postgresql/src/backend/optimizer/path/allpaths.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

4689 lines
145 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* allpaths.c
* Routines to find possible search paths for processing a query
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/optimizer/path/allpaths.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include <math.h>
#include "access/sysattr.h"
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
#include "access/tsmapi.h"
#include "catalog/pg_class.h"
#include "catalog/pg_operator.h"
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
#include "catalog/pg_proc.h"
#include "foreign/fdwapi.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
#include "nodes/supportnodes.h"
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
#include "optimizer/appendinfo.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/geqo.h"
#include "optimizer/inherit.h"
#include "optimizer/optimizer.h"
1999-07-16 07:00:38 +02:00
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/planner.h"
#include "optimizer/restrictinfo.h"
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
#include "optimizer/tlist.h"
#include "parser/parse_clause.h"
#include "parser/parsetree.h"
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
#include "partitioning/partbounds.h"
#include "partitioning/partprune.h"
#include "port/pg_bitutils.h"
#include "rewrite/rewriteManip.h"
#include "utils/lsyscache.h"
/* Bitmask flags for pushdown_safety_info.unsafeFlags */
#define UNSAFE_HAS_VOLATILE_FUNC (1 << 0)
#define UNSAFE_HAS_SET_FUNC (1 << 1)
#define UNSAFE_NOTIN_DISTINCTON_CLAUSE (1 << 2)
#define UNSAFE_NOTIN_PARTITIONBY_CLAUSE (1 << 3)
#define UNSAFE_TYPE_MISMATCH (1 << 4)
/* results of subquery_is_pushdown_safe */
typedef struct pushdown_safety_info
{
unsigned char *unsafeFlags; /* bitmask of reasons why this target list
* column is unsafe for qual pushdown, or 0 if
* no reason. */
bool unsafeVolatile; /* don't push down volatile quals */
bool unsafeLeaky; /* don't push down leaky quals */
} pushdown_safety_info;
/* Return type for qual_is_pushdown_safe */
typedef enum pushdown_safe_type
{
PUSHDOWN_UNSAFE, /* unsafe to push qual into subquery */
PUSHDOWN_SAFE, /* safe to push qual into subquery */
PUSHDOWN_WINDOWCLAUSE_RUNCOND /* unsafe, but may work as WindowClause
* run condition */
} pushdown_safe_type;
/* These parameters are set by GUC */
bool enable_geqo = false; /* just in case GUC doesn't set it */
int geqo_threshold;
int min_parallel_table_scan_size;
int min_parallel_index_scan_size;
/* Hook for plugins to get control in set_rel_pathlist() */
set_rel_pathlist_hook_type set_rel_pathlist_hook = NULL;
/* Hook for plugins to replace standard_join_search() */
join_search_hook_type join_search_hook = NULL;
Fix planner's cost estimation for SEMI/ANTI joins with inner indexscans. When the inner side of a nestloop SEMI or ANTI join is an indexscan that uses all the join clauses as indexquals, it can be presumed that both matched and unmatched outer rows will be processed very quickly: for matched rows, we'll stop after fetching one row from the indexscan, while for unmatched rows we'll have an indexscan that finds no matching index entries, which should also be quick. The planner already knew about this, but it was nonetheless charging for at least one full run of the inner indexscan, as a consequence of concerns about the behavior of materialized inner scans --- but those concerns don't apply in the fast case. If the inner side has low cardinality (many matching rows) this could make an indexscan plan look far more expensive than it actually is. To fix, rearrange the work in initial_cost_nestloop/final_cost_nestloop so that we don't add the inner scan cost until we've inspected the indexquals, and then we can add either the full-run cost or just the first tuple's cost as appropriate. Experimentation with this fix uncovered another problem: add_path and friends were coded to disregard cheap startup cost when considering parameterized paths. That's usually okay (and desirable, because it thins the path herd faster); but in this fast case for SEMI/ANTI joins, it could result in throwing away the desired plain indexscan path in favor of a bitmap scan path before we ever get to the join costing logic. In the many-matching-rows cases of interest here, a bitmap scan will do a lot more work than required, so this is a problem. To fix, add a per-relation flag consider_param_startup that works like the existing consider_startup flag, but applies to parameterized paths, and set it for relations that are the inside of a SEMI or ANTI join. To make this patch reasonably safe to back-patch, care has been taken to avoid changing the planner's behavior except in the very narrow case of SEMI/ANTI joins with inner indexscans. There are places in compare_path_costs_fuzzily and add_path_precheck that are not terribly consistent with the new approach, but changing them will affect planner decisions at the margins in other cases, so we'll leave that for a HEAD-only fix. Back-patch to 9.3; before that, the consider_startup flag didn't exist, meaning that the second aspect of the patch would be too invasive. Per a complaint from Peter Holzer and analysis by Tomas Vondra.
2015-06-03 17:58:47 +02:00
static void set_base_rel_consider_startup(PlannerInfo *root);
static void set_base_rel_sizes(PlannerInfo *root);
static void set_base_rel_pathlists(PlannerInfo *root);
static void set_rel_size(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
static void set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
static void set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void create_plain_partial_paths(PlannerInfo *root, RelOptInfo *rel);
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
static void set_rel_consider_parallel(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_tablesample_rel_size(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_tablesample_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_foreign_size(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_append_rel_size(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
static void set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
static void generate_orderedappend_paths(PlannerInfo *root, RelOptInfo *rel,
List *live_childrels,
List *all_child_pathkeys);
static Path *get_cheapest_parameterized_child_path(PlannerInfo *root,
RelOptInfo *rel,
Relids required_outer);
static void accumulate_append_subpath(Path *path,
List **subpaths,
List **special_subpaths);
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
static Path *get_singleton_append_subpath(Path *path);
Fix handling of targetlist SRFs when scan/join relation is known empty. When we introduced separate ProjectSetPath nodes for application of set-returning functions in v10, we inadvertently broke some cases where we're supposed to recognize that the result of a subquery is known to be empty (contain zero rows). That's because IS_DUMMY_REL was just looking for a childless AppendPath without allowing for a ProjectSetPath being possibly stuck on top. In itself, this didn't do anything much worse than produce slightly worse plans for some corner cases. Then in v11, commit 11cf92f6e rearranged things to allow the scan/join targetlist to be applied directly to partial paths before they get gathered. But it inserted a short-circuit path for dummy relations that was a little too short: it failed to insert a ProjectSetPath node at all for a targetlist containing set-returning functions, resulting in bogus "set-valued function called in context that cannot accept a set" errors, as reported in bug #15669 from Madelaine Thibaut. The best way to fix this mess seems to be to reimplement IS_DUMMY_REL so that it drills down through any ProjectSetPath nodes that might be there (and it seems like we'd better allow for ProjectionPath as well). While we're at it, make it look at rel->pathlist not cheapest_total_path, so that it gives the right answer independently of whether set_cheapest has been done lately. That dependency looks pretty shaky in the context of code like apply_scanjoin_target_to_paths, and even if it's not broken today it'd certainly bite us at some point. (Nastily, unsafe use of the old coding would almost always work; the hazard comes down to possibly looking through a dangling pointer, and only once in a blue moon would you find something there that resulted in the wrong answer.) It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if there are any extensions using it, they'll continue to use the old inadequate logic until they're recompiled, after which they'll fail to load into server versions predating this fix. Hopefully there are few such extensions. Having fixed IS_DUMMY_REL, the special path for dummy rels in apply_scanjoin_target_to_paths is unnecessary as well as being wrong, so we can just drop it. Also change a few places that were testing for partitioned-ness of a planner relation but not using IS_PARTITIONED_REL for the purpose; that seems unsafe as well as inconsistent, plus it required an ugly hack in apply_scanjoin_target_to_paths. In passing, save a few cycles in apply_scanjoin_target_to_paths by skipping processing of pre-existing paths for partitioned rels, and do some cosmetic cleanup and comment adjustment in that function. I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking any code that might be using it, since in almost every case that would be wrong; IS_DUMMY_REL is what to be using instead. In HEAD, also make set_dummy_rel_pathlist static (since it's no longer used from outside allpaths.c), and delete is_dummy_plan, since it's no longer used anywhere. Back-patch as appropriate into v11 and v10. Tom Lane and Julien Rouhaud Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
2019-03-07 20:21:52 +01:00
static void set_dummy_rel_pathlist(RelOptInfo *rel);
static void set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
static void set_function_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_values_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_tablefunc_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_namedtuplestore_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
In the planner, replace an empty FROM clause with a dummy RTE. The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 23:54:10 +01:00
static void set_result_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static RelOptInfo *make_rel_from_joinlist(PlannerInfo *root, List *joinlist);
static bool subquery_is_pushdown_safe(Query *subquery, Query *topquery,
pushdown_safety_info *safetyInfo);
static bool recurse_pushdown_safe(Node *setOp, Query *topquery,
pushdown_safety_info *safetyInfo);
static void check_output_expressions(Query *subquery,
pushdown_safety_info *safetyInfo);
static void compare_tlist_datatypes(List *tlist, List *colTypes,
pushdown_safety_info *safetyInfo);
static bool targetIsInAllPartitionLists(TargetEntry *tle, Query *query);
static pushdown_safe_type qual_is_pushdown_safe(Query *subquery, Index rti,
RestrictInfo *rinfo,
pushdown_safety_info *safetyInfo);
static void subquery_push_qual(Query *subquery,
RangeTblEntry *rte, Index rti, Node *qual);
static void recurse_push_qual(Node *setOp, Query *topquery,
RangeTblEntry *rte, Index rti, Node *qual);
static void remove_unused_subquery_outputs(Query *subquery, RelOptInfo *rel,
Bitmapset *extra_used_attrs);
/*
* make_one_rel
* Finds all possible access paths for executing a query, returning a
* single rel that represents the join of all base rels in the query.
*/
RelOptInfo *
make_one_rel(PlannerInfo *root, List *joinlist)
{
RelOptInfo *rel;
Index rti;
double total_pages;
Fix planner's cost estimation for SEMI/ANTI joins with inner indexscans. When the inner side of a nestloop SEMI or ANTI join is an indexscan that uses all the join clauses as indexquals, it can be presumed that both matched and unmatched outer rows will be processed very quickly: for matched rows, we'll stop after fetching one row from the indexscan, while for unmatched rows we'll have an indexscan that finds no matching index entries, which should also be quick. The planner already knew about this, but it was nonetheless charging for at least one full run of the inner indexscan, as a consequence of concerns about the behavior of materialized inner scans --- but those concerns don't apply in the fast case. If the inner side has low cardinality (many matching rows) this could make an indexscan plan look far more expensive than it actually is. To fix, rearrange the work in initial_cost_nestloop/final_cost_nestloop so that we don't add the inner scan cost until we've inspected the indexquals, and then we can add either the full-run cost or just the first tuple's cost as appropriate. Experimentation with this fix uncovered another problem: add_path and friends were coded to disregard cheap startup cost when considering parameterized paths. That's usually okay (and desirable, because it thins the path herd faster); but in this fast case for SEMI/ANTI joins, it could result in throwing away the desired plain indexscan path in favor of a bitmap scan path before we ever get to the join costing logic. In the many-matching-rows cases of interest here, a bitmap scan will do a lot more work than required, so this is a problem. To fix, add a per-relation flag consider_param_startup that works like the existing consider_startup flag, but applies to parameterized paths, and set it for relations that are the inside of a SEMI or ANTI join. To make this patch reasonably safe to back-patch, care has been taken to avoid changing the planner's behavior except in the very narrow case of SEMI/ANTI joins with inner indexscans. There are places in compare_path_costs_fuzzily and add_path_precheck that are not terribly consistent with the new approach, but changing them will affect planner decisions at the margins in other cases, so we'll leave that for a HEAD-only fix. Back-patch to 9.3; before that, the consider_startup flag didn't exist, meaning that the second aspect of the patch would be too invasive. Per a complaint from Peter Holzer and analysis by Tomas Vondra.
2015-06-03 17:58:47 +02:00
/* Mark base rels as to whether we care about fast-start plans */
set_base_rel_consider_startup(root);
/*
* Compute size estimates and consider_parallel flags for each base rel.
*/
set_base_rel_sizes(root);
/*
* We should now have size estimates for every actual table involved in
* the query, and we also know which if any have been deleted from the
* query by join removal, pruned by partition pruning, or eliminated by
* constraint exclusion. So we can now compute total_table_pages.
*
* Note that appendrels are not double-counted here, even though we don't
* bother to distinguish RelOptInfos for appendrel parents, because the
* parents will have pages = 0.
*
* XXX if a table is self-joined, we will count it once per appearance,
* which perhaps is the wrong thing ... but that's not completely clear,
* and detecting self-joins here is difficult, so ignore it for now.
*/
total_pages = 0;
for (rti = 1; rti < root->simple_rel_array_size; rti++)
{
RelOptInfo *brel = root->simple_rel_array[rti];
Make Vars be outer-join-aware. Traditionally we used the same Var struct to represent the value of a table column everywhere in parse and plan trees. This choice predates our support for SQL outer joins, and it's really a pretty bad idea with outer joins, because the Var's value can depend on where it is in the tree: it might go to NULL above an outer join. So expression nodes that are equal() per equalfuncs.c might not represent the same value, which is a huge correctness hazard for the planner. To improve this, decorate Var nodes with a bitmapset showing which outer joins (identified by RTE indexes) may have nulled them at the point in the parse tree where the Var appears. This allows us to trust that equal() Vars represent the same value. A certain amount of klugery is still needed to cope with cases where we re-order two outer joins, but it's possible to make it work without sacrificing that core principle. PlaceHolderVars receive similar decoration for the same reason. In the planner, we include these outer join bitmapsets into the relids that an expression is considered to depend on, and in consequence also add outer-join relids to the relids of join RelOptInfos. This allows us to correctly perceive whether an expression can be calculated above or below a particular outer join. This change affects FDWs that want to plan foreign joins. They *must* follow suit when labeling foreign joins in order to match with the core planner, but for many purposes (if postgres_fdw is any guide) they'd prefer to consider only base relations within the join. To support both requirements, redefine ForeignScan.fs_relids as base+OJ relids, and add a new field fs_base_relids that's set up by the core planner. Large though it is, this commit just does the minimum necessary to install the new mechanisms and get check-world passing again. Follow-up patches will perform some cleanup. (The README additions and comments mention some stuff that will appear in the follow-up.) Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-30 19:16:20 +01:00
/* there may be empty slots corresponding to non-baserel RTEs */
if (brel == NULL)
continue;
Assert(brel->relid == rti); /* sanity check on array */
if (IS_DUMMY_REL(brel))
continue;
if (IS_SIMPLE_REL(brel))
total_pages += (double) brel->pages;
}
root->total_table_pages = total_pages;
/*
* Generate access paths for each base rel.
*/
set_base_rel_pathlists(root);
/*
* Generate access paths for the entire join tree.
*/
rel = make_rel_from_joinlist(root, joinlist);
/*
Make Vars be outer-join-aware. Traditionally we used the same Var struct to represent the value of a table column everywhere in parse and plan trees. This choice predates our support for SQL outer joins, and it's really a pretty bad idea with outer joins, because the Var's value can depend on where it is in the tree: it might go to NULL above an outer join. So expression nodes that are equal() per equalfuncs.c might not represent the same value, which is a huge correctness hazard for the planner. To improve this, decorate Var nodes with a bitmapset showing which outer joins (identified by RTE indexes) may have nulled them at the point in the parse tree where the Var appears. This allows us to trust that equal() Vars represent the same value. A certain amount of klugery is still needed to cope with cases where we re-order two outer joins, but it's possible to make it work without sacrificing that core principle. PlaceHolderVars receive similar decoration for the same reason. In the planner, we include these outer join bitmapsets into the relids that an expression is considered to depend on, and in consequence also add outer-join relids to the relids of join RelOptInfos. This allows us to correctly perceive whether an expression can be calculated above or below a particular outer join. This change affects FDWs that want to plan foreign joins. They *must* follow suit when labeling foreign joins in order to match with the core planner, but for many purposes (if postgres_fdw is any guide) they'd prefer to consider only base relations within the join. To support both requirements, redefine ForeignScan.fs_relids as base+OJ relids, and add a new field fs_base_relids that's set up by the core planner. Large though it is, this commit just does the minimum necessary to install the new mechanisms and get check-world passing again. Follow-up patches will perform some cleanup. (The README additions and comments mention some stuff that will appear in the follow-up.) Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-30 19:16:20 +01:00
* The result should join all and only the query's base + outer-join rels.
