identify equivalent outer relations
* and avoid repeated computation.
*
* 'rel' is the relation for which we want to generate index paths
*
* Note: check_partial_indexes() must have been run previously.
*/
void
create_index_paths(Query *root, RelOptInfo *rel)
{
Relids all_join_outerrelids = NULL;
1998-08-02 00:12:13 +02:00
List *ilist;
foreach(ilist, rel->indexlist)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
List *restrictclauses;
List *index_pathkeys;
List *useful_pathkeys;
bool index_is_ordered;
Relids join_outerrelids;
/* Ignore partial indexes that do not match the query */
if (index->indpred != NIL && !index->predOK)
continue;
1998-08-02 00:12:13 +02:00
/*
* 1. Match the index against non-OR restriction clauses.
* (OR clauses will be considered later by orindxpath.c.)
1998-08-02 00:12:13 +02:00
*/
restrictclauses = group_clauses_by_indexkey(rel, index);
1998-08-02 00:12:13 +02:00
/*
* 2. Compute pathkeys describing index's ordering, if any, then
2001-03-22 05:01:46 +01:00
* see how many of them are actually useful for this query.
*/
index_pathkeys = build_index_pathkeys(root, rel, index,
ForwardScanDirection);
index_is_ordered = (index_pathkeys != NIL);
useful_pathkeys = truncate_useless_pathkeys(root, rel,
index_pathkeys);
/*
* 3. Generate an indexscan path if there are relevant restriction
* clauses OR the index ordering is potentially useful for later
* merging or final output ordering.
*
* If there is a predicate, consider it anyway since the index
* predicate has already been found to match the query. The
* selectivity of the predicate might alone make the index useful.
*/
if (restrictclauses != NIL ||
useful_pathkeys != NIL ||
index->indpred != NIL)
add_path(rel, (Path *)
create_index_path(root, rel, index,
restrictclauses,
useful_pathkeys,
index_is_ordered ?
ForwardScanDirection :
NoMovementScanDirection));
/*
* 4. If the index is ordered, a backwards scan might be
2001-03-22 05:01:46 +01:00
* interesting. Currently this is only possible for a DESC query
* result ordering.
*/
if (index_is_ordered)
{
index_pathkeys = build_index_pathkeys(root, rel, index,
BackwardScanDirection);
useful_pathkeys = truncate_useless_pathkeys(root, rel,
index_pathkeys);
if (useful_pathkeys != NIL)
add_path(rel, (Path *)
create_index_path(root, rel, index,
restrictclauses,
useful_pathkeys,
BackwardScanDirection));
}
/*
* 5. Examine join clauses to see which ones are potentially
2003-08-04 02:43:34 +02:00
* usable with this index, and generate the set of all other
* relids that participate in such join clauses. We'll use this
* set later to recognize outer rels that are equivalent for
* joining purposes. We compute both per-index and
* overall-for-relation sets.
1998-08-02 00:12:13 +02:00
*/
join_outerrelids = indexable_outerrelids(rel, index);
index->outer_relids = join_outerrelids;
all_join_outerrelids = bms_add_members(all_join_outerrelids,
join_outerrelids);
}
rel->index_outer_relids = all_join_outerrelids;
}
/****************************************************************************
* ---- ROUTINES TO CHECK RESTRICTIONS ----
****************************************************************************/
/*
* group_clauses_by_indexkey
* Find restriction clauses that can be used with an index.
*
* 'rel' is the node of the relation itself.
* 'index' is a index on 'rel'.
*
* Returns a list of sublists of RestrictInfo nodes for clauses that can be
* used with this index. Each sublist contains clauses that can be used
* with one index key (in no particular order); the top list is ordered by
* index key. (This is depended on by expand_indexqual_conditions().)
*
* Note that in a multi-key index, we stop if we find a key that cannot be
* used with any clause. For example, given an index on (A,B,C), we might
* return ((C1 C2) (C3 C4)) if we find that clauses C1 and C2 use column A,
* clauses C3 and C4 use column B, and no clauses use column C. But if
* no clauses match B we will return ((C1 C2)), whether or not there are
* clauses matching column C, because the executor couldn't use them anyway.
* Therefore, there are no empty sublists in the result.
*/
static List *
group_clauses_by_indexkey(RelOptInfo *rel, IndexOptInfo *index)
{
FastList clausegroup_list;
List *restrictinfo_list = rel->baserestrictinfo;
int indexcol = 0;
Oid *classes = index->classlist;
if (restrictinfo_list == NIL)
return NIL;
FastListInit(&clausegroup_list);
do
{
Oid curClass = classes[0];
FastList clausegroup;
List *i;
FastListInit(&clausegroup);
foreach(i, restrictinfo_list)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(i);
if (match_clause_to_indexcol(rel,
index,
indexcol,
curClass,
rinfo))
FastAppend(&clausegroup, rinfo);
}
/*
* If no clauses match this key, we're done; we don't want to look
* at keys to its right.
*/
if (FastListValue(&clausegroup) == NIL)
break;
FastAppend(&clausegroup_list, FastListValue(&clausegroup));
indexcol++;
classes++;
} while (!DoneMatchingIndexKeys(classes));
return FastListValue(&clausegroup_list);
}
/*
* group_clauses_by_indexkey_for_join
* Generate a list of sublists of clauses that can be used with an index
* to scan the inner side of a nestloop join.
*
* This is much like group_clauses_by_indexkey(), but we consider both
* join and restriction clauses. Any joinclause that uses only otherrels
2003-08-04 02:43:34 +02:00
* in the specified outer_relids is fair game. But there must be at least
* one such joinclause in the final list, otherwise we return NIL indicating
* that this index isn't interesting as an inner indexscan. (A scan using
* only restriction clauses shouldn't be created here, because a regular Path
* will already have been generated for it.)
*/
static List *
group_clauses_by_indexkey_for_join(Query *root,
RelOptInfo *rel, IndexOptInfo *index,
Relids outer_relids,
JoinType jointype, bool isouterjoin)
{
FastList clausegroup_list;
bool jfound = false;
int indexcol = 0;
Oid *classes = index->classlist;
FastListInit(&clausegroup_list);
do
{
Oid curClass = classes[0];
FastList clausegroup;
int numsources;
List *i;
FastListInit(&clausegroup);
/*
* We can always use plain restriction clauses for the rel. We scan
* these first because we want them first in the clausegroup list
* for the convenience of remove_redundant_join_clauses, which can
* never remove non-join clauses and hence won't be able to get rid
* of a non-join clause if it appears after a join clause it is
* redundant with.
*/
foreach(i, rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(i);
/* Can't use pushed-down clauses in outer join */
if (isouterjoin && rinfo->is_pushed_down)
continue;
if (match_clause_to_indexcol(rel,
index,
indexcol,
curClass,
rinfo))
FastAppend(&clausegroup, rinfo);
}
/* found anything in base restrict list? */
numsources = (FastListValue(&clausegroup) != NIL) ? 1 : 0;
/* Look for joinclauses that are usable with given outer_relids */
foreach(i, rel->joininfo)
{
JoinInfo *joininfo = (JoinInfo *) lfirst(i);
bool jfoundhere = false;
List *j;
if (!bms_is_subset(joininfo->unjoined_relids, outer_relids))
continue;
foreach(j, joininfo->jinfo_restrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(j);
/* Can't use pushed-down clauses in outer join */
if (isouterjoin && rinfo->is_pushed_down)
continue;
if (match_join_clause_to_indexcol(rel,
index,
indexcol,
curClass,
rinfo))
{
FastAppend(&clausegroup, rinfo);
if (!jfoundhere)
{
jfoundhere = true;
jfound = true;
numsources++;
}
}
}
}
/*
* If we found clauses in more than one list, we may now have clauses
* that are known redundant. Get rid of 'em.
*/
if (numsources > 1)
{
2003-08-04 02:43:34 +02:00
List *nl;
nl = remove_redundant_join_clauses(root,
2003-08-04 02:43:34 +02:00
FastListValue(&clausegroup),
jointype);
FastListFromList(&clausegroup, nl);
}
/*
* If no clauses match this key, we're done; we don't want to look
* at keys to its right.
