Commit Graph

174 Commits

Author SHA1 Message Date
Tom Lane fa2cf164aa Rename nodes/relation.h to nodes/pathnodes.h.
The old name of this file was never a very good indication of what it
was for.  Now that there's also access/relation.h, we have a potential
confusion hazard as well, so let's rename it to something more apropos.
Per discussion, "pathnodes.h" is reasonable, since a good fraction of
the file is Path node definitions.

While at it, tweak a couple of other headers that were gratuitously
importing relation.h into modules that don't need it.

Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
2019-01-29 16:49:25 -05:00
Bruce Momjian 97c39498e5 Update copyright for 2019
Backpatch-through: certain files through 9.4
2019-01-02 12:44:25 -05:00
Tom Lane bdf46af748 Post-feature-freeze pgindent run.
Discussion: https://postgr.es/m/15719.1523984266@sss.pgh.pa.us
2018-04-26 14:47:16 -04:00
Tom Lane c792c7db41 Change more places to be less trusting of RestrictInfo.is_pushed_down.
On further reflection, commit e5d83995e didn't go far enough: pretty much
everywhere in the planner that examines a clause's is_pushed_down flag
ought to be changed to use the more complicated behavior where we also
check the clause's required_relids.  Otherwise we could make incorrect
decisions about whether, say, a clause is safe to use as a hash clause.

Some (many?) of these places are safe as-is, either because they are
never reached while considering a parameterized path, or because there
are additional checks that would reject a pushed-down clause anyway.
However, it seems smarter to just code them all the same way rather
than rely on easily-broken reasoning of that sort.

In support of that, invent a new macro RINFO_IS_PUSHED_DOWN that should
be used in place of direct tests on the is_pushed_down flag.

Like the previous patch, back-patch to all supported branches.

Discussion: https://postgr.es/m/f8128b11-c5bf-3539-48cd-234178b2314d@proxel.se
2018-04-20 15:19:16 -04:00
Robert Haas e2f1eb0ee3 Implement partition-wise grouping/aggregation.
If the partition keys of input relation are part of the GROUP BY
clause, all the rows belonging to a given group come from a single
partition.  This allows aggregation/grouping over a partitioned
relation to be broken down * into aggregation/grouping on each
partition.  This should be no worse, and often better, than the normal
approach.

If the GROUP BY clause does not contain all the partition keys, we can
still perform partial aggregation for each partition and then finalize
aggregation after appending the partial results.  This is less certain
to be a win, but it's still useful.

Jeevan Chalke, Ashutosh Bapat, Robert Haas.  The larger patch series
of which this patch is a part was also reviewed and tested by Antonin
Houska, Rajkumar Raghuwanshi, David Rowley, Dilip Kumar, Konstantin
Knizhnik, Pascal Legrand, and Rafia Sabih.

Discussion: http://postgr.es/m/CAM2+6=V64_xhstVHie0Rz=KPEQnLJMZt_e314P0jaT_oJ9MR8A@mail.gmail.com
2018-03-22 12:49:48 -04:00
Robert Haas 3bf05e096b Add a new upper planner relation for partially-aggregated results.
Up until now, we've abused grouped_rel->partial_pathlist as a place to
store partial paths that have been partially aggregate, but that's
really not correct, because a partial path for a relation is supposed
to be one which produces the correct results with the addition of only
a Gather or Gather Merge node, and these paths also require a Finalize
Aggregate step.  Instead, add a new partially_group_rel which can hold
either partial paths (which need to be gathered and then have
aggregation finalized) or non-partial paths (which only need to have
aggregation finalized).  This allows us to reuse generate_gather_paths
for partially_grouped_rel instead of writing new code, so that this
patch actually basically no net new code while making things cleaner,
simplifying things for pending patches for partition-wise aggregate.

Robert Haas and Jeevan Chalke.  The larger patch series of which this
patch is a part was also reviewed and tested by Antonin Houska,
Rajkumar Raghuwanshi, David Rowley, Dilip Kumar, Konstantin Knizhnik,
Pascal Legrand, Rafia Sabih, and me.

Discussion: http://postgr.es/m/CA+TgmobrzFYS3+U8a_BCy3-hOvh5UyJbC18rEcYehxhpw5=ETA@mail.gmail.com
Discussion: http://postgr.es/m/CA+TgmoZyQEjdBNuoG9-wC5GQ5GrO4544Myo13dVptvx+uLg9uQ@mail.gmail.com
2018-02-26 09:32:32 -05:00
Tom Lane 9afd513df0 Fix planner failures with overlapping mergejoin clauses in an outer join.
Given overlapping or partially redundant join clauses, for example
	t1 JOIN t2 ON t1.a = t2.x AND t1.b = t2.x
the planner's EquivalenceClass machinery will ordinarily refactor the
clauses as "t1.a = t1.b AND t1.a = t2.x", so that join processing doesn't
see multiple references to the same EquivalenceClass in a list of join
equality clauses.  However, if the join is outer, it's incorrect to derive
a restriction clause on the outer side from the join conditions, so the
clause refactoring does not happen and we end up with overlapping join
conditions.  The code that attempted to deal with such cases had several
subtle bugs, which could result in "left and right pathkeys do not match in
mergejoin" or "outer pathkeys do not match mergeclauses" planner errors,
if the selected join plan type was a mergejoin.  (It does not appear that
any actually incorrect plan could have been emitted.)

