postgresql/src/include/nodes/execnodes.h

2152 lines
77 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* execnodes.h
* definitions for executor state nodes
*
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
2010-09-20 22:08:53 +02:00
* src/include/nodes/execnodes.h
*
*-------------------------------------------------------------------------
*/
#ifndef EXECNODES_H
#define EXECNODES_H
#include "access/genam.h"
#include "access/heapam.h"
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
#include "access/tupconvert.h"
#include "executor/instrument.h"
#include "lib/pairingheap.h"
1999-07-16 19:07:40 +02:00
#include "nodes/params.h"
#include "nodes/plannodes.h"
#include "utils/hsearch.h"
#include "utils/queryenvironment.h"
#include "utils/reltrigger.h"
Add parallel-aware hash joins. Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel Hash Join with Parallel Hash. While hash joins could already appear in parallel queries, they were previously always parallel-oblivious and had a partial subplan only on the outer side, meaning that the work of the inner subplan was duplicated in every worker. After this commit, the planner will consider using a partial subplan on the inner side too, using the Parallel Hash node to divide the work over the available CPU cores and combine its results in shared memory. If the join needs to be split into multiple batches in order to respect work_mem, then workers process different batches as much as possible and then work together on the remaining batches. The advantages of a parallel-aware hash join over a parallel-oblivious hash join used in a parallel query are that it: * avoids wasting memory on duplicated hash tables * avoids wasting disk space on duplicated batch files * divides the work of building the hash table over the CPUs One disadvantage is that there is some communication between the participating CPUs which might outweigh the benefits of parallelism in the case of small hash tables. This is avoided by the planner's existing reluctance to supply partial plans for small scans, but it may be necessary to estimate synchronization costs in future if that situation changes. Another is that outer batch 0 must be written to disk if multiple batches are required. A potential future advantage of parallel-aware hash joins is that right and full outer joins could be supported, since there is a single set of matched bits for each hashtable, but that is not yet implemented. A new GUC enable_parallel_hash is defined to control the feature, defaulting to on. Author: Thomas Munro Reviewed-By: Andres Freund, Robert Haas Tested-By: Rafia Sabih, Prabhat Sahu Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com https://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
2017-12-21 08:39:21 +01:00
#include "utils/sharedtuplestore.h"
#include "utils/sortsupport.h"
#include "utils/tuplestore.h"
Support GROUPING SETS, CUBE and ROLLUP. This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:40:59 +02:00
#include "utils/tuplesort.h"
#include "nodes/tidbitmap.h"
#include "storage/condition_variable.h"
Rearrange execution of PARAM_EXTERN Params for plpgsql's benefit. This patch does three interrelated things: * Create a new expression execution step type EEOP_PARAM_CALLBACK and add the infrastructure needed for add-on modules to generate that. As discussed, the best control mechanism for that seems to be to add another hook function to ParamListInfo, which will be called by ExecInitExpr if it's supplied and a PARAM_EXTERN Param is found. For stand-alone expressions, we add a new entry point to allow the ParamListInfo to be specified directly, since it can't be retrieved from the parent plan node's EState. * Redesign the API for the ParamListInfo paramFetch hook so that the ParamExternData array can be entirely virtual. This also lets us get rid of ParamListInfo.paramMask, instead leaving it to the paramFetch hook to decide which param IDs should be accessible or not. plpgsql_param_fetch was already doing the identical masking check, so having callers do it too seemed redundant. While I was at it, I added a "speculative" flag to paramFetch that the planner can specify as TRUE to avoid unwanted failures. This solves an ancient problem for plpgsql that it couldn't provide values of non-DTYPE_VAR variables to the planner for fear of triggering premature "record not assigned yet" or "field not found" errors during planning. * Rework plpgsql to get rid of the need for "unshared" parameter lists, by dint of turning the single ParamListInfo per estate into a nearly read-only data structure that doesn't instantiate any per-variable data. Instead, the paramFetch hook controls access to per-variable data and can make the right decisions on the fly, replacing the cases that we used to need multiple ParamListInfos for. This might perhaps have been a performance loss on its own, but by using a paramCompile hook we can bypass plpgsql_param_fetch entirely during normal query execution. (It's now only called when, eg, we copy the ParamListInfo into a cursor portal. copyParamList() or SerializeParamList() effectively instantiate the virtual parameter array as a simple physical array without a paramFetch hook, which is what we want in those cases.) This allows reverting most of commit 6c82d8d1f, though I kept the cosmetic code-consolidation aspects of that (eg the assign_simple_var function). Performance testing shows this to be at worst a break-even change, and it can provide wins ranging up to 20% in test cases involving accesses to fields of "record" variables. The fact that values of such variables can now be exposed to the planner might produce wins in some situations, too, but I've not pursued that angle. In passing, remove the "parent" pointer from the arguments to ExecInitExprRec and related functions, instead storing that pointer in a transient field in ExprState. The ParamListInfo pointer for a stand-alone expression is handled the same way; we'd otherwise have had to add yet another recursively-passed-down argument in expression compilation. Discussion: https://postgr.es/m/32589.1513706441@sss.pgh.pa.us
2017-12-21 18:57:41 +01:00
struct PlanState; /* forward references in this file */
struct ParallelHashJoinState;
struct ExprState;
struct ExprContext;
struct ExprEvalStep; /* avoid including execExpr.h everywhere */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
/* ----------------
* ExprState node
*
* ExprState is the top-level node for expression evaluation.
* It contains instructions (in ->steps) to evaluate the expression.
* ----------------
*/
typedef Datum (*ExprStateEvalFunc) (struct ExprState *expression,
2017-06-21 20:39:04 +02:00
struct ExprContext *econtext,
bool *isNull);
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
/* Bits in ExprState->flags (see also execExpr.h for private flag bits): */
/* expression is for use with ExecQual() */
#define EEO_FLAG_IS_QUAL (1 << 0)
typedef struct ExprState
{
Node tag;
uint8 flags; /* bitmask of EEO_FLAG_* bits, see above */
/*
* Storage for result value of a scalar expression, or for individual
* column results within expressions built by ExecBuildProjectionInfo().
*/
bool resnull;
Datum resvalue;
/*
* If projecting a tuple result, this slot holds the result; else NULL.
*/
TupleTableSlot *resultslot;
/*
* Instructions to compute expression's return value.
*/
struct ExprEvalStep *steps;
/*
* Function that actually evaluates the expression. This can be set to
* different values depending on the complexity of the expression.
*/
ExprStateEvalFunc evalfunc;
/* original expression tree, for debugging only */
Expr *expr;
/* private state for an evalfunc */
void *evalfunc_private;
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
/*
Rearrange execution of PARAM_EXTERN Params for plpgsql's benefit. This patch does three interrelated things: * Create a new expression execution step type EEOP_PARAM_CALLBACK and add the infrastructure needed for add-on modules to generate that. As discussed, the best control mechanism for that seems to be to add another hook function to ParamListInfo, which will be called by ExecInitExpr if it's supplied and a PARAM_EXTERN Param is found. For stand-alone expressions, we add a new entry point to allow the ParamListInfo to be specified directly, since it can't be retrieved from the parent plan node's EState. * Redesign the API for the ParamListInfo paramFetch hook so that the ParamExternData array can be entirely virtual. This also lets us get rid of ParamListInfo.paramMask, instead leaving it to the paramFetch hook to decide which param IDs should be accessible or not. plpgsql_param_fetch was already doing the identical masking check, so having callers do it too seemed redundant. While I was at it, I added a "speculative" flag to paramFetch that the planner can specify as TRUE to avoid unwanted failures. This solves an ancient problem for plpgsql that it couldn't provide values of non-DTYPE_VAR variables to the planner for fear of triggering premature "record not assigned yet" or "field not found" errors during planning. * Rework plpgsql to get rid of the need for "unshared" parameter lists, by dint of turning the single ParamListInfo per estate into a nearly read-only data structure that doesn't instantiate any per-variable data. Instead, the paramFetch hook controls access to per-variable data and can make the right decisions on the fly, replacing the cases that we used to need multiple ParamListInfos for. This might perhaps have been a performance loss on its own, but by using a paramCompile hook we can bypass plpgsql_param_fetch entirely during normal query execution. (It's now only called when, eg, we copy the ParamListInfo into a cursor portal. copyParamList() or SerializeParamList() effectively instantiate the virtual parameter array as a simple physical array without a paramFetch hook, which is what we want in those cases.) This allows reverting most of commit 6c82d8d1f, though I kept the cosmetic code-consolidation aspects of that (eg the assign_simple_var function). Performance testing shows this to be at worst a break-even change, and it can provide wins ranging up to 20% in test cases involving accesses to fields of "record" variables. The fact that values of such variables can now be exposed to the planner might produce wins in some situations, too, but I've not pursued that angle. In passing, remove the "parent" pointer from the arguments to ExecInitExprRec and related functions, instead storing that pointer in a transient field in ExprState. The ParamListInfo pointer for a stand-alone expression is handled the same way; we'd otherwise have had to add yet another recursively-passed-down argument in expression compilation. Discussion: https://postgr.es/m/32589.1513706441@sss.pgh.pa.us
2017-12-21 18:57:41 +01:00
* XXX: following fields only needed during "compilation" (ExecInitExpr);
* could be thrown away afterwards.
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
*/
int steps_len; /* number of steps currently */
int steps_alloc; /* allocated length of steps array */
Rearrange execution of PARAM_EXTERN Params for plpgsql's benefit. This patch does three interrelated things: * Create a new expression execution step type EEOP_PARAM_CALLBACK and add the infrastructure needed for add-on modules to generate that. As discussed, the best control mechanism for that seems to be to add another hook function to ParamListInfo, which will be called by ExecInitExpr if it's supplied and a PARAM_EXTERN Param is found. For stand-alone expressions, we add a new entry point to allow the ParamListInfo to be specified directly, since it can't be retrieved from the parent plan node's EState. * Redesign the API for the ParamListInfo paramFetch hook so that the ParamExternData array can be entirely virtual. This also lets us get rid of ParamListInfo.paramMask, instead leaving it to the paramFetch hook to decide which param IDs should be accessible or not. plpgsql_param_fetch was already doing the identical masking check, so having callers do it too seemed redundant. While I was at it, I added a "speculative" flag to paramFetch that the planner can specify as TRUE to avoid unwanted failures. This solves an ancient problem for plpgsql that it couldn't provide values of non-DTYPE_VAR variables to the planner for fear of triggering premature "record not assigned yet" or "field not found" errors during planning. * Rework plpgsql to get rid of the need for "unshared" parameter lists, by dint of turning the single ParamListInfo per estate into a nearly read-only data structure that doesn't instantiate any per-variable data. Instead, the paramFetch hook controls access to per-variable data and can make the right decisions on the fly, replacing the cases that we used to need multiple ParamListInfos for. This might perhaps have been a performance loss on its own, but by using a paramCompile hook we can bypass plpgsql_param_fetch entirely during normal query execution. (It's now only called when, eg, we copy the ParamListInfo into a cursor portal. copyParamList() or SerializeParamList() effectively instantiate the virtual parameter array as a simple physical array without a paramFetch hook, which is what we want in those cases.) This allows reverting most of commit 6c82d8d1f, though I kept the cosmetic code-consolidation aspects of that (eg the assign_simple_var function). Performance testing shows this to be at worst a break-even change, and it can provide wins ranging up to 20% in test cases involving accesses to fields of "record" variables. The fact that values of such variables can now be exposed to the planner might produce wins in some situations, too, but I've not pursued that angle. In passing, remove the "parent" pointer from the arguments to ExecInitExprRec and related functions, instead storing that pointer in a transient field in ExprState. The ParamListInfo pointer for a stand-alone expression is handled the same way; we'd otherwise have had to add yet another recursively-passed-down argument in expression compilation. Discussion: https://postgr.es/m/32589.1513706441@sss.pgh.pa.us
2017-12-21 18:57:41 +01:00
struct PlanState *parent; /* parent PlanState node, if any */
ParamListInfo ext_params; /* for compiling PARAM_EXTERN nodes */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
Datum *innermost_caseval;
bool *innermost_casenull;
Datum *innermost_domainval;
bool *innermost_domainnull;
} ExprState;
/* ----------------
* IndexInfo information
*
* this struct holds the information needed to construct new index
* entries for a particular index. Used for both index_build and
* retail creation of index entries.
*
* NumIndexAttrs number of columns in this index
* KeyAttrNumbers underlying-rel attribute numbers used as keys
* (zeroes indicate expressions)
* Expressions expr trees for expression entries, or NIL if none
* ExpressionsState exec state for expressions, or NIL if none
* Predicate partial-index predicate, or NIL if none
* PredicateState exec state for predicate, or NIL if none
* ExclusionOps Per-column exclusion operators, or NULL if none
* ExclusionProcs Underlying function OIDs for ExclusionOps
* ExclusionStrats Opclass strategy numbers for ExclusionOps
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
* UniqueOps Theses are like Exclusion*, but for unique indexes
* UniqueProcs
* UniqueStrats
* Unique is it a unique index?
* ReadyForInserts is it valid for inserts?
* Concurrent are we doing a concurrent index build?
* BrokenHotChain did we detect any broken HOT chains?
* ParallelWorkers # of workers requested (excludes leader)
* AmCache private cache area for index AM
* Context memory context holding this IndexInfo
*
* ii_Concurrent, ii_BrokenHotChain, and ii_ParallelWorkers are used only
* during index build; they're conventionally zeroed otherwise.