*/
Make Vars be outer-join-aware. Traditionally we used the same Var struct to represent the value of a table column everywhere in parse and plan trees. This choice predates our support for SQL outer joins, and it's really a pretty bad idea with outer joins, because the Var's value can depend on where it is in the tree: it might go to NULL above an outer join. So expression nodes that are equal() per equalfuncs.c might not represent the same value, which is a huge correctness hazard for the planner. To improve this, decorate Var nodes with a bitmapset showing which outer joins (identified by RTE indexes) may have nulled them at the point in the parse tree where the Var appears. This allows us to trust that equal() Vars represent the same value. A certain amount of klugery is still needed to cope with cases where we re-order two outer joins, but it's possible to make it work without sacrificing that core principle. PlaceHolderVars receive similar decoration for the same reason. In the planner, we include these outer join bitmapsets into the relids that an expression is considered to depend on, and in consequence also add outer-join relids to the relids of join RelOptInfos. This allows us to correctly perceive whether an expression can be calculated above or below a particular outer join. This change affects FDWs that want to plan foreign joins. They *must* follow suit when labeling foreign joins in order to match with the core planner, but for many purposes (if postgres_fdw is any guide) they'd prefer to consider only base relations within the join. To support both requirements, redefine ForeignScan.fs_relids as base+OJ relids, and add a new field fs_base_relids that's set up by the core planner. Large though it is, this commit just does the minimum necessary to install the new mechanisms and get check-world passing again. Follow-up patches will perform some cleanup. (The README additions and comments mention some stuff that will appear in the follow-up.) Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-30 19:16:20 +01:00
Assert(bms_equal(rel->relids, root->all_query_rels));
return rel;
}
Fix planner's cost estimation for SEMI/ANTI joins with inner indexscans. When the inner side of a nestloop SEMI or ANTI join is an indexscan that uses all the join clauses as indexquals, it can be presumed that both matched and unmatched outer rows will be processed very quickly: for matched rows, we'll stop after fetching one row from the indexscan, while for unmatched rows we'll have an indexscan that finds no matching index entries, which should also be quick. The planner already knew about this, but it was nonetheless charging for at least one full run of the inner indexscan, as a consequence of concerns about the behavior of materialized inner scans --- but those concerns don't apply in the fast case. If the inner side has low cardinality (many matching rows) this could make an indexscan plan look far more expensive than it actually is. To fix, rearrange the work in initial_cost_nestloop/final_cost_nestloop so that we don't add the inner scan cost until we've inspected the indexquals, and then we can add either the full-run cost or just the first tuple's cost as appropriate. Experimentation with this fix uncovered another problem: add_path and friends were coded to disregard cheap startup cost when considering parameterized paths. That's usually okay (and desirable, because it thins the path herd faster); but in this fast case for SEMI/ANTI joins, it could result in throwing away the desired plain indexscan path in favor of a bitmap scan path before we ever get to the join costing logic. In the many-matching-rows cases of interest here, a bitmap scan will do a lot more work than required, so this is a problem. To fix, add a per-relation flag consider_param_startup that works like the existing consider_startup flag, but applies to parameterized paths, and set it for relations that are the inside of a SEMI or ANTI join. To make this patch reasonably safe to back-patch, care has been taken to avoid changing the planner's behavior except in the very narrow case of SEMI/ANTI joins with inner indexscans. There are places in compare_path_costs_fuzzily and add_path_precheck that are not terribly consistent with the new approach, but changing them will affect planner decisions at the margins in other cases, so we'll leave that for a HEAD-only fix. Back-patch to 9.3; before that, the consider_startup flag didn't exist, meaning that the second aspect of the patch would be too invasive. Per a complaint from Peter Holzer and analysis by Tomas Vondra.
2015-06-03 17:58:47 +02:00
/*
* set_base_rel_consider_startup
* Set the consider_[param_]startup flags for each base-relation entry.
*
* For the moment, we only deal with consider_param_startup here; because the
* logic for consider_startup is pretty trivial and is the same for every base
* relation, we just let build_simple_rel() initialize that flag correctly to
* start with. If that logic ever gets more complicated it would probably
* be better to move it here.
*/
static void
set_base_rel_consider_startup(PlannerInfo *root)
{
/*
* Since parameterized paths can only be used on the inside of a nestloop
* join plan, there is usually little value in considering fast-start
* plans for them. However, for relations that are on the RHS of a SEMI
* or ANTI join, a fast-start plan can be useful because we're only going
* to care about fetching one tuple anyway.
*
* To minimize growth of planning time, we currently restrict this to
* cases where the RHS is a single base relation, not a join; there is no
* provision for consider_param_startup to get set at all on joinrels.
* Also we don't worry about appendrels. costsize.c's costing rules for
* nestloop semi/antijoins don't consider such cases either.
*/
ListCell *lc;
foreach(lc, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
int varno;
if ((sjinfo->jointype == JOIN_SEMI || sjinfo->jointype == JOIN_ANTI) &&
bms_get_singleton_member(sjinfo->syn_righthand, &varno))
{
RelOptInfo *rel = find_base_rel(root, varno);
rel->consider_param_startup = true;
}
}
}
/*
* set_base_rel_sizes
* Set the size estimates (rows and widths) for each base-relation entry.
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
* Also determine whether to consider parallel paths for base relations.
*
* We do this in a separate pass over the base rels so that rowcount
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
* estimates are available for parameterized path generation, and also so
* that each rel's consider_parallel flag is set correctly before we begin to
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
* generate paths.
*/
static void
set_base_rel_sizes(PlannerInfo *root)
{
Index rti;
for (rti = 1; rti < root->simple_rel_array_size; rti++)
{
RelOptInfo *rel = root->simple_rel_array[rti];
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
RangeTblEntry *rte;
/* there may be empty slots corresponding to non-baserel RTEs */
if (rel == NULL)
continue;
Assert(rel->relid == rti); /* sanity check on array */
/* ignore RTEs that are "other rels" */
if (rel->reloptkind != RELOPT_BASEREL)
continue;
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
rte = root->simple_rte_array[rti];
/*
* If parallelism is allowable for this query in general, see whether
* it's allowable for this rel in particular. We have to do this
* before set_rel_size(), because (a) if this rel is an inheritance
* parent, set_append_rel_size() will use and perhaps change the rel's
* consider_parallel flag, and (b) for some RTE types, set_rel_size()
* goes ahead and makes paths immediately.
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
*/
if (root->glob->parallelModeOK)
set_rel_consider_parallel(root, rel, rte);
set_rel_size(root, rel, rti, rte);
}
}
/*
* set_base_rel_pathlists
* Finds all paths available for scanning each base-relation entry.
* Sequential scan and any available indices are considered.
* Each useful path is attached to its relation's 'pathlist' field.
*/
static void
set_base_rel_pathlists(PlannerInfo *root)
{
Index rti;
for (rti = 1; rti < root->simple_rel_array_size; rti++)
{
RelOptInfo *rel = root->simple_rel_array[rti];
/* there may be empty slots corresponding to non-baserel RTEs */
if (rel == NULL)
continue;
Assert(rel->relid == rti); /* sanity check on array */
/* ignore RTEs that are "other rels" */
if (rel->reloptkind != RELOPT_BASEREL)
continue;
set_rel_pathlist(root, rel, rti, root->simple_rte_array[rti]);
}
}
/*
* set_rel_size
* Set size estimates for a base relation
*/
static void
set_rel_size(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
if (rel->reloptkind == RELOPT_BASEREL &&
relation_excluded_by_constraints(root, rel, rte))
{
/*
* We proved we don't need to scan the rel via constraint exclusion,
* so set up a single dummy path for it. Here we only check this for
* regular baserels; if it's an otherrel, CE was already checked in
* set_append_rel_size().
*
* In this case, we go ahead and set up the relation's path right away
* instead of leaving it for set_rel_pathlist to do. This is because
* we don't have a convention for marking a rel as dummy except by
* assigning a dummy path to it.
*/
set_dummy_rel_pathlist(rel);
}
else if (rte->inh)
{
/* It's an "append relation", process accordingly */
set_append_rel_size(root, rel, rti, rte);
}
else
{
switch (rel->rtekind)
{
case RTE_RELATION:
if (rte->relkind == RELKIND_FOREIGN_TABLE)
{
/* Foreign table */
set_foreign_size(root, rel, rte);
}
else if (rte->relkind == RELKIND_PARTITIONED_TABLE)
{
/*
* We could get here if asked to scan a partitioned table
* with ONLY. In that case we shouldn't scan any of the
* partitions, so mark it as a dummy rel.
*/
set_dummy_rel_pathlist(rel);
}
else if (rte->tablesample != NULL)
{
/* Sampled relation */
set_tablesample_rel_size(root, rel, rte);
}
else
{
/* Plain relation */
set_plain_rel_size(root, rel, rte);
}
break;
case RTE_SUBQUERY:
/*
* Subqueries don't support making a choice between
* parameterized and unparameterized paths, so just go ahead
* and build their paths immediately.
*/
set_subquery_pathlist(root, rel, rti, rte);
break;
case RTE_FUNCTION:
set_function_size_estimates(root, rel);
break;
case RTE_TABLEFUNC:
set_tablefunc_size_estimates(root, rel);
break;
case RTE_VALUES:
set_values_size_estimates(root, rel);
break;
case RTE_CTE:
/*
* CTEs don't support making a choice between parameterized
* and unparameterized paths, so just go ahead and build their
* paths immediately.
*/
if (rte->self_reference)
set_worktable_pathlist(root, rel, rte);
else
set_cte_pathlist(root, rel, rte);
break;
case RTE_NAMEDTUPLESTORE:
In the planner, replace an empty FROM clause with a dummy RTE. The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 23:54:10 +01:00
/* Might as well just build the path immediately */
set_namedtuplestore_pathlist(root, rel, rte);
break;
In the planner, replace an empty FROM clause with a dummy RTE. The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 23:54:10 +01:00
case RTE_RESULT:
/* Might as well just build the path immediately */
set_result_pathlist(root, rel, rte);
break;
default:
elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind);
break;
}
}
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
/*
* We insist that all non-dummy rels have a nonzero rowcount estimate.
*/
Assert(rel->rows > 0 || IS_DUMMY_REL(rel));
}
/*
* set_rel_pathlist
* Build access paths for a base relation
*/
static void
set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
if (IS_DUMMY_REL(rel))
{
/* We already proved the relation empty, so nothing more to do */
}
else if (rte->inh)
{
/* It's an "append relation", process accordingly */
set_append_rel_pathlist(root, rel, rti, rte);
}
else
{
switch (rel->rtekind)
{
case RTE_RELATION:
if (rte->relkind == RELKIND_FOREIGN_TABLE)
{
/* Foreign table */
set_foreign_pathlist(root, rel, rte);
}
else if (rte->tablesample != NULL)
{
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
/* Sampled relation */
set_tablesample_rel_pathlist(root, rel, rte);
}
else
{
/* Plain relation */
set_plain_rel_pathlist(root, rel, rte);
}
break;
case RTE_SUBQUERY:
/* Subquery --- fully handled during set_rel_size */
break;
case RTE_FUNCTION:
/* RangeFunction */
set_function_pathlist(root, rel, rte);
break;
case RTE_TABLEFUNC:
/* Table Function */
set_tablefunc_pathlist(root, rel, rte);
break;
case RTE_VALUES:
/* Values list */
set_values_pathlist(root, rel, rte);
break;
case RTE_CTE:
/* CTE reference --- fully handled during set_rel_size */
break;
case RTE_NAMEDTUPLESTORE:
/* tuplestore reference --- fully handled during set_rel_size */
break;
In the planner, replace an empty FROM clause with a dummy RTE. The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 23:54:10 +01:00
case RTE_RESULT:
/* simple Result --- fully handled during set_rel_size */
break;
default:
elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind);
break;
}
}
/*
* Allow a plugin to editorialize on the set of Paths for this base
* relation. It could add new paths (such as CustomPaths) by calling
* add_path(), or add_partial_path() if parallel aware. It could also
* delete or modify paths added by the core code.
*/
if (set_rel_pathlist_hook)
(*set_rel_pathlist_hook) (root, rel, rti, rte);
/*
* If this is a baserel, we should normally consider gathering any partial
* paths we may have created for it. We have to do this after calling the
* set_rel_pathlist_hook, else it cannot add partial paths to be included
* here.
*
* However, if this is an inheritance child, skip it. Otherwise, we could
* end up with a very large number of gather nodes, each trying to grab
* its own pool of workers. Instead, we'll consider gathering partial
* paths for the parent appendrel.
*
* Also, if this is the topmost scan/join rel, we postpone gathering until
* the final scan/join targetlist is available (see grouping_planner).
*/
if (rel->reloptkind == RELOPT_BASEREL &&
Make Vars be outer-join-aware. Traditionally we used the same Var struct to represent the value of a table column everywhere in parse and plan trees. This choice predates our support for SQL outer joins, and it's really a pretty bad idea with outer joins, because the Var's value can depend on where it is in the tree: it might go to NULL above an outer join. So expression nodes that are equal() per equalfuncs.c might not represent the same value, which is a huge correctness hazard for the planner. To improve this, decorate Var nodes with a bitmapset showing which outer joins (identified by RTE indexes) may have nulled them at the point in the parse tree where the Var appears. This allows us to trust that equal() Vars represent the same value. A certain amount of klugery is still needed to cope with cases where we re-order two outer joins, but it's possible to make it work without sacrificing that core principle. PlaceHolderVars receive similar decoration for the same reason. In the planner, we include these outer join bitmapsets into the relids that an expression is considered to depend on, and in consequence also add outer-join relids to the relids of join RelOptInfos. This allows us to correctly perceive whether an expression can be calculated above or below a particular outer join. This change affects FDWs that want to plan foreign joins. They *must* follow suit when labeling foreign joins in order to match with the core planner, but for many purposes (if postgres_fdw is any guide) they'd prefer to consider only base relations within the join. To support both requirements, redefine ForeignScan.fs_relids as base+OJ relids, and add a new field fs_base_relids that's set up by the core planner. Large though it is, this commit just does the minimum necessary to install the new mechanisms and get check-world passing again. Follow-up patches will perform some cleanup. (The README additions and comments mention some stuff that will appear in the follow-up.) Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-30 19:16:20 +01:00
!bms_equal(rel->relids, root->all_query_rels))
generate_useful_gather_paths(root, rel, false);
/* Now find the cheapest of the paths for this rel */
set_cheapest(rel);
#ifdef OPTIMIZER_DEBUG
debug_print_rel(root, rel);
#endif
}
/*
* set_plain_rel_size
* Set size estimates for a plain relation (no subquery, no inheritance)
*/
static void
set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
/*
* Test any partial indexes of rel for applicability. We must do this
* first since partial unique indexes can affect size estimates.
*/
Support using index-only scans with partial indexes in more cases. Previously, the planner would reject an index-only scan if any restriction clause for its table used a column not available from the index, even if that restriction clause would later be dropped from the plan entirely because it's implied by the index's predicate. This is a fairly common situation for partial indexes because predicates using columns not included in the index are often the most useful kind of predicate, and we have to duplicate (or at least imply) the predicate in the WHERE clause in order to get the index to be considered at all. So index-only scans were essentially unavailable with such partial indexes. To fix, we have to do detection of implied-by-predicate clauses much earlier in the planner. This patch puts it in check_index_predicates (nee check_partial_indexes), meaning it gets done for every partial index, whereas we previously only considered this issue at createplan time, so that the work was only done for an index actually selected for use. That could result in a noticeable planning slowdown for queries against tables with many partial indexes. However, testing suggested that there isn't really a significant cost, especially not with reasonable numbers of partial indexes. We do get a small additional benefit, which is that cost_index is more accurate since it correctly discounts the evaluation cost of clauses that will be removed. We can also avoid considering such clauses as potential indexquals, which saves useless matching cycles in the case where the predicate columns aren't in the index, and prevents generating bogus plans that double-count the clause's selectivity when the columns are in the index. Tomas Vondra and Kyotaro Horiguchi, reviewed by Kevin Grittner and Konstantin Knizhnik, and whacked around a little by me
2016-03-31 20:48:56 +02:00
check_index_predicates(root, rel);
/* Mark rel with estimated output rows, width, etc */
set_baserel_size_estimates(root, rel);
}
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
/*
* If this relation could possibly be scanned from within a worker, then set
* its consider_parallel flag.
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
*/
static void
set_rel_consider_parallel(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte)
{
/*
* The flag has previously been initialized to false, so we can just
* return if it becomes clear that we can't safely set it.
*/
Assert(!rel->consider_parallel);
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
/* Don't call this if parallelism is disallowed for the entire query. */
Assert(root->glob->parallelModeOK);
/* This should only be called for baserels and appendrel children. */
Assert(IS_SIMPLE_REL(rel));
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
/* Assorted checks based on rtekind. */
switch (rte->rtekind)
{
case RTE_RELATION:
2016-06-10 00:02:36 +02:00
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
/*
* Currently, parallel workers can't access the leader's temporary
* tables. We could possibly relax this if we wrote all of its
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
* local buffers at the start of the query and made no changes
* thereafter (maybe we could allow hint bit changes), and if we
* taught the workers to read them. Writing a large number of
* temporary buffers could be expensive, though, and we don't have
* the rest of the necessary infrastructure right now anyway. So
* for now, bail out if we see a temporary table.
*/
if (get_rel_persistence(rte->relid) == RELPERSISTENCE_TEMP)
return;
/*
* Table sampling can be pushed down to workers if the sample
* function and its arguments are safe.
*/
if (rte->tablesample != NULL)
{
char proparallel = func_parallel(rte->tablesample->tsmhandler);
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
if (proparallel != PROPARALLEL_SAFE)
return;
if (!is_parallel_safe(root, (Node *) rte->tablesample->args))
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
return;
}
/*
* Ask FDWs whether they can support performing a ForeignScan
* within a worker. Most often, the answer will be no. For
* example, if the nature of the FDW is such that it opens a TCP
* connection with a remote server, each parallel worker would end
* up with a separate connection, and these connections might not
* be appropriately coordinated between workers and the leader.
*/
if (rte->relkind == RELKIND_FOREIGN_TABLE)
{
Assert(rel->fdwroutine);
if (!rel->fdwroutine->IsForeignScanParallelSafe)
return;
if (!rel->fdwroutine->IsForeignScanParallelSafe(root, rel, rte))
return;
}
/*
* There are additional considerations for appendrels, which we'll
* deal with in set_append_rel_size and set_append_rel_pathlist.
* For now, just set consider_parallel based on the rel's own
* quals and targetlist.
