postgresql/src/include/executor/execPartition.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

129 lines
5.2 KiB
C
Raw Normal View History

/*--------------------------------------------------------------------
* execPartition.h
* POSTGRES partitioning executor interface
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/include/executor/execPartition.h
*--------------------------------------------------------------------
*/
#ifndef EXECPARTITION_H
#define EXECPARTITION_H
#include "nodes/execnodes.h"
#include "nodes/parsenodes.h"
#include "nodes/plannodes.h"
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
#include "partitioning/partprune.h"
Redesign initialization of partition routing structures This speeds up write operations (INSERT, UPDATE, DELETE, COPY, as well as the future MERGE) on partitioned tables. This changes the setup for tuple routing so that it does far less work during the initial setup and pushes more work out to when partitions receive tuples. PartitionDispatchData structs for sub-partitioned tables are only created when a tuple gets routed through it. The possibly large arrays in the PartitionTupleRouting struct have largely been removed. The partitions[] array remains but now never contains any NULL gaps. Previously the NULLs had to be skipped during ExecCleanupTupleRouting(), which could add a large overhead to the cleanup when the number of partitions was large. The partitions[] array is allocated small to start with and only enlarged when we route tuples to enough partitions that it runs out of space. This allows us to keep simple single-row partition INSERTs running quickly. Redesign The arrays in PartitionTupleRouting which stored the tuple translation maps have now been removed. These have been moved out into a PartitionRoutingInfo struct which is an additional field in ResultRelInfo. The find_all_inheritors() call still remains by far the slowest part of ExecSetupPartitionTupleRouting(). This commit just removes the other slow parts. In passing also rename the tuple translation maps from being ParentToChild and ChildToParent to being RootToPartition and PartitionToRoot. The old names mislead you into thinking that a partition of some sub-partitioned table would translate to the rowtype of the sub-partitioned table rather than the root partitioned table. Authors: David Rowley and Amit Langote, heavily revised by Álvaro Herrera Testing help from Jesper Pedersen and Kato Sho. Discussion: https://postgr.es/m/CAKJS1f_1RJyFquuCKRFHTdcXqoPX-PYqAd7nz=GVBwvGh4a6xA@mail.gmail.com
2018-11-16 18:54:15 +01:00
/* See execPartition.c for the definitions. */
typedef struct PartitionDispatchData *PartitionDispatch;
Redesign initialization of partition routing structures This speeds up write operations (INSERT, UPDATE, DELETE, COPY, as well as the future MERGE) on partitioned tables. This changes the setup for tuple routing so that it does far less work during the initial setup and pushes more work out to when partitions receive tuples. PartitionDispatchData structs for sub-partitioned tables are only created when a tuple gets routed through it. The possibly large arrays in the PartitionTupleRouting struct have largely been removed. The partitions[] array remains but now never contains any NULL gaps. Previously the NULLs had to be skipped during ExecCleanupTupleRouting(), which could add a large overhead to the cleanup when the number of partitions was large. The partitions[] array is allocated small to start with and only enlarged when we route tuples to enough partitions that it runs out of space. This allows us to keep simple single-row partition INSERTs running quickly. Redesign The arrays in PartitionTupleRouting which stored the tuple translation maps have now been removed. These have been moved out into a PartitionRoutingInfo struct which is an additional field in ResultRelInfo. The find_all_inheritors() call still remains by far the slowest part of ExecSetupPartitionTupleRouting(). This commit just removes the other slow parts. In passing also rename the tuple translation maps from being ParentToChild and ChildToParent to being RootToPartition and PartitionToRoot. The old names mislead you into thinking that a partition of some sub-partitioned table would translate to the rowtype of the sub-partitioned table rather than the root partitioned table. Authors: David Rowley and Amit Langote, heavily revised by Álvaro Herrera Testing help from Jesper Pedersen and Kato Sho. Discussion: https://postgr.es/m/CAKJS1f_1RJyFquuCKRFHTdcXqoPX-PYqAd7nz=GVBwvGh4a6xA@mail.gmail.com
2018-11-16 18:54:15 +01:00
typedef struct PartitionTupleRouting PartitionTupleRouting;
/*
* PartitionedRelPruningData - Per-partitioned-table data for run-time pruning
* of partitions. For a multilevel partitioned table, we have one of these
* for the topmost partition plus one for each non-leaf child partition.
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
*
* subplan_map[] and subpart_map[] have the same definitions as in
* PartitionedRelPruneInfo (see plannodes.h); though note that here,
* subpart_map contains indexes into PartitionPruningData.partrelprunedata[].