The core of the problem really was failure to recognize that the outer and
inner relations' pathkeys have different relationships to the mergeclause
list.  A join's mergeclause list is constructed by reference to the outer
pathkeys, so it will always be ordered the same as the outer pathkeys, but
this cannot be presumed true for the inner pathkeys.  If the inner sides of
the mergeclauses contain multiple references to the same EquivalenceClass
({t2.x} in the above example) then a simplistic rendering of the required
inner sort order is like "ORDER BY t2.x, t2.x", but the pathkey machinery
recognizes that the second sort column is redundant and throws it away.
The mergejoin planning code failed to account for that behavior properly.
One error was to try to generate cut-down versions of the mergeclause list
from cut-down versions of the inner pathkeys in the same way as the initial
construction of the mergeclause list from the outer pathkeys was done; this
could lead to choosing a mergeclause list that fails to match the outer
pathkeys.  The other problem was that the pathkey cross-checking code in
create_mergejoin_plan treated the inner and outer pathkey lists
identically, whereas actually the expectations for them must be different.
That led to false "pathkeys do not match" failures in some cases, and in
principle could have led to failure to detect bogus plans in other cases,
though there is no indication that such bogus plans could be generated.

Reported by Alexander Kuzmenkov, who also reviewed this patch.  This has
been broken for years (back to around 8.3 according to my testing), so
back-patch to all supported branches.

Discussion: https://postgr.es/m/5dad9160-4632-0e47-e120-8e2082000c01@postgrespro.ru
2018-02-23 13:47:33 -05:00
Peter Eisentraut 2fb1abaeb0 Rename enable_partition_wise_join to enable_partitionwise_join
Discussion: https://www.postgresql.org/message-id/flat/ad24e4f4-6481-066e-e3fb-6ef4a3121882%402ndquadrant.com
2018-02-16 10:33:59 -05:00
Robert Haas 935dee9ad5 Mark assorted GUC variables as PGDLLIMPORT.
This makes life easier for extension authors.

Metin Doslu

Discussion: http://postgr.es/m/CAL1dPcfa45o1dC-c4t-48v0OZE6oy4ChJhObrtkK8mzNfXqDTA@mail.gmail.com
2018-02-09 15:54:45 -05:00
Robert Haas 9da0cc3528 Support parallel btree index builds.
To make this work, tuplesort.c and logtape.c must also support
parallelism, so this patch adds that infrastructure and then applies
it to the particular case of parallel btree index builds.  Testing
to date shows that this can often be 2-3x faster than a serial
index build.

The model for deciding how many workers to use is fairly primitive
at present, but it's better than not having the feature.  We can
refine it as we get more experience.

Peter Geoghegan with some help from Rushabh Lathia.  While Heikki
Linnakangas is not an author of this patch, he wrote other patches
without which this feature would not have been possible, and
therefore the release notes should possibly credit him as an author
of this feature.  Reviewed by Claudio Freire, Heikki Linnakangas,
Thomas Munro, Tels, Amit Kapila, me.

Discussion: http://postgr.es/m/CAM3SWZQKM=Pzc=CAHzRixKjp2eO5Q0Jg1SoFQqeXFQ647JiwqQ@mail.gmail.com
Discussion: http://postgr.es/m/CAH2-Wz=AxWqDoVvGU7dq856S4r6sJAj6DBn7VMtigkB33N5eyg@mail.gmail.com
2018-02-02 13:32:44 -05:00
Bruce Momjian 9d4649ca49 Update copyright for 2018
Backpatch-through: certain files through 9.3
2018-01-02 23:30:12 -05:00
Tom Lane 8ec5429e2f Reduce "X = X" to "X IS NOT NULL", if it's easy to do so.
If the operator is a strict btree equality operator, and X isn't volatile,
then the clause must yield true for any non-null value of X, or null if X
is null.  At top level of a WHERE clause, we can ignore the distinction
between false and null results, so it's valid to simplify the clause to
"X IS NOT NULL".  This is a useful improvement mainly because we'll get
a far better selectivity estimate in most cases.

Because such cases seldom arise in well-written queries, it is unappetizing
to expend a lot of planner cycles looking for them ... but it turns out
that there's a place we can shoehorn this in practically for free, because
equivclass.c already has to detect and reject candidate equivalences of the
form X = X.  That doesn't catch every place that it would be valid to
simplify to X IS NOT NULL, but it catches the typical case.  Working harder
doesn't seem justified.

Patch by me, reviewed by Petr Jelinek

Discussion: https://postgr.es/m/CAMjNa7cC4X9YR-vAJS-jSYCajhRDvJQnN7m2sLH1wLh-_Z2bsw@mail.gmail.com
2017-10-08 12:23:32 -04:00
Robert Haas f49842d1ee Basic partition-wise join functionality.
Instead of joining two partitioned tables in their entirety we can, if
it is an equi-join on the partition keys, join the matching partitions
individually.  This involves teaching the planner about "other join"
rels, which are related to regular join rels in the same way that
other member rels are related to baserels.  This can use significantly
more CPU time and memory than regular join planning, because there may
now be a set of "other" rels not only for every base relation but also
for every join relation.  In most practical cases, this probably
shouldn't be a problem, because (1) it's probably unusual to join many
tables each with many partitions using the partition keys for all
joins and (2) if you do that scenario then you probably have a big
enough machine to handle the increased memory cost of planning and (3)
the resulting plan is highly likely to be better, so what you spend in
planning you'll make up on the execution side.  All the same, for now,
turn this feature off by default.