*/
if (FastListValue(&clausegroup) == NIL)
break;
FastAppend(&clausegroup_list, FastListValue(&clausegroup));
indexcol++;
classes++;
} while (!DoneMatchingIndexKeys(classes));
/* if no join clause was matched then forget it, per comments above */
if (!jfound)
return NIL;
return FastListValue(&clausegroup_list);
}
/*
* group_clauses_by_indexkey_for_or
* Generate a list of sublists of clauses that can be used with an index
* to find rows matching an OR subclause.
*
* This is essentially just like group_clauses_by_indexkey() except that
* we can use the given clause (or any AND subclauses of it) as well as
* top-level restriction clauses of the relation. Furthermore, we demand
* that at least one such use be made, otherwise we fail and return NIL.
* (Any path we made without such a use would be redundant with non-OR
* indexscans. Compare also group_clauses_by_indexkey_for_join.)
*
* XXX When we generate an indexqual list that uses both the OR subclause
* and top-level restriction clauses, we end up with a slightly inefficient
* plan because create_indexscan_plan is not very bright about figuring out
* which restriction clauses are implied by the generated indexqual condition.
* Currently we'll end up rechecking both the OR clause and the top-level
* restriction clause as qpquals. FIXME someday.
*/
List *
group_clauses_by_indexkey_for_or(RelOptInfo *rel,
IndexOptInfo *index,
Expr *orsubclause)
{
FastList clausegroup_list;
bool matched = false;
int indexcol = 0;
Oid *classes = index->classlist;
FastListInit(&clausegroup_list);
do
{
Oid curClass = classes[0];
FastList clausegroup;
List *item;
FastListInit(&clausegroup);
/* Try to match the OR subclause to the index key */
if (IsA(orsubclause, RestrictInfo))
{
if (match_clause_to_indexcol(rel, index,
indexcol, curClass,
(RestrictInfo *) orsubclause))
{
FastAppend(&clausegroup, orsubclause);
matched = true;
}
}
else if (and_clause((Node *) orsubclause))
{
foreach(item, ((BoolExpr *) orsubclause)->args)
{
RestrictInfo *subsubclause = (RestrictInfo *) lfirst(item);
if (IsA(subsubclause, RestrictInfo) &&
match_clause_to_indexcol(rel, index,
indexcol, curClass,
subsubclause))
{
FastAppend(&clausegroup, subsubclause);
matched = true;
}
}
}
/*
* If we found no clauses for this indexkey in the OR subclause
* itself, try looking in the rel's top-level restriction list.
*
* XXX should we always search the top-level list? Slower but
* could sometimes yield a better plan.
*/
if (FastListValue(&clausegroup) == NIL)
{
foreach(item, rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(item);
if (match_clause_to_indexcol(rel, index,
indexcol, curClass,
rinfo))
FastAppend(&clausegroup, rinfo);
}
}
/*
* If still no clauses match this key, we're done; we don't want
* to look at keys to its right.
*/
if (FastListValue(&clausegroup) == NIL)
break;
FastAppend(&clausegroup_list, FastListValue(&clausegroup));
indexcol++;
classes++;
} while (!DoneMatchingIndexKeys(classes));
/* if OR clause was not used then forget it, per comments above */
if (!matched)
return NIL;
return FastListValue(&clausegroup_list);
}
/*
* match_clause_to_indexcol()
* Determines whether a restriction clause matches a column of an index.
*
* To match, the clause:
*
* (1) must be in the form (indexkey op const) or (const op indexkey);
* and
* (2) must contain an operator which is in the same class as the index
* operator for this column, or is a "special" operator as recognized
* by match_special_index_operator().
*
* Presently, the executor can only deal with indexquals that have the
* indexkey on the left, so we can only use clauses that have the indexkey
* on the right if we can commute the clause to put the key on the left.
* We do not actually do the commuting here, but we check whether a
* suitable commutator operator is available.
*
* 'rel' is the relation of interest.
* 'index' is an index on 'rel'.
* 'indexcol' is a column number of 'index' (counting from 0).
* 'opclass' is the corresponding operator class.
* 'rinfo' is the clause to be tested (as a RestrictInfo node).
*
* Returns true if the clause can be used with this index key.
*
* NOTE: returns false if clause is an OR or AND clause; it is the
* responsibility of higher-level routines to cope with those.
*/
static bool
match_clause_to_indexcol(RelOptInfo *rel,
IndexOptInfo *index,
int indexcol,
Oid opclass,
RestrictInfo *rinfo)
{
Expr *clause = rinfo->clause;
Node *leftop,
*rightop;
/* Clause must be a binary opclause. */
if (!is_opclause(clause))
return false;
leftop = get_leftop(clause);
rightop = get_rightop(clause);
if (!leftop || !rightop)
return false;
/*
2003-08-04 02:43:34 +02:00
* Check for clauses of the form: (indexkey operator constant) or
* (constant operator indexkey). Anything that is a "pseudo constant"
* expression will do.
*/
if (match_index_to_operand(leftop, indexcol, rel, index) &&
is_pseudo_constant_clause_relids(rightop, rinfo->right_relids))
{
if (is_indexable_operator(clause, opclass, true))
return true;
/*
2003-08-04 02:43:34 +02:00
* If we didn't find a member of the index's opclass, see whether
* it is a "special" indexable operator.
*/
if (match_special_index_operator(clause, opclass, true))
return true;
return false;
}
1999-05-25 18:15:34 +02:00
if (match_index_to_operand(rightop, indexcol, rel, index) &&
is_pseudo_constant_clause_relids(leftop, rinfo->left_relids))
{
if (is_indexable_operator(clause, opclass, false))
return true;
/*
2003-08-04 02:43:34 +02:00
* If we didn't find a member of the index's opclass, see whether
* it is a "special" indexable operator.
*/
if (match_special_index_operator(clause, opclass, false))
return true;
return false;
}
return false;
}
/*
* match_join_clause_to_indexcol()
* Determines whether a join clause matches a column of an index.
*
* To match, the clause:
*
* (1) must be in the form (indexkey op others) or (others op indexkey),
* where others is an expression involving only vars of the other
* relation(s); and
* (2) must contain an operator which is in the same class as the index
* operator for this column, or is a "special" operator as recognized
* by match_special_index_operator().
*
* As above, we must be able to commute the clause to put the indexkey
* on the left.
*
* Note that we already know that the clause as a whole uses vars from
* the interesting set of relations. But we need to defend against
* expressions like (a.f1 OP (b.f2 OP a.f3)); that's not processable by
* an indexscan nestloop join, whereas (a.f1 OP (b.f2 OP c.f3)) is.
*
* 'rel' is the relation of interest.
* 'index' is an index on 'rel'.
* 'indexcol' is a column number of 'index' (counting from 0).
* 'opclass' is the corresponding operator class.
* 'rinfo' is the clause to be tested (as a RestrictInfo node).
*
* Returns true if the clause can be used with this index key.
*
* NOTE: returns false if clause is an OR or AND clause; it is the
* responsibility of higher-level routines to cope with those.
*/
static bool
match_join_clause_to_indexcol(RelOptInfo *rel,
IndexOptInfo *index,
int indexcol,
Oid opclass,
RestrictInfo *rinfo)
{
Expr *clause = rinfo->clause;
Node *leftop,
*rightop;
/* Clause must be a binary opclause. */
if (!is_opclause(clause))
return false;
leftop = get_leftop(clause);
rightop = get_rightop(clause);
if (!leftop || !rightop)
return false;
/*
2003-08-04 02:43:34 +02:00
* Check for an indexqual that could be handled by a nestloop join. We
* need the index key to be compared against an expression that uses
* none of the indexed relation's vars and contains no volatile
* functions.
*/
if (match_index_to_operand(leftop, indexcol, rel, index))
{
Relids othervarnos = rinfo->right_relids;
bool isIndexable;
isIndexable =
!bms_overlap(rel->relids, othervarnos) &&
!contain_volatile_functions(rightop) &&
is_indexable_operator(clause, opclass, true);
return isIndexable;
}
if (match_index_to_operand(rightop, indexcol, rel, index))
{
Relids othervarnos = rinfo->left_relids;
bool isIndexable;
isIndexable =
!bms_overlap(rel->relids, othervarnos) &&
!contain_volatile_functions(leftop) &&
is_indexable_operator(clause, opclass, false);
return isIndexable;
}
return false;
}
/*
* indexable_operator
* Does a binary opclause contain an operator matching the index opclass?