* ----------------
*/
typedef struct IndexInfo
{
NodeTag type;
int ii_NumIndexAttrs;
AttrNumber ii_KeyAttrNumbers[INDEX_MAX_KEYS];
2003-08-04 02:43:34 +02:00
List *ii_Expressions; /* list of Expr */
List *ii_ExpressionsState; /* list of ExprState */
List *ii_Predicate; /* list of Expr */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState *ii_PredicateState;
2010-02-26 03:01:40 +01:00
Oid *ii_ExclusionOps; /* array with one entry per column */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
Oid *ii_ExclusionProcs; /* array with one entry per column */
uint16 *ii_ExclusionStrats; /* array with one entry per column */
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
Oid *ii_UniqueOps; /* array with one entry per column */
2015-05-24 03:35:49 +02:00
Oid *ii_UniqueProcs; /* array with one entry per column */
uint16 *ii_UniqueStrats; /* array with one entry per column */
bool ii_Unique;
bool ii_ReadyForInserts;
bool ii_Concurrent;
bool ii_BrokenHotChain;
int ii_ParallelWorkers;
Oid ii_Am;
void *ii_AmCache;
MemoryContext ii_Context;
} IndexInfo;
/* ----------------
* ExprContext_CB
*
* List of callbacks to be called at ExprContext shutdown.
* ----------------
*/
typedef void (*ExprContextCallbackFunction) (Datum arg);
typedef struct ExprContext_CB
{
struct ExprContext_CB *next;
ExprContextCallbackFunction function;
Datum arg;
} ExprContext_CB;
/* ----------------
* ExprContext
*
* This class holds the "current context" information
* needed to evaluate expressions for doing tuple qualifications
* and tuple projections. For example, if an expression refers
* to an attribute in the current inner tuple then we need to know
* what the current inner tuple is and so we look at the expression
* context.
*
* There are two memory contexts associated with an ExprContext:
* * ecxt_per_query_memory is a query-lifespan context, typically the same
* context the ExprContext node itself is allocated in. This context
* can be used for purposes such as storing function call cache info.
* * ecxt_per_tuple_memory is a short-term context for expression results.
* As the name suggests, it will typically be reset once per tuple,
* before we begin to evaluate expressions for that tuple. Each
* ExprContext normally has its very own per-tuple memory context.
*
* CurrentMemoryContext should be set to ecxt_per_tuple_memory before
* calling ExecEvalExpr() --- see ExecEvalExprSwitchContext().
* ----------------
*/
typedef struct ExprContext
{
2002-09-04 22:31:48 +02:00
NodeTag type;
/* Tuples that Var nodes in expression may refer to */
TupleTableSlot *ecxt_scantuple;
TupleTableSlot *ecxt_innertuple;
TupleTableSlot *ecxt_outertuple;
/* Memory contexts for expression evaluation --- see notes above */
2002-09-04 22:31:48 +02:00
MemoryContext ecxt_per_query_memory;
MemoryContext ecxt_per_tuple_memory;
/* Values to substitute for Param nodes in expression */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
ParamExecData *ecxt_param_exec_vals; /* for PARAM_EXEC params */
2002-09-04 22:31:48 +02:00
ParamListInfo ecxt_param_list_info; /* for other param types */
/*
* Values to substitute for Aggref nodes in the expressions of an Agg
* node, or for WindowFunc nodes within a WindowAgg node.
*/
Datum *ecxt_aggvalues; /* precomputed values for aggs/windowfuncs */
bool *ecxt_aggnulls; /* null flags for aggs/windowfuncs */
/* Value to substitute for CaseTestExpr nodes in expression */
Datum caseValue_datum;
bool caseValue_isNull;
/* Value to substitute for CoerceToDomainValue nodes in expression */
Datum domainValue_datum;
bool domainValue_isNull;
/* Link to containing EState (NULL if a standalone ExprContext) */
struct EState *ecxt_estate;
Support ordered-set (WITHIN GROUP) aggregates. This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
2013-12-23 22:11:35 +01:00
/* Functions to call back when ExprContext is shut down or rescanned */
ExprContext_CB *ecxt_callbacks;
} ExprContext;
/*
* Set-result status used when evaluating functions potentially returning a
* set.
*/
typedef enum
{
ExprSingleResult, /* expression does not return a set */
ExprMultipleResult, /* this result is an element of a set */
ExprEndResult /* there are no more elements in the set */
} ExprDoneCond;
/*
* Return modes for functions returning sets. Note values must be chosen
* as separate bits so that a bitmask can be formed to indicate supported
* modes. SFRM_Materialize_Random and SFRM_Materialize_Preferred are
* auxiliary flags about SFRM_Materialize mode, rather than separate modes.
*/
typedef enum
{
SFRM_ValuePerCall = 0x01, /* one value returned per call */
SFRM_Materialize = 0x02, /* result set instantiated in Tuplestore */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
SFRM_Materialize_Random = 0x04, /* Tuplestore needs randomAccess */
SFRM_Materialize_Preferred = 0x08 /* caller prefers Tuplestore */
} SetFunctionReturnMode;
/*
* When calling a function that might return a set (multiple rows),
* a node of this type is passed as fcinfo->resultinfo to allow
* return status to be passed back. A function returning set should
* raise an error if no such resultinfo is provided.
*/
typedef struct ReturnSetInfo
{
NodeTag type;
/* values set by caller: */
ExprContext *econtext; /* context function is being called in */
TupleDesc expectedDesc; /* tuple descriptor expected by caller */
int allowedModes; /* bitmask: return modes caller can handle */
/* result status from function (but pre-initialized by caller): */
SetFunctionReturnMode returnMode; /* actual return mode */
ExprDoneCond isDone; /* status for ValuePerCall mode */
/* fields filled by function in Materialize return mode: */
2002-09-04 22:31:48 +02:00
Tuplestorestate *setResult; /* holds the complete returned tuple set */
TupleDesc setDesc; /* actual descriptor for returned tuples */
} ReturnSetInfo;
/* ----------------
* ProjectionInfo node information
*
* This is all the information needed to perform projections ---
* that is, form new tuples by evaluation of targetlist expressions.
* Nodes which need to do projections create one of these.
*
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
* The target tuple slot is kept in ProjectionInfo->pi_state.resultslot.
* ExecProject() evaluates the tlist, forms a tuple, and stores it
* in the given slot. Note that the result will be a "virtual" tuple
* unless ExecMaterializeSlot() is then called to force it to be
* converted to a physical tuple. The slot must have a tupledesc
* that matches the output of the tlist!
* ----------------
*/
typedef struct ProjectionInfo
{
NodeTag type;
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
/* instructions to evaluate projection */
ExprState pi_state;
/* expression context in which to evaluate expression */
ExprContext *pi_exprContext;
} ProjectionInfo;
/* ----------------
* JunkFilter
*
* This class is used to store information regarding junk attributes.
* A junk attribute is an attribute in a tuple that is needed only for
* storing intermediate information in the executor, and does not belong
* in emitted tuples. For example, when we do an UPDATE query,
* the planner adds a "junk" entry to the targetlist so that the tuples
* returned to ExecutePlan() contain an extra attribute: the ctid of
* the tuple to be updated. This is needed to do the update, but we
* don't want the ctid to be part of the stored new tuple! So, we
* apply a "junk filter" to remove the junk attributes and form the
* real output tuple. The junkfilter code also provides routines to
* extract the values of the junk attribute(s) from the input tuple.
*
* targetList: the original target list (including junk attributes).
* cleanTupType: the tuple descriptor for the "clean" tuple (with
* junk attributes removed).
* cleanMap: A map with the correspondence between the non-junk
* attribute numbers of the "original" tuple and the
* attribute numbers of the "clean" tuple.
* resultSlot: tuple slot used to hold cleaned tuple.
* junkAttNo: not used by junkfilter code. Can be used by caller
* to remember the attno of a specific junk attribute
* (nodeModifyTable.c keeps the "ctid" or "wholerow"
* attno here).
* ----------------
*/
typedef struct JunkFilter
{
NodeTag type;
List *jf_targetList;
TupleDesc jf_cleanTupType;
AttrNumber *jf_cleanMap;
TupleTableSlot *jf_resultSlot;
AttrNumber jf_junkAttNo;
} JunkFilter;
/*
* ResultRelInfo
*
* Whenever we update an existing relation, we have to update indexes on the
* relation, and perhaps also fire triggers. ResultRelInfo holds all the
* information needed about a result relation, including indexes.
*/
typedef struct ResultRelInfo
{
NodeTag type;
/* result relation's range table index */
Index ri_RangeTableIndex;
/* relation descriptor for result relation */
Relation ri_RelationDesc;
/* # of indices existing on result relation */
int ri_NumIndices;
/* array of relation descriptors for indices */
RelationPtr ri_IndexRelationDescs;
/* array of key/attr info for indices */
IndexInfo **ri_IndexRelationInfo;
/* triggers to be fired, if any */
TriggerDesc *ri_TrigDesc;
/* cached lookup info for trigger functions */
FmgrInfo *ri_TrigFunctions;
/* array of trigger WHEN expr states */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState **ri_TrigWhenExprs;
/* optional runtime measurements for triggers */
Instrumentation *ri_TrigInstrument;
/* FDW callback functions, if foreign table */
struct FdwRoutine *ri_FdwRoutine;
/* available to save private state of FDW */
void *ri_FdwState;
/* true when modifying foreign table directly */
bool ri_usesFdwDirectModify;
/* list of WithCheckOption's to be checked */
List *ri_WithCheckOptions;
/* list of WithCheckOption expr states */
List *ri_WithCheckOptionExprs;
/* array of constraint-checking expr states */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState **ri_ConstraintExprs;
/* for removing junk attributes from tuples */
JunkFilter *ri_junkFilter;
/* for computing a RETURNING list */
ProjectionInfo *ri_projectReturning;
/* for computing ON CONFLICT DO UPDATE SET */
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
ProjectionInfo *ri_onConflictSetProj;
/* list of ON CONFLICT DO UPDATE exprs (qual) */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState *ri_onConflictSetWhere;
/* partition check expression */
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
List *ri_PartitionCheck;
/* partition check expression state */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState *ri_PartitionCheckExpr;
/* relation descriptor for root partitioned table */
Relation ri_PartitionRoot;
} ResultRelInfo;
/* ----------------
* EState information
*
* Master working state for an Executor invocation
* ----------------
*/
typedef struct EState
{
1999-05-25 18:15:34 +02:00
NodeTag type;
/* Basic state for all query types: */
2003-08-04 02:43:34 +02:00
ScanDirection es_direction; /* current scan direction */
Snapshot es_snapshot; /* time qual to use */
2004-08-29 07:07:03 +02:00
Snapshot es_crosscheck_snapshot; /* crosscheck time qual for RI */
List *es_range_table; /* List of RangeTblEntry */
PlannedStmt *es_plannedstmt; /* link to top of plan tree */
const char *es_sourceText; /* Source text from QueryDesc */
JunkFilter *es_junkFilter; /* top-level junk filter, if any */
/* If query can insert/delete tuples, the command ID to mark them with */
CommandId es_output_cid;
/* Info about target table(s) for insert/update/delete queries: */
2001-03-22 05:01:46 +01:00
ResultRelInfo *es_result_relations; /* array of ResultRelInfos */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
int es_num_result_relations; /* length of array */
ResultRelInfo *es_result_relation_info; /* currently active array elt */
/*
* Info about the target partitioned target table root(s) for
* update/delete queries. They required only to fire any per-statement
* triggers defined on the table. It exists separately from
* es_result_relations, because partitioned tables don't appear in the
* plan tree for the update/delete cases.
*/
ResultRelInfo *es_root_result_relations; /* array of ResultRelInfos */
int es_num_root_result_relations; /* length of the array */
/*
* The following list contains ResultRelInfos created by the tuple
* routing code for partitions that don't already have one.
*/
List *es_tuple_routing_result_relations;
/* Stuff used for firing triggers: */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
List *es_trig_target_relations; /* trigger-only ResultRelInfos */
2010-02-26 03:01:40 +01:00
TupleTableSlot *es_trig_tuple_slot; /* for trigger output tuples */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
TupleTableSlot *es_trig_oldtup_slot; /* for TriggerEnabled */
TupleTableSlot *es_trig_newtup_slot; /* for TriggerEnabled */
/* Parameter info: */
ParamListInfo es_param_list_info; /* values of external params */
ParamExecData *es_param_exec_vals; /* values of internal params */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
QueryEnvironment *es_queryEnv; /* query environment */
/* Other working state: */
MemoryContext es_query_cxt; /* per-query context in which EState lives */
List *es_tupleTable; /* List of TupleTableSlots */
List *es_rowMarks; /* List of ExecRowMarks */
uint64 es_processed; /* # of tuples processed */
1999-05-25 18:15:34 +02:00
Oid es_lastoid; /* last oid processed (by INSERT) */
2001-03-22 05:01:46 +01:00
int es_top_eflags; /* eflags passed to ExecutorStart */
int es_instrument; /* OR of InstrumentOption flags */
bool es_finished; /* true when ExecutorFinish is done */
2003-08-04 02:43:34 +02:00
List *es_exprcontexts; /* List of ExprContexts within EState */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
List *es_subplanstates; /* List of PlanState for SubPlans */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
List *es_auxmodifytables; /* List of secondary ModifyTableStates */
/*
2005-10-15 04:49:52 +02:00
* this ExprContext is for per-output-tuple operations, such as constraint
* checks and index-value computations. It will be reset for each output
* tuple. Note that it will be created only if needed.
*/
ExprContext *es_per_tuple_exprcontext;
/*
* These fields are for re-evaluating plan quals when an updated tuple is
* substituted in READ COMMITTED mode. es_epqTuple[] contains tuples that
2010-02-26 03:01:40 +01:00
* scan plan nodes should return instead of whatever they'd normally
* return, or NULL if nothing to return; es_epqTupleSet[] is true if a
* particular array entry is valid; and es_epqScanDone[] is state to
* remember if the tuple has been returned already. Arrays are of size
* list_length(es_range_table) and are indexed by scan node scanrelid - 1.