Currently, we can only perform joins between two tables whose
partitioning schemes are absolutely identical.  It would be nice to
cope with other scenarios, such as extra partitions on one side or the
other with no match on the other side, but that will have to wait for
a future patch.

Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit
Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit
Khandekar, and by me.  A few final adjustments by me.

Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com
Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 11:11:10 -04:00
Tom Lane c7b8998ebb Phase 2 of pgindent updates.
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.

Commit e3860ffa4d wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code.  The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there.  BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs.  So the
net result is that in about half the cases, such comments are placed
one tab stop left of before.  This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.

Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.

This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 15:19:25 -04:00
Tom Lane e3860ffa4d Initial pgindent run with pg_bsd_indent version 2.0.
The new indent version includes numerous fixes thanks to Piotr Stefaniak.
The main changes visible in this commit are:

* Nicer formatting of function-pointer declarations.
* No longer unexpectedly removes spaces in expressions using casts,
  sizeof, or offsetof.
* No longer wants to add a space in "struct structname *varname", as
  well as some similar cases for const- or volatile-qualified pointers.
* Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely.
* Fixes bug where comments following declarations were sometimes placed
  with no space separating them from the code.
* Fixes some odd decisions for comments following case labels.
* Fixes some cases where comments following code were indented to less
  than the expected column 33.

On the less good side, it now tends to put more whitespace around typedef
names that are not listed in typedefs.list.  This might encourage us to
put more effort into typedef name collection; it's not really a bug in
indent itself.

There are more changes coming after this round, having to do with comment
indentation and alignment of lines appearing within parentheses.  I wanted
to limit the size of the diffs to something that could be reviewed without
one's eyes completely glazing over, so it seemed better to split up the
changes as much as practical.

Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 14:39:04 -04:00
Bruce Momjian a6fd7b7a5f Post-PG 10 beta1 pgindent run
perltidy run not included.
2017-05-17 16:31:56 -04:00
Robert Haas 2609e91fcf Fix regression in parallel planning against inheritance tables.
Commit 51ee6f3160 accidentally changed
the behavior around inheritance hierarchies; before, we always
considered parallel paths even for very small inheritance children,
because otherwise an inheritance hierarchy with even one small child
wouldn't be eligible for parallelism.  That exception was inadverently
removed; put it back.

In passing, also adjust the degree-of-parallelism comptuation for
index-only scans not to consider the number of heap pages fetched.
Otherwise, we'll avoid parallel index-only scans on tables that are
mostly all-visible, which isn't especially logical.

Robert Haas and Amit Kapila, per a report from Ashutosh Sharma.

Discussion: http://postgr.es/m/CAE9k0PmgSoOHRd60SHu09aRVTHRSs8s6pmyhJKWHxWw9C_x+XA@mail.gmail.com
2017-03-14 14:33:14 -04:00
Robert Haas f35742ccb7 Support parallel bitmap heap scans.
The index is scanned by a single process, but then all cooperating
processes can iterate jointly over the resulting set of heap blocks.
In the future, we might also want to support using a parallel bitmap
index scan to set up for a parallel bitmap heap scan, but that's a
job for another day.

Dilip Kumar, with some corrections and cosmetic changes by me.  The
larger patch set of which this is a part has been reviewed and tested
by (at least) Andres Freund, Amit Khandekar, Tushar Ahuja, Rafia
Sabih, Haribabu Kommi, Thomas Munro, and me.

Discussion: http://postgr.es/m/CAFiTN-uc4=0WxRGfCzs-xfkMYcSEWUC-Fon6thkJGjkh9i=13A@mail.gmail.com
2017-03-08 12:05:43 -05:00
Robert Haas a71f10189d Preparatory refactoring for parallel merge join support.
Extract the logic used by hash_inner_and_outer into a separate
function, get_cheapest_parallel_safe_total_inner, so that it can
also be used to plan parallel merge joins.

Also, add a require_parallel_safe argument to the existing function
get_cheapest_path_for_pathkeys, because parallel merge join needs
to find the cheapest path for a given set of pathkeys that is
parallel-safe, not just the cheapest one overall.

Patch by me, reviewed by Dilip Kumar.

Discussion: http://postgr.es/m/CA+TgmoYOv+dFK0MWW6366dFj_xTnohQfoBDrHyB7d1oZhrgPjA@mail.gmail.com
2017-03-07 10:33:29 -05:00
Robert Haas 5262f7a4fc Add optimizer and executor support for parallel index scans.
In combination with 569174f1be, which
taught the btree AM how to perform parallel index scans, this allows
parallel index scan plans on btree indexes.  This infrastructure
should be general enough to support parallel index scans for other
index AMs as well, if someone updates them to support parallel
scans.

Amit Kapila, reviewed and tested by Anastasia Lubennikova, Tushar
Ahuja, and Haribabu Kommi, and me.
2017-02-15 13:53:24 -05:00
Robert Haas 51ee6f3160 Replace min_parallel_relation_size with two new GUCs.
When min_parallel_relation_size was added, the only supported type
of parallel scan was a parallel sequential scan, but there are
pending patches for parallel index scan, parallel index-only scan,
and parallel bitmap heap scan.  Those patches introduce two new
types of complications: first, what's relevant is not really the
total size of the relation but the portion of it that we will scan;
and second, index pages and heap pages shouldn't necessarily be
treated in exactly the same way.  Typically, the number of index
pages will be quite small, but that doesn't necessarily mean that
a parallel index scan can't pay off.