*
* If the indexkey is on the right, what we actually want to know
* is whether the operator has a commutator operator that matches
* the index's opclass.
*
* Returns the OID of the matching operator, or InvalidOid if no match.
* (Formerly, this routine might return a binary-compatible operator
* rather than the original one, but that kluge is history.)
*/
static Oid
indexable_operator(Expr *clause, Oid opclass, bool indexkey_on_left)
{
Oid expr_op = ((OpExpr *) clause)->opno;
Oid commuted_op;
/* Get the commuted operator if necessary */
if (indexkey_on_left)
commuted_op = expr_op;
else
commuted_op = get_commutator(expr_op);
if (commuted_op == InvalidOid)
return InvalidOid;
/* OK if the (commuted) operator is a member of the index's opclass */
if (op_in_opclass(commuted_op, opclass))
return expr_op;
return InvalidOid;
}
/****************************************************************************
* ---- ROUTINES TO DO PARTIAL INDEX PREDICATE TESTS ----
****************************************************************************/
/*
* check_partial_indexes
* Check each partial index of the relation, and mark it predOK or not
* depending on whether the predicate is satisfied for this query.
*/
void
check_partial_indexes(Query *root, RelOptInfo *rel)
{
List *restrictinfo_list = rel->baserestrictinfo;
List *ilist;
foreach(ilist, rel->indexlist)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
/*
* If this is a partial index, we can only use it if it passes the
* predicate test.
*/
if (index->indpred == NIL)
continue; /* ignore non-partial indexes */
index->predOK = pred_test(index->indpred, restrictinfo_list);
}
}
/*
* pred_test
* Does the "predicate inclusion test" for partial indexes.
*
* Recursively checks whether the clauses in restrictinfo_list imply
* that the given predicate is true.
*
* This routine (together with the routines it calls) iterates over
* ANDs in the predicate first, then reduces the qualification
* clauses down to their constituent terms, and iterates over ORs
* in the predicate last. This order is important to make the test
* succeed whenever possible (assuming the predicate has been converted
* to CNF format). --Nels, Jan '93
*/
static bool
pred_test(List *predicate_list, List *restrictinfo_list)
{
List *pred;
/*
* Note: if Postgres tried to optimize queries by forming equivalence
* classes over equi-joined attributes (i.e., if it recognized that a
* qualification such as "where a.b=c.d and a.b=5" could make use of
* an index on c.d), then we could use that equivalence class info
* here with joininfo_list to do more complete tests for the usability
* of a partial index. For now, the test only uses restriction
* clauses (those in restrictinfo_list). --Nels, Dec '92
*
* XXX as of 7.1, equivalence class info *is* available. Consider
* improving this code as foreseen by Nels.
*/
if (predicate_list == NIL)
return true; /* no predicate: the index is usable */
if (restrictinfo_list == NIL)
return false; /* no restriction clauses: the test must
* fail */
foreach(pred, predicate_list)
{
/*
* if any clause is not implied, the whole predicate is not
* implied. Note we assume that any sub-ANDs have been flattened
* when the predicate was fed through canonicalize_qual().
*/
if (!pred_test_restrict_list(lfirst(pred), restrictinfo_list))
return false;
}
return true;
}
/*
* pred_test_restrict_list
* Does the "predicate inclusion test" for one conjunct of a predicate
* expression.
*/
static bool
pred_test_restrict_list(Expr *predicate, List *restrictinfo_list)
{
List *item;
foreach(item, restrictinfo_list)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(item);
/* if any clause implies the predicate, return true */
if (pred_test_recurse_clause(predicate,
(Node *) restrictinfo->clause))
return true;
}
return false;
}
/*
* pred_test_recurse_clause
* Does the "predicate inclusion test" for a general restriction-clause
* expression. Here we recursively deal with the possibility that the
* restriction clause is itself an AND or OR structure.
*/
static bool
pred_test_recurse_clause(Expr *predicate, Node *clause)
{
List *items,
*item;
Assert(clause != NULL);
if (or_clause(clause))
{
items = ((BoolExpr *) clause)->args;
foreach(item, items)
{
/* if any OR item doesn't imply the predicate, clause doesn't */
if (!pred_test_recurse_clause(predicate, lfirst(item)))
return false;
}
return true;
}
else if (and_clause(clause))
{
items = ((BoolExpr *) clause)->args;
foreach(item, items)
{
/*
* if any AND item implies the predicate, the whole clause
* does
*/
if (pred_test_recurse_clause(predicate, lfirst(item)))
return true;
}
return false;
}
else
return pred_test_recurse_pred(predicate, clause);
}
/*
* pred_test_recurse_pred
* Does the "predicate inclusion test" for one conjunct of a predicate
* expression for a simple restriction clause. Here we recursively deal
* with the possibility that the predicate conjunct is itself an AND or
* OR structure.
*/
static bool
pred_test_recurse_pred(Expr *predicate, Node *clause)
{
List *items,
*item;
Assert(predicate != NULL);
if (or_clause((Node *) predicate))
{
items = ((BoolExpr *) predicate)->args;
foreach(item, items)
{
/* if any item is implied, the whole predicate is implied */
if (pred_test_recurse_pred(lfirst(item), clause))
return true;
}
return false;
}
else if (and_clause((Node *) predicate))
{
items = ((BoolExpr *) predicate)->args;
foreach(item, items)
{
/*
* if any item is not implied, the whole predicate is not
* implied
*/
if (!pred_test_recurse_pred(lfirst(item), clause))
return false;
}
return true;
}
else
return pred_test_simple_clause(predicate, clause);
}
/*
* Define an "operator implication table" for btree operators ("strategies").
*
* The strategy numbers defined by btree indexes (see access/skey.h) are:
* (1) < (2) <= (3) = (4) >= (5) >
* and in addition we use (6) to represent <>. <> is not a btree-indexable
* operator, but we assume here that if the equality operator of a btree
* opclass has a negator operator, the negator behaves as <> for the opclass.
*
* The interpretation of:
*
* test_op = BT_implic_table[given_op-1][target_op-1]
*
* where test_op, given_op and target_op are strategy numbers (from 1 to 6)
* of btree operators, is as follows:
*
* If you know, for some ATTR, that "ATTR given_op CONST1" is true, and you
* want to determine whether "ATTR target_op CONST2" must also be true, then
* you can use "CONST2 test_op CONST1" as a test. If this test returns true,
* then the target expression must be true; if the test returns false, then
* the target expression may be false.
*
* An entry where test_op == 0 means the implication cannot be determined,
* i.e., this test should always be considered false.
*/
#define BTLT BTLessStrategyNumber
#define BTLE BTLessEqualStrategyNumber
#define BTEQ BTEqualStrategyNumber
#define BTGE BTGreaterEqualStrategyNumber
#define BTGT BTGreaterStrategyNumber
#define BTNE 6
static const StrategyNumber
BT_implic_table[6][6] = {
/*
* The target operator:
*
* LT LE EQ GE GT NE
*/
{BTGE, BTGE, 0, 0, 0, BTGE}, /* LT */
{BTGT, BTGE, 0, 0, 0, BTGT}, /* LE */
{BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */
{ 0, 0, 0, BTLE, BTLT, BTLT}, /* GE */
{ 0, 0, 0, BTLE, BTLE, BTLE}, /* GT */
{ 0, 0, 0, 0, 0, BTEQ} /* NE */
};
/*----------
* pred_test_simple_clause
* Does the "predicate inclusion test" for a "simple clause" predicate
* and a "simple clause" restriction.
*
* We have three strategies for determining whether one simple clause
* implies another:
*
* A simple and general way is to see if they are equal(); this works for any
* kind of expression. (Actually, there is an implied assumption that the
* functions in the expression are immutable, ie dependent only on their input
* arguments --- but this was checked for the predicate by CheckPredicate().)
*
* When the predicate is of the form "foo IS NOT NULL", we can conclude that
* the predicate is implied if the clause is a strict operator or function
* that has "foo" as an input. In this case the clause must yield NULL when
* "foo" is NULL, which we can take as equivalent to FALSE because we know
* we are within an AND/OR subtree of a WHERE clause. (Again, "foo" is
* already known immutable, so the clause will certainly always fail.)