*/
2010-02-26 03:01:40 +01:00
HeapTuple *es_epqTuple; /* array of EPQ substitute tuples */
bool *es_epqTupleSet; /* true if EPQ tuple is provided */
bool *es_epqScanDone; /* true if EPQ tuple has been fetched */
bool es_use_parallel_mode; /* can we use parallel workers? */
/* The per-query shared memory area to use for parallel execution. */
struct dsa_area *es_query_dsa;
} EState;
/*
* ExecRowMark -
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
* runtime representation of FOR [KEY] UPDATE/SHARE clauses
*
Allow foreign tables to participate in inheritance. Foreign tables can now be inheritance children, or parents. Much of the system was already ready for this, but we had to fix a few things of course, mostly in the area of planner and executor handling of row locks. As side effects of this, allow foreign tables to have NOT VALID CHECK constraints (and hence to accept ALTER ... VALIDATE CONSTRAINT), and to accept ALTER SET STORAGE and ALTER SET WITH/WITHOUT OIDS. Continuing to disallow these things would've required bizarre and inconsistent special cases in inheritance behavior. Since foreign tables don't enforce CHECK constraints anyway, a NOT VALID one is a complete no-op, but that doesn't mean we shouldn't allow it. And it's possible that some FDWs might have use for SET STORAGE or SET WITH OIDS, though doubtless they will be no-ops for most. An additional change in support of this is that when a ModifyTable node has multiple target tables, they will all now be explicitly identified in EXPLAIN output, for example: Update on pt1 (cost=0.00..321.05 rows=3541 width=46) Update on pt1 Foreign Update on ft1 Foreign Update on ft2 Update on child3 -> Seq Scan on pt1 (cost=0.00..0.00 rows=1 width=46) -> Foreign Scan on ft1 (cost=100.00..148.03 rows=1170 width=46) -> Foreign Scan on ft2 (cost=100.00..148.03 rows=1170 width=46) -> Seq Scan on child3 (cost=0.00..25.00 rows=1200 width=46) This was done mainly to provide an unambiguous place to attach "Remote SQL" fields, but it is useful for inherited updates even when no foreign tables are involved. Shigeru Hanada and Etsuro Fujita, reviewed by Ashutosh Bapat and Kyotaro Horiguchi, some additional hacking by me
2015-03-22 18:53:11 +01:00
* When doing UPDATE, DELETE, or SELECT FOR [KEY] UPDATE/SHARE, we will have an
* ExecRowMark for each non-target relation in the query (except inheritance
Allow foreign tables to participate in inheritance. Foreign tables can now be inheritance children, or parents. Much of the system was already ready for this, but we had to fix a few things of course, mostly in the area of planner and executor handling of row locks. As side effects of this, allow foreign tables to have NOT VALID CHECK constraints (and hence to accept ALTER ... VALIDATE CONSTRAINT), and to accept ALTER SET STORAGE and ALTER SET WITH/WITHOUT OIDS. Continuing to disallow these things would've required bizarre and inconsistent special cases in inheritance behavior. Since foreign tables don't enforce CHECK constraints anyway, a NOT VALID one is a complete no-op, but that doesn't mean we shouldn't allow it. And it's possible that some FDWs might have use for SET STORAGE or SET WITH OIDS, though doubtless they will be no-ops for most. An additional change in support of this is that when a ModifyTable node has multiple target tables, they will all now be explicitly identified in EXPLAIN output, for example: Update on pt1 (cost=0.00..321.05 rows=3541 width=46) Update on pt1 Foreign Update on ft1 Foreign Update on ft2 Update on child3 -> Seq Scan on pt1 (cost=0.00..0.00 rows=1 width=46) -> Foreign Scan on ft1 (cost=100.00..148.03 rows=1170 width=46) -> Foreign Scan on ft2 (cost=100.00..148.03 rows=1170 width=46) -> Seq Scan on child3 (cost=0.00..25.00 rows=1200 width=46) This was done mainly to provide an unambiguous place to attach "Remote SQL" fields, but it is useful for inherited updates even when no foreign tables are involved. Shigeru Hanada and Etsuro Fujita, reviewed by Ashutosh Bapat and Kyotaro Horiguchi, some additional hacking by me
2015-03-22 18:53:11 +01:00
* parent RTEs, which can be ignored at runtime). Virtual relations such as
* subqueries-in-FROM will have an ExecRowMark with relation == NULL. See
* PlanRowMark for details about most of the fields. In addition to fields
* directly derived from PlanRowMark, we store an activity flag (to denote
* inactive children of inheritance trees), curCtid, which is used by the
* WHERE CURRENT OF code, and ermExtra, which is available for use by the plan
* node that sources the relation (e.g., for a foreign table the FDW can use
* ermExtra to hold information).
*
* EState->es_rowMarks is a list of these structs.
*/
typedef struct ExecRowMark
{
Relation relation; /* opened and suitably locked relation */
Allow foreign tables to participate in inheritance. Foreign tables can now be inheritance children, or parents. Much of the system was already ready for this, but we had to fix a few things of course, mostly in the area of planner and executor handling of row locks. As side effects of this, allow foreign tables to have NOT VALID CHECK constraints (and hence to accept ALTER ... VALIDATE CONSTRAINT), and to accept ALTER SET STORAGE and ALTER SET WITH/WITHOUT OIDS. Continuing to disallow these things would've required bizarre and inconsistent special cases in inheritance behavior. Since foreign tables don't enforce CHECK constraints anyway, a NOT VALID one is a complete no-op, but that doesn't mean we shouldn't allow it. And it's possible that some FDWs might have use for SET STORAGE or SET WITH OIDS, though doubtless they will be no-ops for most. An additional change in support of this is that when a ModifyTable node has multiple target tables, they will all now be explicitly identified in EXPLAIN output, for example: Update on pt1 (cost=0.00..321.05 rows=3541 width=46) Update on pt1 Foreign Update on ft1 Foreign Update on ft2 Update on child3 -> Seq Scan on pt1 (cost=0.00..0.00 rows=1 width=46) -> Foreign Scan on ft1 (cost=100.00..148.03 rows=1170 width=46) -> Foreign Scan on ft2 (cost=100.00..148.03 rows=1170 width=46) -> Seq Scan on child3 (cost=0.00..25.00 rows=1200 width=46) This was done mainly to provide an unambiguous place to attach "Remote SQL" fields, but it is useful for inherited updates even when no foreign tables are involved. Shigeru Hanada and Etsuro Fujita, reviewed by Ashutosh Bapat and Kyotaro Horiguchi, some additional hacking by me
2015-03-22 18:53:11 +01:00
Oid relid; /* its OID (or InvalidOid, if subquery) */
Index rti; /* its range table index */
Index prti; /* parent range table index, if child */
Index rowmarkId; /* unique identifier for resjunk columns */
2010-02-26 03:01:40 +01:00
RowMarkType markType; /* see enum in nodes/plannodes.h */
LockClauseStrength strength; /* LockingClause's strength, or LCS_NONE */
LockWaitPolicy waitPolicy; /* NOWAIT and SKIP LOCKED */
bool ermActive; /* is this mark relevant for current tuple? */
ItemPointerData curCtid; /* ctid of currently locked tuple, if any */
void *ermExtra; /* available for use by relation source node */
} ExecRowMark;
/*
* ExecAuxRowMark -
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
* additional runtime representation of FOR [KEY] UPDATE/SHARE clauses
*
* Each LockRows and ModifyTable node keeps a list of the rowmarks it needs to
* deal with. In addition to a pointer to the related entry in es_rowMarks,
* this struct carries the column number(s) of the resjunk columns associated
* with the rowmark (see comments for PlanRowMark for more detail). In the
* case of ModifyTable, there has to be a separate ExecAuxRowMark list for
* each child plan, because the resjunk columns could be at different physical
* column positions in different subplans.
*/
typedef struct ExecAuxRowMark
{
ExecRowMark *rowmark; /* related entry in es_rowMarks */
AttrNumber ctidAttNo; /* resno of ctid junk attribute, if any */
AttrNumber toidAttNo; /* resno of tableoid junk attribute, if any */
AttrNumber wholeAttNo; /* resno of whole-row junk attribute, if any */
} ExecAuxRowMark;
/* ----------------------------------------------------------------
* Tuple Hash Tables
*
* All-in-memory tuple hash tables are used for a number of purposes.
*
* Note: tab_hash_funcs are for the key datatype(s) stored in the table,
* and tab_eq_funcs are non-cross-type equality operators for those types.
* Normally these are the only functions used, but FindTupleHashEntry()
* supports searching a hashtable using cross-data-type hashing. For that,
* the caller must supply hash functions for the LHS datatype as well as
* the cross-type equality operators to use. in_hash_funcs and cur_eq_func
* are set to point to the caller's function arrays while doing such a search.
* During LookupTupleHashEntry(), they point to tab_hash_funcs and
* tab_eq_func respectively.
* ----------------------------------------------------------------
*/
typedef struct TupleHashEntryData *TupleHashEntry;
typedef struct TupleHashTableData *TupleHashTable;
typedef struct TupleHashEntryData
{
MinimalTuple firstTuple; /* copy of first tuple in this group */
void *additional; /* user data */
uint32 status; /* hash status */
uint32 hash; /* hash value (cached) */
} TupleHashEntryData;
/* define parameters necessary to generate the tuple hash table interface */
#define SH_PREFIX tuplehash
#define SH_ELEMENT_TYPE TupleHashEntryData
#define SH_KEY_TYPE MinimalTuple
#define SH_SCOPE extern
#define SH_DECLARE
#include "lib/simplehash.h"
typedef struct TupleHashTableData
{
tuplehash_hash *hashtab; /* underlying hash table */
int numCols; /* number of columns in lookup key */
AttrNumber *keyColIdx; /* attr numbers of key columns */
2007-11-15 22:14:46 +01:00
FmgrInfo *tab_hash_funcs; /* hash functions for table datatype(s) */
ExprState *tab_eq_func; /* comparator for table datatype(s) */
MemoryContext tablecxt; /* memory context containing table */
MemoryContext tempcxt; /* context for function evaluations */
Size entrysize; /* actual size to make each hash entry */
TupleTableSlot *tableslot; /* slot for referencing table entries */
/* The following fields are set transiently for each table search: */
TupleTableSlot *inputslot; /* current input tuple's slot */
FmgrInfo *in_hash_funcs; /* hash functions for input datatype(s) */
ExprState *cur_eq_func; /* comparator for for input vs. table */
uint32 hash_iv; /* hash-function IV */
ExprContext *exprcontext; /* expression context */
2017-06-21 20:39:04 +02:00
} TupleHashTableData;
typedef tuplehash_iterator TupleHashIterator;
/*
* Use InitTupleHashIterator/TermTupleHashIterator for a read/write scan.
* Use ResetTupleHashIterator if the table can be frozen (in this case no
* explicit scan termination is needed).
*/
#define InitTupleHashIterator(htable, iter) \
tuplehash_start_iterate(htable->hashtab, iter)
#define TermTupleHashIterator(iter) \
((void) 0)
#define ResetTupleHashIterator(htable, iter) \
InitTupleHashIterator(htable, iter)
#define ScanTupleHashTable(htable, iter) \
tuplehash_iterate(htable->hashtab, iter)
/* ----------------------------------------------------------------
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
* Expression State Nodes
*
* Formerly, there was a separate executor expression state node corresponding
* to each node in a planned expression tree. That's no longer the case; for
* common expression node types, all the execution info is embedded into
* step(s) in a single ExprState node. But we still have a few executor state
* node types for selected expression node types, mostly those in which info
* has to be shared with other parts of the execution state tree.
* ----------------------------------------------------------------
*/
/* ----------------
* AggrefExprState node
* ----------------
*/
typedef struct AggrefExprState
{
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
NodeTag type;
Aggref *aggref; /* expression plan node */
int aggno; /* ID number for agg within its plan node */
} AggrefExprState;
/* ----------------
* WindowFuncExprState node
* ----------------
*/
typedef struct WindowFuncExprState
{
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
NodeTag type;
WindowFunc *wfunc; /* expression plan node */
List *args; /* ExprStates for argument expressions */
ExprState *aggfilter; /* FILTER expression */
int wfuncno; /* ID number for wfunc within its plan node */
} WindowFuncExprState;
/* ----------------
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
* SetExprState node
*
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
* State for evaluating a potentially set-returning expression (like FuncExpr
* or OpExpr). In some cases, like some of the expressions in ROWS FROM(...)
* the expression might not be a SRF, but nonetheless it uses the same
* machinery as SRFs; it will be treated as a SRF returning a single row.
* ----------------
*/
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
typedef struct SetExprState
{
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
NodeTag type;
Expr *expr; /* expression plan node */
List *args; /* ExprStates for argument expressions */
/*
* In ROWS FROM, functions can be inlined, removing the FuncExpr normally
* inside. In such a case this is the compiled expression (which cannot
* return a set), which'll be evaluated using regular ExecEvalExpr().