Therefore, we introduce min_parallel_table_scan_size, which works
out a degree of parallelism for scans based on the number of table
pages that will be scanned (and which is therefore equivalent to
min_parallel_relation_size for parallel sequential scans) and also
min_parallel_index_scan_size which can be used to work out a degree
of parallelism based on the number of index pages that will be
scanned.

Amit Kapila and Robert Haas

Discussion: http://postgr.es/m/CAA4eK1KowGSYYVpd2qPpaPPA5R90r++QwDFbrRECTE9H_HvpOg@mail.gmail.com
Discussion: http://postgr.es/m/CAA4eK1+TnM4pXQbvn7OXqam+k_HZqb0ROZUMxOiL6DWJYCyYow@mail.gmail.com
2017-02-15 13:37:24 -05:00
Tom Lane 0777f7a2e8 Fix matching of boolean index columns to sort ordering.
Normally, if we have a WHERE clause like "indexcol = constant",
the planner will figure out that that index column can be ignored
when determining whether the index has a desired sort ordering.
But this failed to work for boolean index columns, because a
condition like "boolcol = true" is canonicalized to just "boolcol"
which does not give rise to an EquivalenceClass.  Add a check to
allow the same type of deduction to be made in this case too.

Per a complaint from Dima Pavlov.  Arguably this is a bug, but given the
limited impact and the small number of complaints so far, I won't risk
destabilizing plans in stable branches by back-patching.

Patch by me, reviewed by Michael Paquier

Discussion: https://postgr.es/m/1788.1481605684@sss.pgh.pa.us
2017-01-15 14:09:35 -05:00
Bruce Momjian 1d25779284 Update copyright via script for 2017 2017-01-03 13:48:53 -05:00
Tom Lane 100340e2dc Restore foreign-key-aware estimation of join relation sizes.
This patch provides a new implementation of the logic added by commit
137805f89 and later removed by 77ba61080.  It differs from the original
primarily in expending much less effort per joinrel in large queries,
which it accomplishes by doing most of the matching work once per query not
once per joinrel.  Hopefully, it's also less buggy and better commented.
The never-documented enable_fkey_estimates GUC remains gone.

There remains work to be done to make the selectivity estimates account
for nulls in FK referencing columns; but that was true of the original
patch as well.  We may be able to address this point later in beta.
In the meantime, any error should be in the direction of overestimating
rather than underestimating joinrel sizes, which seems like the direction
we want to err in.

Tomas Vondra and Tom Lane

Discussion: <31041.1465069446@sss.pgh.pa.us>
2016-06-18 15:22:34 -04:00
Tom Lane 75be66464c Invent min_parallel_relation_size GUC to replace a hard-wired constant.
The main point of doing this is to allow the cutoff to be set very small,
even zero, to allow parallel-query behavior to be tested on relatively
small tables such as we typically use in the regression tests.  But it
might be of use to users too.  The number-of-workers scaling behavior in
create_plain_partial_paths() is pretty ad-hoc and subject to change, so
we won't expose anything about that, but the notion of not considering
parallel query at all for tables below size X seems reasonably stable.

Amit Kapila, per a suggestion from me

Discussion: <17170.1465830165@sss.pgh.pa.us>
2016-06-16 13:47:20 -04:00
Tom Lane 77ba610805 Revert "Use Foreign Key relationships to infer multi-column join selectivity".
This commit reverts 137805f89 as well as the associated commits 015e88942,
5306df283, and 68d704edb.  We found multiple bugs in this feature, and
there was concern about possible planner slowdown (though to be fair,
exhibiting a very large slowdown proved difficult).  The way forward
requires a considerable rewrite, which may or may not be possible to
accomplish in time for beta2.  In my judgment reviewing the rewrite will
be easier to accomplish starting from a clean slate, so let's temporarily
revert what's there now.  This also leaves us in a safe state if it turns
out to be necessary to postpone the rewrite to the next development cycle.

Discussion: <20160429102531.GA13701@huehner.biz>
2016-06-07 17:21:17 -04:00
Tom Lane 207d5a656e Fix mishandling of equivalence-class tests in parameterized plans.
Given a three-or-more-way equivalence class, such as X.Y = Y.Y = Z.Z,
it was possible for the planner to omit one of the quals needed to
enforce that all members of the equivalence class are actually equal.
This only happened in the case of a parameterized join node for two
of the relations, that is a plan tree like

	Nested Loop
	  ->  Scan X
	  ->  Nested Loop
	    ->  Scan Y
	    ->  Scan Z
	          Filter: Z.Z = X.X

The eclass machinery normally expects to apply X.X = Y.Y when those
two relations are joined, but in this shape of plan tree they aren't
joined until the top node --- and, if the lower nested loop is marked
as parameterized by X, the top node will assume that the relevant eclass
condition(s) got pushed down into the lower node.  On the other hand,
the scan of Z assumes that it's only responsible for constraining Z.Z
to match any one of the other eclass members.  So one or another of
the required quals sometimes fell between the cracks, depending on
whether consideration of the eclass in get_joinrel_parampathinfo()
for the lower nested loop chanced to generate X.X = Y.Y or X.X = Z.Z
as the appropriate constraint there.  If it generated the latter,
it'd erroneously suppose that the Z scan would take care of matters.
To fix, force X.X = Y.Y to be generated and applied at that join node
when this case occurs.