*/
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
break;
case RTE_SUBQUERY:
2016-06-10 00:02:36 +02:00
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
/*
* There's no intrinsic problem with scanning a subquery-in-FROM
* (as distinct from a SubPlan or InitPlan) in a parallel worker.
* If the subquery doesn't happen to have any parallel-safe paths,
* then flagging it as consider_parallel won't change anything,
* but that's true for plain tables, too. We must set
* consider_parallel based on the rel's own quals and targetlist,
* so that if a subquery path is parallel-safe but the quals and
* projection we're sticking onto it are not, we correctly mark
* the SubqueryScanPath as not parallel-safe. (Note that
* set_subquery_pathlist() might push some of these quals down
* into the subquery itself, but that doesn't change anything.)
*
* We can't push sub-select containing LIMIT/OFFSET to workers as
* there is no guarantee that the row order will be fully
* deterministic, and applying LIMIT/OFFSET will lead to
* inconsistent results at the top-level. (In some cases, where
* the result is ordered, we could relax this restriction. But it
* doesn't currently seem worth expending extra effort to do so.)
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
*/
{
Query *subquery = castNode(Query, rte->subquery);
if (limit_needed(subquery))
return;
}
break;
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
case RTE_JOIN:
/* Shouldn't happen; we're only considering baserels here. */
Assert(false);
return;
case RTE_FUNCTION:
/* Check for parallel-restricted functions. */
if (!is_parallel_safe(root, (Node *) rte->functions))
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
return;
break;
case RTE_TABLEFUNC:
/* not parallel safe */
return;
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
case RTE_VALUES:
/* Check for parallel-restricted functions. */
if (!is_parallel_safe(root, (Node *) rte->values_lists))
return;
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
break;
case RTE_CTE:
2016-06-10 00:02:36 +02:00
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
/*
* CTE tuplestores aren't shared among parallel workers, so we
* force all CTE scans to happen in the leader. Also, populating
* the CTE would require executing a subplan that's not available
* in the worker, might be parallel-restricted, and must get
* executed only once.
*/
return;
case RTE_NAMEDTUPLESTORE:
/*
* tuplestore cannot be shared, at least without more
* infrastructure to support that.
*/
return;
In the planner, replace an empty FROM clause with a dummy RTE. The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 23:54:10 +01:00
case RTE_RESULT:
/* RESULT RTEs, in themselves, are no problem. */
break;
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
}
/*
* If there's anything in baserestrictinfo that's parallel-restricted, we
* give up on parallelizing access to this relation. We could consider
* instead postponing application of the restricted quals until we're
* above all the parallelism in the plan tree, but it's not clear that
* that would be a win in very many cases, and it might be tricky to make
* outer join clauses work correctly. It would likely break equivalence
* classes, too.
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
*/
if (!is_parallel_safe(root, (Node *) rel->baserestrictinfo))
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
return;
/*
* Likewise, if the relation's outputs are not parallel-safe, give up.
* (Usually, they're just Vars, but sometimes they're not.)
*/
if (!is_parallel_safe(root, (Node *) rel->reltarget->exprs))
return;
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
/* We have a winner. */
rel->consider_parallel = true;
}
/*
* set_plain_rel_pathlist
* Build access paths for a plain relation (no subquery, no inheritance)
*/
static void
set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Relids required_outer;
/*
* We don't support pushing join clauses into the quals of a seqscan, but
* it could still have required parameterization due to LATERAL refs in
* its tlist.
*/
required_outer = rel->lateral_relids;
/* Consider sequential scan */
add_path(rel, create_seqscan_path(root, rel, required_outer, 0));
/* If appropriate, consider parallel sequential scan */
if (rel->consider_parallel && required_outer == NULL)
create_plain_partial_paths(root, rel);
Generate parallel sequential scan plans in simple cases. Add a new flag, consider_parallel, to each RelOptInfo, indicating whether a plan for that relation could conceivably be run inside of a parallel worker. Right now, we're pretty conservative: for example, it might be possible to defer applying a parallel-restricted qual in a worker, and later do it in the leader, but right now we just don't try to parallelize access to that relation. That's probably the right decision in most cases, anyway. Using the new flag, generate parallel sequential scan plans for plain baserels, meaning that we now have parallel sequential scan in PostgreSQL. The logic here is pretty unsophisticated right now: the costing model probably isn't right in detail, and we can't push joins beneath Gather nodes, so the number of plans that can actually benefit from this is pretty limited right now. Lots more work is needed. Nevertheless, it seems time to enable this functionality so that all this code can actually be tested easily by users and developers. Note that, if you wish to test this functionality, it will be necessary to set max_parallel_degree to a value greater than the default of 0. Once a few more loose ends have been tidied up here, we might want to consider changing the default value of this GUC, but I'm leaving it alone for now. Along the way, fix a bug in cost_gather: the previous coding thought that a Gather node's transfer overhead should be costed on the basis of the relation size rather than the number of tuples that actually need to be passed off to the leader. Patch by me, reviewed in earlier versions by Amit Kapila.
2015-11-11 15:02:52 +01:00
/* Consider index scans */
create_index_paths(root, rel);
/* Consider TID scans */
create_tidscan_paths(root, rel);
}
/*
* create_plain_partial_paths
* Build partial access paths for parallel scan of a plain relation
*/
static void
create_plain_partial_paths(PlannerInfo *root, RelOptInfo *rel)
{
int parallel_workers;
parallel_workers = compute_parallel_worker(rel, rel->pages, -1,
max_parallel_workers_per_gather);
/* If any limit was set to zero, the user doesn't want a parallel scan. */
if (parallel_workers <= 0)
return;
/* Add an unordered partial path based on a parallel sequential scan. */
add_partial_path(rel, create_seqscan_path(root, rel, NULL, parallel_workers));
}
/*
* set_tablesample_rel_size
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
* Set size estimates for a sampled relation
*/
static void
set_tablesample_rel_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
TableSampleClause *tsc = rte->tablesample;
TsmRoutine *tsm;
BlockNumber pages;
double tuples;
/*
* Test any partial indexes of rel for applicability. We must do this
* first since partial unique indexes can affect size estimates.
*/
Support using index-only scans with partial indexes in more cases. Previously, the planner would reject an index-only scan if any restriction clause for its table used a column not available from the index, even if that restriction clause would later be dropped from the plan entirely because it's implied by the index's predicate. This is a fairly common situation for partial indexes because predicates using columns not included in the index are often the most useful kind of predicate, and we have to duplicate (or at least imply) the predicate in the WHERE clause in order to get the index to be considered at all. So index-only scans were essentially unavailable with such partial indexes. To fix, we have to do detection of implied-by-predicate clauses much earlier in the planner. This patch puts it in check_index_predicates (nee check_partial_indexes), meaning it gets done for every partial index, whereas we previously only considered this issue at createplan time, so that the work was only done for an index actually selected for use. That could result in a noticeable planning slowdown for queries against tables with many partial indexes. However, testing suggested that there isn't really a significant cost, especially not with reasonable numbers of partial indexes. We do get a small additional benefit, which is that cost_index is more accurate since it correctly discounts the evaluation cost of clauses that will be removed. We can also avoid considering such clauses as potential indexquals, which saves useless matching cycles in the case where the predicate columns aren't in the index, and prevents generating bogus plans that double-count the clause's selectivity when the columns are in the index. Tomas Vondra and Kyotaro Horiguchi, reviewed by Kevin Grittner and Konstantin Knizhnik, and whacked around a little by me
2016-03-31 20:48:56 +02:00
check_index_predicates(root, rel);
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
/*
* Call the sampling method's estimation function to estimate the number
* of pages it will read and the number of tuples it will return. (Note:
* we assume the function returns sane values.)
*/
tsm = GetTsmRoutine(tsc->tsmhandler);
tsm->SampleScanGetSampleSize(root, rel, tsc->args,
&pages, &tuples);
/*
* For the moment, because we will only consider a SampleScan path for the
* rel, it's okay to just overwrite the pages and tuples estimates for the
* whole relation. If we ever consider multiple path types for sampled
* rels, we'll need more complication.
*/
rel->pages = pages;
rel->tuples = tuples;
/* Mark rel with estimated output rows, width, etc */
set_baserel_size_estimates(root, rel);
}
/*
* set_tablesample_rel_pathlist
* Build access paths for a sampled relation
*/
static void
set_tablesample_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Relids required_outer;
Path *path;
/*
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
* We don't support pushing join clauses into the quals of a samplescan,
* but it could still have required parameterization due to LATERAL refs
* in its tlist or TABLESAMPLE arguments.
*/
required_outer = rel->lateral_relids;
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
/* Consider sampled scan */
path = create_samplescan_path(root, rel, required_outer);
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
/*
* If the sampling method does not support repeatable scans, we must avoid
* plans that would scan the rel multiple times. Ideally, we'd simply
* avoid putting the rel on the inside of a nestloop join; but adding such
* a consideration to the planner seems like a great deal of complication
* to support an uncommon usage of second-rate sampling methods. Instead,
* if there is a risk that the query might perform an unsafe join, just
* wrap the SampleScan in a Materialize node. We can check for joins by
Make Vars be outer-join-aware. Traditionally we used the same Var struct to represent the value of a table column everywhere in parse and plan trees. This choice predates our support for SQL outer joins, and it's really a pretty bad idea with outer joins, because the Var's value can depend on where it is in the tree: it might go to NULL above an outer join. So expression nodes that are equal() per equalfuncs.c might not represent the same value, which is a huge correctness hazard for the planner. To improve this, decorate Var nodes with a bitmapset showing which outer joins (identified by RTE indexes) may have nulled them at the point in the parse tree where the Var appears. This allows us to trust that equal() Vars represent the same value. A certain amount of klugery is still needed to cope with cases where we re-order two outer joins, but it's possible to make it work without sacrificing that core principle. PlaceHolderVars receive similar decoration for the same reason. In the planner, we include these outer join bitmapsets into the relids that an expression is considered to depend on, and in consequence also add outer-join relids to the relids of join RelOptInfos. This allows us to correctly perceive whether an expression can be calculated above or below a particular outer join. This change affects FDWs that want to plan foreign joins. They *must* follow suit when labeling foreign joins in order to match with the core planner, but for many purposes (if postgres_fdw is any guide) they'd prefer to consider only base relations within the join. To support both requirements, redefine ForeignScan.fs_relids as base+OJ relids, and add a new field fs_base_relids that's set up by the core planner. Large though it is, this commit just does the minimum necessary to install the new mechanisms and get check-world passing again. Follow-up patches will perform some cleanup. (The README additions and comments mention some stuff that will appear in the follow-up.) Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-30 19:16:20 +01:00
* counting the membership of all_query_rels (note that this correctly
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
* counts inheritance trees as single rels). If we're inside a subquery,
* we can't easily check whether a join might occur in the outer query, so
* just assume one is possible.
*
* GetTsmRoutine is relatively expensive compared to the other tests here,
* so check repeatable_across_scans last, even though that's a bit odd.
*/
if ((root->query_level > 1 ||
Make Vars be outer-join-aware. Traditionally we used the same Var struct to represent the value of a table column everywhere in parse and plan trees. This choice predates our support for SQL outer joins, and it's really a pretty bad idea with outer joins, because the Var's value can depend on where it is in the tree: it might go to NULL above an outer join. So expression nodes that are equal() per equalfuncs.c might not represent the same value, which is a huge correctness hazard for the planner. To improve this, decorate Var nodes with a bitmapset showing which outer joins (identified by RTE indexes) may have nulled them at the point in the parse tree where the Var appears. This allows us to trust that equal() Vars represent the same value. A certain amount of klugery is still needed to cope with cases where we re-order two outer joins, but it's possible to make it work without sacrificing that core principle. PlaceHolderVars receive similar decoration for the same reason. In the planner, we include these outer join bitmapsets into the relids that an expression is considered to depend on, and in consequence also add outer-join relids to the relids of join RelOptInfos. This allows us to correctly perceive whether an expression can be calculated above or below a particular outer join. This change affects FDWs that want to plan foreign joins. They *must* follow suit when labeling foreign joins in order to match with the core planner, but for many purposes (if postgres_fdw is any guide) they'd prefer to consider only base relations within the join. To support both requirements, redefine ForeignScan.fs_relids as base+OJ relids, and add a new field fs_base_relids that's set up by the core planner. Large though it is, this commit just does the minimum necessary to install the new mechanisms and get check-world passing again. Follow-up patches will perform some cleanup. (The README additions and comments mention some stuff that will appear in the follow-up.) Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-30 19:16:20 +01:00
bms_membership(root->all_query_rels) != BMS_SINGLETON) &&
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
!(GetTsmRoutine(rte->tablesample->tsmhandler)->repeatable_across_scans))
{
path = (Path *) create_material_path(rel, path);
}
add_path(rel, path);
/* For the moment, at least, there are no other paths to consider */
}
/*
* set_foreign_size
* Set size estimates for a foreign table RTE
*/
static void
set_foreign_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
/* Mark rel with estimated output rows, width, etc */
set_foreign_size_estimates(root, rel);
Revise FDW planning API, again. Further reflection shows that a single callback isn't very workable if we desire to let FDWs generate multiple Paths, because that forces the FDW to do all work necessary to generate a valid Plan node for each Path. Instead split the former PlanForeignScan API into three steps: GetForeignRelSize, GetForeignPaths, GetForeignPlan. We had already bit the bullet of breaking the 9.1 FDW API for 9.2, so this shouldn't cause very much additional pain, and it's substantially more flexible for complex FDWs. Add an fdw_private field to RelOptInfo so that the new functions can save state there rather than possibly having to recalculate information two or three times. In addition, we'd not thought through what would be needed to allow an FDW to set up subexpressions of its choice for runtime execution. We could treat ForeignScan.fdw_private as an executable expression but that seems likely to break existing FDWs unnecessarily (in particular, it would restrict the set of node types allowable in fdw_private to those supported by expression_tree_walker). Instead, invent a separate field fdw_exprs which will receive the postprocessing appropriate for expression trees. (One field is enough since it can be a list of expressions; also, we assume the corresponding expression state tree(s) will be held within fdw_state, so we don't need to add anything to ForeignScanState.) Per review of Hanada Shigeru's pgsql_fdw patch. We may need to tweak this further as we continue to work on that patch, but to me it feels a lot closer to being right now.
2012-03-09 18:48:48 +01:00
/* Let FDW adjust the size estimates, if it can */
rel->fdwroutine->GetForeignRelSize(root, rel, rte->relid);
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
/* ... but do not let it set the rows estimate to zero */
rel->rows = clamp_row_est(rel->rows);
Redefine pg_class.reltuples to be -1 before the first VACUUM or ANALYZE. Historically, we've considered the state with relpages and reltuples both zero as indicating that we do not know the table's tuple density. This is problematic because it's impossible to distinguish "never yet vacuumed" from "vacuumed and seen to be empty". In particular, a user cannot use VACUUM or ANALYZE to override the planner's normal heuristic that an empty table should not be believed to be empty because it is probably about to get populated. That heuristic is a good safety measure, so I don't care to abandon it, but there should be a way to override it if the table is indeed intended to stay empty. Hence, represent the initial state of ignorance by setting reltuples to -1 (relpages is still set to zero), and apply the minimum-ten-pages heuristic only when reltuples is still -1. If the table is empty, VACUUM or ANALYZE (but not CREATE INDEX) will override that to reltuples = relpages = 0, and then we'll plan on that basis. This requires a bunch of fiddly little changes, but we can get rid of some ugly kluges that were formerly needed to maintain the old definition. One notable point is that FDWs' GetForeignRelSize methods will see baserel->tuples = -1 when no ANALYZE has been done on the foreign table. That seems like a net improvement, since those methods were formerly also in the dark about what baserel->tuples = 0 really meant. Still, it is an API change. I bumped catversion because code predating this change would get confused by seeing reltuples = -1. Discussion: https://postgr.es/m/F02298E0-6EF4-49A1-BCB6-C484794D9ACC@thebuild.com
2020-08-30 18:21:51 +02:00
/*
* Also, make sure rel->tuples is not insane relative to rel->rows.
* Notably, this ensures sanity if pg_class.reltuples contains -1 and the
* FDW doesn't do anything to replace that.
*/
rel->tuples = Max(rel->tuples, rel->rows);
}
/*
* set_foreign_pathlist
* Build access paths for a foreign table RTE
*/
static void
set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Revise FDW planning API, again. Further reflection shows that a single callback isn't very workable if we desire to let FDWs generate multiple Paths, because that forces the FDW to do all work necessary to generate a valid Plan node for each Path. Instead split the former PlanForeignScan API into three steps: GetForeignRelSize, GetForeignPaths, GetForeignPlan. We had already bit the bullet of breaking the 9.1 FDW API for 9.2, so this shouldn't cause very much additional pain, and it's substantially more flexible for complex FDWs. Add an fdw_private field to RelOptInfo so that the new functions can save state there rather than possibly having to recalculate information two or three times. In addition, we'd not thought through what would be needed to allow an FDW to set up subexpressions of its choice for runtime execution. We could treat ForeignScan.fdw_private as an executable expression but that seems likely to break existing FDWs unnecessarily (in particular, it would restrict the set of node types allowable in fdw_private to those supported by expression_tree_walker). Instead, invent a separate field fdw_exprs which will receive the postprocessing appropriate for expression trees. (One field is enough since it can be a list of expressions; also, we assume the corresponding expression state tree(s) will be held within fdw_state, so we don't need to add anything to ForeignScanState.) Per review of Hanada Shigeru's pgsql_fdw patch. We may need to tweak this further as we continue to work on that patch, but to me it feels a lot closer to being right now.