*
Restructure creation of run-time pruning steps. Previously, gen_partprune_steps() always built executor pruning steps using all suitable clauses, including those containing PARAM_EXEC Params. This meant that the pruning steps were only completely safe for executor run-time (scan start) pruning. To prune at executor startup, we had to ignore the steps involving exec Params. But this doesn't really work in general, since there may be logic changes needed as well --- for example, pruning according to the last operator's btree strategy is the wrong thing if we're not applying that operator. The rules embodied in gen_partprune_steps() and its minions are sufficiently complicated that tracking their incremental effects in other logic seems quite impractical. Short of a complete redesign, the only safe fix seems to be to run gen_partprune_steps() twice, once to create executor startup pruning steps and then again for run-time pruning steps. We can save a few cycles however by noting during the first scan whether we rejected any clauses because they involved exec Params --- if not, we don't need to do the second scan. In support of this, refactor the internal APIs in partprune.c to make more use of passing information in the GeneratePruningStepsContext struct, rather than as separate arguments. This is, I hope, the last piece of our response to a bug report from Alan Jackson. Back-patch to v11 where this code came in. Discussion: https://postgr.es/m/FAD28A83-AC73-489E-A058-2681FA31D648@tvsquared.com
2019-05-18 01:44:19 +02:00
* nparts Length of subplan_map[] and subpart_map[].
* subplan_map Subplan index by partition index, or -1.
* subpart_map Subpart index by partition index, or -1.
* present_parts A Bitmapset of the partition indexes that we
* have subplans or subparts for.
Restructure creation of run-time pruning steps. Previously, gen_partprune_steps() always built executor pruning steps using all suitable clauses, including those containing PARAM_EXEC Params. This meant that the pruning steps were only completely safe for executor run-time (scan start) pruning. To prune at executor startup, we had to ignore the steps involving exec Params. But this doesn't really work in general, since there may be logic changes needed as well --- for example, pruning according to the last operator's btree strategy is the wrong thing if we're not applying that operator. The rules embodied in gen_partprune_steps() and its minions are sufficiently complicated that tracking their incremental effects in other logic seems quite impractical. Short of a complete redesign, the only safe fix seems to be to run gen_partprune_steps() twice, once to create executor startup pruning steps and then again for run-time pruning steps. We can save a few cycles however by noting during the first scan whether we rejected any clauses because they involved exec Params --- if not, we don't need to do the second scan. In support of this, refactor the internal APIs in partprune.c to make more use of passing information in the GeneratePruningStepsContext struct, rather than as separate arguments. This is, I hope, the last piece of our response to a bug report from Alan Jackson. Back-patch to v11 where this code came in. Discussion: https://postgr.es/m/FAD28A83-AC73-489E-A058-2681FA31D648@tvsquared.com
2019-05-18 01:44:19 +02:00
* initial_pruning_steps List of PartitionPruneSteps used to
* perform executor startup pruning.
* exec_pruning_steps List of PartitionPruneSteps used to
* perform per-scan pruning.
* initial_context If initial_pruning_steps isn't NIL, contains
* the details needed to execute those steps.
* exec_context If exec_pruning_steps isn't NIL, contains
* the details needed to execute those steps.
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
*/
typedef struct PartitionedRelPruningData
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
{
Restructure creation of run-time pruning steps. Previously, gen_partprune_steps() always built executor pruning steps using all suitable clauses, including those containing PARAM_EXEC Params. This meant that the pruning steps were only completely safe for executor run-time (scan start) pruning. To prune at executor startup, we had to ignore the steps involving exec Params. But this doesn't really work in general, since there may be logic changes needed as well --- for example, pruning according to the last operator's btree strategy is the wrong thing if we're not applying that operator. The rules embodied in gen_partprune_steps() and its minions are sufficiently complicated that tracking their incremental effects in other logic seems quite impractical. Short of a complete redesign, the only safe fix seems to be to run gen_partprune_steps() twice, once to create executor startup pruning steps and then again for run-time pruning steps. We can save a few cycles however by noting during the first scan whether we rejected any clauses because they involved exec Params --- if not, we don't need to do the second scan. In support of this, refactor the internal APIs in partprune.c to make more use of passing information in the GeneratePruningStepsContext struct, rather than as separate arguments. This is, I hope, the last piece of our response to a bug report from Alan Jackson. Back-patch to v11 where this code came in. Discussion: https://postgr.es/m/FAD28A83-AC73-489E-A058-2681FA31D648@tvsquared.com
2019-05-18 01:44:19 +02:00
int nparts;
int *subplan_map;
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
int *subpart_map;
Bitmapset *present_parts;
Restructure creation of run-time pruning steps. Previously, gen_partprune_steps() always built executor pruning steps using all suitable clauses, including those containing PARAM_EXEC Params. This meant that the pruning steps were only completely safe for executor run-time (scan start) pruning. To prune at executor startup, we had to ignore the steps involving exec Params. But this doesn't really work in general, since there may be logic changes needed as well --- for example, pruning according to the last operator's btree strategy is the wrong thing if we're not applying that operator. The rules embodied in gen_partprune_steps() and its minions are sufficiently complicated that tracking their incremental effects in other logic seems quite impractical. Short of a complete redesign, the only safe fix seems to be to run gen_partprune_steps() twice, once to create executor startup pruning steps and then again for run-time pruning steps. We can save a few cycles however by noting during the first scan whether we rejected any clauses because they involved exec Params --- if not, we don't need to do the second scan. In support of this, refactor the internal APIs in partprune.c to make more use of passing information in the GeneratePruningStepsContext struct, rather than as separate arguments. This is, I hope, the last piece of our response to a bug report from Alan Jackson. Back-patch to v11 where this code came in. Discussion: https://postgr.es/m/FAD28A83-AC73-489E-A058-2681FA31D648@tvsquared.com
2019-05-18 01:44:19 +02:00
List *initial_pruning_steps;
List *exec_pruning_steps;
PartitionPruneContext initial_context;
PartitionPruneContext exec_context;
} PartitionedRelPruningData;
/*
* PartitionPruningData - Holds all the run-time pruning information for
* a single partitioning hierarchy containing one or more partitions.