This is *extremely* hard to hit in practice, because various planner
behaviors conspire to mask the problem; starting with the fact that the
planner doesn't really like to generate a parameterized plan of the
above shape.  (It might have been impossible to hit it before we
tweaked things to allow this plan shape for star-schema cases.)  Many
thanks to Alexander Kirkouski for submitting a reproducible test case.

The bug can be demonstrated in all branches back to 9.2 where parameterized
paths were introduced, so back-patch that far.
2016-04-29 20:19:38 -04:00
Simon Riggs 137805f89a Use Foreign Key relationships to infer multi-column join selectivity
In cases where joins use multiple columns we currently assess each join
separately causing gross mis-estimates for join cardinality.

This patch adds use of FK information for the first time into the
planner. When FKs are present and we have multi-column join information,
plan estimates will be drastically improved. Cases with multiple FKs
are handled, though partial matches are ignored currently.

Net effect is substantial performance improvements for joins in many
common cases. Additional planning time is isolated to cases that are
currently performing poorly, measured at 0.08 - 0.15 ms.

Please watch for planner performance regressions; circumstances seem
unlikely but the law of unintended consequences may apply somewhen.
Additional complex tests welcome to prove this before release.

Tests can be performed using SET enable_fkey_estimates = on | off
using scripts provided during Hackers discussions, message id:
552335D9.3090707@2ndquadrant.com

Authors: Tomas Vondra and David Rowley
Reviewed and tested by Simon Riggs, adding comments only
2016-04-08 02:51:09 +01:00
Tom Lane f9aefcb91f Support using index-only scans with partial indexes in more cases.
Previously, the planner would reject an index-only scan if any restriction
clause for its table used a column not available from the index, even
if that restriction clause would later be dropped from the plan entirely
because it's implied by the index's predicate.  This is a fairly common
situation for partial indexes because predicates using columns not included
in the index are often the most useful kind of predicate, and we have to
duplicate (or at least imply) the predicate in the WHERE clause in order
to get the index to be considered at all.  So index-only scans were
essentially unavailable with such partial indexes.

To fix, we have to do detection of implied-by-predicate clauses much
earlier in the planner.  This patch puts it in check_index_predicates
(nee check_partial_indexes), meaning it gets done for every partial index,
whereas we previously only considered this issue at createplan time,
so that the work was only done for an index actually selected for use.
That could result in a noticeable planning slowdown for queries against
tables with many partial indexes.  However, testing suggested that there
isn't really a significant cost, especially not with reasonable numbers
of partial indexes.  We do get a small additional benefit, which is that
cost_index is more accurate since it correctly discounts the evaluation
cost of clauses that will be removed.  We can also avoid considering such
clauses as potential indexquals, which saves useless matching cycles in
the case where the predicate columns aren't in the index, and prevents
generating bogus plans that double-count the clause's selectivity when
the columns are in the index.

Tomas Vondra and Kyotaro Horiguchi, reviewed by Kevin Grittner and
Konstantin Knizhnik, and whacked around a little by me
2016-03-31 14:49:10 -04:00
Tom Lane 3fc6e2d7f5 Make the upper part of the planner work by generating and comparing Paths.
I've been saying we needed to do this for more than five years, and here it
finally is.  This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps.  Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step.  We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.

In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan.  It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation.  (A couple of regression test outputs change in consequence of
that.  However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)

There is a great deal left to do here.  This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations.  (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.)  I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.

Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 15:58:22 -05:00
Robert Haas 45be99f8cd Support parallel joins, and make related improvements.
The core innovation of this patch is the introduction of the concept
of a partial path; that is, a path which if executed in parallel will
generate a subset of the output rows in each process.  Gathering a
partial path produces an ordinary (complete) path.  This allows us to
generate paths for parallel joins by joining a partial path for one
side (which at the baserel level is currently always a Partial Seq
Scan) to an ordinary path on the other side.  This is subject to
various restrictions at present, especially that this strategy seems
unlikely to be sensible for merge joins, so only nested loops and
hash joins paths are generated.

This also allows an Append node to be pushed below a Gather node in
the case of a partitioned table.

Testing revealed that early versions of this patch made poor decisions
in some cases, which turned out to be caused by the fact that the
original cost model for Parallel Seq Scan wasn't very good.  So this
patch tries to make some modest improvements in that area.

There is much more to be done in the area of generating good parallel
plans in all cases, but this seems like a useful step forward.

Patch by me, reviewed by Dilip Kumar and Amit Kapila.
2016-01-20 14:40:26 -05:00
Bruce Momjian ee94300446 Update copyright for 2016
Backpatch certain files through 9.1
2016-01-02 13:33:40 -05:00
Robert Haas ccd8f97922 postgres_fdw: Consider requesting sorted data so we can do a merge join.
When use_remote_estimate is enabled, consider adding ORDER BY to the
query we sending to the remote server so that we can use that ordered
data for a merge join.  Commit f18c944b61
arranges to push down the query pathkeys, which seems like the case
mostly likely to be a win, but testing shows this can sometimes win,
too.