2012-03-09 18:48:48 +01:00
/* Call the FDW's GetForeignPaths function to generate path(s) */
rel->fdwroutine->GetForeignPaths(root, rel, rte->relid);
}
/*
* set_append_rel_size
* Set size estimates for a simple "append relation"
*
* The passed-in rel and RTE represent the entire append relation. The
* relation's contents are computed by appending together the output of the
* individual member relations. Note that in the non-partitioned inheritance
* case, the first member relation is actually the same table as is mentioned
* in the parent RTE ... but it has a different RTE and RelOptInfo. This is
* a good thing because their outputs are not the same size.
*/
static void
set_append_rel_size(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
int parentRTindex = rti;
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
bool has_live_children;
double parent_rows;
double parent_size;
double *parent_attrsizes;
int nattrs;
ListCell *l;
/* Guard against stack overflow due to overly deep inheritance tree. */
check_stack_depth();
Assert(IS_SIMPLE_REL(rel));
Disable support for partitionwise joins in problematic cases. Commit f49842d, which added support for partitionwise joins, built the child's tlist by applying adjust_appendrel_attrs() to the parent's. So in the case where the parent's included a whole-row Var for the parent, the child's contained a ConvertRowtypeExpr. To cope with that, that commit added code to the planner, such as setrefs.c, but some code paths still assumed that the tlist for a scan (or join) rel would only include Vars and PlaceHolderVars, which was true before that commit, causing errors: * When creating an explicit sort node for an input path for a mergejoin path for a child join, prepare_sort_from_pathkeys() threw the 'could not find pathkey item to sort' error. * When deparsing a relation participating in a pushed down child join as a subquery in contrib/postgres_fdw, get_relation_column_alias_ids() threw the 'unexpected expression in subquery output' error. * When performing set_plan_references() on a local join plan generated by contrib/postgres_fdw for EvalPlanQual support for a pushed down child join, fix_join_expr() threw the 'variable not found in subplan target lists' error. To fix these, two approaches have been proposed: one by Ashutosh Bapat and one by me. While the former keeps building the child's tlist with a ConvertRowtypeExpr, the latter builds it with a whole-row Var for the child not to violate the planner assumption, and tries to fix it up later, But both approaches need more work, so refuse to generate partitionwise join paths when whole-row Vars are involved, instead. We don't need to handle ConvertRowtypeExprs in the child's tlists for now, so this commit also removes the changes to the planner. Previously, partitionwise join computed attr_needed data for each child separately, and built the child join's tlist using that data, which also required an extra step for adding PlaceHolderVars to that tlist, but it would be more efficient to build it from the parent join's tlist through the adjust_appendrel_attrs() transformation. So this commit builds that list that way, and simplifies build_joinrel_tlist() and placeholder.c as well as part of set_append_rel_size() to basically what they were before partitionwise join went in. Back-patch to PG11 where partitionwise join was introduced. Report by Rajkumar Raghuwanshi. Analysis by Ashutosh Bapat, who also provided some of regression tests. Patch by me, reviewed by Robert Haas. Discussion: https://postgr.es/m/CAKcux6ktu-8tefLWtQuuZBYFaZA83vUzuRd7c1YHC-yEWyYFpg@mail.gmail.com
2018-08-31 13:34:06 +02:00
/*
* If this is a partitioned baserel, set the consider_partitionwise_join
* flag; currently, we only consider partitionwise joins with the baserel
* if its targetlist doesn't contain a whole-row Var.
*/
if (enable_partitionwise_join &&
rel->reloptkind == RELOPT_BASEREL &&
rte->relkind == RELKIND_PARTITIONED_TABLE &&
Make Vars be outer-join-aware. Traditionally we used the same Var struct to represent the value of a table column everywhere in parse and plan trees. This choice predates our support for SQL outer joins, and it's really a pretty bad idea with outer joins, because the Var's value can depend on where it is in the tree: it might go to NULL above an outer join. So expression nodes that are equal() per equalfuncs.c might not represent the same value, which is a huge correctness hazard for the planner. To improve this, decorate Var nodes with a bitmapset showing which outer joins (identified by RTE indexes) may have nulled them at the point in the parse tree where the Var appears. This allows us to trust that equal() Vars represent the same value. A certain amount of klugery is still needed to cope with cases where we re-order two outer joins, but it's possible to make it work without sacrificing that core principle. PlaceHolderVars receive similar decoration for the same reason. In the planner, we include these outer join bitmapsets into the relids that an expression is considered to depend on, and in consequence also add outer-join relids to the relids of join RelOptInfos. This allows us to correctly perceive whether an expression can be calculated above or below a particular outer join. This change affects FDWs that want to plan foreign joins. They *must* follow suit when labeling foreign joins in order to match with the core planner, but for many purposes (if postgres_fdw is any guide) they'd prefer to consider only base relations within the join. To support both requirements, redefine ForeignScan.fs_relids as base+OJ relids, and add a new field fs_base_relids that's set up by the core planner. Large though it is, this commit just does the minimum necessary to install the new mechanisms and get check-world passing again. Follow-up patches will perform some cleanup. (The README additions and comments mention some stuff that will appear in the follow-up.) Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-30 19:16:20 +01:00
bms_is_empty(rel->attr_needed[InvalidAttrNumber - rel->min_attr]))
Disable support for partitionwise joins in problematic cases. Commit f49842d, which added support for partitionwise joins, built the child's tlist by applying adjust_appendrel_attrs() to the parent's. So in the case where the parent's included a whole-row Var for the parent, the child's contained a ConvertRowtypeExpr. To cope with that, that commit added code to the planner, such as setrefs.c, but some code paths still assumed that the tlist for a scan (or join) rel would only include Vars and PlaceHolderVars, which was true before that commit, causing errors: * When creating an explicit sort node for an input path for a mergejoin path for a child join, prepare_sort_from_pathkeys() threw the 'could not find pathkey item to sort' error. * When deparsing a relation participating in a pushed down child join as a subquery in contrib/postgres_fdw, get_relation_column_alias_ids() threw the 'unexpected expression in subquery output' error. * When performing set_plan_references() on a local join plan generated by contrib/postgres_fdw for EvalPlanQual support for a pushed down child join, fix_join_expr() threw the 'variable not found in subplan target lists' error. To fix these, two approaches have been proposed: one by Ashutosh Bapat and one by me. While the former keeps building the child's tlist with a ConvertRowtypeExpr, the latter builds it with a whole-row Var for the child not to violate the planner assumption, and tries to fix it up later, But both approaches need more work, so refuse to generate partitionwise join paths when whole-row Vars are involved, instead. We don't need to handle ConvertRowtypeExprs in the child's tlists for now, so this commit also removes the changes to the planner. Previously, partitionwise join computed attr_needed data for each child separately, and built the child join's tlist using that data, which also required an extra step for adding PlaceHolderVars to that tlist, but it would be more efficient to build it from the parent join's tlist through the adjust_appendrel_attrs() transformation. So this commit builds that list that way, and simplifies build_joinrel_tlist() and placeholder.c as well as part of set_append_rel_size() to basically what they were before partitionwise join went in. Back-patch to PG11 where partitionwise join was introduced. Report by Rajkumar Raghuwanshi. Analysis by Ashutosh Bapat, who also provided some of regression tests. Patch by me, reviewed by Robert Haas. Discussion: https://postgr.es/m/CAKcux6ktu-8tefLWtQuuZBYFaZA83vUzuRd7c1YHC-yEWyYFpg@mail.gmail.com
2018-08-31 13:34:06 +02:00
rel->consider_partitionwise_join = true;
/*
* Initialize to compute size estimates for whole append relation.
*
* We handle width estimates by weighting the widths of different child
* rels proportionally to their number of rows. This is sensible because
* the use of width estimates is mainly to compute the total relation
* "footprint" if we have to sort or hash it. To do this, we sum the
* total equivalent size (in "double" arithmetic) and then divide by the
* total rowcount estimate. This is done separately for the total rel
* width and each attribute.
*
* Note: if you consider changing this logic, beware that child rels could
* have zero rows and/or width, if they were excluded by constraints.
*/
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
has_live_children = false;
parent_rows = 0;
parent_size = 0;
nattrs = rel->max_attr - rel->min_attr + 1;
parent_attrsizes = (double *) palloc0(nattrs * sizeof(double));
foreach(l, root->append_rel_list)
{
AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
int childRTindex;
RangeTblEntry *childRTE;
RelOptInfo *childrel;
List *childrinfos;
ListCell *parentvars;
ListCell *childvars;
ListCell *lc;
/* append_rel_list contains all append rels; ignore others */
if (appinfo->parent_relid != parentRTindex)
continue;
childRTindex = appinfo->child_relid;
childRTE = root->simple_rte_array[childRTindex];
/*
* The child rel's RelOptInfo was already created during
* add_other_rels_to_query.
*/
childrel = find_base_rel(root, childRTindex);
Assert(childrel->reloptkind == RELOPT_OTHER_MEMBER_REL);
/* We may have already proven the child to be dummy. */
if (IS_DUMMY_REL(childrel))
continue;
Improve RLS planning by marking individual quals with security levels. In an RLS query, we must ensure that security filter quals are evaluated before ordinary query quals, in case the latter contain "leaky" functions that could expose the contents of sensitive rows. The original implementation of RLS planning ensured this by pushing the scan of a secured table into a sub-query that it marked as a security-barrier view. Unfortunately this results in very inefficient plans in many cases, because the sub-query cannot be flattened and gets planned independently of the rest of the query. To fix, drop the use of sub-queries to enforce RLS qual order, and instead mark each qual (RestrictInfo) with a security_level field establishing its priority for evaluation. Quals must be evaluated in security_level order, except that "leakproof" quals can be allowed to go ahead of quals of lower security_level, if it's helpful to do so. This has to be enforced within the ordering of any one list of quals to be evaluated at a table scan node, and we also have to ensure that quals are not chosen for early evaluation (i.e., use as an index qual or TID scan qual) if they're not allowed to go ahead of other quals at the scan node. This is sufficient to fix the problem for RLS quals, since we only support RLS policies on simple tables and thus RLS quals will always exist at the table scan level only. Eventually these qual ordering rules should be enforced for join quals as well, which would permit improving planning for explicit security-barrier views; but that's a task for another patch. Note that FDWs would need to be aware of these rules --- and not, for example, send an insecure qual for remote execution --- but since we do not yet allow RLS policies on foreign tables, the case doesn't arise. This will need to be addressed before we can allow such policies. Patch by me, reviewed by Stephen Frost and Dean Rasheed. Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
2017-01-18 18:58:20 +01:00
/*
* We have to copy the parent's targetlist and quals to the child,
* with appropriate substitution of variables. However, the
* baserestrictinfo quals were already copied/substituted when the
* child RelOptInfo was built. So we don't need any additional setup
* before applying constraint exclusion.
Improve RLS planning by marking individual quals with security levels. In an RLS query, we must ensure that security filter quals are evaluated before ordinary query quals, in case the latter contain "leaky" functions that could expose the contents of sensitive rows. The original implementation of RLS planning ensured this by pushing the scan of a secured table into a sub-query that it marked as a security-barrier view. Unfortunately this results in very inefficient plans in many cases, because the sub-query cannot be flattened and gets planned independently of the rest of the query. To fix, drop the use of sub-queries to enforce RLS qual order, and instead mark each qual (RestrictInfo) with a security_level field establishing its priority for evaluation. Quals must be evaluated in security_level order, except that "leakproof" quals can be allowed to go ahead of quals of lower security_level, if it's helpful to do so. This has to be enforced within the ordering of any one list of quals to be evaluated at a table scan node, and we also have to ensure that quals are not chosen for early evaluation (i.e., use as an index qual or TID scan qual) if they're not allowed to go ahead of other quals at the scan node. This is sufficient to fix the problem for RLS quals, since we only support RLS policies on simple tables and thus RLS quals will always exist at the table scan level only. Eventually these qual ordering rules should be enforced for join quals as well, which would permit improving planning for explicit security-barrier views; but that's a task for another patch. Note that FDWs would need to be aware of these rules --- and not, for example, send an insecure qual for remote execution --- but since we do not yet allow RLS policies on foreign tables, the case doesn't arise. This will need to be addressed before we can allow such policies. Patch by me, reviewed by Stephen Frost and Dean Rasheed. Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
2017-01-18 18:58:20 +01:00
*/
if (relation_excluded_by_constraints(root, childrel, childRTE))
{
/*
* This child need not be scanned, so we can omit it from the
* appendrel.
*/
set_dummy_rel_pathlist(childrel);
continue;
}
/*
* Constraint exclusion failed, so copy the parent's join quals and
* targetlist to the child, with appropriate variable substitutions.
*
* We skip join quals that came from above outer joins that can null
* this rel, since they would be of no value while generating paths
* for the child. This saves some effort while processing the child
* rel, and it also avoids an implementation restriction in
* adjust_appendrel_attrs (it can't apply nullingrels to a non-Var).
*/
childrinfos = NIL;
foreach(lc, rel->joininfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
if (!bms_overlap(rinfo->clause_relids, rel->nulling_relids))
childrinfos = lappend(childrinfos,
adjust_appendrel_attrs(root,
(Node *) rinfo,
1, &appinfo));
}
childrel->joininfo = childrinfos;
/*
* Now for the child's targetlist.
*
* NB: the resulting childrel->reltarget->exprs may contain arbitrary
* expressions, which otherwise would not occur in a rel's targetlist.
* Code that might be looking at an appendrel child must cope with
* such. (Normally, a rel's targetlist would only include Vars and
* PlaceHolderVars.) XXX we do not bother to update the cost or width
* fields of childrel->reltarget; not clear if that would be useful.
*/
childrel->reltarget->exprs = (List *)
adjust_appendrel_attrs(root,
(Node *) rel->reltarget->exprs,
1, &appinfo);
/*
* We have to make child entries in the EquivalenceClass data
* structures as well. This is needed either if the parent
* participates in some eclass joins (because we will want to consider
* inner-indexscan joins on the individual children) or if the parent
* has useful pathkeys (because we should try to build MergeAppend
* paths that produce those sort orderings).
*/
if (rel->has_eclass_joins || has_useful_pathkeys(root, rel))
add_child_rel_equivalences(root, appinfo, rel, childrel);
childrel->has_eclass_joins = rel->has_eclass_joins;
Disable support for partitionwise joins in problematic cases. Commit f49842d, which added support for partitionwise joins, built the child's tlist by applying adjust_appendrel_attrs() to the parent's. So in the case where the parent's included a whole-row Var for the parent, the child's contained a ConvertRowtypeExpr. To cope with that, that commit added code to the planner, such as setrefs.c, but some code paths still assumed that the tlist for a scan (or join) rel would only include Vars and PlaceHolderVars, which was true before that commit, causing errors: * When creating an explicit sort node for an input path for a mergejoin path for a child join, prepare_sort_from_pathkeys() threw the 'could not find pathkey item to sort' error. * When deparsing a relation participating in a pushed down child join as a subquery in contrib/postgres_fdw, get_relation_column_alias_ids() threw the 'unexpected expression in subquery output' error. * When performing set_plan_references() on a local join plan generated by contrib/postgres_fdw for EvalPlanQual support for a pushed down child join, fix_join_expr() threw the 'variable not found in subplan target lists' error. To fix these, two approaches have been proposed: one by Ashutosh Bapat and one by me. While the former keeps building the child's tlist with a ConvertRowtypeExpr, the latter builds it with a whole-row Var for the child not to violate the planner assumption, and tries to fix it up later, But both approaches need more work, so refuse to generate partitionwise join paths when whole-row Vars are involved, instead. We don't need to handle ConvertRowtypeExprs in the child's tlists for now, so this commit also removes the changes to the planner. Previously, partitionwise join computed attr_needed data for each child separately, and built the child join's tlist using that data, which also required an extra step for adding PlaceHolderVars to that tlist, but it would be more efficient to build it from the parent join's tlist through the adjust_appendrel_attrs() transformation. So this commit builds that list that way, and simplifies build_joinrel_tlist() and placeholder.c as well as part of set_append_rel_size() to basically what they were before partitionwise join went in. Back-patch to PG11 where partitionwise join was introduced. Report by Rajkumar Raghuwanshi. Analysis by Ashutosh Bapat, who also provided some of regression tests. Patch by me, reviewed by Robert Haas. Discussion: https://postgr.es/m/CAKcux6ktu-8tefLWtQuuZBYFaZA83vUzuRd7c1YHC-yEWyYFpg@mail.gmail.com
2018-08-31 13:34:06 +02:00
/*
* Note: we could compute appropriate attr_needed data for the child's
* variables, by transforming the parent's attr_needed through the
* translated_vars mapping. However, currently there's no need
* because attr_needed is only examined for base relations not
* otherrels. So we just leave the child's attr_needed empty.
*/
/*
* If we consider partitionwise joins with the parent rel, do the same
* for partitioned child rels.
