postgresql/src/include/executor/execPartition.h

138 lines
5.5 KiB
C
Raw Normal View History

/*--------------------------------------------------------------------
* execPartition.h
* POSTGRES partitioning executor interface
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/include/executor/execPartition.h
*--------------------------------------------------------------------
*/
#ifndef EXECPARTITION_H
#define EXECPARTITION_H
#include "catalog/partition.h"
#include "nodes/execnodes.h"
#include "nodes/parsenodes.h"
#include "nodes/plannodes.h"
/*-----------------------
* PartitionDispatch - information about one partitioned table in a partition
* hierarchy required to route a tuple to one of its partitions
*
* reldesc Relation descriptor of the table
* key Partition key information of the table
* keystate Execution state required for expressions in the partition key
* partdesc Partition descriptor of the table
* tupslot A standalone TupleTableSlot initialized with this table's tuple
* descriptor
* tupmap TupleConversionMap to convert from the parent's rowtype to
* this table's rowtype (when extracting the partition key of a
* tuple just before routing it through this table)
* indexes Array with partdesc->nparts members (for details on what
* individual members represent, see how they are set in
* get_partition_dispatch_recurse())
*-----------------------
*/
typedef struct PartitionDispatchData
{
Relation reldesc;
PartitionKey key;
List *keystate; /* list of ExprState */
PartitionDesc partdesc;
TupleTableSlot *tupslot;
TupleConversionMap *tupmap;
int *indexes;
} PartitionDispatchData;
typedef struct PartitionDispatchData *PartitionDispatch;
/*-----------------------
* PartitionTupleRouting - Encapsulates all information required to execute
* tuple-routing between partitions.
*
* partition_dispatch_info Array of PartitionDispatch objects with one
* entry for every partitioned table in the
* partition tree.
* num_dispatch number of partitioned tables in the partition
* tree (= length of partition_dispatch_info[])
* partition_oids Array of leaf partitions OIDs with one entry
* for every leaf partition in the partition tree,
* initialized in full by
* ExecSetupPartitionTupleRouting.
* partitions Array of ResultRelInfo* objects with one entry
* for every leaf partition in the partition tree,
* initialized lazily by ExecInitPartitionInfo.
* num_partitions Number of leaf partitions in the partition tree
* (= 'partitions_oid'/'partitions' array length)
* parent_child_tupconv_maps Array of TupleConversionMap objects with one
* entry for every leaf partition (required to
* convert tuple from the root table's rowtype to
* a leaf partition's rowtype after tuple routing
* is done)
* child_parent_tupconv_maps Array of TupleConversionMap objects with one
* entry for every leaf partition (required to
* convert an updated tuple from the leaf
* partition's rowtype to the root table's rowtype
* so that tuple routing can be done)
* child_parent_map_not_required Array of bool. True value means that a map is
* determined to be not required for the given
* partition. False means either we haven't yet
* checked if a map is required, or it was
* determined to be required.
* subplan_partition_offsets Integer array ordered by UPDATE subplans. Each
* element of this array has the index into the
* corresponding partition in partitions array.
* num_subplan_partition_offsets Length of 'subplan_partition_offsets' array
* partition_tuple_slot TupleTableSlot to be used to manipulate any
* given leaf partition's rowtype after that
* partition is chosen for insertion by
* tuple-routing.
*-----------------------
*/
typedef struct PartitionTupleRouting
{
PartitionDispatch *partition_dispatch_info;
int num_dispatch;
Oid *partition_oids;
ResultRelInfo **partitions;
int num_partitions;
TupleConversionMap **parent_child_tupconv_maps;
TupleConversionMap **child_parent_tupconv_maps;
bool *child_parent_map_not_required;
int *subplan_partition_offsets;
int num_subplan_partition_offsets;
TupleTableSlot *partition_tuple_slot;
TupleTableSlot *root_tuple_slot;
} PartitionTupleRouting;
extern PartitionTupleRouting *ExecSetupPartitionTupleRouting(ModifyTableState *mtstate,
Relation rel);
extern int ExecFindPartition(ResultRelInfo *resultRelInfo,
PartitionDispatch *pd,
TupleTableSlot *slot,
EState *estate);
MERGE SQL Command following SQL:2016 MERGE performs actions that modify rows in the target table using a source table or query. MERGE provides a single SQL statement that can conditionally INSERT/UPDATE/DELETE rows a task that would other require multiple PL statements. e.g. MERGE INTO target AS t USING source AS s ON t.tid = s.sid WHEN MATCHED AND t.balance > s.delta THEN UPDATE SET balance = t.balance - s.delta WHEN MATCHED THEN DELETE WHEN NOT MATCHED AND s.delta > 0 THEN INSERT VALUES (s.sid, s.delta) WHEN NOT MATCHED THEN DO NOTHING; MERGE works with regular and partitioned tables, including column and row security enforcement, as well as support for row, statement and transition triggers. MERGE is optimized for OLTP and is parameterizable, though also useful for large scale ETL/ELT. MERGE is not intended to be used in preference to existing single SQL commands for INSERT, UPDATE or DELETE since there is some overhead. MERGE can be used statically from PL/pgSQL. MERGE does not yet support inheritance, write rules, RETURNING clauses, updatable views or foreign tables. MERGE follows SQL Standard per the most recent SQL:2016. Includes full tests and documentation, including full isolation tests to demonstrate the concurrent behavior. This version written from scratch in 2017 by Simon Riggs, using docs and tests originally written in 2009. Later work from Pavan Deolasee has been both complex and deep, leaving the lead author credit now in his hands. Extensive discussion of concurrency from Peter Geoghegan, with thanks for the time and effort contributed. Various issues reported via sqlsmith by Andreas Seltenreich Authors: Pavan Deolasee, Simon Riggs Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
2018-04-03 10:28:16 +02:00
extern int ExecFindPartitionByOid(PartitionTupleRouting *proute, Oid partoid);
extern ResultRelInfo *ExecInitPartitionInfo(ModifyTableState *mtstate,
ResultRelInfo *resultRelInfo,
PartitionTupleRouting *proute,
EState *estate, int partidx);
extern void ExecInitRoutingInfo(ModifyTableState *mtstate,
EState *estate,
PartitionTupleRouting *proute,
ResultRelInfo *partRelInfo,
int partidx);
extern void ExecSetupChildParentMapForLeaf(PartitionTupleRouting *proute);
extern TupleConversionMap *TupConvMapForLeaf(PartitionTupleRouting *proute,
ResultRelInfo *rootRelInfo, int leaf_index);
extern HeapTuple ConvertPartitionTupleSlot(TupleConversionMap *map,
HeapTuple tuple,
TupleTableSlot *new_slot,
TupleTableSlot **p_my_slot);
extern void ExecCleanupTupleRouting(ModifyTableState *mtstate,
PartitionTupleRouting *proute);
#endif /* EXECPARTITION_H */