For a regular table, we know which indexes are present and therefore
test whether the ordering provided by each such index is useful.  Here,
we take the opposite approach: guess what orderings would be useful if
they could be generated cheaply, and then ask the remote side what those
will cost.

Ashutosh Bapat, with very substantial cosmetic revisions by me.  Also
reviewed by Rushabh Lathia.
2015-12-22 13:46:40 -05:00
Tom Lane acfcd45cac Still more fixes for planner's handling of LATERAL references.
More fuzz testing by Andreas Seltenreich exposed that the planner did not
cope well with chains of lateral references.  If relation X references Y
laterally, and Y references Z laterally, then we will have to scan X on the
inside of a nestloop with Z, so for all intents and purposes X is laterally
dependent on Z too.  The planner did not understand this and would generate
intermediate joins that could not be used.  While that was usually harmless
except for wasting some planning cycles, under the right circumstances it
would lead to "failed to build any N-way joins" or "could not devise a
query plan" planner failures.

To fix that, convert the existing per-relation lateral_relids and
lateral_referencers relid sets into their transitive closures; that is,
they now show all relations on which a rel is directly or indirectly
laterally dependent.  This not only fixes the chained-reference problem
but allows some of the relevant tests to be made substantially simpler
and faster, since they can be reduced to simple bitmap manipulations
instead of searches of the LateralJoinInfo list.

Also, when a PlaceHolderVar that is due to be evaluated at a join contains
lateral references, we should treat those references as indirect lateral
dependencies of each of the join's base relations.  This prevents us from
trying to join any individual base relations to the lateral reference
source before the join is formed, which again cannot work.

Andreas' testing also exposed another oversight in the "dangerous
PlaceHolderVar" test added in commit 85e5e222b1.  Simply rejecting
unsafe join paths in joinpath.c is insufficient, because in some cases
we will end up rejecting *all* possible paths for a particular join, again
leading to "could not devise a query plan" failures.  The restriction has
to be known also to join_is_legal and its cohort functions, so that they
will not select a join for which that will happen.  I chose to move the
supporting logic into joinrels.c where the latter functions are.

Back-patch to 9.3 where LATERAL support was introduced.
2015-12-11 14:22:20 -05:00
Tom Lane cde35cf4ae Fix eclass_useful_for_merging to give valid results for appendrel children.
Formerly, this function would always return "true" for an appendrel child
relation, because it would think that the appendrel parent was a potential
join target for the child.  In principle that should only lead to some
inefficiency in planning, but fuzz testing by Andreas Seltenreich disclosed
that it could lead to "could not find pathkey item to sort" planner errors
in odd corner cases.  Specifically, we would think that all columns of a
child table's multicolumn index were interesting pathkeys, causing us to
generate a MergeAppend path that sorts by all the columns.  However, if any
of those columns weren't actually used above the level of the appendrel,
they would not get added to that rel's targetlist, which would result in
being unable to resolve the MergeAppend's sort keys against its targetlist
during createplan.c.

Backpatch to 9.3.  In older versions, columns of an appendrel get added
to its targetlist even if they're not mentioned above the scan level,
so that the failure doesn't occur.  It might be worth back-patching this
fix to older versions anyway, but I'll refrain for the moment.
2015-08-06 20:14:53 -04:00
Tom Lane 1a8a4e5cde Code review for foreign/custom join pushdown patch.
Commit e7cb7ee145 included some design
decisions that seem pretty questionable to me, and there was quite a lot
of stuff not to like about the documentation and comments.  Clean up
as follows:

* Consider foreign joins only between foreign tables on the same server,
rather than between any two foreign tables with the same underlying FDW
handler function.  In most if not all cases, the FDW would simply have had
to apply the same-server restriction itself (far more expensively, both for
lack of caching and because it would be repeated for each combination of
input sub-joins), or else risk nasty bugs.  Anyone who's really intent on
doing something outside this restriction can always use the
set_join_pathlist_hook.

* Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist
to better reflect what they're for, and allow these custom scan tlists
to be used even for base relations.

* Change make_foreignscan() API to include passing the fdw_scan_tlist
value, since the FDW is required to set that.  Backwards compatibility
doesn't seem like an adequate reason to expect FDWs to set it in some
ad-hoc extra step, and anyway existing FDWs can just pass NIL.

* Change the API of path-generating subroutines of add_paths_to_joinrel,
and in particular that of GetForeignJoinPaths and set_join_pathlist_hook,
so that various less-used parameters are passed in a struct rather than
as separate parameter-list entries.  The objective here is to reduce the
probability that future additions to those parameter lists will result in
source-level API breaks for users of these hooks.  It's possible that this
is even a small win for the core code, since most CPU architectures can't
pass more than half a dozen parameters efficiently anyway.  I kept root,
joinrel, outerrel, innerrel, and jointype as separate parameters to reduce
code churn in joinpath.c --- in particular, putting jointype into the
struct would have been problematic because of the subroutines' habit of
changing their local copies of that variable.

* Avoid ad-hocery in ExecAssignScanProjectionInfo.  It was probably all
right for it to know about IndexOnlyScan, but if the list is to grow
we should refactor the knowledge out to the callers.