*
* Note: here we abuse the consider_partitionwise_join flag by setting
Avoid crash in partitionwise join planning under GEQO. While trying to plan a partitionwise join, we may be faced with cases where one or both input partitions for a particular segment of the join have been pruned away. In HEAD and v11, this is problematic because earlier processing didn't bother to make a pruned RelOptInfo fully valid. With an upcoming patch to make partition pruning more efficient, this'll be even more problematic because said RelOptInfo won't exist at all. The existing code attempts to deal with this by retroactively making the RelOptInfo fully valid, but that causes crashes under GEQO because join planning is done in a short-lived memory context. In v11 we could probably have fixed this by switching to the planner's main context while fixing up the RelOptInfo, but that idea doesn't scale well to the upcoming patch. It would be better not to mess with the base-relation data structures during join planning, anyway --- that's just a recipe for order-of-operations bugs. In many cases, though, we don't actually need the child RelOptInfo, because if the input is certainly empty then the join segment's result is certainly empty, so we can skip making a join plan altogether. (The existing code ultimately arrives at the same conclusion, but only after doing a lot more work.) This approach works except when the pruned-away partition is on the nullable side of a LEFT, ANTI, or FULL join, and the other side isn't pruned. But in those cases the existing code leaves a lot to be desired anyway --- the correct output is just the result of the unpruned side of the join, but we were emitting a useless outer join against a dummy Result. Pending somebody writing code to handle that more nicely, let's just abandon the partitionwise-join optimization in such cases. When the modified code skips making a join plan, it doesn't make a join RelOptInfo either; this requires some upper-level code to cope with nulls in part_rels[] arrays. We would have had to have that anyway after the upcoming patch. Back-patch to v11 since the crash is demonstrable there. Discussion: https://postgr.es/m/8305.1553884377@sss.pgh.pa.us
2019-03-30 17:48:19 +01:00
* it for child rels that are not themselves partitioned. We do so to
* tell try_partitionwise_join() that the child rel is sufficiently
* valid to be used as a per-partition input, even if it later gets
* proven to be dummy. (It's not usable until we've set up the
* reltarget and EC entries, which we just did.)
Disable support for partitionwise joins in problematic cases. Commit f49842d, which added support for partitionwise joins, built the child's tlist by applying adjust_appendrel_attrs() to the parent's. So in the case where the parent's included a whole-row Var for the parent, the child's contained a ConvertRowtypeExpr. To cope with that, that commit added code to the planner, such as setrefs.c, but some code paths still assumed that the tlist for a scan (or join) rel would only include Vars and PlaceHolderVars, which was true before that commit, causing errors: * When creating an explicit sort node for an input path for a mergejoin path for a child join, prepare_sort_from_pathkeys() threw the 'could not find pathkey item to sort' error. * When deparsing a relation participating in a pushed down child join as a subquery in contrib/postgres_fdw, get_relation_column_alias_ids() threw the 'unexpected expression in subquery output' error. * When performing set_plan_references() on a local join plan generated by contrib/postgres_fdw for EvalPlanQual support for a pushed down child join, fix_join_expr() threw the 'variable not found in subplan target lists' error. To fix these, two approaches have been proposed: one by Ashutosh Bapat and one by me. While the former keeps building the child's tlist with a ConvertRowtypeExpr, the latter builds it with a whole-row Var for the child not to violate the planner assumption, and tries to fix it up later, But both approaches need more work, so refuse to generate partitionwise join paths when whole-row Vars are involved, instead. We don't need to handle ConvertRowtypeExprs in the child's tlists for now, so this commit also removes the changes to the planner. Previously, partitionwise join computed attr_needed data for each child separately, and built the child join's tlist using that data, which also required an extra step for adding PlaceHolderVars to that tlist, but it would be more efficient to build it from the parent join's tlist through the adjust_appendrel_attrs() transformation. So this commit builds that list that way, and simplifies build_joinrel_tlist() and placeholder.c as well as part of set_append_rel_size() to basically what they were before partitionwise join went in. Back-patch to PG11 where partitionwise join was introduced. Report by Rajkumar Raghuwanshi. Analysis by Ashutosh Bapat, who also provided some of regression tests. Patch by me, reviewed by Robert Haas. Discussion: https://postgr.es/m/CAKcux6ktu-8tefLWtQuuZBYFaZA83vUzuRd7c1YHC-yEWyYFpg@mail.gmail.com
2018-08-31 13:34:06 +02:00
*/
if (rel->consider_partitionwise_join)
Disable support for partitionwise joins in problematic cases. Commit f49842d, which added support for partitionwise joins, built the child's tlist by applying adjust_appendrel_attrs() to the parent's. So in the case where the parent's included a whole-row Var for the parent, the child's contained a ConvertRowtypeExpr. To cope with that, that commit added code to the planner, such as setrefs.c, but some code paths still assumed that the tlist for a scan (or join) rel would only include Vars and PlaceHolderVars, which was true before that commit, causing errors: * When creating an explicit sort node for an input path for a mergejoin path for a child join, prepare_sort_from_pathkeys() threw the 'could not find pathkey item to sort' error. * When deparsing a relation participating in a pushed down child join as a subquery in contrib/postgres_fdw, get_relation_column_alias_ids() threw the 'unexpected expression in subquery output' error. * When performing set_plan_references() on a local join plan generated by contrib/postgres_fdw for EvalPlanQual support for a pushed down child join, fix_join_expr() threw the 'variable not found in subplan target lists' error. To fix these, two approaches have been proposed: one by Ashutosh Bapat and one by me. While the former keeps building the child's tlist with a ConvertRowtypeExpr, the latter builds it with a whole-row Var for the child not to violate the planner assumption, and tries to fix it up later, But both approaches need more work, so refuse to generate partitionwise join paths when whole-row Vars are involved, instead. We don't need to handle ConvertRowtypeExprs in the child's tlists for now, so this commit also removes the changes to the planner. Previously, partitionwise join computed attr_needed data for each child separately, and built the child join's tlist using that data, which also required an extra step for adding PlaceHolderVars to that tlist, but it would be more efficient to build it from the parent join's tlist through the adjust_appendrel_attrs() transformation. So this commit builds that list that way, and simplifies build_joinrel_tlist() and placeholder.c as well as part of set_append_rel_size() to basically what they were before partitionwise join went in. Back-patch to PG11 where partitionwise join was introduced. Report by Rajkumar Raghuwanshi. Analysis by Ashutosh Bapat, who also provided some of regression tests. Patch by me, reviewed by Robert Haas. Discussion: https://postgr.es/m/CAKcux6ktu-8tefLWtQuuZBYFaZA83vUzuRd7c1YHC-yEWyYFpg@mail.gmail.com
2018-08-31 13:34:06 +02:00
childrel->consider_partitionwise_join = true;
/*
* If parallelism is allowable for this query in general, see whether
* it's allowable for this childrel in particular. But if we've
* already decided the appendrel is not parallel-safe as a whole,
* there's no point in considering parallelism for this child. For
* consistency, do this before calling set_rel_size() for the child.
*/
if (root->glob->parallelModeOK && rel->consider_parallel)
set_rel_consider_parallel(root, childrel, childRTE);
/*
* Compute the child's size.
*/
set_rel_size(root, childrel, childRTindex, childRTE);
/*
* It is possible that constraint exclusion detected a contradiction
* within a child subquery, even though we didn't prove one above. If
* so, we can skip this child.
*/
if (IS_DUMMY_REL(childrel))
continue;
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
/* We have at least one live child. */
has_live_children = true;
/*
* If any live child is not parallel-safe, treat the whole appendrel
* as not parallel-safe. In future we might be able to generate plans
* in which some children are farmed out to workers while others are
* not; but we don't have that today, so it's a waste to consider
* partial paths anywhere in the appendrel unless it's all safe.
* (Child rels visited before this one will be unmarked in
* set_append_rel_pathlist().)
*/
if (!childrel->consider_parallel)
rel->consider_parallel = false;
/*
* Accumulate size information from each live child.
*/
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
Assert(childrel->rows > 0);
parent_rows += childrel->rows;
parent_size += childrel->reltarget->width * childrel->rows;
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
/*
* Accumulate per-column estimates too. We need not do anything for
* PlaceHolderVars in the parent list. If child expression isn't a
* Var, or we didn't record a width estimate for it, we have to fall
* back on a datatype-based estimate.
*
Add an explicit representation of the output targetlist to Paths. Up to now, there's been an assumption that all Paths for a given relation compute the same output column set (targetlist). However, there are good reasons to remove that assumption. For example, an indexscan on an expression index might be able to return the value of an expensive function "for free". While we have the ability to generate such a plan today in simple cases, we don't have a way to model that it's cheaper than a plan that computes the function from scratch, nor a way to create such a plan in join cases (where the function computation would normally happen at the topmost join node). Also, we need this so that we can have Paths representing post-scan/join steps, where the targetlist may well change from one step to the next. Therefore, invent a "struct PathTarget" representing the columns we expect a plan step to emit. It's convenient to include the output tuple width and tlist evaluation cost in this struct, and there will likely be additional fields in future. While Path nodes that actually do have custom outputs will need their own PathTargets, it will still be true that most Paths for a given relation will compute the same tlist. To reduce the overhead added by this patch, keep a "default PathTarget" in RelOptInfo, and allow Paths that compute that column set to just point to their parent RelOptInfo's reltarget. (In the patch as committed, actually every Path is like that, since we do not yet have any cases of custom PathTargets.) I took this opportunity to provide some more-honest costing of PlaceHolderVar evaluation. Up to now, the assumption that "scan/join reltargetlists have cost zero" was applied not only to Vars, where it's reasonable, but also PlaceHolderVars where it isn't. Now, we add the eval cost of a PlaceHolderVar's expression to the first plan level where it can be computed, by including it in the PathTarget cost field and adding that to the cost estimates for Paths. This isn't perfect yet but it's much better than before, and there is a way forward to improve it more. This costing change affects the join order chosen for a couple of the regression tests, changing expected row ordering.
2016-02-19 02:01:49 +01:00
* By construction, child's targetlist is 1-to-1 with parent's.
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
*/
forboth(parentvars, rel->reltarget->exprs,
childvars, childrel->reltarget->exprs)
{
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
Var *parentvar = (Var *) lfirst(parentvars);
Node *childvar = (Node *) lfirst(childvars);
Rework planning and execution of UPDATE and DELETE. This patch makes two closely related sets of changes: 1. For UPDATE, the subplan of the ModifyTable node now only delivers the new values of the changed columns (i.e., the expressions computed in the query's SET clause) plus row identity information such as CTID. ModifyTable must re-fetch the original tuple to merge in the old values of any unchanged columns. The core advantage of this is that the changed columns are uniform across all tables of an inherited or partitioned target relation, whereas the other columns might not be. A secondary advantage, when the UPDATE involves joins, is that less data needs to pass through the plan tree. The disadvantage of course is an extra fetch of each tuple to be updated. However, that seems to be very nearly free in context; even worst-case tests don't show it to add more than a couple percent to the total query cost. At some point it might be interesting to combine the re-fetch with the tuple access that ModifyTable must do anyway to mark the old tuple dead; but that would require a good deal of refactoring and it seems it wouldn't buy all that much, so this patch doesn't attempt it. 2. For inherited UPDATE/DELETE, instead of generating a separate subplan for each target relation, we now generate a single subplan that is just exactly like a SELECT's plan, then stick ModifyTable on top of that. To let ModifyTable know which target relation a given incoming row refers to, a tableoid junk column is added to the row identity information. This gets rid of the horrid hack that was inheritance_planner(), eliminating O(N^2) planning cost and memory consumption in cases where there were many unprunable target relations. Point 2 of course requires point 1, so that there is a uniform definition of the non-junk columns to be returned by the subplan. We can't insist on uniform definition of the row identity junk columns however, if we want to keep the ability to have both plain and foreign tables in a partitioning hierarchy. Since it wouldn't scale very far to have every child table have its own row identity column, this patch includes provisions to merge similar row identity columns into one column of the subplan result. In particular, we can merge the whole-row Vars typically used as row identity by FDWs into one column by pretending they are type RECORD. (It's still okay for the actual composite Datums to be labeled with the table's rowtype OID, though.) There is more that can be done to file down residual inefficiencies in this patch, but it seems to be committable now. FDW authors should note several API changes: * The argument list for AddForeignUpdateTargets() has changed, and so has the method it must use for adding junk columns to the query. Call add_row_identity_var() instead of manipulating the parse tree directly. You might want to reconsider exactly what you're adding, too. * PlanDirectModify() must now work a little harder to find the ForeignScan plan node; if the foreign table is part of a partitioning hierarchy then the ForeignScan might not be the direct child of ModifyTable. See postgres_fdw for sample code. * To check whether a relation is a target relation, it's no longer sufficient to compare its relid to root->parse->resultRelation. Instead, check it against all_result_relids or leaf_result_relids, as appropriate. Amit Langote and Tom Lane Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
2021-03-31 17:52:34 +02:00
if (IsA(parentvar, Var) && parentvar->varno == parentRTindex)
{
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
int pndx = parentvar->varattno - rel->min_attr;
int32 child_width = 0;
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
if (IsA(childvar, Var) &&
((Var *) childvar)->varno == childrel->relid)
{
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
int cndx = ((Var *) childvar)->varattno - childrel->min_attr;
child_width = childrel->attr_widths[cndx];
}
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
if (child_width <= 0)
child_width = get_typavgwidth(exprType(childvar),
exprTypmod(childvar));
Assert(child_width > 0);
parent_attrsizes[pndx] += child_width * childrel->rows;
}
}
}
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
if (has_live_children)
{
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
/*
* Save the finished size estimates.
*/
int i;
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
Assert(parent_rows > 0);
rel->rows = parent_rows;
rel->reltarget->width = rint(parent_size / parent_rows);
for (i = 0; i < nattrs; i++)
rel->attr_widths[i] = rint(parent_attrsizes[i] / parent_rows);
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
/*
* Set "raw tuples" count equal to "rows" for the appendrel; needed
* because some places assume rel->tuples is valid for any baserel.
*/
rel->tuples = parent_rows;
/*
* Note that we leave rel->pages as zero; this is important to avoid
* double-counting the appendrel tree in total_table_pages.
*/
}
else
Make entirely-dummy appendrels get marked as such in set_append_rel_size. The planner generally expects that the estimated rowcount of any relation is at least one row, *unless* it has been proven empty by constraint exclusion or similar mechanisms, which is marked by installing a dummy path as the rel's cheapest path (cf. IS_DUMMY_REL). When I split up allpaths.c's processing of base rels into separate set_base_rel_sizes and set_base_rel_pathlists steps, the intention was that dummy rels would get marked as such during the "set size" step; this is what justifies an Assert in indxpath.c's get_loop_count that other relations should either be dummy or have positive rowcount. Unfortunately I didn't get that quite right for append relations: if all the child rels have been proven empty then set_append_rel_size would come up with a rowcount of zero, which is correct, but it didn't then do set_dummy_rel_pathlist. (We would have ended up with the right state after set_append_rel_pathlist, but that's too late, if we generate indexpaths for some other rel first.) In addition to fixing the actual bug, I installed an Assert enforcing this convention in set_rel_size; that then allows simplification of a couple of now-redundant tests for zero rowcount in set_append_rel_size. Also, to cover the possibility that third-party FDWs have been careless about not returning a zero rowcount estimate, apply clamp_row_est to whatever an FDW comes up with as the rows estimate. Per report from Andreas Seltenreich. Back-patch to 9.2. Earlier branches did not have the separation between set_base_rel_sizes and set_base_rel_pathlists steps, so there was no intermediate state where an appendrel would have had inconsistent rowcount and pathlist. It's possible that adding the Assert to set_rel_size would be a good idea in older branches too; but since they're not under development any more, it's likely not worth the trouble.
2015-07-26 22:19:08 +02:00
{
/*
* All children were excluded by constraints, so mark the whole
* appendrel dummy. We must do this in this phase so that the rel's
* dummy-ness is visible when we generate paths for other rels.
*/
set_dummy_rel_pathlist(rel);
}
pfree(parent_attrsizes);
}
/*
* set_append_rel_pathlist
* Build access paths for an "append relation"
*/
static void
set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
int parentRTindex = rti;
List *live_childrels = NIL;
ListCell *l;
/*
* Generate access paths for each member relation, and remember the
* non-dummy children.
*/
foreach(l, root->append_rel_list)
{
AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
int childRTindex;
RangeTblEntry *childRTE;
RelOptInfo *childrel;
/* append_rel_list contains all append rels; ignore others */
if (appinfo->parent_relid != parentRTindex)
continue;
/* Re-locate the child RTE and RelOptInfo */
childRTindex = appinfo->child_relid;
childRTE = root->simple_rte_array[childRTindex];
childrel = root->simple_rel_array[childRTindex];
/*
* If set_append_rel_size() decided the parent appendrel was
* parallel-unsafe at some point after visiting this child rel, we
* need to propagate the unsafety marking down to the child, so that
* we don't generate useless partial paths for it.
*/
if (!rel->consider_parallel)
childrel->consider_parallel = false;
/*
* Compute the child's access paths.
*/
set_rel_pathlist(root, childrel, childRTindex, childRTE);
/*
* If child is dummy, ignore it.
*/
if (IS_DUMMY_REL(childrel))
continue;
/*
* Child is live, so add it to the live_childrels list for use below.
*/
live_childrels = lappend(live_childrels, childrel);
}
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
/* Add paths to the append relation. */
add_paths_to_append_rel(root, rel, live_childrels);
}
/*
* add_paths_to_append_rel
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
* Generate paths for the given append relation given the set of non-dummy
* child rels.
*
* The function collects all parameterizations and orderings supported by the
* non-dummy children. For every such parameterization or ordering, it creates
* an append path collecting one path from each non-dummy child with given
* parameterization or ordering. Similarly it collects partial paths from
* non-dummy children to create partial append paths.