*
* Our other way works only for binary boolean opclauses of the form
* "foo op constant", where "foo" is the same in both clauses. The operators
* and constants can be different but the operators must be in the same btree
* operator class. We use the above operator implication table to be able to
* derive implications between nonidentical clauses. (Note: "foo" is known
* immutable, and constants are surely immutable, but we have to check that
* the operators are too. As of 7.5 it's possible for opclasses to contain
* operators that are merely stable, and we dare not make deductions with
* these.)
*
* Eventually, rtree operators could also be handled by defining an
* appropriate "RT_implic_table" array.
*----------
*/
static bool
pred_test_simple_clause(Expr *predicate, Node *clause)
{
Node *leftop,
*rightop;
Node *pred_var,
*clause_var;
Const *pred_const,
*clause_const;
bool pred_var_on_left,
clause_var_on_left,
pred_op_negated;
Oid pred_op,
clause_op,
pred_op_negator,
clause_op_negator,
test_op = InvalidOid;
Oid opclass_id;
bool found = false;
StrategyNumber pred_strategy,
clause_strategy,
test_strategy;
Oid clause_subtype;
Expr *test_expr;
ExprState *test_exprstate;
Datum test_result;
bool isNull;
CatCList *catlist;
int i;
EState *estate;
MemoryContext oldcontext;
/* First try the equal() test */
if (equal((Node *) predicate, clause))
return true;
/* Next try the IS NOT NULL case */
if (predicate && IsA(predicate, NullTest) &&
((NullTest *) predicate)->nulltesttype == IS_NOT_NULL)
{
Expr *nonnullarg = ((NullTest *) predicate)->arg;
if (is_opclause(clause) &&
member(nonnullarg, ((OpExpr *) clause)->args) &&
op_strict(((OpExpr *) clause)->opno))
return true;
if (is_funcclause(clause) &&
member(nonnullarg, ((FuncExpr *) clause)->args) &&
func_strict(((FuncExpr *) clause)->funcid))
return true;
return false; /* we can't succeed below... */
}
/*
* Can't do anything more unless they are both binary opclauses with a
* Const on one side, and identical subexpressions on the other sides.
* Note we don't have to think about binary relabeling of the Const node,
* since that would have been folded right into the Const.
*
* If either Const is null, we also fail right away; this assumes that
* the test operator will always be strict.
*/
if (!is_opclause(predicate))
return false;
leftop = get_leftop(predicate);
rightop = get_rightop(predicate);
if (rightop == NULL)
return false; /* not a binary opclause */
if (IsA(rightop, Const))
{
pred_var = leftop;
pred_const = (Const *) rightop;
pred_var_on_left = true;
}
else if (IsA(leftop, Const))
{
pred_var = rightop;
pred_const = (Const *) leftop;
pred_var_on_left = false;
}
else
return false; /* no Const to be found */
if (pred_const->constisnull)
return false;
if (!is_opclause(clause))
return false;
leftop = get_leftop((Expr *) clause);
rightop = get_rightop((Expr *) clause);
if (rightop == NULL)
return false; /* not a binary opclause */
if (IsA(rightop, Const))
{
clause_var = leftop;
clause_const = (Const *) rightop;
clause_var_on_left = true;
}
else if (IsA(leftop, Const))
{
clause_var = rightop;
clause_const = (Const *) leftop;
clause_var_on_left = false;
}
else
return false; /* no Const to be found */
if (clause_const->constisnull)
return false;
/*
* Check for matching subexpressions on the non-Const sides. We used to
* only allow a simple Var, but it's about as easy to allow any
* expression. Remember we already know that the pred expression does
* not contain any non-immutable functions, so identical expressions
* should yield identical results.
*/
if (!equal(pred_var, clause_var))
return false;
/*
* Okay, get the operators in the two clauses we're comparing.
* Commute them if needed so that we can assume the variables are
* on the left.
*/
pred_op = ((OpExpr *) predicate)->opno;
if (!pred_var_on_left)
{
pred_op = get_commutator(pred_op);
if (!OidIsValid(pred_op))
return false;
}
clause_op = ((OpExpr *) clause)->opno;
if (!clause_var_on_left)
{
clause_op = get_commutator(clause_op);
if (!OidIsValid(clause_op))
return false;
}
/*
* Try to find a btree opclass containing the needed operators.
*
* We must find a btree opclass that contains both operators, else the
* implication can't be determined. Also, the pred_op has to be of
* default subtype (implying left and right input datatypes are the same);
* otherwise it's unsafe to put the pred_const on the left side of the
* test. Also, the opclass must contain a suitable test operator
* matching the clause_const's type (which we take to mean that it has
* the same subtype as the original clause_operator).
*
* If there are multiple matching opclasses, assume we can use any one to
* determine the logical relationship of the two operators and the correct
* corresponding test operator. This should work for any logically
* consistent opclasses.
*/
catlist = SearchSysCacheList(AMOPOPID, 1,
ObjectIdGetDatum(pred_op),
0, 0, 0);
/*
* If we couldn't find any opclass containing the pred_op, perhaps it
* is a <> operator. See if it has a negator that is in an opclass.
*/
pred_op_negated = false;
if (catlist->n_members == 0)
{
pred_op_negator = get_negator(pred_op);
if (OidIsValid(pred_op_negator))
{
pred_op_negated = true;
ReleaseSysCacheList(catlist);
catlist = SearchSysCacheList(AMOPOPID, 1,
ObjectIdGetDatum(pred_op_negator),
0, 0, 0);
}
}
/* Also may need the clause_op's negator */
clause_op_negator = get_negator(clause_op);
/* Now search the opclasses */
for (i = 0; i < catlist->n_members; i++)
{
HeapTuple pred_tuple = &catlist->members[i]->tuple;
Form_pg_amop pred_form = (Form_pg_amop) GETSTRUCT(pred_tuple);
HeapTuple clause_tuple;
opclass_id = pred_form->amopclaid;
/* must be btree */
if (!opclass_is_btree(opclass_id))
continue;
/* predicate operator must be default within this opclass */
if (pred_form->amopsubtype != InvalidOid)
continue;
/* Get the predicate operator's btree strategy number */
pred_strategy = (StrategyNumber) pred_form->amopstrategy;
Assert(pred_strategy >= 1 && pred_strategy <= 5);
if (pred_op_negated)
{
/* Only consider negators that are = */
if (pred_strategy != BTEqualStrategyNumber)
continue;
pred_strategy = BTNE;
}
/*
* From the same opclass, find a strategy number for the clause_op,
* if possible
*/
clause_tuple = SearchSysCache(AMOPOPID,
ObjectIdGetDatum(clause_op),
ObjectIdGetDatum(opclass_id),
0, 0);
if (HeapTupleIsValid(clause_tuple))
{
Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);
/* Get the restriction clause operator's strategy/subtype */
clause_strategy = (StrategyNumber) clause_form->amopstrategy;
Assert(clause_strategy >= 1 && clause_strategy <= 5);
clause_subtype = clause_form->amopsubtype;
ReleaseSysCache(clause_tuple);
}
else if (OidIsValid(clause_op_negator))
{
clause_tuple = SearchSysCache(AMOPOPID,
ObjectIdGetDatum(clause_op_negator),
ObjectIdGetDatum(opclass_id),
0, 0);
if (HeapTupleIsValid(clause_tuple))
{
Form_pg_amop clause_form = (Form_pg_amop) GETSTRUCT(clause_tuple);
/* Get the restriction clause operator's strategy/subtype */
clause_strategy = (StrategyNumber) clause_form->amopstrategy;
Assert(clause_strategy >= 1 && clause_strategy <= 5);
clause_subtype = clause_form->amopsubtype;
ReleaseSysCache(clause_tuple);
/* Only consider negators that are = */
if (clause_strategy != BTEqualStrategyNumber)
continue;
clause_strategy = BTNE;
}
else
continue;
}
else
continue;
/*
* Look up the "test" strategy number in the implication table
*/
test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1];
if (test_strategy == 0)
{
/* Can't determine implication using this interpretation */
continue;
}
/*
* See if opclass has an operator for the test strategy and the
* clause datatype.