* Restore nodeForeignscan.c's previous use of the relcache to avoid
extra GetFdwRoutine lookups for base-relation scans.

* Lots of cleanup of documentation and missed comments.  Re-order some
code additions into more logical places.
2015-05-10 14:36:36 -04:00
Robert Haas e7cb7ee145 Allow FDWs and custom scan providers to replace joins with scans.
Foreign data wrappers can use this capability for so-called "join
pushdown"; that is, instead of executing two separate foreign scans
and then joining the results locally, they can generate a path which
performs the join on the remote server and then is scanned locally.
This commit does not extend postgres_fdw to take advantage of this
capability; it just provides the infrastructure.

Custom scan providers can use this in a similar way.  Previously,
it was only possible for a custom scan provider to scan a single
relation.  Now, it can scan an entire join tree, provided of course
that it knows how to produce the same results that the join would
have produced if executed normally.

KaiGai Kohei, reviewed by Shigeru Hanada, Ashutosh Bapat, and me.
2015-05-01 08:50:35 -04:00
Bruce Momjian 4baaf863ec Update copyright for 2015
Backpatch certain files through 9.0
2015-01-06 11:43:47 -05:00
Tom Lane c2ea2285e9 Simplify API for initially hooking custom-path providers into the planner.
Instead of register_custom_path_provider and a CreateCustomScanPath
callback, let's just provide a standard function hook in set_rel_pathlist.
This is more flexible than what was previously committed, is more like the
usual conventions for planner hooks, and requires less support code in the
core.  We had discussed this design (including centralizing the
set_cheapest() calls) back in March or so, so I'm not sure why it wasn't
done like this already.
2014-11-21 14:05:46 -05:00
Bruce Momjian 7e04792a1c Update copyright for 2014
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
2014-01-07 16:05:30 -05:00
Tom Lane f7fbf4b0be Remove dead code now that orindxpath.c is history.
We don't need make_restrictinfo_from_bitmapqual() anymore at all.
generate_bitmap_or_paths() doesn't need to be exported, and we can
drop its rather klugy restriction_only flag.
2013-12-30 12:50:31 -05:00
Tom Lane f343a880d5 Extract restriction OR clauses whether or not they are indexable.
It's possible to extract a restriction OR clause from a join clause that
has the form of an OR-of-ANDs, if each sub-AND includes a clause that
mentions only one specific relation.  While PG has been aware of that idea
for many years, the code previously only did it if it could extract an
indexable OR clause.  On reflection, though, that seems a silly limitation:
adding a restriction clause can be a win by reducing the number of rows
that have to be filtered at the join step, even if we have to test the
clause as a plain filter clause during the scan.  This should be especially
useful for foreign tables, where the change can cut the number of rows that
have to be retrieved from the foreign server; but testing shows it can win
even on local tables.  Per a suggestion from Robert Haas.

As a heuristic, I made the code accept an extracted restriction clause
if its estimated selectivity is less than 0.9, which will probably result
in accepting extracted clauses just about always.  We might need to tweak
that later based on experience.

Since the code no longer has even a weak connection to Path creation,
remove orindxpath.c and create a new file optimizer/util/orclauses.c.

There's some additional janitorial cleanup of now-dead code that needs
to happen, but it seems like that's a fit subject for a separate commit.
2013-12-30 12:24:37 -05:00
Tom Lane 784e762e88 Support multi-argument UNNEST(), and TABLE() syntax for multiple functions.
This patch adds the ability to write TABLE( function1(), function2(), ...)
as a single FROM-clause entry.  The result is the concatenation of the
first row from each function, followed by the second row from each
function, etc; with NULLs inserted if any function produces fewer rows than
others.  This is believed to be a much more useful behavior than what
Postgres currently does with multiple SRFs in a SELECT list.

This syntax also provides a reasonable way to combine use of column
definition lists with WITH ORDINALITY: put the column definition list
inside TABLE(), where it's clear that it doesn't control the ordinality
column as well.

Also implement SQL-compliant multiple-argument UNNEST(), by turning
UNNEST(a,b,c) into TABLE(unnest(a), unnest(b), unnest(c)).

The SQL standard specifies TABLE() with only a single function, not
multiple functions, and it seems to require an implicit UNNEST() which is
not what this patch does.  There may be something wrong with that reading
of the spec, though, because if it's right then the spec's TABLE() is just
a pointless alternative spelling of UNNEST().  After further review of
that, we might choose to adopt a different syntax for what this patch does,
but in any case this functionality seems clearly worthwhile.

Andrew Gierth, reviewed by Zoltán Böszörményi and Heikki Linnakangas, and
significantly revised by me
2013-11-21 19:37:20 -05:00
Tom Lane f3b3b8d5be Compute correct em_nullable_relids in get_eclass_for_sort_expr().
Bug #8591 from Claudio Freire demonstrates that get_eclass_for_sort_expr
must be able to compute valid em_nullable_relids for any new equivalence
class members it creates.  I'd worried about this in the commit message
for db9f0e1d9a, but claimed that it wasn't a
problem because multi-member ECs should already exist when it runs.  That
is transparently wrong, though, because this function is also called by
initialize_mergeclause_eclasses, which runs during deconstruct_jointree.
The example given in the bug report (which the new regression test item
is based upon) fails because the COALESCE() expression is first seen by
initialize_mergeclause_eclasses rather than process_equivalence.