*/
void
add_paths_to_append_rel(PlannerInfo *root, RelOptInfo *rel,
List *live_childrels)
{
List *subpaths = NIL;
bool subpaths_valid = true;
List *partial_subpaths = NIL;
List *pa_partial_subpaths = NIL;
List *pa_nonpartial_subpaths = NIL;
bool partial_subpaths_valid = true;
bool pa_subpaths_valid;
List *all_child_pathkeys = NIL;
List *all_child_outers = NIL;
ListCell *l;
double partial_rows = -1;
/* If appropriate, consider parallel append */
pa_subpaths_valid = enable_parallel_append && rel->consider_parallel;
/*
* For every non-dummy child, remember the cheapest path. Also, identify
* all pathkeys (orderings) and parameterizations (required_outer sets)
* available for the non-dummy member relations.
*/
foreach(l, live_childrels)
{
RelOptInfo *childrel = lfirst(l);
ListCell *lcp;
Path *cheapest_partial_path = NULL;
/*
* If child has an unparameterized cheapest-total path, add that to
* the unparameterized Append path we are constructing for the parent.
* If not, there's no workable unparameterized path.
*
* With partitionwise aggregates, the child rel's pathlist may be
* empty, so don't assume that a path exists here.
*/
if (childrel->pathlist != NIL &&
childrel->cheapest_total_path->param_info == NULL)
accumulate_append_subpath(childrel->cheapest_total_path,
&subpaths, NULL);
else
subpaths_valid = false;
/* Same idea, but for a partial plan. */
if (childrel->partial_pathlist != NIL)
{
cheapest_partial_path = linitial(childrel->partial_pathlist);
accumulate_append_subpath(cheapest_partial_path,
&partial_subpaths, NULL);
}
else
partial_subpaths_valid = false;
/*
* Same idea, but for a parallel append mixing partial and non-partial
* paths.
*/
if (pa_subpaths_valid)
{
Path *nppath = NULL;
nppath =
get_cheapest_parallel_safe_total_inner(childrel->pathlist);
if (cheapest_partial_path == NULL && nppath == NULL)
{
/* Neither a partial nor a parallel-safe path? Forget it. */
pa_subpaths_valid = false;
}
else if (nppath == NULL ||
(cheapest_partial_path != NULL &&
cheapest_partial_path->total_cost < nppath->total_cost))
{
/* Partial path is cheaper or the only option. */
Assert(cheapest_partial_path != NULL);
accumulate_append_subpath(cheapest_partial_path,
&pa_partial_subpaths,
&pa_nonpartial_subpaths);
}
else
{
/*
* Either we've got only a non-partial path, or we think that
* a single backend can execute the best non-partial path
* faster than all the parallel backends working together can
* execute the best partial path.
*
* It might make sense to be more aggressive here. Even if
* the best non-partial path is more expensive than the best
* partial path, it could still be better to choose the
* non-partial path if there are several such paths that can
* be given to different workers. For now, we don't try to
* figure that out.
*/
accumulate_append_subpath(nppath,
&pa_nonpartial_subpaths,
NULL);
}
}
/*
* Collect lists of all the available path orderings and
* parameterizations for all the children. We use these as a
* heuristic to indicate which sort orderings and parameterizations we
* should build Append and MergeAppend paths for.
*/
foreach(lcp, childrel->pathlist)
{
Path *childpath = (Path *) lfirst(lcp);
List *childkeys = childpath->pathkeys;
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
Relids childouter = PATH_REQ_OUTER(childpath);
/* Unsorted paths don't contribute to pathkey list */
if (childkeys != NIL)
{
ListCell *lpk;
bool found = false;
/* Have we already seen this ordering? */
foreach(lpk, all_child_pathkeys)
{
List *existing_pathkeys = (List *) lfirst(lpk);
if (compare_pathkeys(existing_pathkeys,
childkeys) == PATHKEYS_EQUAL)
{
found = true;
break;
}
}
if (!found)
{
/* No, so add it to all_child_pathkeys */
all_child_pathkeys = lappend(all_child_pathkeys,
childkeys);
}
}
/* Unparameterized paths don't contribute to param-set list */
if (childouter)
{
ListCell *lco;
bool found = false;
/* Have we already seen this param set? */
foreach(lco, all_child_outers)
{
Relids existing_outers = (Relids) lfirst(lco);
if (bms_equal(existing_outers, childouter))
{
found = true;
break;
}
}
if (!found)
{
/* No, so add it to all_child_outers */
all_child_outers = lappend(all_child_outers,
childouter);
}
}
}
}
/*
* If we found unparameterized paths for all children, build an unordered,
* unparameterized Append path for the rel. (Note: this is correct even
* if we have zero or one live subpath due to constraint exclusion.)
*/
if (subpaths_valid)
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
add_path(rel, (Path *) create_append_path(root, rel, subpaths, NIL,
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
NIL, NULL, 0, false,
-1));
/*
* Consider an append of unordered, unparameterized partial paths. Make
* it parallel-aware if possible.
*/
Fix handling of targetlist SRFs when scan/join relation is known empty. When we introduced separate ProjectSetPath nodes for application of set-returning functions in v10, we inadvertently broke some cases where we're supposed to recognize that the result of a subquery is known to be empty (contain zero rows). That's because IS_DUMMY_REL was just looking for a childless AppendPath without allowing for a ProjectSetPath being possibly stuck on top. In itself, this didn't do anything much worse than produce slightly worse plans for some corner cases. Then in v11, commit 11cf92f6e rearranged things to allow the scan/join targetlist to be applied directly to partial paths before they get gathered. But it inserted a short-circuit path for dummy relations that was a little too short: it failed to insert a ProjectSetPath node at all for a targetlist containing set-returning functions, resulting in bogus "set-valued function called in context that cannot accept a set" errors, as reported in bug #15669 from Madelaine Thibaut. The best way to fix this mess seems to be to reimplement IS_DUMMY_REL so that it drills down through any ProjectSetPath nodes that might be there (and it seems like we'd better allow for ProjectionPath as well). While we're at it, make it look at rel->pathlist not cheapest_total_path, so that it gives the right answer independently of whether set_cheapest has been done lately. That dependency looks pretty shaky in the context of code like apply_scanjoin_target_to_paths, and even if it's not broken today it'd certainly bite us at some point. (Nastily, unsafe use of the old coding would almost always work; the hazard comes down to possibly looking through a dangling pointer, and only once in a blue moon would you find something there that resulted in the wrong answer.) It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if there are any extensions using it, they'll continue to use the old inadequate logic until they're recompiled, after which they'll fail to load into server versions predating this fix. Hopefully there are few such extensions. Having fixed IS_DUMMY_REL, the special path for dummy rels in apply_scanjoin_target_to_paths is unnecessary as well as being wrong, so we can just drop it. Also change a few places that were testing for partitioned-ness of a planner relation but not using IS_PARTITIONED_REL for the purpose; that seems unsafe as well as inconsistent, plus it required an ugly hack in apply_scanjoin_target_to_paths. In passing, save a few cycles in apply_scanjoin_target_to_paths by skipping processing of pre-existing paths for partitioned rels, and do some cosmetic cleanup and comment adjustment in that function. I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking any code that might be using it, since in almost every case that would be wrong; IS_DUMMY_REL is what to be using instead. In HEAD, also make set_dummy_rel_pathlist static (since it's no longer used from outside allpaths.c), and delete is_dummy_plan, since it's no longer used anywhere. Back-patch as appropriate into v11 and v10. Tom Lane and Julien Rouhaud Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
2019-03-07 20:21:52 +01:00
if (partial_subpaths_valid && partial_subpaths != NIL)
{
AppendPath *appendpath;
ListCell *lc;
int parallel_workers = 0;
/* Find the highest number of workers requested for any subpath. */
foreach(lc, partial_subpaths)
{
Path *path = lfirst(lc);
parallel_workers = Max(parallel_workers, path->parallel_workers);
}
Assert(parallel_workers > 0);
/*
* If the use of parallel append is permitted, always request at least
* log2(# of children) workers. We assume it can be useful to have
* extra workers in this case because they will be spread out across
* the children. The precise formula is just a guess, but we don't
* want to end up with a radically different answer for a table with N
* partitions vs. an unpartitioned table with the same data, so the
* use of some kind of log-scaling here seems to make some sense.
*/
if (enable_parallel_append)
{
parallel_workers = Max(parallel_workers,
pg_leftmost_one_pos32(list_length(live_childrels)) + 1);
parallel_workers = Min(parallel_workers,
max_parallel_workers_per_gather);
}
Assert(parallel_workers > 0);
/* Generate a partial append path. */
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
appendpath = create_append_path(root, rel, NIL, partial_subpaths,
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
NIL, NULL, parallel_workers,
enable_parallel_append,
-1);
/*
* Make sure any subsequent partial paths use the same row count
* estimate.
*/
partial_rows = appendpath->path.rows;
/* Add the path. */
add_partial_path(rel, (Path *) appendpath);
}
/*
* Consider a parallel-aware append using a mix of partial and non-partial
* paths. (This only makes sense if there's at least one child which has
* a non-partial path that is substantially cheaper than any partial path;
* otherwise, we should use the append path added in the previous step.)
*/
if (pa_subpaths_valid && pa_nonpartial_subpaths != NIL)
{
AppendPath *appendpath;
ListCell *lc;
int parallel_workers = 0;
/*
* Find the highest number of workers requested for any partial
* subpath.
*/
foreach(lc, pa_partial_subpaths)
{
Path *path = lfirst(lc);
parallel_workers = Max(parallel_workers, path->parallel_workers);
}
/*
* Same formula here as above. It's even more important in this
* instance because the non-partial paths won't contribute anything to
* the planned number of parallel workers.
*/
parallel_workers = Max(parallel_workers,
pg_leftmost_one_pos32(list_length(live_childrels)) + 1);
parallel_workers = Min(parallel_workers,
max_parallel_workers_per_gather);
Assert(parallel_workers > 0);
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
appendpath = create_append_path(root, rel, pa_nonpartial_subpaths,
pa_partial_subpaths,
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
NIL, NULL, parallel_workers, true,
partial_rows);
add_partial_path(rel, (Path *) appendpath);
}
/*
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
* Also build unparameterized ordered append paths based on the collected
* list of child pathkeys.
*/
if (subpaths_valid)
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
generate_orderedappend_paths(root, rel, live_childrels,
all_child_pathkeys);
/*
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
* Build Append paths for each parameterization seen among the child rels.
* (This may look pretty expensive, but in most cases of practical
* interest, the child rels will expose mostly the same parameterizations,
* so that not that many cases actually get considered here.)
*
* The Append node itself cannot enforce quals, so all qual checking must
* be done in the child paths. This means that to have a parameterized
* Append path, we must have the exact same parameterization for each
* child path; otherwise some children might be failing to check the
* moved-down quals. To make them match up, we can try to increase the
* parameterization of lesser-parameterized paths.
*/
foreach(l, all_child_outers)
{
Relids required_outer = (Relids) lfirst(l);
ListCell *lcr;
/* Select the child paths for an Append with this parameterization */
subpaths = NIL;
subpaths_valid = true;
foreach(lcr, live_childrels)
{
RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr);
Path *subpath;
if (childrel->pathlist == NIL)
{
/* failed to make a suitable path for this child */
subpaths_valid = false;
break;
}
subpath = get_cheapest_parameterized_child_path(root,
childrel,
required_outer);
if (subpath == NULL)
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
{
/* failed to make a suitable path for this child */
subpaths_valid = false;
break;
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
}
accumulate_append_subpath(subpath, &subpaths, NULL);
}
if (subpaths_valid)
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
add_path(rel, (Path *)
Support partition pruning at execution time Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
2018-04-07 22:54:31 +02:00
create_append_path(root, rel, subpaths, NIL,
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
NIL, required_outer, 0, false,
-1));
}
/*
* When there is only a single child relation, the Append path can inherit
* any ordering available for the child rel's path, so that it's useful to
* consider ordered partial paths. Above we only considered the cheapest
* partial path for each child, but let's also make paths using any
* partial paths that have pathkeys.
*/
if (list_length(live_childrels) == 1)
{
RelOptInfo *childrel = (RelOptInfo *) linitial(live_childrels);
Allow run-time pruning on nested Append/MergeAppend nodes Previously we only tagged on the required information to allow the executor to perform run-time partition pruning for Append/MergeAppend nodes belonging to base relations. It was thought that nested Append/MergeAppend nodes were just about always pulled up into the top-level Append/MergeAppend and that making the run-time pruning info for any sub Append/MergeAppend nodes was a waste of time. However, that was likely badly thought through. Some examples of cases we're unable to pullup nested Append/MergeAppends are: 1) Parallel Append nodes with a mix of parallel and non-parallel paths into a Parallel Append. 2) When planning an ordered Append scan a sub-partition which is unordered may require a nested MergeAppend path to ensure sub-partitions don't mix up the order of tuples being fed into the top-level Append. Unfortunately, it was not just as simple as removing the lines in createplan.c which were purposefully not building the run-time pruning info for anything but RELOPT_BASEREL relations. The code in add_paths_to_append_rel() was far too sloppy about which partitioned_rels it included for the Append/MergeAppend paths. The original code there would always assume accumulate_append_subpath() would pull each sub-Append and sub-MergeAppend path into the top-level path. While it does not appear that there were any actual bugs caused by having the additional partitioned table RT indexes recorded, what it did mean is that later in planning, when we built the run-time pruning info that we wasted effort and built PartitionedRelPruneInfos for partitioned tables that we had no subpaths for the executor to run-time prune. Here we tighten that up so that partitioned_rels only ever contains the RT index for partitioned tables which actually have subpaths in the given Append/MergeAppend. We can now Assert that every PartitionedRelPruneInfo has a non-empty present_parts. That should allow us to catch any weird corner cases that have been missed. In passing, it seems there is no longer a good reason to have the AppendPath and MergeAppendPath's partitioned_rel fields a List of IntList. We can simply have a List of Relids instead. This is more compact in memory and faster to add new members to. We still know which is the root level partition as these always have a lower relid than their children. Previously this field was used for more things, but run-time partition pruning now remains the only user of it and it has no need for a List of IntLists. Here we also get rid of the RelOptInfo partitioned_child_rels field. This is what was previously used to (sometimes incorrectly) set the Append/MergeAppend path's partitioned_rels field. That was the only usage of that field, so we can happily just remove it. I also couldn't resist changing some nearby code to make use of the newly added for_each_from macro so we can skip the first element in the list without checking if the current item was the first one on each iteration. A bug report from Andreas Kretschmer prompted all this work, however, after some consideration, I'm not personally classing this as a bug fix. So no backpatch. In Andreas' test case, it just wasn't that clear that there was a nested Append since the top-level Append just had a single sub-path which was pulled up a level, per 8edd0e794. Author: David Rowley Reviewed-by: Amit Langote Discussion: https://postgr.es/m/flat/CAApHDvqSchs%2BubdybcfFaSPB%2B%2BEA7kqMaoqajtP0GtZvzOOR3g%40mail.gmail.com
2020-11-02 01:46:56 +01:00
/* skip the cheapest partial path, since we already used that above */
for_each_from(l, childrel->partial_pathlist, 1)
{
Path *path = (Path *) lfirst(l);
AppendPath *appendpath;
Allow run-time pruning on nested Append/MergeAppend nodes Previously we only tagged on the required information to allow the executor to perform run-time partition pruning for Append/MergeAppend nodes belonging to base relations. It was thought that nested Append/MergeAppend nodes were just about always pulled up into the top-level Append/MergeAppend and that making the run-time pruning info for any sub Append/MergeAppend nodes was a waste of time. However, that was likely badly thought through. Some examples of cases we're unable to pullup nested Append/MergeAppends are: 1) Parallel Append nodes with a mix of parallel and non-parallel paths into a Parallel Append. 2) When planning an ordered Append scan a sub-partition which is unordered may require a nested MergeAppend path to ensure sub-partitions don't mix up the order of tuples being fed into the top-level Append. Unfortunately, it was not just as simple as removing the lines in createplan.c which were purposefully not building the run-time pruning info for anything but RELOPT_BASEREL relations. The code in add_paths_to_append_rel() was far too sloppy about which partitioned_rels it included for the Append/MergeAppend paths. The original code there would always assume accumulate_append_subpath() would pull each sub-Append and sub-MergeAppend path into the top-level path. While it does not appear that there were any actual bugs caused by having the additional partitioned table RT indexes recorded, what it did mean is that later in planning, when we built the run-time pruning info that we wasted effort and built PartitionedRelPruneInfos for partitioned tables that we had no subpaths for the executor to run-time prune. Here we tighten that up so that partitioned_rels only ever contains the RT index for partitioned tables which actually have subpaths in the given Append/MergeAppend. We can now Assert that every PartitionedRelPruneInfo has a non-empty present_parts. That should allow us to catch any weird corner cases that have been missed. In passing, it seems there is no longer a good reason to have the AppendPath and MergeAppendPath's partitioned_rel fields a List of IntList. We can simply have a List of Relids instead. This is more compact in memory and faster to add new members to. We still know which is the root level partition as these always have a lower relid than their children. Previously this field was used for more things, but run-time partition pruning now remains the only user of it and it has no need for a List of IntLists. Here we also get rid of the RelOptInfo partitioned_child_rels field. This is what was previously used to (sometimes incorrectly) set the Append/MergeAppend path's partitioned_rels field. That was the only usage of that field, so we can happily just remove it. I also couldn't resist changing some nearby code to make use of the newly added for_each_from macro so we can skip the first element in the list without checking if the current item was the first one on each iteration. A bug report from Andreas Kretschmer prompted all this work, however, after some consideration, I'm not personally classing this as a bug fix. So no backpatch. In Andreas' test case, it just wasn't that clear that there was a nested Append since the top-level Append just had a single sub-path which was pulled up a level, per 8edd0e794. Author: David Rowley Reviewed-by: Amit Langote Discussion: https://postgr.es/m/flat/CAApHDvqSchs%2BubdybcfFaSPB%2B%2BEA7kqMaoqajtP0GtZvzOOR3g%40mail.gmail.com
2020-11-02 01:46:56 +01:00
/* skip paths with no pathkeys. */
if (path->pathkeys == NIL)
continue;
appendpath = create_append_path(root, rel, NIL, list_make1(path),
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
NIL, NULL,
path->parallel_workers, true,
partial_rows);
add_partial_path(rel, (Path *) appendpath);
}
}
}
/*
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
* generate_orderedappend_paths
* Generate ordered append paths for an append relation
*
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
* Usually we generate MergeAppend paths here, but there are some special
* cases where we can generate simple Append paths, because the subpaths
* can provide tuples in the required order already.