*/
if (test_strategy == BTNE)
{
test_op = get_opclass_member(opclass_id, clause_subtype,
BTEqualStrategyNumber);
if (OidIsValid(test_op))
test_op = get_negator(test_op);
}
else
{
test_op = get_opclass_member(opclass_id, clause_subtype,
test_strategy);
}
if (OidIsValid(test_op))
{
/*
* Last check: test_op must be immutable.
*
* Note that we require only the test_op to be immutable, not
* the original clause_op. (pred_op must be immutable, else it
* would not be allowed in an index predicate.) Essentially
* we are assuming that the opclass is consistent even if it
* contains operators that are merely stable.
*/
if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE)
{
found = true;
break;
}
}
}
ReleaseSysCacheList(catlist);
if (!found)
{
/* couldn't find a btree opclass to interpret the operators */
return false;
}
/*
* Evaluate the test. For this we need an EState.
*/
estate = CreateExecutorState();
/* We can use the estate's working context to avoid memory leaks. */
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
/* Build expression tree */
test_expr = make_opclause(test_op,
BOOLOID,
false,
(Expr *) pred_const,
(Expr *) clause_const);
/* Prepare it for execution */
test_exprstate = ExecPrepareExpr(test_expr, estate);
/* And execute it. */
test_result = ExecEvalExprSwitchContext(test_exprstate,
GetPerTupleExprContext(estate),
&isNull, NULL);
/* Get back to outer memory context */
MemoryContextSwitchTo(oldcontext);
/* Release all the junk we just created */
FreeExecutorState(estate);
if (isNull)
{
/* Treat a null result as false ... but it's a tad fishy ... */
elog(DEBUG2, "null predicate test result");
return false;
}
return DatumGetBool(test_result);
}
/****************************************************************************
* ---- ROUTINES TO CHECK JOIN CLAUSES ----
****************************************************************************/
/*
* indexable_outerrelids
* Finds all other relids that participate in any indexable join clause
2003-08-04 02:43:34 +02:00
* for the specified index. Returns a set of relids.
*
* 'rel' is the relation for which 'index' is defined
*/
static Relids
indexable_outerrelids(RelOptInfo *rel, IndexOptInfo *index)
{
Relids outer_relids = NULL;
List *i;
foreach(i, rel->joininfo)
{
JoinInfo *joininfo = (JoinInfo *) lfirst(i);
bool match_found = false;
List *j;
/*
* Examine each joinclause in the JoinInfo node's list to see if
* it matches any key of the index. If so, add the JoinInfo's
2003-08-04 02:43:34 +02:00
* otherrels to the result. We can skip examining other
* joinclauses in the same list as soon as we find a match (since
* by definition they all have the same otherrels).
*/
foreach(j, joininfo->jinfo_restrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(j);
2003-08-04 02:43:34 +02:00
int indexcol = 0;
Oid *classes = index->classlist;
do
{
Oid curClass = classes[0];
if (match_join_clause_to_indexcol(rel,
index,
indexcol,
curClass,
rinfo))
{
match_found = true;
break;
}
indexcol++;
classes++;
} while (!DoneMatchingIndexKeys(classes));
if (match_found)
break;
}
if (match_found)
{
outer_relids = bms_add_members(outer_relids,
joininfo->unjoined_relids);
}
}
return outer_relids;
}
/*
* best_inner_indexscan
* Finds the best available inner indexscan for a nestloop join
* with the given rel on the inside and the given outer_relids outside.
* May return NULL if there are no possible inner indexscans.
*
* We ignore ordering considerations (since a nestloop's inner scan's order
* is uninteresting). Also, we consider only total cost when deciding which
* of two possible paths is better --- this assumes that all indexpaths have
* negligible startup cost. (True today, but someday we might have to think
* harder.) Therefore, there is only one dimension of comparison and so it's
* sufficient to return a single "best" path.
*/
Path *
best_inner_indexscan(Query *root, RelOptInfo *rel,
Relids outer_relids, JoinType jointype)
{
Path *cheapest = NULL;
bool isouterjoin;
List *ilist;
List *jlist;
InnerIndexscanInfo *info;
MemoryContext oldcontext;
/*
* Nestloop only supports inner, left, and IN joins.
*/
switch (jointype)
{
case JOIN_INNER:
case JOIN_IN:
case JOIN_UNIQUE_OUTER:
isouterjoin = false;
break;
case JOIN_LEFT:
isouterjoin = true;
break;
default:
return NULL;
}
2003-08-04 02:43:34 +02:00
/*
* If there are no indexable joinclauses for this rel, exit quickly.
*/
if (bms_is_empty(rel->index_outer_relids))
return NULL;
2003-08-04 02:43:34 +02:00
/*
* Otherwise, we have to do path selection in the memory context of
* the given rel, so that any created path can be safely attached to
* the rel's cache of best inner paths. (This is not currently an
* issue for normal planning, but it is an issue for GEQO planning.)
*/
oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
2003-08-04 02:43:34 +02:00
/*
2003-08-04 02:43:34 +02:00
* Intersect the given outer_relids with index_outer_relids to find
* the set of outer relids actually relevant for this index. If there
* are none, again we can fail immediately.
*/
outer_relids = bms_intersect(rel->index_outer_relids, outer_relids);
if (bms_is_empty(outer_relids))
{
bms_free(outer_relids);
MemoryContextSwitchTo(oldcontext);
return NULL;
}
2003-08-04 02:43:34 +02:00
/*
* Look to see if we already computed the result for this set of
2003-08-04 02:43:34 +02:00
* relevant outerrels. (We include the isouterjoin status in the
* cache lookup key for safety. In practice I suspect this is not
2003-08-04 02:43:34 +02:00
* necessary because it should always be the same for a given
* innerrel.)
*/
foreach(jlist, rel->index_inner_paths)
{
info = (InnerIndexscanInfo *) lfirst(jlist);
if (bms_equal(info->other_relids, outer_relids) &&
info->isouterjoin == isouterjoin)
{
bms_free(outer_relids);
MemoryContextSwitchTo(oldcontext);
return info->best_innerpath;
}
}
/*
2003-08-04 02:43:34 +02:00
* For each index of the rel, find the best path; then choose the best
* overall. We cache the per-index results as well as the overall
* result. (This is useful because different indexes may have
* different relevant outerrel sets, so different overall outerrel
* sets might still map to the same computation for a given index.)
*/
foreach(ilist, rel->indexlist)
{
2003-08-04 02:43:34 +02:00
IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
Relids index_outer_relids;
Path *path = NULL;
/* identify set of relevant outer relids for this index */
index_outer_relids = bms_intersect(index->outer_relids, outer_relids);
/* skip if none */
if (bms_is_empty(index_outer_relids))
{
bms_free(index_outer_relids);
continue;
}
2003-08-04 02:43:34 +02:00
/*
* Look to see if we already computed the result for this index.
*/
foreach(jlist, index->inner_paths)
{
info = (InnerIndexscanInfo *) lfirst(jlist);
if (bms_equal(info->other_relids, index_outer_relids) &&
info->isouterjoin == isouterjoin)
{
path = info->best_innerpath;
2003-08-04 02:43:34 +02:00
bms_free(index_outer_relids); /* not needed anymore */
break;
}
}
1998-09-21 17:41:28 +02:00
if (jlist == NIL) /* failed to find a match? */
{
List *clausegroups;
/* find useful clauses for this index and outerjoin set */
clausegroups = group_clauses_by_indexkey_for_join(root,
rel,
index,
2003-08-04 02:43:34 +02:00
index_outer_relids,
jointype,
2003-08-04 02:43:34 +02:00
isouterjoin);
if (clausegroups)
{
/* make the path */
path = make_innerjoin_index_path(root, rel, index,
clausegroups);
}
/* Cache the result --- whether positive or negative */
info = makeNode(InnerIndexscanInfo);
info->other_relids = index_outer_relids;
info->isouterjoin = isouterjoin;
info->best_innerpath = path;
index->inner_paths = lcons(info, index->inner_paths);
}
if (path != NULL &&
(cheapest == NULL ||
compare_path_costs(path, cheapest, TOTAL_COST) < 0))
cheapest = path;
}
/* Cache the result --- whether positive or negative */
info = makeNode(InnerIndexscanInfo);
info->other_relids = outer_relids;
info->isouterjoin = isouterjoin;
info->best_innerpath = cheapest;
rel->index_inner_paths = lcons(info, rel->index_inner_paths);
MemoryContextSwitchTo(oldcontext);
return cheapest;
}
/****************************************************************************
* ---- PATH CREATION UTILITIES ----
****************************************************************************/
/*
* make_innerjoin_index_path
* Create an index path node for a path to be used as an inner
* relation in a nestloop join.