*/
ExprState *elidedFuncState;
/*
2005-10-15 04:49:52 +02:00
* Function manager's lookup info for the target function. If func.fn_oid
* is InvalidOid, we haven't initialized it yet (nor any of the following
Move targetlist SRF handling from expression evaluation to new executor node. Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT generate_series(1,5)) so far was done in the expression evaluation (i.e. ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code. This meant that most executor nodes performing projection, and most expression evaluation functions, had to deal with the possibility that an evaluated expression could return a set of return values. That's bad because it leads to repeated code in a lot of places. It also, and that's my (Andres's) motivation, made it a lot harder to implement a more efficient way of doing expression evaluation. To fix this, introduce a new executor node (ProjectSet) that can evaluate targetlists containing one or more SRFs. To avoid the complexity of the old way of handling nested expressions returning sets (e.g. having to pass up ExprDoneCond, and dealing with arguments to functions returning sets etc.), those SRFs can only be at the top level of the node's targetlist. The planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is only necessary in ProjectSet nodes and that SRFs are only present at the top level of the node's targetlist. If there are nested SRFs the planner creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get input from an underlying node. We also discussed and prototyped evaluating targetlist SRFs using ROWS FROM(), but that turned out to be more complicated than we'd hoped. While moving SRF evaluation to ProjectSet would allow to retain the old "least common multiple" behavior when multiple SRFs are present in one targetlist (i.e. continue returning rows until all SRFs are at the end of their input at the same time), we decided to instead only return rows till all SRFs are exhausted, returning NULL for already exhausted ones. We deemed the previous behavior to be too confusing, unexpected and actually not particularly useful. As a side effect, the previously prohibited case of multiple set returning arguments to a function, is now allowed. Not because it's particularly desirable, but because it ends up working and there seems to be no argument for adding code to prohibit it. Currently the behavior for COALESCE and CASE containing SRFs has changed, returning multiple rows from the expression, even when the SRF containing "arm" of the expression is not evaluated. That's because the SRFs are evaluated in a separate ProjectSet node. As that's quite confusing, we're likely to instead prohibit SRFs in those places. But that's still being discussed, and the code would reside in places not touched here, so that's a task for later. There's a lot of, now superfluous, code dealing with set return expressions around. But as the changes to get rid of those are verbose largely boring, it seems better for readability to keep the cleanup as a separate commit. Author: Tom Lane and Andres Freund Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-18 21:46:50 +01:00
* fields, except funcReturnsSet).
*/
FmgrInfo func;
/*
* For a set-returning function (SRF) that returns a tuplestore, we keep
* the tuplestore here and dole out the result rows one at a time. The
* slot holds the row currently being returned.
*/
Tuplestorestate *funcResultStore;
TupleTableSlot *funcResultSlot;
/*
* In some cases we need to compute a tuple descriptor for the function's
* output. If so, it's stored here.
*/
TupleDesc funcResultDesc;
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
bool funcReturnsTuple; /* valid when funcResultDesc isn't NULL */
Move targetlist SRF handling from expression evaluation to new executor node. Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT generate_series(1,5)) so far was done in the expression evaluation (i.e. ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code. This meant that most executor nodes performing projection, and most expression evaluation functions, had to deal with the possibility that an evaluated expression could return a set of return values. That's bad because it leads to repeated code in a lot of places. It also, and that's my (Andres's) motivation, made it a lot harder to implement a more efficient way of doing expression evaluation. To fix this, introduce a new executor node (ProjectSet) that can evaluate targetlists containing one or more SRFs. To avoid the complexity of the old way of handling nested expressions returning sets (e.g. having to pass up ExprDoneCond, and dealing with arguments to functions returning sets etc.), those SRFs can only be at the top level of the node's targetlist. The planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is only necessary in ProjectSet nodes and that SRFs are only present at the top level of the node's targetlist. If there are nested SRFs the planner creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get input from an underlying node. We also discussed and prototyped evaluating targetlist SRFs using ROWS FROM(), but that turned out to be more complicated than we'd hoped. While moving SRF evaluation to ProjectSet would allow to retain the old "least common multiple" behavior when multiple SRFs are present in one targetlist (i.e. continue returning rows until all SRFs are at the end of their input at the same time), we decided to instead only return rows till all SRFs are exhausted, returning NULL for already exhausted ones. We deemed the previous behavior to be too confusing, unexpected and actually not particularly useful. As a side effect, the previously prohibited case of multiple set returning arguments to a function, is now allowed. Not because it's particularly desirable, but because it ends up working and there seems to be no argument for adding code to prohibit it. Currently the behavior for COALESCE and CASE containing SRFs has changed, returning multiple rows from the expression, even when the SRF containing "arm" of the expression is not evaluated. That's because the SRFs are evaluated in a separate ProjectSet node. As that's quite confusing, we're likely to instead prohibit SRFs in those places. But that's still being discussed, and the code would reside in places not touched here, so that's a task for later. There's a lot of, now superfluous, code dealing with set return expressions around. But as the changes to get rid of those are verbose largely boring, it seems better for readability to keep the cleanup as a separate commit. Author: Tom Lane and Andres Freund Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-18 21:46:50 +01:00
/*
* Remember whether the function is declared to return a set. This is set
* by ExecInitExpr, and is valid even before the FmgrInfo is set up.
*/
bool funcReturnsSet;
/*
* setArgsValid is true when we are evaluating a set-returning function
* that uses value-per-call mode and we are in the middle of a call
* series; we want to pass the same argument values to the function again
* (and again, until it returns ExprEndResult). This indicates that
* fcinfo_data already contains valid argument data.
*/
bool setArgsValid;
/*
* Flag to remember whether we have registered a shutdown callback for
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
* this SetExprState. We do so only if funcResultStore or setArgsValid
* has been set at least once (since all the callback is for is to release
* the tuplestore or clear setArgsValid).
*/
bool shutdown_reg; /* a shutdown callback is registered */
/*
* Call parameter structure for the function. This has been initialized
* (by InitFunctionCallInfoData) if func.fn_oid is valid. It also saves
* argument values between calls, when setArgsValid is true.
*/
FunctionCallInfoData fcinfo_data;
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
} SetExprState;
/* ----------------
* SubPlanState node
* ----------------
*/
typedef struct SubPlanState
{
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
NodeTag type;
SubPlan *subplan; /* expression plan node */
2003-08-04 02:43:34 +02:00
struct PlanState *planstate; /* subselect plan's state tree */
struct PlanState *parent; /* parent plan node's state tree */
ExprState *testexpr; /* state of combining expression */
List *args; /* states of argument expression(s) */
HeapTuple curTuple; /* copy of most recent tuple from subplan */
Datum curArray; /* most recent array from ARRAY() subplan */
/* these are used when hashing the subselect's output: */
TupleDesc descRight; /* subselect desc after projection */
ProjectionInfo *projLeft; /* for projecting lefthand exprs */
ProjectionInfo *projRight; /* for projecting subselect output */
TupleHashTable hashtable; /* hash table for no-nulls subselect rows */
TupleHashTable hashnulls; /* hash table for rows with null(s) */
bool havehashrows; /* true if hashtable is not empty */
bool havenullrows; /* true if hashnulls is not empty */
2011-04-10 17:42:00 +02:00
MemoryContext hashtablecxt; /* memory context containing hash tables */
MemoryContext hashtempcxt; /* temp memory context for hash tables */
ExprContext *innerecontext; /* econtext for computing inner tuples */
AttrNumber *keyColIdx; /* control data for hash tables */
Oid *tab_eq_funcoids;/* equality func oids for table datatype(s) */
2007-11-15 22:14:46 +01:00
FmgrInfo *tab_hash_funcs; /* hash functions for table datatype(s) */
FmgrInfo *tab_eq_funcs; /* equality functions for table datatype(s) */
2007-11-15 22:14:46 +01:00
FmgrInfo *lhs_hash_funcs; /* hash functions for lefthand datatype(s) */
FmgrInfo *cur_eq_funcs; /* equality functions for LHS vs. table */
ExprState *cur_eq_comp; /* equality comparator for LHS vs. table */
} SubPlanState;
/* ----------------
* AlternativeSubPlanState node
* ----------------
*/
typedef struct AlternativeSubPlanState
{
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
NodeTag type;
AlternativeSubPlan *subplan; /* expression plan node */
List *subplans; /* SubPlanStates of alternative subplans */
int active; /* list index of the one we're using */
} AlternativeSubPlanState;
/*
* DomainConstraintState - one item to check during CoerceToDomain
*
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
* Note: we consider this to be part of an ExprState tree, so we give it
* a name following the xxxState convention. But there's no directly
* associated plan-tree node.
*/
typedef enum DomainConstraintType
{
DOM_CONSTRAINT_NOTNULL,
DOM_CONSTRAINT_CHECK
} DomainConstraintType;
typedef struct DomainConstraintState
{
NodeTag type;
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
DomainConstraintType constrainttype; /* constraint type */
char *name; /* name of constraint (for error msgs) */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
Expr *check_expr; /* for CHECK, a boolean expression */
ExprState *check_exprstate; /* check_expr's eval state, or NULL */
} DomainConstraintState;
/* ----------------------------------------------------------------
* Executor State Trees
*
* An executing query has a PlanState tree paralleling the Plan tree
* that describes the plan.
* ----------------------------------------------------------------
*/
/* ----------------
* ExecProcNodeMtd
*
* This is the method called by ExecProcNode to return the next tuple
* from an executor node. It returns NULL, or an empty TupleTableSlot,
* if no more tuples are available.
* ----------------
*/
typedef TupleTableSlot *(*ExecProcNodeMtd) (struct PlanState *pstate);
/* ----------------
* PlanState node
*
* We never actually instantiate any PlanState nodes; this is just the common
* abstract superclass for all PlanState-type nodes.
* ----------------
*/
typedef struct PlanState
{
NodeTag type;
Plan *plan; /* associated Plan node */
EState *state; /* at execution time, states of individual
2005-10-15 04:49:52 +02:00
* nodes point to one EState for the whole
* top-level plan */
ExecProcNodeMtd ExecProcNode; /* function to return next tuple */
ExecProcNodeMtd ExecProcNodeReal; /* actual function, if above is a
* wrapper */
Instrumentation *instrument; /* Optional runtime stats for this node */
2016-06-10 00:02:36 +02:00
WorkerInstrumentation *worker_instrument; /* per-worker instrumentation */
/*
2005-10-15 04:49:52 +02:00
* Common structural data for all Plan types. These links to subsidiary
* state trees parallel links in the associated plan tree (except for the
* subPlan list, which does not exist in the plan tree).
*/
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState *qual; /* boolean qual condition */
2003-08-04 02:43:34 +02:00
struct PlanState *lefttree; /* input plan tree(s) */
struct PlanState *righttree;
2005-10-15 04:49:52 +02:00
List *initPlan; /* Init SubPlanState nodes (un-correlated expr
* subselects) */
List *subPlan; /* SubPlanState nodes in my expressions */
/*
* State for management of parameter-change-driven rescanning
*/
Bitmapset *chgParam; /* set of IDs of changed Params */
/*
* Other run-time state needed by most if not all node types.
*/
2003-08-04 02:43:34 +02:00
TupleTableSlot *ps_ResultTupleSlot; /* slot for my result tuples */
ExprContext *ps_ExprContext; /* node's expression-evaluation context */
ProjectionInfo *ps_ProjInfo; /* info for doing tuple projection */
} PlanState;
/* ----------------
2010-10-26 10:15:17 +02:00
* these are defined to avoid confusion problems with "left"
* and "right" and "inner" and "outer". The convention is that
* the "left" plan is the "outer" plan and the "right" plan is
* the inner plan, but these make the code more readable.
* ----------------
*/
#define innerPlanState(node) (((PlanState *)(node))->righttree)
#define outerPlanState(node) (((PlanState *)(node))->lefttree)
/* Macros for inline access to certain instrumentation counters */
#define InstrCountFiltered1(node, delta) \
do { \
if (((PlanState *)(node))->instrument) \
((PlanState *)(node))->instrument->nfiltered1 += (delta); \
} while(0)
#define InstrCountFiltered2(node, delta) \
do { \
if (((PlanState *)(node))->instrument) \
((PlanState *)(node))->instrument->nfiltered2 += (delta); \
} while(0)
/*
* EPQState is state for executing an EvalPlanQual recheck on a candidate
* tuple in ModifyTable or LockRows. The estate and planstate fields are
* NULL if inactive.
*/
typedef struct EPQState
{
EState *estate; /* subsidiary EState */
PlanState *planstate; /* plan state tree ready to be executed */
TupleTableSlot *origslot; /* original output tuple to be rechecked */
Plan *plan; /* plan tree to be executed */
List *arowMarks; /* ExecAuxRowMarks (non-locking only) */
int epqParam; /* ID of Param to force scan node re-eval */
} EPQState;
/* ----------------
* ResultState information
* ----------------
*/
typedef struct ResultState
{
PlanState ps; /* its first field is NodeTag */
ExprState *resconstantqual;
bool rs_done; /* are we done? */
bool rs_checkqual; /* do we need to check the qual? */
} ResultState;
Move targetlist SRF handling from expression evaluation to new executor node. Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT generate_series(1,5)) so far was done in the expression evaluation (i.e. ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code. This meant that most executor nodes performing projection, and most expression evaluation functions, had to deal with the possibility that an evaluated expression could return a set of return values. That's bad because it leads to repeated code in a lot of places. It also, and that's my (Andres's) motivation, made it a lot harder to implement a more efficient way of doing expression evaluation. To fix this, introduce a new executor node (ProjectSet) that can evaluate targetlists containing one or more SRFs. To avoid the complexity of the old way of handling nested expressions returning sets (e.g. having to pass up ExprDoneCond, and dealing with arguments to functions returning sets etc.), those SRFs can only be at the top level of the node's targetlist. The planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is only necessary in ProjectSet nodes and that SRFs are only present at the top level of the node's targetlist. If there are nested SRFs the planner creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get input from an underlying node. We also discussed and prototyped evaluating targetlist SRFs using ROWS FROM(), but that turned out to be more complicated than we'd hoped. While moving SRF evaluation to ProjectSet would allow to retain the old "least common multiple" behavior when multiple SRFs are present in one targetlist (i.e. continue returning rows until all SRFs are at the end of their input at the same time), we decided to instead only return rows till all SRFs are exhausted, returning NULL for already exhausted ones. We deemed the previous behavior to be too confusing, unexpected and actually not particularly useful. As a side effect, the previously prohibited case of multiple set returning arguments to a function, is now allowed. Not because it's particularly desirable, but because it ends up working and there seems to be no argument for adding code to prohibit it. Currently the behavior for COALESCE and CASE containing SRFs has changed, returning multiple rows from the expression, even when the SRF containing "arm" of the expression is not evaluated. That's because the SRFs are evaluated in a separate ProjectSet node. As that's quite confusing, we're likely to instead prohibit SRFs in those places. But that's still being discussed, and the code would reside in places not touched here, so that's a task for later. There's a lot of, now superfluous, code dealing with set return expressions around. But as the changes to get rid of those are verbose largely boring, it seems better for readability to keep the cleanup as a separate commit. Author: Tom Lane and Andres Freund Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-18 21:46:50 +01:00
/* ----------------
* ProjectSetState information
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
*
* Note: at least one of the "elems" will be a SetExprState; the rest are
* regular ExprStates.