* partrelprunedata[] is an array ordered such that parents appear before
* their children; in particular, the first entry is the topmost partition,
* which was actually named in the SQL query.
*/
typedef struct PartitionPruningData
{
int num_partrelprunedata; /* number of array entries */
PartitionedRelPruningData partrelprunedata[FLEXIBLE_ARRAY_MEMBER];
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
} PartitionPruningData;
/*
* PartitionPruneState - State object required for plan nodes to perform
* run-time partition pruning.
*
* This struct can be attached to plan types which support arbitrary Lists of
* subplans containing partitions, to allow subplans to be eliminated due to
* the clauses being unable to match to any tuple that the subplan could
* possibly produce.
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
*
* execparamids Contains paramids of PARAM_EXEC Params found within
* any of the partprunedata structs. Pruning must be
* done again each time the value of one of these
* parameters changes.
* other_subplans Contains indexes of subplans that don't belong to any
* "partprunedata", e.g UNION ALL children that are not
* partitioned tables, or a partitioned table that the
* planner deemed run-time pruning to be useless for.
* These must not be pruned.
* prune_context A short-lived memory context in which to execute the
* partition pruning functions.
* do_initial_prune true if pruning should be performed during executor
* startup (at any hierarchy level).
* do_exec_prune true if pruning should be performed during
* executor run (at any hierarchy level).
* num_partprunedata Number of items in "partprunedata" array.
* partprunedata Array of PartitionPruningData pointers for the plan's
* partitioned relation(s), one for each partitioning
* hierarchy that requires run-time pruning.
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
*/
typedef struct PartitionPruneState
{
Bitmapset *execparamids;
Bitmapset *other_subplans;
MemoryContext prune_context;
bool do_initial_prune;
bool do_exec_prune;
int num_partprunedata;
PartitionPruningData *partprunedata[FLEXIBLE_ARRAY_MEMBER];
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
} PartitionPruneState;
Allow ATTACH PARTITION with only ShareUpdateExclusiveLock. We still require AccessExclusiveLock on the partition itself, because otherwise an insert that violates the newly-imposed partition constraint could be in progress at the same time that we're changing that constraint; only the lock level on the parent relation is weakened. To make this safe, we have to cope with (at least) three separate problems. First, relevant DDL might commit while we're in the process of building a PartitionDesc. If so, find_inheritance_children() might see a new partition while the RELOID system cache still has the old partition bound cached, and even before invalidation messages have been queued. To fix that, if we see that the pg_class tuple seems to be missing or to have a null relpartbound, refetch the value directly from the table. We can't get the wrong value, because DETACH PARTITION still requires AccessExclusiveLock throughout; if we ever want to change that, this will need more thought. In testing, I found it quite difficult to hit even the null-relpartbound case; the race condition is extremely tight, but the theoretical risk is there. Second, successive calls to RelationGetPartitionDesc might not return the same answer. The query planner will get confused if lookup up the PartitionDesc for a particular relation does not return a consistent answer for the entire duration of query planning. Likewise, query execution will get confused if the same relation seems to have a different PartitionDesc at different times. Invent a new PartitionDirectory concept and use it to ensure consistency. This ensures that a single invocation of either the planner or the executor sees the same view of the PartitionDesc from beginning to end, but it does not guarantee that the planner and the executor see the same view. Since this allows pointers to old PartitionDesc entries to survive even after a relcache rebuild, also postpone removing the old PartitionDesc entry until we're certain no one is using it. For the most part, it seems to be OK for the planner and executor to have different views of the PartitionDesc, because the executor will just ignore any concurrently added partitions which were unknown at plan time; those partitions won't be part of the inheritance expansion, but invalidation messages will trigger replanning at some point. Normally, this happens by the time the very next command is executed, but if the next command acquires no locks and executes a prepared query, it can manage not to notice until a new transaction is started. We might want to tighten that up, but it's material for a separate patch. There would still be a small window where