*
* 'rel' is the relation for which 'index' is defined
* 'clausegroups' is a list of lists of RestrictInfos that can use 'index'
*/
static Path *
make_innerjoin_index_path(Query *root,
RelOptInfo *rel, IndexOptInfo *index,
List *clausegroups)
{
IndexPath *pathnode = makeNode(IndexPath);
List *indexquals,
*allclauses;
/* XXX perhaps this code should be merged with create_index_path? */
pathnode->path.pathtype = T_IndexScan;
pathnode->path.parent = rel;
/*
2003-08-04 02:43:34 +02:00
* There's no point in marking the path with any pathkeys, since it
* will only ever be used as the inner path of a nestloop, and so its
* ordering does not matter.
*/
pathnode->path.pathkeys = NIL;
/* Convert clauses to indexquals the executor can handle */
indexquals = expand_indexqual_conditions(index, clausegroups);
/* Flatten the clausegroups list to produce indexclauses list */
allclauses = flatten_clausegroups_list(clausegroups);
/*
* Note that we are making a pathnode for a single-scan indexscan;
* therefore, indexinfo etc should be single-element lists.
*/
pathnode->indexinfo = makeList1(index);
pathnode->indexclauses = makeList1(allclauses);
pathnode->indexquals = makeList1(indexquals);
pathnode->isjoininner = true;
/* We don't actually care what order the index scans in ... */
pathnode->indexscandir = NoMovementScanDirection;
/*
* We must compute the estimated number of output rows for the
2003-08-04 02:43:34 +02:00
* indexscan. This is less than rel->rows because of the additional
* selectivity of the join clauses. Since clausegroups may contain
* both restriction and join clauses, we have to do a set union to get
* the full set of clauses that must be considered to compute the
* correct selectivity. (Without the union operation, we might have
* some restriction clauses appearing twice, which'd mislead
* clauselist_selectivity into double-counting their selectivity.
2003-08-04 02:43:34 +02:00
* However, since RestrictInfo nodes aren't copied when linking them
* into different lists, it should be sufficient to use pointer
* comparison to remove duplicates.)
*
2003-08-04 02:43:34 +02:00
* Always assume the join type is JOIN_INNER; even if some of the join
* clauses come from other contexts, that's not our problem.
*/
allclauses = set_ptrUnion(rel->baserestrictinfo, allclauses);
pathnode->rows = rel->tuples *
clauselist_selectivity(root,
allclauses,
rel->relid, /* do not use 0! */
JOIN_INNER);
/* Like costsize.c, force estimate to be at least one row */
pathnode->rows = clamp_row_est(pathnode->rows);
cost_index(&pathnode->path, root, rel, index, indexquals, true);
return (Path *) pathnode;
}
/*
* flatten_clausegroups_list
* Given a list of lists of RestrictInfos, flatten it to a list
* of RestrictInfos.
*
* This is used to flatten out the result of group_clauses_by_indexkey()
* or one of its sibling routines, to produce an indexclauses list.
*/
List *
flatten_clausegroups_list(List *clausegroups)
{
List *allclauses = NIL;
List *l;
foreach(l, clausegroups)
{
allclauses = nconc(allclauses, listCopy((List *) lfirst(l)));
}
return allclauses;
}
/*
* make_expr_from_indexclauses()
* Given an indexclauses structure, produce an ordinary boolean expression.
*
* This consists of stripping out the RestrictInfo nodes and inserting
* explicit AND and OR nodes as needed. There's not much to it, but
* the functionality is needed in a few places, so centralize the logic.
*/
Expr *
make_expr_from_indexclauses(List *indexclauses)
{
List *orclauses = NIL;
List *orlist;
/* There's no such thing as an indexpath with zero scans */
Assert(indexclauses != NIL);
foreach(orlist, indexclauses)
{
List *andlist = (List *) lfirst(orlist);
/* Strip RestrictInfos */
andlist = get_actual_clauses(andlist);
/* Insert AND node if needed, and add to orclauses list */
orclauses = lappend(orclauses, make_ands_explicit(andlist));
}
if (length(orclauses) > 1)
return make_orclause(orclauses);
else
return (Expr *) lfirst(orclauses);
}
/****************************************************************************
* ---- ROUTINES TO CHECK OPERANDS ----
****************************************************************************/
/*
* match_index_to_operand()
* Generalized test for a match between an index's key
* and the operand on one side of a restriction or join clause.
*
* operand: the nodetree to be compared to the index
* indexcol: the column number of the index (counting from 0)
* rel: the parent relation
* index: the index of interest
*/
static bool
match_index_to_operand(Node *operand,
int indexcol,
RelOptInfo *rel,
IndexOptInfo *index)
{
int indkey;
/*
* Ignore any RelabelType node above the operand. This is needed to
* be able to apply indexscanning in binary-compatible-operator cases.
* Note: we can assume there is at most one RelabelType node;
* eval_const_expressions() will have simplified if more than one.
*/
if (operand && IsA(operand, RelabelType))
operand = (Node *) ((RelabelType *) operand)->arg;
indkey = index->indexkeys[indexcol];
if (indkey != 0)
{
/*
* Simple index column; operand must be a matching Var.
*/
if (operand && IsA(operand, Var) &&
rel->relid == ((Var *) operand)->varno &&
indkey == ((Var *) operand)->varattno)
return true;
}
else
{
/*
2003-08-04 02:43:34 +02:00
* Index expression; find the correct expression. (This search
* could be avoided, at the cost of complicating all the callers
* of this routine; doesn't seem worth it.)
*/
List *indexprs;
int i;
Node *indexkey;
indexprs = index->indexprs;
for (i = 0; i < indexcol; i++)
{
if (index->indexkeys[i] == 0)
{
if (indexprs == NIL)
elog(ERROR, "wrong number of index expressions");
indexprs = lnext(indexprs);
}
}
if (indexprs == NIL)
elog(ERROR, "wrong number of index expressions");
indexkey = (Node *) lfirst(indexprs);
2003-08-04 02:43:34 +02:00
/*
* Does it match the operand? Again, strip any relabeling.
*/
if (indexkey && IsA(indexkey, RelabelType))
indexkey = (Node *) ((RelabelType *) indexkey)->arg;
if (equal(indexkey, operand))
return true;
}
return false;
}
/****************************************************************************
* ---- ROUTINES FOR "SPECIAL" INDEXABLE OPERATORS ----
****************************************************************************/
/*----------
* These routines handle special optimization of operators that can be
* used with index scans even though they are not known to the executor's
* indexscan machinery. The key idea is that these operators allow us
* to derive approximate indexscan qual clauses, such that any tuples
* that pass the operator clause itself must also satisfy the simpler
* indexscan condition(s). Then we can use the indexscan machinery
* to avoid scanning as much of the table as we'd otherwise have to,
* while applying the original operator as a qpqual condition to ensure
* we deliver only the tuples we want. (In essence, we're using a regular
* index as if it were a lossy index.)
*
* An example of what we're doing is
* textfield LIKE 'abc%'
* from which we can generate the indexscanable conditions
* textfield >= 'abc' AND textfield < 'abd'
* which allow efficient scanning of an index on textfield.
* (In reality, character set and collation issues make the transformation
* from LIKE to indexscan limits rather harder than one might think ...
* but that's the basic idea.)
*
* Two routines are provided here, match_special_index_operator() and
* expand_indexqual_conditions(). match_special_index_operator() is
* just an auxiliary function for match_clause_to_indexcol(); after
* the latter fails to recognize a restriction opclause's operator
* as a member of an index's opclass, it asks match_special_index_operator()
* whether the clause should be considered an indexqual anyway.