Move targetlist SRF handling from expression evaluation to new executor node. Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT generate_series(1,5)) so far was done in the expression evaluation (i.e. ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code. This meant that most executor nodes performing projection, and most expression evaluation functions, had to deal with the possibility that an evaluated expression could return a set of return values. That's bad because it leads to repeated code in a lot of places. It also, and that's my (Andres's) motivation, made it a lot harder to implement a more efficient way of doing expression evaluation. To fix this, introduce a new executor node (ProjectSet) that can evaluate targetlists containing one or more SRFs. To avoid the complexity of the old way of handling nested expressions returning sets (e.g. having to pass up ExprDoneCond, and dealing with arguments to functions returning sets etc.), those SRFs can only be at the top level of the node's targetlist. The planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is only necessary in ProjectSet nodes and that SRFs are only present at the top level of the node's targetlist. If there are nested SRFs the planner creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get input from an underlying node. We also discussed and prototyped evaluating targetlist SRFs using ROWS FROM(), but that turned out to be more complicated than we'd hoped. While moving SRF evaluation to ProjectSet would allow to retain the old "least common multiple" behavior when multiple SRFs are present in one targetlist (i.e. continue returning rows until all SRFs are at the end of their input at the same time), we decided to instead only return rows till all SRFs are exhausted, returning NULL for already exhausted ones. We deemed the previous behavior to be too confusing, unexpected and actually not particularly useful. As a side effect, the previously prohibited case of multiple set returning arguments to a function, is now allowed. Not because it's particularly desirable, but because it ends up working and there seems to be no argument for adding code to prohibit it. Currently the behavior for COALESCE and CASE containing SRFs has changed, returning multiple rows from the expression, even when the SRF containing "arm" of the expression is not evaluated. That's because the SRFs are evaluated in a separate ProjectSet node. As that's quite confusing, we're likely to instead prohibit SRFs in those places. But that's still being discussed, and the code would reside in places not touched here, so that's a task for later. There's a lot of, now superfluous, code dealing with set return expressions around. But as the changes to get rid of those are verbose largely boring, it seems better for readability to keep the cleanup as a separate commit. Author: Tom Lane and Andres Freund Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-18 21:46:50 +01:00
* ----------------
*/
typedef struct ProjectSetState
{
PlanState ps; /* its first field is NodeTag */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
Node **elems; /* array of expression states */
Move targetlist SRF handling from expression evaluation to new executor node. Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT generate_series(1,5)) so far was done in the expression evaluation (i.e. ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code. This meant that most executor nodes performing projection, and most expression evaluation functions, had to deal with the possibility that an evaluated expression could return a set of return values. That's bad because it leads to repeated code in a lot of places. It also, and that's my (Andres's) motivation, made it a lot harder to implement a more efficient way of doing expression evaluation. To fix this, introduce a new executor node (ProjectSet) that can evaluate targetlists containing one or more SRFs. To avoid the complexity of the old way of handling nested expressions returning sets (e.g. having to pass up ExprDoneCond, and dealing with arguments to functions returning sets etc.), those SRFs can only be at the top level of the node's targetlist. The planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is only necessary in ProjectSet nodes and that SRFs are only present at the top level of the node's targetlist. If there are nested SRFs the planner creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get input from an underlying node. We also discussed and prototyped evaluating targetlist SRFs using ROWS FROM(), but that turned out to be more complicated than we'd hoped. While moving SRF evaluation to ProjectSet would allow to retain the old "least common multiple" behavior when multiple SRFs are present in one targetlist (i.e. continue returning rows until all SRFs are at the end of their input at the same time), we decided to instead only return rows till all SRFs are exhausted, returning NULL for already exhausted ones. We deemed the previous behavior to be too confusing, unexpected and actually not particularly useful. As a side effect, the previously prohibited case of multiple set returning arguments to a function, is now allowed. Not because it's particularly desirable, but because it ends up working and there seems to be no argument for adding code to prohibit it. Currently the behavior for COALESCE and CASE containing SRFs has changed, returning multiple rows from the expression, even when the SRF containing "arm" of the expression is not evaluated. That's because the SRFs are evaluated in a separate ProjectSet node. As that's quite confusing, we're likely to instead prohibit SRFs in those places. But that's still being discussed, and the code would reside in places not touched here, so that's a task for later. There's a lot of, now superfluous, code dealing with set return expressions around. But as the changes to get rid of those are verbose largely boring, it seems better for readability to keep the cleanup as a separate commit. Author: Tom Lane and Andres Freund Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-18 21:46:50 +01:00
ExprDoneCond *elemdone; /* array of per-SRF is-done states */
int nelems; /* length of elemdone[] array */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
bool pending_srf_tuples; /* still evaluating srfs in tlist? */
MemoryContext argcontext; /* context for SRF arguments */
Move targetlist SRF handling from expression evaluation to new executor node. Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT generate_series(1,5)) so far was done in the expression evaluation (i.e. ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code. This meant that most executor nodes performing projection, and most expression evaluation functions, had to deal with the possibility that an evaluated expression could return a set of return values. That's bad because it leads to repeated code in a lot of places. It also, and that's my (Andres's) motivation, made it a lot harder to implement a more efficient way of doing expression evaluation. To fix this, introduce a new executor node (ProjectSet) that can evaluate targetlists containing one or more SRFs. To avoid the complexity of the old way of handling nested expressions returning sets (e.g. having to pass up ExprDoneCond, and dealing with arguments to functions returning sets etc.), those SRFs can only be at the top level of the node's targetlist. The planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is only necessary in ProjectSet nodes and that SRFs are only present at the top level of the node's targetlist. If there are nested SRFs the planner creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get input from an underlying node. We also discussed and prototyped evaluating targetlist SRFs using ROWS FROM(), but that turned out to be more complicated than we'd hoped. While moving SRF evaluation to ProjectSet would allow to retain the old "least common multiple" behavior when multiple SRFs are present in one targetlist (i.e. continue returning rows until all SRFs are at the end of their input at the same time), we decided to instead only return rows till all SRFs are exhausted, returning NULL for already exhausted ones. We deemed the previous behavior to be too confusing, unexpected and actually not particularly useful. As a side effect, the previously prohibited case of multiple set returning arguments to a function, is now allowed. Not because it's particularly desirable, but because it ends up working and there seems to be no argument for adding code to prohibit it. Currently the behavior for COALESCE and CASE containing SRFs has changed, returning multiple rows from the expression, even when the SRF containing "arm" of the expression is not evaluated. That's because the SRFs are evaluated in a separate ProjectSet node. As that's quite confusing, we're likely to instead prohibit SRFs in those places. But that's still being discussed, and the code would reside in places not touched here, so that's a task for later. There's a lot of, now superfluous, code dealing with set return expressions around. But as the changes to get rid of those are verbose largely boring, it seems better for readability to keep the cleanup as a separate commit. Author: Tom Lane and Andres Freund Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-18 21:46:50 +01:00
} ProjectSetState;
/* ----------------
* ModifyTableState information
* ----------------
*/
typedef struct ModifyTableState
{
2010-02-26 03:01:40 +01:00
PlanState ps; /* its first field is NodeTag */
CmdType operation; /* INSERT, UPDATE, or DELETE */
bool canSetTag; /* do we set the command tag/es_processed? */
bool mt_done; /* are we done? */
2010-02-26 03:01:40 +01:00
PlanState **mt_plans; /* subplans (one per target rel) */
int mt_nplans; /* number of plans in the array */
int mt_whichplan; /* which one is being executed (0..n-1) */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
ResultRelInfo *resultRelInfo; /* per-subplan target relations */
ResultRelInfo *rootResultRelInfo; /* root target relation (partitioned
* table root) */
List **mt_arowmarks; /* per-subplan ExecAuxRowMark lists */
2010-02-26 03:01:40 +01:00
EPQState mt_epqstate; /* for evaluating EvalPlanQual rechecks */
bool fireBSTriggers; /* do we need to fire stmt triggers? */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
OnConflictAction mt_onconflict; /* ON CONFLICT type */
List *mt_arbiterindexes; /* unique index OIDs to arbitrate taking
* alt path */
2015-05-24 03:35:49 +02:00
TupleTableSlot *mt_existing; /* slot to store existing target tuple in */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
List *mt_excludedtlist; /* the excluded pseudo relation's tlist */
TupleTableSlot *mt_conflproj; /* CONFLICT ... SET ... projection target */
struct PartitionTupleRouting *mt_partition_tuple_routing;
/* Tuple-routing support info */
struct TransitionCaptureState *mt_transition_capture;
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
/* controls transition table population for specified operation */
struct TransitionCaptureState *mt_oc_transition_capture;
/* controls transition table population for INSERT...ON CONFLICT UPDATE */
TupleConversionMap **mt_per_subplan_tupconv_maps;
/* Per plan map for tuple conversion from child to root */
} ModifyTableState;
/* ----------------
* AppendState information
*
* nplans how many plans are in the array
* whichplan which plan is being executed (0 .. n-1)
* ----------------
*/
struct AppendState;
typedef struct AppendState AppendState;
struct ParallelAppendState;
typedef struct ParallelAppendState ParallelAppendState;
struct AppendState
{
PlanState ps; /* its first field is NodeTag */
PlanState **appendplans; /* array of PlanStates for my inputs */
int as_nplans;
int as_whichplan;
ParallelAppendState *as_pstate; /* parallel coordination info */
Size pstate_len; /* size of parallel coordination info */
bool (*choose_next_subplan) (AppendState *);
};
/* ----------------
* MergeAppendState information
*
* nplans how many plans are in the array
* nkeys number of sort key columns
* sortkeys sort keys in SortSupport representation
* slots current output tuple of each subplan
* heap heap of active tuples
* initialized true if we have fetched first tuple from each subplan
* ----------------
*/
typedef struct MergeAppendState
{
PlanState ps; /* its first field is NodeTag */
PlanState **mergeplans; /* array of PlanStates for my inputs */
int ms_nplans;
int ms_nkeys;
SortSupport ms_sortkeys; /* array of length ms_nkeys */
TupleTableSlot **ms_slots; /* array of length ms_nplans */
struct binaryheap *ms_heap; /* binary heap of slot indices */
2011-04-10 17:42:00 +02:00
bool ms_initialized; /* are subplans started? */
} MergeAppendState;
/* ----------------
* RecursiveUnionState information
*
* RecursiveUnionState is used for performing a recursive union.
*
* recursing T when we're done scanning the non-recursive term
* intermediate_empty T if intermediate_table is currently empty
* working_table working table (to be scanned by recursive term)
* intermediate_table current recursive output (next generation of WT)
* ----------------
*/
typedef struct RecursiveUnionState
{
PlanState ps; /* its first field is NodeTag */
bool recursing;
bool intermediate_empty;
Tuplestorestate *working_table;
Tuplestorestate *intermediate_table;
/* Remaining fields are unused in UNION ALL case */
Oid *eqfuncoids; /* per-grouping-field equality fns */
FmgrInfo *hashfunctions; /* per-grouping-field hash fns */
MemoryContext tempContext; /* short-term context for comparisons */
TupleHashTable hashtable; /* hash table for tuples already seen */
MemoryContext tableContext; /* memory context containing hash table */
} RecursiveUnionState;
/* ----------------
* BitmapAndState information
* ----------------
*/
typedef struct BitmapAndState
{
PlanState ps; /* its first field is NodeTag */
PlanState **bitmapplans; /* array of PlanStates for my inputs */
int nplans; /* number of input plans */
} BitmapAndState;
/* ----------------
* BitmapOrState information
* ----------------
*/
typedef struct BitmapOrState
{
PlanState ps; /* its first field is NodeTag */
PlanState **bitmapplans; /* array of PlanStates for my inputs */
int nplans; /* number of input plans */
} BitmapOrState;
/* ----------------------------------------------------------------
* Scan State Information
* ----------------------------------------------------------------
*/
/* ----------------
* ScanState information
*
* ScanState extends PlanState for node types that represent
* scans of an underlying relation. It can also be used for nodes
* that scan the output of an underlying plan node --- in that case,
* only ScanTupleSlot is actually useful, and it refers to the tuple
* retrieved from the subplan.
*
* currentRelation relation being scanned (NULL if none)
* currentScanDesc current scan descriptor for scan (NULL if none)
* ScanTupleSlot pointer to slot in tuple table holding scan tuple
* ----------------
*/
typedef struct ScanState
{
PlanState ps; /* its first field is NodeTag */
Relation ss_currentRelation;
HeapScanDesc ss_currentScanDesc;
TupleTableSlot *ss_ScanTupleSlot;
} ScanState;
/* ----------------
* SeqScanState information
* ----------------
*/
typedef struct SeqScanState
{
ScanState ss; /* its first field is NodeTag */
Size pscan_len; /* size of parallel heap scan descriptor */
} SeqScanState;
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
/* ----------------
* SampleScanState information
* ----------------
*/
typedef struct SampleScanState
{
ScanState ss;
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
List *args; /* expr states for TABLESAMPLE params */
ExprState *repeatable; /* expr state for REPEATABLE expr */
/* use struct pointer to avoid including tsmapi.h here */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
struct TsmRoutine *tsmroutine; /* descriptor for tablesample method */
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
void *tsm_state; /* tablesample method can keep state here */
bool use_bulkread; /* use bulkread buffer access strategy? */
bool use_pagemode; /* use page-at-a-time visibility checking? */
bool begun; /* false means need to call BeginSampleScan */
uint32 seed; /* random seed */
} SampleScanState;
/*
* These structs store information about index quals that don't have simple
* constant right-hand sides. See comments for ExecIndexBuildScanKeys()
* for discussion.