Fixing this requires passing the appropriate nullable_relids set to
get_eclass_for_sort_expr, and it requires new code to compute that set
for top-level expressions such as ORDER BY, GROUP BY, etc.  We store
the top-level nullable_relids in a new field in PlannerInfo to avoid
computing it many times.  In the back branches, I've added the new
field at the end of the struct to minimize ABI breakage for planner
plugins.  There doesn't seem to be a good alternative to changing
get_eclass_for_sort_expr's API signature, though.  There probably aren't
any third-party extensions calling that function directly; moreover,
if there are, they probably need to think about what to pass for
nullable_relids anyway.

Back-patch to 9.2, like the previous patch in this area.
2013-11-15 16:46:18 -05:00
Tom Lane db9f0e1d9a Postpone creation of pathkeys lists to fix bug #8049.
This patch gets rid of the concept of, and infrastructure for,
non-canonical PathKeys; we now only ever create canonical pathkey lists.

The need for non-canonical pathkeys came from the desire to have
grouping_planner initialize query_pathkeys and related pathkey lists before
calling query_planner.  However, since query_planner didn't actually *do*
anything with those lists before they'd been made canonical, we can get rid
of the whole mess by just not creating the lists at all until the point
where we formerly canonicalized them.

There are several ways in which we could implement that without making
query_planner itself deal with grouping/sorting features (which are
supposed to be the province of grouping_planner).  I chose to add a
callback function to query_planner's API; other alternatives would have
required adding more fields to PlannerInfo, which while not bad in itself
would create an ABI break for planner-related plugins in the 9.2 release
series.  This still breaks ABI for anything that calls query_planner
directly, but it seems somewhat unlikely that there are any such plugins.

I had originally conceived of this change as merely a step on the way to
fixing bug #8049 from Teun Hoogendoorn; but it turns out that this fixes
that bug all by itself, as per the added regression test.  The reason is
that now get_eclass_for_sort_expr is adding the ORDER BY expression at the
end of EquivalenceClass creation not the start, and so anything that is in
a multi-member EquivalenceClass has already been created with correct
em_nullable_relids.  I am suspicious that there are related scenarios in
which we still need to teach get_eclass_for_sort_expr to compute correct
nullable_relids, but am not eager to risk destabilizing either 9.2 or 9.3
to fix bugs that are only hypothetical.  So for the moment, do this and
stop here.

Back-patch to 9.2 but not to earlier branches, since they don't exhibit
this bug for lack of join-clause-movement logic that depends on
em_nullable_relids being correct.  (We might have to revisit that choice
if any related bugs turn up.)  In 9.2, don't change the signature of
make_pathkeys_for_sortclauses nor remove canonicalize_pathkeys, so as
not to risk more plugin breakage than we have to.
2013-04-29 14:50:03 -04:00
Tom Lane 9cbc4b80dd Redo postgres_fdw's planner code so it can handle parameterized paths.
I wasn't going to ship this without having at least some example of how
to do that.  This version isn't terribly bright; in particular it won't
consider any combinations of multiple join clauses.  Given the cost of
executing a remote EXPLAIN, I'm not sure we want to be very aggressive
about doing that, anyway.

In support of this, refactor generate_implied_equalities_for_indexcol
so that it can be used to extract equivalence clauses that aren't
necessarily tied to an index.
2013-03-21 19:44:32 -04:00
Bruce Momjian bd61a623ac Update copyrights for 2013
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
2013-01-01 17:15:01 -05:00
Tom Lane d3237e04ca Fix SELECT DISTINCT with index-optimized MIN/MAX on inheritance trees.
In a query such as "SELECT DISTINCT min(x) FROM tab", the DISTINCT is
pretty useless (there being only one output row), but nonetheless it
shouldn't fail.  But it could fail if "tab" is an inheritance parent,
because planagg.c's code for fixing up equivalence classes after making the
index-optimized MIN/MAX transformation wasn't prepared to find child-table
versions of the aggregate expression.  The least ugly fix seems to be
to add an option to mutate_eclass_expressions() to skip child-table
equivalence class members, which aren't used anymore at this stage of
planning so it's not really necessary to fix them.  Since child members
are ignored in many cases already, it seems plausible for
mutate_eclass_expressions() to have an option to ignore them too.

Per bug #7703 from Maxim Boguk.

Back-patch to 9.1.  Although the same code exists before that, it cannot
encounter child-table aggregates AFAICS, because the index optimization
transformation cannot succeed on inheritance trees before 9.1 (for lack
of MergeAppend).
2012-11-26 12:57:58 -05:00
Tom Lane 77387f0ac8 Suppress creation of backwardly-indexed paths for LATERAL join clauses.
Given a query such as

SELECT * FROM foo JOIN LATERAL (SELECT foo.var1) ss(x) ON ss.x = foo.var2

the existence of the join clause "ss.x = foo.var2" encourages indxpath.c to
build a parameterized path for foo using any index available for foo.var2.
This is completely useless activity, though, since foo has got to be on the
outside not the inside of any nestloop join with ss.  It's reasonably
inexpensive to add tests that prevent creation of such paths, so let's do
that.
2012-08-30 14:33:00 -04:00
Bruce Momjian 927d61eeff Run pgindent on 9.2 source tree in preparation for first 9.3
commit-fest.
2012-06-10 15:20:04 -04:00