*
* We generate a path for each ordering (pathkey list) appearing in
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
* all_child_pathkeys.
*
* We consider both cheapest-startup and cheapest-total cases, ie, for each
* interesting ordering, collect all the cheapest startup subpaths and all the
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
* cheapest total paths, and build a suitable path for each case.
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
*
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
* We don't currently generate any parameterized ordered paths here. While
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
* it would not take much more code here to do so, it's very unclear that it
* is worth the planning cycles to investigate such paths: there's little
* use for an ordered path on the inside of a nestloop. In fact, it's likely
* that the current coding of add_path would reject such paths out of hand,
* because add_path gives no credit for sort ordering of parameterized paths,
* and a parameterized MergeAppend is going to be more expensive than the
* corresponding parameterized Append path. If we ever try harder to support
* parameterized mergejoin plans, it might be worth adding support for
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
* parameterized paths here to feed such joins. (See notes in
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
* optimizer/README for why that might not ever happen, though.)
*/
static void
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
generate_orderedappend_paths(PlannerInfo *root, RelOptInfo *rel,
List *live_childrels,
List *all_child_pathkeys)
{
ListCell *lcp;
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
List *partition_pathkeys = NIL;
List *partition_pathkeys_desc = NIL;
bool partition_pathkeys_partial = true;
bool partition_pathkeys_desc_partial = true;
/*
* Some partitioned table setups may allow us to use an Append node
* instead of a MergeAppend. This is possible in cases such as RANGE
* partitioned tables where it's guaranteed that an earlier partition must
* contain rows which come earlier in the sort order. To detect whether
* this is relevant, build pathkey descriptions of the partition ordering,
* for both forward and reverse scans.
*/
if (rel->part_scheme != NULL && IS_SIMPLE_REL(rel) &&
Allow ordered partition scans in more cases 959d00e9d added the ability to make use of an Append node instead of a MergeAppend when we wanted to perform a scan of a partitioned table and the required sort order was the same as the partitioned keys and the partitioned table was defined in such a way that earlier partitions were guaranteed to only contain lower-order values than later partitions. However, previously we didn't allow these ordered partition scans for LIST partitioned table when there were any partitions that allowed multiple Datums. This was a very cheap check to make and we could likely have done a little better by checking if there were interleaved partitions, but at the time we didn't have visibility about which partitions were pruned, so we still may have disallowed cases where all interleaved partitions were pruned. Since 475dbd0b7, we now have knowledge of pruned partitions, we can do a much better job inside partitions_are_ordered(). Here we pass which partitions survived partition pruning into partitions_are_ordered() and, for LIST partitioning, have it check to see if any live partitions exist that are also in the new "interleaved_parts" field defined in PartitionBoundInfo. For RANGE partitioning we can relax the code which caused the partitions to be unordered if a DEFAULT partition existed. Since we now know which partitions were pruned, partitions_are_ordered() now returns true when the DEFAULT partition was pruned. Reviewed-by: Amit Langote, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvrdoN_sXU52i=QDXe2k3WAo=EVry29r2+Tq2WYcn2xhEA@mail.gmail.com
2021-08-03 02:25:52 +02:00
partitions_are_ordered(rel->boundinfo, rel->live_parts))
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
{
partition_pathkeys = build_partition_pathkeys(root, rel,
ForwardScanDirection,
&partition_pathkeys_partial);
partition_pathkeys_desc = build_partition_pathkeys(root, rel,
BackwardScanDirection,
&partition_pathkeys_desc_partial);
/*
* You might think we should truncate_useless_pathkeys here, but
* allowing partition keys which are a subset of the query's pathkeys
* can often be useful. For example, consider a table partitioned by
* RANGE (a, b), and a query with ORDER BY a, b, c. If we have child
* paths that can produce the a, b, c ordering (perhaps via indexes on
* (a, b, c)) then it works to consider the appendrel output as
* ordered by a, b, c.
*/
}
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
/* Now consider each interesting sort ordering */
foreach(lcp, all_child_pathkeys)
{
List *pathkeys = (List *) lfirst(lcp);
List *startup_subpaths = NIL;
List *total_subpaths = NIL;
List *fractional_subpaths = NIL;
bool startup_neq_total = false;
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
bool match_partition_order;
bool match_partition_order_desc;
int end_index;
int first_index;
int direction;
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
/*
* Determine if this sort ordering matches any partition pathkeys we
* have, for both ascending and descending partition order. If the
* partition pathkeys happen to be contained in pathkeys then it still
* works, as described above, providing that the partition pathkeys
* are complete and not just a prefix of the partition keys. (In such
* cases we'll be relying on the child paths to have sorted the
* lower-order columns of the required pathkeys.)
*/
match_partition_order =
pathkeys_contained_in(pathkeys, partition_pathkeys) ||
(!partition_pathkeys_partial &&
pathkeys_contained_in(partition_pathkeys, pathkeys));
match_partition_order_desc = !match_partition_order &&
(pathkeys_contained_in(pathkeys, partition_pathkeys_desc) ||
(!partition_pathkeys_desc_partial &&
pathkeys_contained_in(partition_pathkeys_desc, pathkeys)));
/*
* When the required pathkeys match the reverse of the partition
* order, we must build the list of paths in reverse starting with the
* last matching partition first. We can get away without making any
* special cases for this in the loop below by just looping backward
* over the child relations in this case.
*/
if (match_partition_order_desc)
{
/* loop backward */
first_index = list_length(live_childrels) - 1;
end_index = -1;
direction = -1;
/*
* Set this to true to save us having to check for
* match_partition_order_desc in the loop below.
*/
match_partition_order = true;
}
else
{
/* for all other case, loop forward */
first_index = 0;
end_index = list_length(live_childrels);
direction = 1;
}
/* Select the child paths for this ordering... */
for (int i = first_index; i != end_index; i += direction)
{
RelOptInfo *childrel = list_nth_node(RelOptInfo, live_childrels, i);
Path *cheapest_startup,
*cheapest_total,
*cheapest_fractional = NULL;
/* Locate the right paths, if they are available. */
cheapest_startup =
get_cheapest_path_for_pathkeys(childrel->pathlist,
pathkeys,
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
NULL,
STARTUP_COST,
false);
cheapest_total =
get_cheapest_path_for_pathkeys(childrel->pathlist,
pathkeys,
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
NULL,
TOTAL_COST,
false);
/*
* If we can't find any paths with the right order just use the
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
* cheapest-total path; we'll have to sort it later.
*/
if (cheapest_startup == NULL || cheapest_total == NULL)
{
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
cheapest_startup = cheapest_total =
childrel->cheapest_total_path;
/* Assert we do have an unparameterized path for this child */
Assert(cheapest_total->param_info == NULL);
}
/*
* When building a fractional path, determine a cheapest
* fractional path for each child relation too. Looking at startup
* and total costs is not enough, because the cheapest fractional
* path may be dominated by two separate paths (one for startup,
* one for total).
*
* When needed (building fractional path), determine the cheapest
* fractional path too.
*/
if (root->tuple_fraction > 0)
{
double path_fraction = (1.0 / root->tuple_fraction);
cheapest_fractional =
get_cheapest_fractional_path_for_pathkeys(childrel->pathlist,
pathkeys,
NULL,
path_fraction);
/*
* If we found no path with matching pathkeys, use the
* cheapest total path instead.
*
* XXX We might consider partially sorted paths too (with an
* incremental sort on top). But we'd have to build all the
* incremental paths, do the costing etc.
*/
if (!cheapest_fractional)
cheapest_fractional = cheapest_total;
}
/*
* Notice whether we actually have different paths for the
* "cheapest" and "total" cases; frequently there will be no point
* in two create_merge_append_path() calls.
*/
if (cheapest_startup != cheapest_total)
startup_neq_total = true;
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
/*
* Collect the appropriate child paths. The required logic varies
* for the Append and MergeAppend cases.
*/
if (match_partition_order)
{
/*
* We're going to make a plain Append path. We don't need
* most of what accumulate_append_subpath would do, but we do
* want to cut out child Appends or MergeAppends if they have
* just a single subpath (and hence aren't doing anything
* useful).
*/
cheapest_startup = get_singleton_append_subpath(cheapest_startup);
cheapest_total = get_singleton_append_subpath(cheapest_total);
startup_subpaths = lappend(startup_subpaths, cheapest_startup);
total_subpaths = lappend(total_subpaths, cheapest_total);
if (cheapest_fractional)
{
cheapest_fractional = get_singleton_append_subpath(cheapest_fractional);
fractional_subpaths = lappend(fractional_subpaths, cheapest_fractional);
}
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
}
else
{
/*
* Otherwise, rely on accumulate_append_subpath to collect the
* child paths for the MergeAppend.
*/
accumulate_append_subpath(cheapest_startup,
&startup_subpaths, NULL);
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
accumulate_append_subpath(cheapest_total,
&total_subpaths, NULL);
if (cheapest_fractional)
accumulate_append_subpath(cheapest_fractional,
&fractional_subpaths, NULL);
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
}
}
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
/* ... and build the Append or MergeAppend paths */
if (match_partition_order)
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
{
/* We only need Append */
add_path(rel, (Path *) create_append_path(root,
rel,
startup_subpaths,
NIL,
pathkeys,
NULL,
0,
false,
-1));
if (startup_neq_total)
add_path(rel, (Path *) create_append_path(root,
rel,
total_subpaths,
NIL,
pathkeys,
NULL,
0,
false,
-1));
if (fractional_subpaths)
add_path(rel, (Path *) create_append_path(root,
rel,
fractional_subpaths,
NIL,
pathkeys,
NULL,
0,
false,
-1));
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
}
else
{
/* We need MergeAppend */
add_path(rel, (Path *) create_merge_append_path(root,
rel,
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
startup_subpaths,
Revise parameterized-path mechanism to fix assorted issues. This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
2012-04-19 21:52:46 +02:00
pathkeys,
NULL));
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
if (startup_neq_total)
add_path(rel, (Path *) create_merge_append_path(root,
rel,
total_subpaths,
pathkeys,
NULL));
if (fractional_subpaths)
add_path(rel, (Path *) create_merge_append_path(root,
rel,
fractional_subpaths,
pathkeys,
NULL));
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
}
}
}
/*
* get_cheapest_parameterized_child_path
* Get cheapest path for this relation that has exactly the requested
* parameterization.
*
* Returns NULL if unable to create such a path.
*/
static Path *
get_cheapest_parameterized_child_path(PlannerInfo *root, RelOptInfo *rel,
Relids required_outer)
{
Path *cheapest;
ListCell *lc;
/*
* Look up the cheapest existing path with no more than the needed
* parameterization. If it has exactly the needed parameterization, we're
* done.
*/
cheapest = get_cheapest_path_for_pathkeys(rel->pathlist,
NIL,
required_outer,
TOTAL_COST,
false);
Assert(cheapest != NULL);
if (bms_equal(PATH_REQ_OUTER(cheapest), required_outer))
return cheapest;
/*
* Otherwise, we can "reparameterize" an existing path to match the given
* parameterization, which effectively means pushing down additional
* joinquals to be checked within the path's scan. However, some existing
* paths might check the available joinquals already while others don't;
* therefore, it's not clear which existing path will be cheapest after
* reparameterization. We have to go through them all and find out.
*/
cheapest = NULL;
foreach(lc, rel->pathlist)
{
Path *path = (Path *) lfirst(lc);
/* Can't use it if it needs more than requested parameterization */
if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
continue;
/*
* Reparameterization can only increase the path's cost, so if it's
* already more expensive than the current cheapest, forget it.
*/
if (cheapest != NULL &&
compare_path_costs(cheapest, path, TOTAL_COST) <= 0)
continue;
/* Reparameterize if needed, then recheck cost */
if (!bms_equal(PATH_REQ_OUTER(path), required_outer))
{
path = reparameterize_path(root, path, required_outer, 1.0);
if (path == NULL)
continue; /* failed to reparameterize this one */
Assert(bms_equal(PATH_REQ_OUTER(path), required_outer));
if (cheapest != NULL &&
compare_path_costs(cheapest, path, TOTAL_COST) <= 0)
continue;
}
/* We have a new best path */
cheapest = path;
}
/* Return the best path, or NULL if we found no suitable candidate */
return cheapest;
}
/*
* accumulate_append_subpath
* Add a subpath to the list being built for an Append or MergeAppend.
*
* It's possible that the child is itself an Append or MergeAppend path, in
* which case we can "cut out the middleman" and just add its child paths to
* our own list. (We don't try to do this earlier because we need to apply
* both levels of transformation to the quals.)
*
* Note that if we omit a child MergeAppend in this way, we are effectively
* omitting a sort step, which seems fine: if the parent is to be an Append,
* its result would be unsorted anyway, while if the parent is to be a
* MergeAppend, there's no point in a separate sort on a child.
*
* Normally, either path is a partial path and subpaths is a list of partial
* paths, or else path is a non-partial plan and subpaths is a list of those.
* However, if path is a parallel-aware Append, then we add its partial path
* children to subpaths and the rest to special_subpaths. If the latter is
* NULL, we don't flatten the path at all (unless it contains only partial
* paths).
*/
static void
accumulate_append_subpath(Path *path, List **subpaths, List **special_subpaths)
{
if (IsA(path, AppendPath))
{
AppendPath *apath = (AppendPath *) path;
if (!apath->path.parallel_aware || apath->first_partial_path == 0)
{
*subpaths = list_concat(*subpaths, apath->subpaths);
return;
}
else if (special_subpaths != NULL)
{
List *new_special_subpaths;
/* Split Parallel Append into partial and non-partial subpaths */
*subpaths = list_concat(*subpaths,
list_copy_tail(apath->subpaths,
apath->first_partial_path));
new_special_subpaths = list_copy_head(apath->subpaths,
apath->first_partial_path);
*special_subpaths = list_concat(*special_subpaths,
new_special_subpaths);
return;
}
}
else if (IsA(path, MergeAppendPath))
{
MergeAppendPath *mpath = (MergeAppendPath *) path;
*subpaths = list_concat(*subpaths, mpath->subpaths);
return;
}
*subpaths = lappend(*subpaths, path);
}
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
/*
* get_singleton_append_subpath
* Returns the single subpath of an Append/MergeAppend, or just
* return 'path' if it's not a single sub-path Append/MergeAppend.
*
* Note: 'path' must not be a parallel-aware path.
*/
static Path *
get_singleton_append_subpath(Path *path)
{
Assert(!path->parallel_aware);
if (IsA(path, AppendPath))
{
AppendPath *apath = (AppendPath *) path;
if (list_length(apath->subpaths) == 1)
return (Path *) linitial(apath->subpaths);
}
else if (IsA(path, MergeAppendPath))
{
MergeAppendPath *mpath = (MergeAppendPath *) path;
if (list_length(mpath->subpaths) == 1)
return (Path *) linitial(mpath->subpaths);
}
return path;
}
/*
* set_dummy_rel_pathlist
* Build a dummy path for a relation that's been excluded by constraints
*
* Rather than inventing a special "dummy" path type, we represent this as an
Fix handling of targetlist SRFs when scan/join relation is known empty. When we introduced separate ProjectSetPath nodes for application of set-returning functions in v10, we inadvertently broke some cases where we're supposed to recognize that the result of a subquery is known to be empty (contain zero rows). That's because IS_DUMMY_REL was just looking for a childless AppendPath without allowing for a ProjectSetPath being possibly stuck on top. In itself, this didn't do anything much worse than produce slightly worse plans for some corner cases. Then in v11, commit 11cf92f6e rearranged things to allow the scan/join targetlist to be applied directly to partial paths before they get gathered. But it inserted a short-circuit path for dummy relations that was a little too short: it failed to insert a ProjectSetPath node at all for a targetlist containing set-returning functions, resulting in bogus "set-valued function called in context that cannot accept a set" errors, as reported in bug #15669 from Madelaine Thibaut. The best way to fix this mess seems to be to reimplement IS_DUMMY_REL so that it drills down through any ProjectSetPath nodes that might be there (and it seems like we'd better allow for ProjectionPath as well). While we're at it, make it look at rel->pathlist not cheapest_total_path, so that it gives the right answer independently of whether set_cheapest has been done lately. That dependency looks pretty shaky in the context of code like apply_scanjoin_target_to_paths, and even if it's not broken today it'd certainly bite us at some point. (Nastily, unsafe use of the old coding would almost always work; the hazard comes down to possibly looking through a dangling pointer, and only once in a blue moon would you find something there that resulted in the wrong answer.) It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if there are any extensions using it, they'll continue to use the old inadequate logic until they're recompiled, after which they'll fail to load into server versions predating this fix. Hopefully there are few such extensions. Having fixed IS_DUMMY_REL, the special path for dummy rels in apply_scanjoin_target_to_paths is unnecessary as well as being wrong, so we can just drop it. Also change a few places that were testing for partitioned-ness of a planner relation but not using IS_PARTITIONED_REL for the purpose; that seems unsafe as well as inconsistent, plus it required an ugly hack in apply_scanjoin_target_to_paths. In passing, save a few cycles in apply_scanjoin_target_to_paths by skipping processing of pre-existing paths for partitioned rels, and do some cosmetic cleanup and comment adjustment in that function. I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking any code that might be using it, since in almost every case that would be wrong; IS_DUMMY_REL is what to be using instead. In HEAD, also make set_dummy_rel_pathlist static (since it's no longer used from outside allpaths.c), and delete is_dummy_plan, since it's no longer used anywhere. Back-patch as appropriate into v11 and v10. Tom Lane and Julien Rouhaud Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
2019-03-07 20:21:52 +01:00
* AppendPath with no members (see also IS_DUMMY_APPEND/IS_DUMMY_REL macros).