*/
typedef struct
{
ScanKey scan_key; /* scankey to put value into */
ExprState *key_expr; /* expr to evaluate to get value */
bool key_toastable; /* is expr's result a toastable datatype? */
} IndexRuntimeKeyInfo;
typedef struct
{
ScanKey scan_key; /* scankey to put value into */
ExprState *array_expr; /* expr to evaluate to get array value */
int next_elem; /* next array element to use */
int num_elems; /* number of elems in current array value */
Datum *elem_values; /* array of num_elems Datums */
bool *elem_nulls; /* array of num_elems is-null flags */
} IndexArrayKeyInfo;
/* ----------------
* IndexScanState information
*
* indexqualorig execution state for indexqualorig expressions
* indexorderbyorig execution state for indexorderbyorig expressions
* ScanKeys Skey structures for index quals
* NumScanKeys number of ScanKeys
* OrderByKeys Skey structures for index ordering operators
* NumOrderByKeys number of OrderByKeys
* RuntimeKeys info about Skeys that must be evaluated at runtime
* NumRuntimeKeys number of RuntimeKeys
* RuntimeKeysReady true if runtime Skeys have been computed
* RuntimeContext expr context for evaling runtime Skeys
* RelationDesc index relation descriptor
* ScanDesc index scan descriptor
*
* ReorderQueue tuples that need reordering due to re-check
* ReachedEnd have we fetched all tuples from index already?
* OrderByValues values of ORDER BY exprs of last fetched tuple
* OrderByNulls null flags for OrderByValues
* SortSupport for reordering ORDER BY exprs
* OrderByTypByVals is the datatype of order by expression pass-by-value?
* OrderByTypLens typlens of the datatypes of order by expressions
* pscan_len size of parallel index scan descriptor
* ----------------
*/
typedef struct IndexScanState
{
ScanState ss; /* its first field is NodeTag */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState *indexqualorig;
List *indexorderbyorig;
ScanKey iss_ScanKeys;
int iss_NumScanKeys;
ScanKey iss_OrderByKeys;
int iss_NumOrderByKeys;
IndexRuntimeKeyInfo *iss_RuntimeKeys;
int iss_NumRuntimeKeys;
bool iss_RuntimeKeysReady;
ExprContext *iss_RuntimeContext;
Relation iss_RelationDesc;
IndexScanDesc iss_ScanDesc;
/* These are needed for re-checking ORDER BY expr ordering */
pairingheap *iss_ReorderQueue;
bool iss_ReachedEnd;
Datum *iss_OrderByValues;
bool *iss_OrderByNulls;
SortSupport iss_SortSupport;
bool *iss_OrderByTypByVals;
int16 *iss_OrderByTypLens;
Size iss_PscanLen;
} IndexScanState;
/* ----------------
* IndexOnlyScanState information
*
* indexqual execution state for indexqual expressions
* ScanKeys Skey structures for index quals
* NumScanKeys number of ScanKeys
* OrderByKeys Skey structures for index ordering operators
* NumOrderByKeys number of OrderByKeys
* RuntimeKeys info about Skeys that must be evaluated at runtime
* NumRuntimeKeys number of RuntimeKeys
* RuntimeKeysReady true if runtime Skeys have been computed
* RuntimeContext expr context for evaling runtime Skeys
* RelationDesc index relation descriptor
* ScanDesc index scan descriptor
* VMBuffer buffer in use for visibility map testing, if any
* HeapFetches number of tuples we were forced to fetch from heap
* ioss_PscanLen Size of parallel index-only scan descriptor
* ----------------
*/
typedef struct IndexOnlyScanState
{
ScanState ss; /* its first field is NodeTag */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState *indexqual;
ScanKey ioss_ScanKeys;
int ioss_NumScanKeys;
ScanKey ioss_OrderByKeys;
int ioss_NumOrderByKeys;
IndexRuntimeKeyInfo *ioss_RuntimeKeys;
int ioss_NumRuntimeKeys;
bool ioss_RuntimeKeysReady;
ExprContext *ioss_RuntimeContext;
Relation ioss_RelationDesc;
IndexScanDesc ioss_ScanDesc;
Buffer ioss_VMBuffer;
long ioss_HeapFetches;
Size ioss_PscanLen;
} IndexOnlyScanState;
/* ----------------
* BitmapIndexScanState information
*
* result bitmap to return output into, or NULL
* ScanKeys Skey structures for index quals
* NumScanKeys number of ScanKeys
* RuntimeKeys info about Skeys that must be evaluated at runtime
* NumRuntimeKeys number of RuntimeKeys
* ArrayKeys info about Skeys that come from ScalarArrayOpExprs
* NumArrayKeys number of ArrayKeys
* RuntimeKeysReady true if runtime Skeys have been computed
* RuntimeContext expr context for evaling runtime Skeys
* RelationDesc index relation descriptor
* ScanDesc index scan descriptor
* ----------------
*/
typedef struct BitmapIndexScanState
{
ScanState ss; /* its first field is NodeTag */
TIDBitmap *biss_result;
ScanKey biss_ScanKeys;
int biss_NumScanKeys;
IndexRuntimeKeyInfo *biss_RuntimeKeys;
int biss_NumRuntimeKeys;
IndexArrayKeyInfo *biss_ArrayKeys;
int biss_NumArrayKeys;
bool biss_RuntimeKeysReady;
ExprContext *biss_RuntimeContext;
Relation biss_RelationDesc;
IndexScanDesc biss_ScanDesc;
} BitmapIndexScanState;
/* ----------------
* SharedBitmapState information
*
* BM_INITIAL TIDBitmap creation is not yet started, so first worker
* to see this state will set the state to BM_INPROGRESS
* and that process will be responsible for creating
* TIDBitmap.
* BM_INPROGRESS TIDBitmap creation is in progress; workers need to
* sleep until it's finished.
* BM_FINISHED TIDBitmap creation is done, so now all workers can
* proceed to iterate over TIDBitmap.
* ----------------
*/
typedef enum
{
BM_INITIAL,
BM_INPROGRESS,
BM_FINISHED
} SharedBitmapState;
/* ----------------
* ParallelBitmapHeapState information
* tbmiterator iterator for scanning current pages
* prefetch_iterator iterator for prefetching ahead of current page
* mutex mutual exclusion for the prefetching variable
* and state
* prefetch_pages # pages prefetch iterator is ahead of current
* prefetch_target current target prefetch distance
* state current state of the TIDBitmap
* cv conditional wait variable
* phs_snapshot_data snapshot data shared to workers
* ----------------
*/
typedef struct ParallelBitmapHeapState
{
dsa_pointer tbmiterator;
dsa_pointer prefetch_iterator;
slock_t mutex;
int prefetch_pages;
int prefetch_target;
SharedBitmapState state;
ConditionVariable cv;
char phs_snapshot_data[FLEXIBLE_ARRAY_MEMBER];
} ParallelBitmapHeapState;
/* ----------------
* BitmapHeapScanState information
*
* bitmapqualorig execution state for bitmapqualorig expressions
* tbm bitmap obtained from child index scan(s)
* tbmiterator iterator for scanning current pages
* tbmres current-page data
* can_skip_fetch can we potentially skip tuple fetches in this scan?
* skip_fetch are we skipping tuple fetches on this page?
* vmbuffer buffer for visibility-map lookups
* pvmbuffer ditto, for prefetched pages
* exact_pages total number of exact pages retrieved
* lossy_pages total number of lossy pages retrieved
* prefetch_iterator iterator for prefetching ahead of current page
* prefetch_pages # pages prefetch iterator is ahead of current
* prefetch_target current target prefetch distance
* prefetch_maximum maximum value for prefetch_target
* pscan_len size of the shared memory for parallel bitmap
* initialized is node is ready to iterate
* shared_tbmiterator shared iterator
* shared_prefetch_iterator shared iterator for prefetching
* pstate shared state for parallel bitmap scan
* ----------------
*/
typedef struct BitmapHeapScanState
{
ScanState ss; /* its first field is NodeTag */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState *bitmapqualorig;
TIDBitmap *tbm;
TBMIterator *tbmiterator;
TBMIterateResult *tbmres;
bool can_skip_fetch;
bool skip_fetch;
Buffer vmbuffer;
Buffer pvmbuffer;
long exact_pages;
long lossy_pages;
TBMIterator *prefetch_iterator;
int prefetch_pages;
int prefetch_target;
int prefetch_maximum;
Size pscan_len;
bool initialized;
TBMSharedIterator *shared_tbmiterator;
TBMSharedIterator *shared_prefetch_iterator;
ParallelBitmapHeapState *pstate;
} BitmapHeapScanState;
/* ----------------
* TidScanState information
*
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
* tidexprs list of TidExpr structs (see nodeTidscan.c)
2007-11-15 22:14:46 +01:00
* isCurrentOf scan has a CurrentOfExpr qual
* NumTids number of tids in this scan
* TidPtr index of currently fetched tid
* TidList evaluated item pointers (array of size NumTids)
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
* htup currently-fetched tuple, if any
* ----------------
*/
typedef struct TidScanState
{
ScanState ss; /* its first field is NodeTag */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
List *tss_tidexprs;
bool tss_isCurrentOf;
int tss_NumTids;
int tss_TidPtr;
ItemPointerData *tss_TidList;
HeapTupleData tss_htup;
} TidScanState;
/* ----------------
* SubqueryScanState information
*
* SubqueryScanState is used for scanning a sub-query in the range table.
* ScanTupleSlot references the current output tuple of the sub-query.
* ----------------
*/
typedef struct SubqueryScanState
{
ScanState ss; /* its first field is NodeTag */
PlanState *subplan;
} SubqueryScanState;
/* ----------------
* FunctionScanState information
*
* Function nodes are used to scan the results of a
* function appearing in FROM (typically a function returning set).
*
* eflags node's capability flags
* ordinality is this scan WITH ORDINALITY?
* simple true if we have 1 function and no ordinality
* ordinal current ordinal column value
* nfuncs number of functions being executed
* funcstates per-function execution states (private in
* nodeFunctionscan.c)
* argcontext memory context to evaluate function arguments in
* ----------------
*/
struct FunctionScanPerFuncState;
typedef struct FunctionScanState
{
ScanState ss; /* its first field is NodeTag */
int eflags;
bool ordinality;
bool simple;
int64 ordinal;
int nfuncs;
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
struct FunctionScanPerFuncState *funcstates; /* array of length nfuncs */
MemoryContext argcontext;
} FunctionScanState;
/* ----------------
* ValuesScanState information
*
* ValuesScan nodes are used to scan the results of a VALUES list
*
* rowcontext per-expression-list context
* exprlists array of expression lists being evaluated
* array_len size of array
* curr_idx current array index (0-based)
*
* Note: ss.ps.ps_ExprContext is used to evaluate any qual or projection
* expressions attached to the node. We create a second ExprContext,
* rowcontext, in which to build the executor expression state for each
* Values sublist. Resetting this context lets us get rid of expression
* state for each row, avoiding major memory leakage over a long values list.
* ----------------
*/
typedef struct ValuesScanState
{
ScanState ss; /* its first field is NodeTag */
ExprContext *rowcontext;
List **exprlists;
int array_len;
int curr_idx;
} ValuesScanState;
/* ----------------
* TableFuncScanState node
*
* Used in table-expression functions like XMLTABLE.
* ----------------
*/
typedef struct TableFuncScanState
{
ScanState ss; /* its first field is NodeTag */
ExprState *docexpr; /* state for document expression */
ExprState *rowexpr; /* state for row-generating expression */
List *colexprs; /* state for column-generating expression */
List *coldefexprs; /* state for column default expressions */
List *ns_names; /* list of str nodes with namespace names */
List *ns_uris; /* list of states of namespace uri exprs */
Bitmapset *notnulls; /* nullability flag for each output column */
void *opaque; /* table builder private space */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
const struct TableFuncRoutine *routine; /* table builder methods */
FmgrInfo *in_functions; /* input function for each column */
Oid *typioparams; /* typioparam for each column */
int64 ordinal; /* row number to be output next */
MemoryContext perValueCxt; /* short life context for value evaluation */
Tuplestorestate *tupstore; /* output tuple store */
} TableFuncScanState;
/* ----------------
* CteScanState information
*
* CteScan nodes are used to scan a CommonTableExpr query.
*
* Multiple CteScan nodes can read out from the same CTE query. We use
* a tuplestore to hold rows that have been read from the CTE query but
* not yet consumed by all readers.
* ----------------
*/
typedef struct CteScanState
{
ScanState ss; /* its first field is NodeTag */
int eflags; /* capability flags to pass to tuplestore */
int readptr; /* index of my tuplestore read pointer */
PlanState *cteplanstate; /* PlanState for the CTE query itself */
/* Link to the "leader" CteScanState (possibly this same node) */
struct CteScanState *leader;
/* The remaining fields are only valid in the "leader" CteScanState */
Tuplestorestate *cte_table; /* rows already read from the CTE query */
bool eof_cte; /* reached end of CTE query? */
} CteScanState;
/* ----------------
* NamedTuplestoreScanState information
*
* NamedTuplestoreScan nodes are used to scan a Tuplestore created and
* named prior to execution of the query. An example is a transition
* table for an AFTER trigger.
*
* Multiple NamedTuplestoreScan nodes can read out from the same Tuplestore.