* expand_indexqual_conditions() converts a list of lists of RestrictInfo
* nodes (with implicit AND semantics across list elements) into
* a list of clauses that the executor can actually handle. For operators
* that are members of the index's opclass this transformation is a no-op,
* but operators recognized by match_special_index_operator() must be
* converted into one or more "regular" indexqual conditions.
*----------
*/
/*
* match_special_index_operator
* Recognize restriction clauses that can be used to generate
* additional indexscanable qualifications.
*
* The given clause is already known to be a binary opclause having
* the form (indexkey OP pseudoconst) or (pseudoconst OP indexkey),
* but the OP proved not to be one of the index's opclass operators.
* Return 'true' if we can do something with it anyway.
*/
static bool
match_special_index_operator(Expr *clause, Oid opclass,
bool indexkey_on_left)
{
bool isIndexable = false;
Node *rightop;
Oid expr_op;
Const *patt;
Const *prefix = NULL;
Const *rest = NULL;
/*
* Currently, all known special operators require the indexkey on the
* left, but this test could be pushed into the switch statement if
* some are added that do not...
*/
if (!indexkey_on_left)
return false;
/* we know these will succeed */
rightop = get_rightop(clause);
expr_op = ((OpExpr *) clause)->opno;
/* again, required for all current special ops: */
if (!IsA(rightop, Const) ||
((Const *) rightop)->constisnull)
return false;
patt = (Const *) rightop;
switch (expr_op)
{
case OID_TEXT_LIKE_OP:
case OID_BPCHAR_LIKE_OP:
case OID_NAME_LIKE_OP:
/* the right-hand const is type text for all of these */
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Like,
2003-08-04 02:43:34 +02:00
&prefix, &rest) != Pattern_Prefix_None;
break;
case OID_BYTEA_LIKE_OP:
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Like,
2003-08-04 02:43:34 +02:00
&prefix, &rest) != Pattern_Prefix_None;
break;
case OID_TEXT_ICLIKE_OP:
case OID_BPCHAR_ICLIKE_OP:
case OID_NAME_ICLIKE_OP:
/* the right-hand const is type text for all of these */
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Like_IC,
2003-08-04 02:43:34 +02:00
&prefix, &rest) != Pattern_Prefix_None;
break;
case OID_TEXT_REGEXEQ_OP:
case OID_BPCHAR_REGEXEQ_OP:
case OID_NAME_REGEXEQ_OP:
/* the right-hand const is type text for all of these */
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Regex,
2003-08-04 02:43:34 +02:00
&prefix, &rest) != Pattern_Prefix_None;
break;
case OID_TEXT_ICREGEXEQ_OP:
case OID_BPCHAR_ICREGEXEQ_OP:
case OID_NAME_ICREGEXEQ_OP:
/* the right-hand const is type text for all of these */
isIndexable = pattern_fixed_prefix(patt, Pattern_Type_Regex_IC,
2003-08-04 02:43:34 +02:00
&prefix, &rest) != Pattern_Prefix_None;
break;
case OID_INET_SUB_OP:
case OID_INET_SUBEQ_OP:
case OID_CIDR_SUB_OP:
case OID_CIDR_SUBEQ_OP:
isIndexable = true;
break;
}
if (prefix)
{
pfree(DatumGetPointer(prefix->constvalue));
pfree(prefix);
}
/* done if the expression doesn't look indexable */
if (!isIndexable)
return false;
/*
* Must also check that index's opclass supports the operators we will
* want to apply. (A hash index, for example, will not support ">=".)
* Currently, only btree supports the operators we need.
*
2003-08-04 02:43:34 +02:00
* We insist on the opclass being the specific one we expect, else we'd
* do the wrong thing if someone were to make a reverse-sort opclass
* with the same operators.
*/
switch (expr_op)
{
case OID_TEXT_LIKE_OP:
case OID_TEXT_ICLIKE_OP:
case OID_TEXT_REGEXEQ_OP:
case OID_TEXT_ICREGEXEQ_OP:
/* text operators will be used for varchar inputs, too */
isIndexable =
(opclass == TEXT_PATTERN_BTREE_OPS_OID) ||
(opclass == TEXT_BTREE_OPS_OID && lc_collate_is_c()) ||
(opclass == VARCHAR_PATTERN_BTREE_OPS_OID) ||
(opclass == VARCHAR_BTREE_OPS_OID && lc_collate_is_c());
break;
case OID_BPCHAR_LIKE_OP:
case OID_BPCHAR_ICLIKE_OP:
case OID_BPCHAR_REGEXEQ_OP:
case OID_BPCHAR_ICREGEXEQ_OP:
isIndexable =
(opclass == BPCHAR_PATTERN_BTREE_OPS_OID) ||
(opclass == BPCHAR_BTREE_OPS_OID && lc_collate_is_c());
break;
case OID_NAME_LIKE_OP:
case OID_NAME_ICLIKE_OP:
case OID_NAME_REGEXEQ_OP:
case OID_NAME_ICREGEXEQ_OP:
isIndexable =
(opclass == NAME_PATTERN_BTREE_OPS_OID) ||
(opclass == NAME_BTREE_OPS_OID && lc_collate_is_c());
break;
case OID_BYTEA_LIKE_OP:
isIndexable = (opclass == BYTEA_BTREE_OPS_OID);
break;
case OID_INET_SUB_OP:
case OID_INET_SUBEQ_OP:
isIndexable = (opclass == INET_BTREE_OPS_OID);
break;
case OID_CIDR_SUB_OP:
case OID_CIDR_SUBEQ_OP:
isIndexable = (opclass == CIDR_BTREE_OPS_OID);
break;
}
return isIndexable;
}
/*
* expand_indexqual_conditions
* Given a list of sublists of RestrictInfo nodes, produce a flat list
* of index qual clauses. Standard qual clauses (those in the index's
* opclass) are passed through unchanged. "Special" index operators
* are expanded into clauses that the indexscan machinery will know
* what to do with.
*
* The input list is ordered by index key, and so the output list is too.
* (The latter is not depended on by any part of the planner, so far as I can
* tell; but some parts of the executor do assume that the indxqual list
2003-08-04 02:43:34 +02:00
* ultimately delivered to the executor is so ordered. One such place is
* _bt_preprocess_keys() in the btree support. Perhaps that ought to be fixed
* someday --- tgl 7/00)
*/
List *
expand_indexqual_conditions(IndexOptInfo *index, List *clausegroups)
{
FastList resultquals;
Oid *classes = index->classlist;
if (clausegroups == NIL)
return NIL;
FastListInit(&resultquals);
do
{
Oid curClass = classes[0];
List *i;
foreach(i, (List *) lfirst(clausegroups))
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(i);
FastConc(&resultquals,
expand_indexqual_condition(rinfo, curClass));
}
clausegroups = lnext(clausegroups);
classes++;
} while (clausegroups != NIL && !DoneMatchingIndexKeys(classes));
2003-08-04 02:43:34 +02:00
Assert(clausegroups == NIL); /* else more groups than indexkeys... */
return FastListValue(&resultquals);
}
/*
* expand_indexqual_condition --- expand a single indexqual condition
*
* The input is a single RestrictInfo, the output a list of RestrictInfos
*/
static List *
expand_indexqual_condition(RestrictInfo *rinfo, Oid opclass)
{
Expr *clause = rinfo->clause;
/* we know these will succeed */
Node *leftop = get_leftop(clause);
Node *rightop = get_rightop(clause);
Oid expr_op = ((OpExpr *) clause)->opno;
Const *patt = (Const *) rightop;
Const *prefix = NULL;
Const *rest = NULL;
Pattern_Prefix_Status pstatus;
List *result;
switch (expr_op)
{
2003-08-04 02:43:34 +02:00
/*
* LIKE and regex operators are not members of any index
* opclass, so if we find one in an indexqual list we can
* assume that it was accepted by
* match_special_index_operator().