a query that started just after an ATTACH PARTITION command committed might fail to notice its results -- but only if the command starts before the commit has been acknowledged to the user. All in all, the warts here around serializability seem small enough to be worth accepting for the considerable advantage of being able to add partitions without a full table lock. Although in general the consequences of new partitions showing up between planning and execution are limited to the query not noticing the new partitions, run-time partition pruning will get confused in that case, so that's the third problem that this patch fixes. Run-time partition pruning assumes that indexes into the PartitionDesc are stable between planning and execution. So, add code so that if new partitions are added between plan time and execution time, the indexes stored in the subplan_map[] and subpart_map[] arrays within the plan's PartitionedRelPruneInfo get adjusted accordingly. There does not seem to be a simple way to generalize this scheme to cope with partitions that are removed, mostly because they could then get added back again with different bounds, but it works OK for added partitions. This code does not try to ensure that every backend participating in a parallel query sees the same view of the PartitionDesc. That currently doesn't matter, because we never pass PartitionDesc indexes between backends. Each backend will ignore the concurrently added partitions which it notices, and it doesn't matter if different backends are ignoring different sets of concurrently added partitions. If in the future that matters, for example because we allow writes in parallel query and want all participants to do tuple routing to the same set of partitions, the PartitionDirectory concept could be improved to share PartitionDescs across backends. There is a draft patch to serialize and restore PartitionDescs on the thread where this patch was discussed, which may be a useful place to start. Patch by me. Thanks to Alvaro Herrera, David Rowley, Simon Riggs, Amit Langote, and Michael Paquier for discussion, and to Alvaro Herrera for some review. Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com
2019-03-07 17:13:12 +01:00
extern PartitionTupleRouting *ExecSetupPartitionTupleRouting(EState *estate,
Relation rel);
Redesign initialization of partition routing structures This speeds up write operations (INSERT, UPDATE, DELETE, COPY, as well as the future MERGE) on partitioned tables. This changes the setup for tuple routing so that it does far less work during the initial setup and pushes more work out to when partitions receive tuples. PartitionDispatchData structs for sub-partitioned tables are only created when a tuple gets routed through it. The possibly large arrays in the PartitionTupleRouting struct have largely been removed. The partitions[] array remains but now never contains any NULL gaps. Previously the NULLs had to be skipped during ExecCleanupTupleRouting(), which could add a large overhead to the cleanup when the number of partitions was large. The partitions[] array is allocated small to start with and only enlarged when we route tuples to enough partitions that it runs out of space. This allows us to keep simple single-row partition INSERTs running quickly. Redesign The arrays in PartitionTupleRouting which stored the tuple translation maps have now been removed. These have been moved out into a PartitionRoutingInfo struct which is an additional field in ResultRelInfo. The find_all_inheritors() call still remains by far the slowest part of ExecSetupPartitionTupleRouting(). This commit just removes the other slow parts. In passing also rename the tuple translation maps from being ParentToChild and ChildToParent to being RootToPartition and PartitionToRoot. The old names mislead you into thinking that a partition of some sub-partitioned table would translate to the rowtype of the sub-partitioned table rather than the root partitioned table. Authors: David Rowley and Amit Langote, heavily revised by Álvaro Herrera Testing help from Jesper Pedersen and Kato Sho. Discussion: https://postgr.es/m/CAKJS1f_1RJyFquuCKRFHTdcXqoPX-PYqAd7nz=GVBwvGh4a6xA@mail.gmail.com
2018-11-16 18:54:15 +01:00
extern ResultRelInfo *ExecFindPartition(ModifyTableState *mtstate,
ResultRelInfo *rootResultRelInfo,
PartitionTupleRouting *proute,
TupleTableSlot *slot,
EState *estate);
extern void ExecCleanupTupleRouting(ModifyTableState *mtstate,
PartitionTupleRouting *proute);
extern PartitionPruneState *ExecCreatePartitionPruneState(PlanState *planstate,
PartitionPruneInfo *partitionpruneinfo);
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
extern Bitmapset *ExecFindMatchingSubPlans(PartitionPruneState *prunestate);
extern Bitmapset *ExecFindInitialMatchingSubPlans(PartitionPruneState *prunestate,
int nsubplans);
#endif /* EXECPARTITION_H */