* ----------------
*/
typedef struct NamedTuplestoreScanState
{
ScanState ss; /* its first field is NodeTag */
int readptr; /* index of my tuplestore read pointer */
TupleDesc tupdesc; /* format of the tuples in the tuplestore */
Tuplestorestate *relation; /* the rows */
} NamedTuplestoreScanState;
/* ----------------
* WorkTableScanState information
*
* WorkTableScan nodes are used to scan the work table created by
* a RecursiveUnion node. We locate the RecursiveUnion node
* during executor startup.
* ----------------
*/
typedef struct WorkTableScanState
{
ScanState ss; /* its first field is NodeTag */
RecursiveUnionState *rustate;
} WorkTableScanState;
/* ----------------
* ForeignScanState information
*
* ForeignScan nodes are used to scan foreign-data tables.
* ----------------
*/
typedef struct ForeignScanState
{
ScanState ss; /* its first field is NodeTag */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
ExprState *fdw_recheck_quals; /* original quals not in ss.ps.qual */
Size pscan_len; /* size of parallel coordination information */
/* use struct pointer to avoid including fdwapi.h here */
struct FdwRoutine *fdwroutine;
void *fdw_state; /* foreign-data wrapper can keep state here */
} ForeignScanState;
/* ----------------
* CustomScanState information
*
* CustomScan nodes are used to execute custom code within executor.
*
* Core code must avoid assuming that the CustomScanState is only as large as
* the structure declared here; providers are allowed to make it the first
* element in a larger structure, and typically would need to do so. The
* struct is actually allocated by the CreateCustomScanState method associated
* with the plan node. Any additional fields can be initialized there, or in
* the BeginCustomScan method.
* ----------------
*/
struct CustomExecMethods;
typedef struct CustomScanState
{
ScanState ss;
uint32 flags; /* mask of CUSTOMPATH_* flags, see
* nodes/extensible.h */
List *custom_ps; /* list of child PlanState nodes, if any */
Size pscan_len; /* size of parallel coordination information */
const struct CustomExecMethods *methods;
} CustomScanState;
/* ----------------------------------------------------------------
* Join State Information
* ----------------------------------------------------------------
*/
/* ----------------
* JoinState information
*
* Superclass for state nodes of join plans.
* ----------------
*/
typedef struct JoinState
{
PlanState ps;
JoinType jointype;
bool single_match; /* True if we should skip to next outer tuple
* after finding one inner match */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState *joinqual; /* JOIN quals (in addition to ps.qual) */
} JoinState;
/* ----------------
* NestLoopState information
*
2001-03-22 05:01:46 +01:00
* NeedNewOuter true if need new outer tuple on next call
* MatchedOuter true if found a join match for current outer tuple
* NullInnerTupleSlot prepared null tuple for left outer joins
* ----------------
*/
typedef struct NestLoopState
{
JoinState js; /* its first field is NodeTag */
bool nl_NeedNewOuter;
bool nl_MatchedOuter;
TupleTableSlot *nl_NullInnerTupleSlot;
} NestLoopState;
/* ----------------
* MergeJoinState information
*
* NumClauses number of mergejoinable join clauses
* Clauses info for each mergejoinable clause
* JoinState current state of ExecMergeJoin state machine
* SkipMarkRestore true if we may skip Mark and Restore operations
* ExtraMarks true to issue extra Mark operations on inner scan
* ConstFalseJoin true if we have a constant-false joinqual
* FillOuter true if should emit unjoined outer tuples anyway
* FillInner true if should emit unjoined inner tuples anyway
2001-03-22 05:01:46 +01:00
* MatchedOuter true if found a join match for current outer tuple
* MatchedInner true if found a join match for current inner tuple
* OuterTupleSlot slot in tuple table for cur outer tuple
* InnerTupleSlot slot in tuple table for cur inner tuple
* MarkedTupleSlot slot in tuple table for marked tuple
* NullOuterTupleSlot prepared null tuple for right outer joins
* NullInnerTupleSlot prepared null tuple for left outer joins
* OuterEContext workspace for computing outer tuple's join values
* InnerEContext workspace for computing inner tuple's join values
* ----------------
*/
/* private in nodeMergejoin.c: */
typedef struct MergeJoinClauseData *MergeJoinClause;
typedef struct MergeJoinState
{
JoinState js; /* its first field is NodeTag */
int mj_NumClauses;
2005-10-15 04:49:52 +02:00
MergeJoinClause mj_Clauses; /* array of length mj_NumClauses */
int mj_JoinState;
bool mj_SkipMarkRestore;
bool mj_ExtraMarks;
bool mj_ConstFalseJoin;
bool mj_FillOuter;
bool mj_FillInner;
bool mj_MatchedOuter;
bool mj_MatchedInner;
TupleTableSlot *mj_OuterTupleSlot;
TupleTableSlot *mj_InnerTupleSlot;
TupleTableSlot *mj_MarkedTupleSlot;
TupleTableSlot *mj_NullOuterTupleSlot;
TupleTableSlot *mj_NullInnerTupleSlot;
ExprContext *mj_OuterEContext;
ExprContext *mj_InnerEContext;
} MergeJoinState;
/* ----------------
* HashJoinState information
*
* hashclauses original form of the hashjoin condition
* hj_OuterHashKeys the outer hash keys in the hashjoin condition
* hj_InnerHashKeys the inner hash keys in the hashjoin condition
* hj_HashOperators the join operators in the hashjoin condition
* hj_HashTable hash table for the hashjoin
* (NULL if table not built yet)
* hj_CurHashValue hash value for current outer tuple
* hj_CurBucketNo regular bucket# for current outer tuple
* hj_CurSkewBucketNo skew bucket# for current outer tuple
* hj_CurTuple last inner tuple matched to current outer
* tuple, or NULL if starting search
* (hj_CurXXX variables are undefined if
* OuterTupleSlot is empty!)
* hj_OuterTupleSlot tuple slot for outer tuples
* hj_HashTupleSlot tuple slot for inner (hashed) tuples
* hj_NullOuterTupleSlot prepared null tuple for right/full outer joins
* hj_NullInnerTupleSlot prepared null tuple for left/full outer joins
* hj_FirstOuterTupleSlot first tuple retrieved from outer plan
* hj_JoinState current state of ExecHashJoin state machine
2001-03-22 05:01:46 +01:00
* hj_MatchedOuter true if found a join match for current outer
* hj_OuterNotEmpty true if outer relation known not empty
* ----------------
*/
/* these structs are defined in executor/hashjoin.h: */
typedef struct HashJoinTupleData *HashJoinTuple;
typedef struct HashJoinTableData *HashJoinTable;
typedef struct HashJoinState
{
JoinState js; /* its first field is NodeTag */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState *hashclauses;
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
List *hj_OuterHashKeys; /* list of ExprState nodes */
List *hj_InnerHashKeys; /* list of ExprState nodes */
List *hj_HashOperators; /* list of operator OIDs */
1999-05-25 18:15:34 +02:00
HashJoinTable hj_HashTable;
uint32 hj_CurHashValue;
1999-05-25 18:15:34 +02:00
int hj_CurBucketNo;
int hj_CurSkewBucketNo;
1999-05-25 18:15:34 +02:00
HashJoinTuple hj_CurTuple;
TupleTableSlot *hj_OuterTupleSlot;
TupleTableSlot *hj_HashTupleSlot;
TupleTableSlot *hj_NullOuterTupleSlot;
TupleTableSlot *hj_NullInnerTupleSlot;
TupleTableSlot *hj_FirstOuterTupleSlot;
int hj_JoinState;
bool hj_MatchedOuter;
bool hj_OuterNotEmpty;
} HashJoinState;
/* ----------------------------------------------------------------
* Materialization State Information
* ----------------------------------------------------------------
*/
/* ----------------
* MaterialState information
*
* materialize nodes are used to materialize the results
* of a subplan into a temporary file.
*
* ss.ss_ScanTupleSlot refers to output of underlying plan.
* ----------------
*/
typedef struct MaterialState
{
ScanState ss; /* its first field is NodeTag */
int eflags; /* capability flags to pass to tuplestore */
2003-08-04 02:43:34 +02:00
bool eof_underlying; /* reached end of underlying plan? */
Tuplestorestate *tuplestorestate;
} MaterialState;
/* ----------------
* Shared memory container for per-worker sort information
* ----------------
*/
typedef struct SharedSortInfo
{
int num_workers;
TuplesortInstrumentation sinstrument[FLEXIBLE_ARRAY_MEMBER];
} SharedSortInfo;
/* ----------------
* SortState information
* ----------------
*/
typedef struct SortState
{
ScanState ss; /* its first field is NodeTag */
bool randomAccess; /* need random access to sort output? */
bool bounded; /* is the result set bounded? */
int64 bound; /* if bounded, how many tuples are needed */
bool sort_Done; /* sort completed yet? */
bool bounded_Done; /* value of bounded we did the sort with */
int64 bound_Done; /* value of bound we did the sort with */
2003-08-04 02:43:34 +02:00
void *tuplesortstate; /* private state of tuplesort.c */
bool am_worker; /* are we a worker? */
SharedSortInfo *shared_info; /* one entry per worker */
} SortState;
/* ---------------------
* GroupState information
* ---------------------
*/
typedef struct GroupState
{
ScanState ss; /* its first field is NodeTag */
ExprState *eqfunction; /* equality function */
bool grp_done; /* indicates completion of Group scan */
} GroupState;
/* ---------------------
* AggState information
*
* ss.ss_ScanTupleSlot refers to output of underlying plan.
*
* Note: ss.ps.ps_ExprContext contains ecxt_aggvalues and
* ecxt_aggnulls arrays, which hold the computed agg values for the current
* input group during evaluation of an Agg node's output tuple(s). We
* create a second ExprContext, tmpcontext, in which to evaluate input
* expressions and run the aggregate transition functions.
* ---------------------
*/
/* these structs are private in nodeAgg.c: */
typedef struct AggStatePerAggData *AggStatePerAgg;
typedef struct AggStatePerTransData *AggStatePerTrans;
typedef struct AggStatePerGroupData *AggStatePerGroup;
Support GROUPING SETS, CUBE and ROLLUP. This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:40:59 +02:00
typedef struct AggStatePerPhaseData *AggStatePerPhase;
typedef struct AggStatePerHashData *AggStatePerHash;
typedef struct AggState
{
ScanState ss; /* its first field is NodeTag */
List *aggs; /* all Aggref nodes in targetlist & quals */
int numaggs; /* length of list (could be zero!) */
int numtrans; /* number of pertrans items */
AggStrategy aggstrategy; /* strategy mode */
AggSplit aggsplit; /* agg-splitting mode, see nodes.h */
Support GROUPING SETS, CUBE and ROLLUP. This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:40:59 +02:00
AggStatePerPhase phase; /* pointer to current phase data */
int numphases; /* number of phases (including phase 0) */
Support GROUPING SETS, CUBE and ROLLUP. This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:40:59 +02:00
int current_phase; /* current phase number */
AggStatePerAgg peragg; /* per-Aggref information */
AggStatePerTrans pertrans; /* per-Trans state information */
ExprContext *hashcontext; /* econtexts for long-lived data (hashtable) */
Support GROUPING SETS, CUBE and ROLLUP. This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:40:59 +02:00
ExprContext **aggcontexts; /* econtexts for long-lived data (per GS) */
ExprContext *tmpcontext; /* econtext for input expressions */
ExprContext *curaggcontext; /* currently active aggcontext */
AggStatePerAgg curperagg; /* currently active aggregate, if any */
AggStatePerTrans curpertrans; /* currently active trans state, if any */
2015-05-24 03:35:49 +02:00
bool input_done; /* indicates end of input */
bool agg_done; /* indicates completion of Agg scan */
Support GROUPING SETS, CUBE and ROLLUP. This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:40:59 +02:00
int projected_set; /* The last projected grouping set */
int current_set; /* The current grouping set being evaluated */
Bitmapset *grouped_cols; /* grouped cols in current projection */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
List *all_grouped_cols; /* list of all grouped cols in DESC order */
Support GROUPING SETS, CUBE and ROLLUP. This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:40:59 +02:00
/* These fields are for grouping set phase data */
int maxsets; /* The max number of sets in any phase */
AggStatePerPhase phases; /* array of all phases */
Tuplesortstate *sort_in; /* sorted input to phases > 1 */
Support GROUPING SETS, CUBE and ROLLUP. This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:40:59 +02:00
Tuplesortstate *sort_out; /* input is copied here for next phase */
TupleTableSlot *sort_slot; /* slot for sort results */
/* these fields are used in AGG_PLAIN and AGG_SORTED modes: */
AggStatePerGroup *pergroups; /* grouping set indexed array of per-group
* pointers */
2003-08-04 02:43:34 +02:00
HeapTuple grp_firstTuple; /* copy of first tuple of current group */
/* these fields are used in AGG_HASHED and AGG_MIXED modes: */
bool table_filled; /* hash table filled yet? */
int num_hashes;
AggStatePerHash perhash; /* array of per-hashtable data */
AggStatePerGroup *hash_pergroup; /* grouping set indexed array of
* per-group pointers */
/* support for evaluation of agg input expressions: */
AggStatePerGroup *all_pergroups; /* array of first ->pergroups, than
* ->hash_pergroup */
ProjectionInfo *combinedproj; /* projection machinery */
1997-09-08 22:59:27 +02:00
} AggState;
/* ----------------
* WindowAggState information
* ----------------
*/
/* these structs are private in nodeWindowAgg.c: */
typedef struct WindowStatePerFuncData *WindowStatePerFunc;
typedef struct WindowStatePerAggData *WindowStatePerAgg;
typedef struct WindowAggState
{
ScanState ss; /* its first field is NodeTag */
/* these fields are filled in by ExecInitExpr: */
List *funcs; /* all WindowFunc nodes in targetlist */
int numfuncs; /* total number of window functions */
int numaggs; /* number that are plain aggregates */
WindowStatePerFunc perfunc; /* per-window-function information */
WindowStatePerAgg peragg; /* per-plain-aggregate information */
ExprState *partEqfunction; /* equality funcs for partition columns */
ExprState *ordEqfunction; /* equality funcs for ordering columns */
Tuplestorestate *buffer; /* stores rows of current partition */
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
2018-02-07 06:06:50 +01:00
int current_ptr; /* read pointer # for current row */
int framehead_ptr; /* read pointer # for frame head, if used */
int frametail_ptr; /* read pointer # for frame tail, if used */
int grouptail_ptr; /* read pointer # for group tail, if used */