*/
case OID_TEXT_LIKE_OP:
case OID_BPCHAR_LIKE_OP:
case OID_NAME_LIKE_OP:
case OID_BYTEA_LIKE_OP:
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like,
&prefix, &rest);
result = prefix_quals(leftop, opclass, prefix, pstatus);
break;
case OID_TEXT_ICLIKE_OP:
case OID_BPCHAR_ICLIKE_OP:
case OID_NAME_ICLIKE_OP:
/* the right-hand const is type text for all of these */
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like_IC,
&prefix, &rest);
result = prefix_quals(leftop, opclass, prefix, pstatus);
break;
case OID_TEXT_REGEXEQ_OP:
case OID_BPCHAR_REGEXEQ_OP:
case OID_NAME_REGEXEQ_OP:
/* the right-hand const is type text for all of these */
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex,
&prefix, &rest);
result = prefix_quals(leftop, opclass, prefix, pstatus);
break;
case OID_TEXT_ICREGEXEQ_OP:
case OID_BPCHAR_ICREGEXEQ_OP:
case OID_NAME_ICREGEXEQ_OP:
/* the right-hand const is type text for all of these */
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex_IC,
&prefix, &rest);
result = prefix_quals(leftop, opclass, prefix, pstatus);
break;
case OID_INET_SUB_OP:
case OID_INET_SUBEQ_OP:
case OID_CIDR_SUB_OP:
case OID_CIDR_SUBEQ_OP:
result = network_prefix_quals(leftop, expr_op, opclass,
patt->constvalue);
break;
default:
result = makeList1(rinfo);
break;
}
return result;
}
/*
* Given a fixed prefix that all the "leftop" values must have,
* generate suitable indexqual condition(s). opclass is the index
* operator class; we use it to deduce the appropriate comparison
* operators and operand datatypes.
*/
static List *
prefix_quals(Node *leftop, Oid opclass,
Const *prefix_const, Pattern_Prefix_Status pstatus)
{
List *result;
Oid datatype;
Oid oproid;
Expr *expr;
Const *greaterstr;
Assert(pstatus != Pattern_Prefix_None);
switch (opclass)
{
case TEXT_BTREE_OPS_OID:
case TEXT_PATTERN_BTREE_OPS_OID:
datatype = TEXTOID;
break;
case VARCHAR_BTREE_OPS_OID:
case VARCHAR_PATTERN_BTREE_OPS_OID:
datatype = VARCHAROID;
break;
case BPCHAR_BTREE_OPS_OID:
case BPCHAR_PATTERN_BTREE_OPS_OID:
datatype = BPCHAROID;
break;
case NAME_BTREE_OPS_OID:
case NAME_PATTERN_BTREE_OPS_OID:
datatype = NAMEOID;
break;
case BYTEA_BTREE_OPS_OID:
datatype = BYTEAOID;
break;
default:
/* shouldn't get here */
elog(ERROR, "unexpected opclass: %u", opclass);
return NIL;
}
/*
2003-08-04 02:43:34 +02:00
* If necessary, coerce the prefix constant to the right type. The
* given prefix constant is either text or bytea type.
*/
if (prefix_const->consttype != datatype)
{
2003-08-04 02:43:34 +02:00
char *prefix;
switch (prefix_const->consttype)
{
case TEXTOID:
prefix = DatumGetCString(DirectFunctionCall1(textout,
2003-08-04 02:43:34 +02:00
prefix_const->constvalue));
break;
case BYTEAOID:
prefix = DatumGetCString(DirectFunctionCall1(byteaout,
2003-08-04 02:43:34 +02:00
prefix_const->constvalue));
break;
default:
elog(ERROR, "unexpected const type: %u",
prefix_const->consttype);
return NIL;
}
prefix_const = string_to_const(prefix, datatype);
pfree(prefix);
}
/*
* If we found an exact-match pattern, generate an "=" indexqual.
*/
if (pstatus == Pattern_Prefix_Exact)
{
oproid = get_opclass_member(opclass, InvalidOid,
BTEqualStrategyNumber);
if (oproid == InvalidOid)
elog(ERROR, "no = operator for opclass %u", opclass);
expr = make_opclause(oproid, BOOLOID, false,
(Expr *) leftop, (Expr *) prefix_const);
result = makeList1(make_restrictinfo(expr, true, true));
return result;
}
/*
* Otherwise, we have a nonempty required prefix of the values.
*
* We can always say "x >= prefix".
*/
oproid = get_opclass_member(opclass, InvalidOid,
BTGreaterEqualStrategyNumber);
if (oproid == InvalidOid)
elog(ERROR, "no >= operator for opclass %u", opclass);
expr = make_opclause(oproid, BOOLOID, false,
(Expr *) leftop, (Expr *) prefix_const);
result = makeList1(make_restrictinfo(expr, true, true));
/*-------
* If we can create a string larger than the prefix, we can say
* "x < greaterstr".
*-------
*/
greaterstr = make_greater_string(prefix_const);
if (greaterstr)
{
oproid = get_opclass_member(opclass, InvalidOid,
BTLessStrategyNumber);
if (oproid == InvalidOid)
elog(ERROR, "no < operator for opclass %u", opclass);
expr = make_opclause(oproid, BOOLOID, false,
(Expr *) leftop, (Expr *) greaterstr);
result = lappend(result, make_restrictinfo(expr, true, true));
}
return result;
}
/*
* Given a leftop and a rightop, and a inet-class sup/sub operator,
* generate suitable indexqual condition(s). expr_op is the original
* operator, and opclass is the index opclass.
*/
static List *
network_prefix_quals(Node *leftop, Oid expr_op, Oid opclass, Datum rightop)
{
bool is_eq;
Oid datatype;
Oid opr1oid;
Oid opr2oid;
Datum opr1right;
Datum opr2right;
List *result;
Expr *expr;
switch (expr_op)
{
case OID_INET_SUB_OP:
datatype = INETOID;
is_eq = false;
break;
case OID_INET_SUBEQ_OP:
datatype = INETOID;
is_eq = true;
break;
case OID_CIDR_SUB_OP:
datatype = CIDROID;
is_eq = false;
break;
case OID_CIDR_SUBEQ_OP:
datatype = CIDROID;
is_eq = true;
break;
default:
elog(ERROR, "unexpected operator: %u", expr_op);
return NIL;
}
/*
* create clause "key >= network_scan_first( rightop )", or ">" if the
* operator disallows equality.
*/
if (is_eq)
{
opr1oid = get_opclass_member(opclass, InvalidOid,
BTGreaterEqualStrategyNumber);
if (opr1oid == InvalidOid)
elog(ERROR, "no >= operator for opclass %u", opclass);
}
else
{
opr1oid = get_opclass_member(opclass, InvalidOid,
BTGreaterStrategyNumber);
if (opr1oid == InvalidOid)
elog(ERROR, "no > operator for opclass %u", opclass);
}
opr1right = network_scan_first(rightop);
expr = make_opclause(opr1oid, BOOLOID, false,
(Expr *) leftop,
(Expr *) makeConst(datatype, -1, opr1right,
false, false));
result = makeList1(make_restrictinfo(expr, true, true));
/* create clause "key <= network_scan_last( rightop )" */
opr2oid = get_opclass_member(opclass, InvalidOid,
BTLessEqualStrategyNumber);
if (opr2oid == InvalidOid)
elog(ERROR, "no <= operator for opclass %u", opclass);
opr2right = network_scan_last(rightop);
expr = make_opclause(opr2oid, BOOLOID, false,
(Expr *) leftop,
(Expr *) makeConst(datatype, -1, opr2right,
false, false));
result = lappend(result, make_restrictinfo(expr, true, true));
return result;
}
/*
* Handy subroutines for match_special_index_operator() and friends.
*/
/*
* Generate a Datum of the appropriate type from a C string.
* Note that all of the supported types are pass-by-ref, so the
* returned value should be pfree'd if no longer needed.
*/
static Datum
string_to_datum(const char *str, Oid datatype)
{
/*
* We cheat a little by assuming that textin() will do for bpchar and
* varchar constants too...
*/
if (datatype == NAMEOID)
return DirectFunctionCall1(namein, CStringGetDatum(str));
else if (datatype == BYTEAOID)
return DirectFunctionCall1(byteain, CStringGetDatum(str));
else
return DirectFunctionCall1(textin, CStringGetDatum(str));
}
/*
* Generate a Const node of the appropriate type from a C string.
*/
static Const *
string_to_const(const char *str, Oid datatype)
{
Datum conval = string_to_datum(str, datatype);
return makeConst(datatype, ((datatype == NAMEOID) ? NAMEDATALEN : -1),
conval, false, false);
}