int64 spooled_rows; /* total # of rows in buffer */
int64 currentpos; /* position of current row in partition */
int64 frameheadpos; /* current frame head position */
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
2018-02-07 06:06:50 +01:00
int64 frametailpos; /* current frame tail position (frame end+1) */
/* use struct pointer to avoid including windowapi.h here */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
struct WindowObjectData *agg_winobj; /* winobj for aggregate fetches */
int64 aggregatedbase; /* start row for current aggregates */
int64 aggregatedupto; /* rows before this one are aggregated */
int frameOptions; /* frame_clause options, see WindowDef */
ExprState *startOffset; /* expression for starting bound offset */
ExprState *endOffset; /* expression for ending bound offset */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
Datum startOffsetValue; /* result of startOffset evaluation */
2010-02-26 03:01:40 +01:00
Datum endOffsetValue; /* result of endOffset evaluation */
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
2018-02-07 06:06:50 +01:00
/* these fields are used with RANGE offset PRECEDING/FOLLOWING: */
FmgrInfo startInRangeFunc; /* in_range function for startOffset */
FmgrInfo endInRangeFunc; /* in_range function for endOffset */
Oid inRangeColl; /* collation for in_range tests */
bool inRangeAsc; /* use ASC sort order for in_range tests? */
bool inRangeNullsFirst; /* nulls sort first for in_range tests? */
/* these fields are used in GROUPS mode: */
int64 currentgroup; /* peer group # of current row in partition */
int64 frameheadgroup; /* peer group # of frame head row */
int64 frametailgroup; /* peer group # of frame tail row */
int64 groupheadpos; /* current row's peer group head position */
int64 grouptailpos; /* " " " " tail position (group end+1) */
MemoryContext partcontext; /* context for partition-lifespan data */
MemoryContext aggcontext; /* shared context for aggregate working data */
MemoryContext curaggcontext; /* current aggregate's working data */
ExprContext *tmpcontext; /* short-term evaluation context */
bool all_first; /* true if the scan is starting */
bool all_done; /* true if the scan is finished */
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
bool partition_spooled; /* true if all tuples in current partition
* have been spooled into tuplestore */
2017-06-21 20:39:04 +02:00
bool more_partitions; /* true if there's more partitions after
* this one */
bool framehead_valid; /* true if frameheadpos is known up to
* date for current row */
bool frametail_valid; /* true if frametailpos is known up to
* date for current row */
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
2018-02-07 06:06:50 +01:00
bool grouptail_valid; /* true if grouptailpos is known up to
* date for current row */
TupleTableSlot *first_part_slot; /* first tuple of current or next
* partition */
Support all SQL:2011 options for window frame clauses. This patch adds the ability to use "RANGE offset PRECEDING/FOLLOWING" frame boundaries in window functions. We'd punted on that back in the original patch to add window functions, because it was not clear how to do it in a reasonably data-type-extensible fashion. That problem is resolved here by adding the ability for btree operator classes to provide an "in_range" support function that defines how to add or subtract the RANGE offset value. Factoring it this way also allows the operator class to avoid overflow problems near the ends of the datatype's range, if it wishes to expend effort on that. (In the committed patch, the integer opclasses handle that issue, but it did not seem worth the trouble to avoid overflow failures for datetime types.) The patch includes in_range support for the integer_ops opfamily (int2/int4/int8) as well as the standard datetime types. Support for other numeric types has been requested, but that seems like suitable material for a follow-on patch. In addition, the patch adds GROUPS mode which counts the offset in ORDER-BY peer groups rather than rows, and it adds the frame_exclusion options specified by SQL:2011. As far as I can see, we are now fully up to spec on window framing options. Existing behaviors remain unchanged, except that I changed the errcode for a couple of existing error reports to meet the SQL spec's expectation that negative "offset" values should be reported as SQLSTATE 22013. Internally and in relevant parts of the documentation, we now consistently use the terminology "offset PRECEDING/FOLLOWING" rather than "value PRECEDING/FOLLOWING", since the term "value" is confusingly vague. Oliver Ford, reviewed and whacked around some by me Discussion: https://postgr.es/m/CAGMVOdu9sivPAxbNN0X+q19Sfv9edEPv=HibOJhB14TJv_RCQg@mail.gmail.com
2018-02-07 06:06:50 +01:00
TupleTableSlot *framehead_slot; /* first tuple of current frame */
TupleTableSlot *frametail_slot; /* first tuple after current frame */
/* temporary slots for tuples fetched back from tuplestore */
TupleTableSlot *agg_row_slot;
TupleTableSlot *temp_slot_1;
TupleTableSlot *temp_slot_2;
} WindowAggState;
/* ----------------
* UniqueState information
*
* Unique nodes are used "on top of" sort nodes to discard
* duplicate tuples returned from the sort phase. Basically
* all it does is compare the current tuple from the subplan
* with the previously fetched tuple (stored in its result slot).
* If the two are identical in all interesting fields, then
* we just fetch another tuple from the sort and try again.
* ----------------
*/
typedef struct UniqueState
{
PlanState ps; /* its first field is NodeTag */
ExprState *eqfunction; /* tuple equality qual */
} UniqueState;
/* ----------------
* GatherState information
*
* Gather nodes launch 1 or more parallel workers, run a subplan
* in those workers, and collect the results.
* ----------------
*/
typedef struct GatherState
{
PlanState ps; /* its first field is NodeTag */
bool initialized; /* workers launched? */
bool need_to_scan_locally; /* need to read from local plan? */
int64 tuples_needed; /* tuple bound, see ExecSetTupleBound */
/* these fields are set up once: */
TupleTableSlot *funnel_slot;
struct ParallelExecutorInfo *pei;
/* all remaining fields are reinitialized during a rescan: */
int nworkers_launched; /* original number of workers */
int nreaders; /* number of still-active workers */
int nextreader; /* next one to try to read from */
struct TupleQueueReader **reader; /* array with nreaders active entries */
} GatherState;
/* ----------------
* GatherMergeState information
*
* Gather merge nodes launch 1 or more parallel workers, run a
* subplan which produces sorted output in each worker, and then
* merge the results into a single sorted stream.
* ----------------
*/
struct GMReaderTupleBuffer; /* private in nodeGatherMerge.c */
typedef struct GatherMergeState
{
PlanState ps; /* its first field is NodeTag */
bool initialized; /* workers launched? */
bool gm_initialized; /* gather_merge_init() done? */
bool need_to_scan_locally; /* need to read from local plan? */
int64 tuples_needed; /* tuple bound, see ExecSetTupleBound */
/* these fields are set up once: */
TupleDesc tupDesc; /* descriptor for subplan result tuples */
int gm_nkeys; /* number of sort columns */
SortSupport gm_sortkeys; /* array of length gm_nkeys */
struct ParallelExecutorInfo *pei;
/* all remaining fields are reinitialized during a rescan */
/* (but the arrays are not reallocated, just cleared) */
int nworkers_launched; /* original number of workers */
int nreaders; /* number of active workers */
TupleTableSlot **gm_slots; /* array with nreaders+1 entries */
struct TupleQueueReader **reader; /* array with nreaders active entries */
struct GMReaderTupleBuffer *gm_tuple_buffers; /* nreaders tuple buffers */
struct binaryheap *gm_heap; /* binary heap of slot indices */
} GatherMergeState;
/* ----------------
* Values displayed by EXPLAIN ANALYZE
* ----------------
*/
typedef struct HashInstrumentation
{
int nbuckets; /* number of buckets at end of execution */
int nbuckets_original; /* planned number of buckets */
int nbatch; /* number of batches at end of execution */
int nbatch_original; /* planned number of batches */
size_t space_peak; /* speak memory usage in bytes */
} HashInstrumentation;
/* ----------------
* Shared memory container for per-worker hash information
* ----------------
*/
typedef struct SharedHashInfo
{
int num_workers;
HashInstrumentation hinstrument[FLEXIBLE_ARRAY_MEMBER];
} SharedHashInfo;
/* ----------------
* HashState information
* ----------------
*/
typedef struct HashState
{
PlanState ps; /* its first field is NodeTag */
HashJoinTable hashtable; /* hash table for the hashjoin */
List *hashkeys; /* list of ExprState nodes */
/* hashkeys is same as parent's hj_InnerHashKeys */
SharedHashInfo *shared_info; /* one entry per worker */
HashInstrumentation *hinstrument; /* this worker's entry */
Add parallel-aware hash joins. Introduce parallel-aware hash joins that appear in EXPLAIN plans as Parallel Hash Join with Parallel Hash. While hash joins could already appear in parallel queries, they were previously always parallel-oblivious and had a partial subplan only on the outer side, meaning that the work of the inner subplan was duplicated in every worker. After this commit, the planner will consider using a partial subplan on the inner side too, using the Parallel Hash node to divide the work over the available CPU cores and combine its results in shared memory. If the join needs to be split into multiple batches in order to respect work_mem, then workers process different batches as much as possible and then work together on the remaining batches. The advantages of a parallel-aware hash join over a parallel-oblivious hash join used in a parallel query are that it: * avoids wasting memory on duplicated hash tables * avoids wasting disk space on duplicated batch files * divides the work of building the hash table over the CPUs One disadvantage is that there is some communication between the participating CPUs which might outweigh the benefits of parallelism in the case of small hash tables. This is avoided by the planner's existing reluctance to supply partial plans for small scans, but it may be necessary to estimate synchronization costs in future if that situation changes. Another is that outer batch 0 must be written to disk if multiple batches are required. A potential future advantage of parallel-aware hash joins is that right and full outer joins could be supported, since there is a single set of matched bits for each hashtable, but that is not yet implemented. A new GUC enable_parallel_hash is defined to control the feature, defaulting to on. Author: Thomas Munro Reviewed-By: Andres Freund, Robert Haas Tested-By: Rafia Sabih, Prabhat Sahu Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com https://postgr.es/m/CAEepm=37HKyJ4U6XOLi=JgfSHM3o6B-GaeO-6hkOmneTDkH+Uw@mail.gmail.com
2017-12-21 08:39:21 +01:00
/* Parallel hash state. */
struct ParallelHashJoinState *parallel_state;
} HashState;
/* ----------------
* SetOpState information
*
* Even in "sorted" mode, SetOp nodes are more complex than a simple
* Unique, since we have to count how many duplicates to return. But
* we also support hashing, so this is really more like a cut-down
* form of Agg.
* ----------------
*/
/* this struct is private in nodeSetOp.c: */
typedef struct SetOpStatePerGroupData *SetOpStatePerGroup;
typedef struct SetOpState
{
PlanState ps; /* its first field is NodeTag */
ExprState *eqfunction; /* equality comparator */
Oid *eqfuncoids; /* per-grouping-field equality fns */
FmgrInfo *hashfunctions; /* per-grouping-field hash fns */
bool setop_done; /* indicates completion of output scan */
long numOutput; /* number of dups left to output */
/* these fields are used in SETOP_SORTED mode: */
SetOpStatePerGroup pergroup; /* per-group working state */
HeapTuple grp_firstTuple; /* copy of first tuple of current group */
/* these fields are used in SETOP_HASHED mode: */
TupleHashTable hashtable; /* hash table with one entry per group */
MemoryContext tableContext; /* memory context containing hash table */
bool table_filled; /* hash table filled yet? */
TupleHashIterator hashiter; /* for iterating through hash table */
} SetOpState;
/* ----------------
* LockRowsState information
*
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
* LockRows nodes are used to enforce FOR [KEY] UPDATE/SHARE locking.
* ----------------
*/
typedef struct LockRowsState
{
PlanState ps; /* its first field is NodeTag */
List *lr_arowMarks; /* List of ExecAuxRowMarks */
EPQState lr_epqstate; /* for evaluating EvalPlanQual rechecks */
HeapTuple *lr_curtuples; /* locked tuples (one entry per RT entry) */
int lr_ntables; /* length of lr_curtuples[] array */
} LockRowsState;
/* ----------------
* LimitState information
*
* Limit nodes are used to enforce LIMIT/OFFSET clauses.
* They just select the desired subrange of their subplan's output.
*
* offset is the number of initial tuples to skip (0 does nothing).
* count is the number of tuples to return after skipping the offset tuples.
* If no limit count was specified, count is undefined and noCount is true.
* When lstate == LIMIT_INITIAL, offset/count/noCount haven't been set yet.
* ----------------
*/
typedef enum
{
LIMIT_INITIAL, /* initial state for LIMIT node */
LIMIT_RESCAN, /* rescan after recomputing parameters */
LIMIT_EMPTY, /* there are no returnable rows */
LIMIT_INWINDOW, /* have returned a row in the window */
LIMIT_SUBPLANEOF, /* at EOF of subplan (within window) */
LIMIT_WINDOWEND, /* stepped off end of window */
LIMIT_WINDOWSTART /* stepped off beginning of window */
} LimitStateCond;
typedef struct LimitState
{
PlanState ps; /* its first field is NodeTag */
ExprState *limitOffset; /* OFFSET parameter, or NULL if none */
ExprState *limitCount; /* COUNT parameter, or NULL if none */
int64 offset; /* current OFFSET value */
int64 count; /* current COUNT, if any */
bool noCount; /* if true, ignore count */
LimitStateCond lstate; /* state machine status, as above */
int64 position; /* 1-based index of last tuple returned */
TupleTableSlot *subSlot; /* tuple last obtained from subplan */
} LimitState;
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
#endif /* EXECNODES_H */