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
*
Fix handling of targetlist SRFs when scan/join relation is known empty. When we introduced separate ProjectSetPath nodes for application of set-returning functions in v10, we inadvertently broke some cases where we're supposed to recognize that the result of a subquery is known to be empty (contain zero rows). That's because IS_DUMMY_REL was just looking for a childless AppendPath without allowing for a ProjectSetPath being possibly stuck on top. In itself, this didn't do anything much worse than produce slightly worse plans for some corner cases. Then in v11, commit 11cf92f6e rearranged things to allow the scan/join targetlist to be applied directly to partial paths before they get gathered. But it inserted a short-circuit path for dummy relations that was a little too short: it failed to insert a ProjectSetPath node at all for a targetlist containing set-returning functions, resulting in bogus "set-valued function called in context that cannot accept a set" errors, as reported in bug #15669 from Madelaine Thibaut. The best way to fix this mess seems to be to reimplement IS_DUMMY_REL so that it drills down through any ProjectSetPath nodes that might be there (and it seems like we'd better allow for ProjectionPath as well). While we're at it, make it look at rel->pathlist not cheapest_total_path, so that it gives the right answer independently of whether set_cheapest has been done lately. That dependency looks pretty shaky in the context of code like apply_scanjoin_target_to_paths, and even if it's not broken today it'd certainly bite us at some point. (Nastily, unsafe use of the old coding would almost always work; the hazard comes down to possibly looking through a dangling pointer, and only once in a blue moon would you find something there that resulted in the wrong answer.) It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if there are any extensions using it, they'll continue to use the old inadequate logic until they're recompiled, after which they'll fail to load into server versions predating this fix. Hopefully there are few such extensions. Having fixed IS_DUMMY_REL, the special path for dummy rels in apply_scanjoin_target_to_paths is unnecessary as well as being wrong, so we can just drop it. Also change a few places that were testing for partitioned-ness of a planner relation but not using IS_PARTITIONED_REL for the purpose; that seems unsafe as well as inconsistent, plus it required an ugly hack in apply_scanjoin_target_to_paths. In passing, save a few cycles in apply_scanjoin_target_to_paths by skipping processing of pre-existing paths for partitioned rels, and do some cosmetic cleanup and comment adjustment in that function. I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking any code that might be using it, since in almost every case that would be wrong; IS_DUMMY_REL is what to be using instead. In HEAD, also make set_dummy_rel_pathlist static (since it's no longer used from outside allpaths.c), and delete is_dummy_plan, since it's no longer used anywhere. Back-patch as appropriate into v11 and v10. Tom Lane and Julien Rouhaud Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
2019-03-07 20:21:52 +01:00
* (See also mark_dummy_rel, which does basically the same thing, but is
* typically used to change a rel into dummy state after we already made
* paths for it.)
*/
Fix handling of targetlist SRFs when scan/join relation is known empty. When we introduced separate ProjectSetPath nodes for application of set-returning functions in v10, we inadvertently broke some cases where we're supposed to recognize that the result of a subquery is known to be empty (contain zero rows). That's because IS_DUMMY_REL was just looking for a childless AppendPath without allowing for a ProjectSetPath being possibly stuck on top. In itself, this didn't do anything much worse than produce slightly worse plans for some corner cases. Then in v11, commit 11cf92f6e rearranged things to allow the scan/join targetlist to be applied directly to partial paths before they get gathered. But it inserted a short-circuit path for dummy relations that was a little too short: it failed to insert a ProjectSetPath node at all for a targetlist containing set-returning functions, resulting in bogus "set-valued function called in context that cannot accept a set" errors, as reported in bug #15669 from Madelaine Thibaut. The best way to fix this mess seems to be to reimplement IS_DUMMY_REL so that it drills down through any ProjectSetPath nodes that might be there (and it seems like we'd better allow for ProjectionPath as well). While we're at it, make it look at rel->pathlist not cheapest_total_path, so that it gives the right answer independently of whether set_cheapest has been done lately. That dependency looks pretty shaky in the context of code like apply_scanjoin_target_to_paths, and even if it's not broken today it'd certainly bite us at some point. (Nastily, unsafe use of the old coding would almost always work; the hazard comes down to possibly looking through a dangling pointer, and only once in a blue moon would you find something there that resulted in the wrong answer.) It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if there are any extensions using it, they'll continue to use the old inadequate logic until they're recompiled, after which they'll fail to load into server versions predating this fix. Hopefully there are few such extensions. Having fixed IS_DUMMY_REL, the special path for dummy rels in apply_scanjoin_target_to_paths is unnecessary as well as being wrong, so we can just drop it. Also change a few places that were testing for partitioned-ness of a planner relation but not using IS_PARTITIONED_REL for the purpose; that seems unsafe as well as inconsistent, plus it required an ugly hack in apply_scanjoin_target_to_paths. In passing, save a few cycles in apply_scanjoin_target_to_paths by skipping processing of pre-existing paths for partitioned rels, and do some cosmetic cleanup and comment adjustment in that function. I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking any code that might be using it, since in almost every case that would be wrong; IS_DUMMY_REL is what to be using instead. In HEAD, also make set_dummy_rel_pathlist static (since it's no longer used from outside allpaths.c), and delete is_dummy_plan, since it's no longer used anywhere. Back-patch as appropriate into v11 and v10. Tom Lane and Julien Rouhaud Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
2019-03-07 20:21:52 +01:00
static void
set_dummy_rel_pathlist(RelOptInfo *rel)
{
/* Set dummy size estimates --- we leave attr_widths[] as zeroes */
rel->rows = 0;
rel->reltarget->width = 0;
/* Discard any pre-existing paths; no further need for them */
rel->pathlist = NIL;
rel->partial_pathlist = NIL;
Fix handling of targetlist SRFs when scan/join relation is known empty. When we introduced separate ProjectSetPath nodes for application of set-returning functions in v10, we inadvertently broke some cases where we're supposed to recognize that the result of a subquery is known to be empty (contain zero rows). That's because IS_DUMMY_REL was just looking for a childless AppendPath without allowing for a ProjectSetPath being possibly stuck on top. In itself, this didn't do anything much worse than produce slightly worse plans for some corner cases. Then in v11, commit 11cf92f6e rearranged things to allow the scan/join targetlist to be applied directly to partial paths before they get gathered. But it inserted a short-circuit path for dummy relations that was a little too short: it failed to insert a ProjectSetPath node at all for a targetlist containing set-returning functions, resulting in bogus "set-valued function called in context that cannot accept a set" errors, as reported in bug #15669 from Madelaine Thibaut. The best way to fix this mess seems to be to reimplement IS_DUMMY_REL so that it drills down through any ProjectSetPath nodes that might be there (and it seems like we'd better allow for ProjectionPath as well). While we're at it, make it look at rel->pathlist not cheapest_total_path, so that it gives the right answer independently of whether set_cheapest has been done lately. That dependency looks pretty shaky in the context of code like apply_scanjoin_target_to_paths, and even if it's not broken today it'd certainly bite us at some point. (Nastily, unsafe use of the old coding would almost always work; the hazard comes down to possibly looking through a dangling pointer, and only once in a blue moon would you find something there that resulted in the wrong answer.) It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if there are any extensions using it, they'll continue to use the old inadequate logic until they're recompiled, after which they'll fail to load into server versions predating this fix. Hopefully there are few such extensions. Having fixed IS_DUMMY_REL, the special path for dummy rels in apply_scanjoin_target_to_paths is unnecessary as well as being wrong, so we can just drop it. Also change a few places that were testing for partitioned-ness of a planner relation but not using IS_PARTITIONED_REL for the purpose; that seems unsafe as well as inconsistent, plus it required an ugly hack in apply_scanjoin_target_to_paths. In passing, save a few cycles in apply_scanjoin_target_to_paths by skipping processing of pre-existing paths for partitioned rels, and do some cosmetic cleanup and comment adjustment in that function. I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking any code that might be using it, since in almost every case that would be wrong; IS_DUMMY_REL is what to be using instead. In HEAD, also make set_dummy_rel_pathlist static (since it's no longer used from outside allpaths.c), and delete is_dummy_plan, since it's no longer used anywhere. Back-patch as appropriate into v11 and v10. Tom Lane and Julien Rouhaud Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
2019-03-07 20:21:52 +01:00
/* Set up the dummy path */
add_path(rel, (Path *) create_append_path(NULL, rel, NIL, NIL,
Use Append rather than MergeAppend for scanning ordered partitions. If we need ordered output from a scan of a partitioned table, but the ordering matches the partition ordering, then we don't need to use a MergeAppend to combine the pre-ordered per-partition scan results: a plain Append will produce the same results. This both saves useless comparison work inside the MergeAppend proper, and allows us to start returning tuples after istarting up just the first child node not all of them. However, all is not peaches and cream, because if some of the child nodes have high startup costs then there will be big discontinuities in the tuples-returned-versus-elapsed-time curve. The planner's cost model cannot handle that (yet, anyway). If we model the Append's startup cost as being just the first child's startup cost, we may drastically underestimate the cost of fetching slightly more tuples than are available from the first child. Since we've had bad experiences with over-optimistic choices of "fast start" plans for ORDER BY LIMIT queries, that seems scary. As a klugy workaround, set the startup cost estimate for an ordered Append to be the sum of its children's startup costs (as MergeAppend would). This doesn't really describe reality, but it's less likely to cause a bad plan choice than an underestimated startup cost would. In practice, the cases where we really care about this optimization will have child plans that are IndexScans with zero startup cost, so that the overly conservative estimate is still just zero. David Rowley, reviewed by Julien Rouhaud and Antonin Houska Discussion: https://postgr.es/m/CAKJS1f-hAqhPLRk_RaSFTgYxd=Tz5hA7kQ2h4-DhJufQk8TGuw@mail.gmail.com
2019-04-06 01:20:30 +02:00
NIL, rel->lateral_relids,
0, false, -1));
/*
Fix handling of targetlist SRFs when scan/join relation is known empty. When we introduced separate ProjectSetPath nodes for application of set-returning functions in v10, we inadvertently broke some cases where we're supposed to recognize that the result of a subquery is known to be empty (contain zero rows). That's because IS_DUMMY_REL was just looking for a childless AppendPath without allowing for a ProjectSetPath being possibly stuck on top. In itself, this didn't do anything much worse than produce slightly worse plans for some corner cases. Then in v11, commit 11cf92f6e rearranged things to allow the scan/join targetlist to be applied directly to partial paths before they get gathered. But it inserted a short-circuit path for dummy relations that was a little too short: it failed to insert a ProjectSetPath node at all for a targetlist containing set-returning functions, resulting in bogus "set-valued function called in context that cannot accept a set" errors, as reported in bug #15669 from Madelaine Thibaut. The best way to fix this mess seems to be to reimplement IS_DUMMY_REL so that it drills down through any ProjectSetPath nodes that might be there (and it seems like we'd better allow for ProjectionPath as well). While we're at it, make it look at rel->pathlist not cheapest_total_path, so that it gives the right answer independently of whether set_cheapest has been done lately. That dependency looks pretty shaky in the context of code like apply_scanjoin_target_to_paths, and even if it's not broken today it'd certainly bite us at some point. (Nastily, unsafe use of the old coding would almost always work; the hazard comes down to possibly looking through a dangling pointer, and only once in a blue moon would you find something there that resulted in the wrong answer.) It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if there are any extensions using it, they'll continue to use the old inadequate logic until they're recompiled, after which they'll fail to load into server versions predating this fix. Hopefully there are few such extensions. Having fixed IS_DUMMY_REL, the special path for dummy rels in apply_scanjoin_target_to_paths is unnecessary as well as being wrong, so we can just drop it. Also change a few places that were testing for partitioned-ness of a planner relation but not using IS_PARTITIONED_REL for the purpose; that seems unsafe as well as inconsistent, plus it required an ugly hack in apply_scanjoin_target_to_paths. In passing, save a few cycles in apply_scanjoin_target_to_paths by skipping processing of pre-existing paths for partitioned rels, and do some cosmetic cleanup and comment adjustment in that function. I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking any code that might be using it, since in almost every case that would be wrong; IS_DUMMY_REL is what to be using instead. In HEAD, also make set_dummy_rel_pathlist static (since it's no longer used from outside allpaths.c), and delete is_dummy_plan, since it's no longer used anywhere. Back-patch as appropriate into v11 and v10. Tom Lane and Julien Rouhaud Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
2019-03-07 20:21:52 +01:00
* We set the cheapest-path fields immediately, just in case they were
* pointing at some discarded path. This is redundant when we're called
* from set_rel_size(), but not when called from elsewhere, and doing it
* twice is harmless anyway.
*/
set_cheapest(rel);
}
/* quick-and-dirty test to see if any joining is needed */
static bool
has_multiple_baserels(PlannerInfo *root)
{
int num_base_rels = 0;
Index rti;
for (rti = 1; rti < root->simple_rel_array_size; rti++)
{
RelOptInfo *brel = root->simple_rel_array[rti];
if (brel == NULL)
continue;
/* ignore RTEs that are "other rels" */
if (brel->reloptkind == RELOPT_BASEREL)
if (++num_base_rels > 1)
return true;
}
return false;
}
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
/*
* find_window_run_conditions
* Determine if 'wfunc' is really a WindowFunc and call its prosupport
* function to determine the function's monotonic properties. We then
* see if 'opexpr' can be used to short-circuit execution.
*
* For example row_number() over (order by ...) always produces a value one
* higher than the previous. If someone has a window function in a subquery
* and has a WHERE clause in the outer query to filter rows <= 10, then we may
* as well stop processing the windowagg once the row number reaches 11. Here
* we check if 'opexpr' might help us to stop doing needless extra processing
* in WindowAgg nodes.
*
* '*keep_original' is set to true if the caller should also use 'opexpr' for
* its original purpose. This is set to false if the caller can assume that
* the run condition will handle all of the required filtering.
*
* Returns true if 'opexpr' was found to be useful and was added to the
* WindowClauses runCondition. We also set *keep_original accordingly and add
* 'attno' to *run_cond_attrs offset by FirstLowInvalidHeapAttributeNumber.
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
* If the 'opexpr' cannot be used then we set *keep_original to true and
* return false.
*/
static bool
find_window_run_conditions(Query *subquery, RangeTblEntry *rte, Index rti,
AttrNumber attno, WindowFunc *wfunc, OpExpr *opexpr,
bool wfunc_left, bool *keep_original,
Bitmapset **run_cond_attrs)
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
{
Oid prosupport;
Expr *otherexpr;
SupportRequestWFuncMonotonic req;
SupportRequestWFuncMonotonic *res;
WindowClause *wclause;
List *opinfos;
OpExpr *runopexpr;
Oid runoperator;
ListCell *lc;
*keep_original = true;
while (IsA(wfunc, RelabelType))
wfunc = (WindowFunc *) ((RelabelType *) wfunc)->arg;
/* we can only work with window functions */
if (!IsA(wfunc, WindowFunc))
return false;
/* can't use it if there are subplans in the WindowFunc */
if (contain_subplans((Node *) wfunc))
return false;
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
prosupport = get_func_support(wfunc->winfnoid);
/* Check if there's a support function for 'wfunc' */
if (!OidIsValid(prosupport))
return false;
/* get the Expr from the other side of the OpExpr */
if (wfunc_left)
otherexpr = lsecond(opexpr->args);
else
otherexpr = linitial(opexpr->args);
/*
* The value being compared must not change during the evaluation of the
* window partition.
*/
if (!is_pseudo_constant_clause((Node *) otherexpr))
return false;
/* find the window clause belonging to the window function */
wclause = (WindowClause *) list_nth(subquery->windowClause,
wfunc->winref - 1);
req.type = T_SupportRequestWFuncMonotonic;
req.window_func = wfunc;
req.window_clause = wclause;
/* call the support function */
res = (SupportRequestWFuncMonotonic *)
DatumGetPointer(OidFunctionCall1(prosupport,
PointerGetDatum(&req)));
/*
* Nothing to do if the function is neither monotonically increasing nor
* monotonically decreasing.
*/
if (res == NULL || res->monotonic == MONOTONICFUNC_NONE)
return false;
runopexpr = NULL;
runoperator = InvalidOid;
opinfos = get_op_btree_interpretation(opexpr->opno);
foreach(lc, opinfos)
{
OpBtreeInterpretation *opinfo = (OpBtreeInterpretation *) lfirst(lc);
int strategy = opinfo->strategy;
/* handle < / <= */
if (strategy == BTLessStrategyNumber ||
strategy == BTLessEqualStrategyNumber)
{
/*
* < / <= is supported for monotonically increasing functions in
* the form <wfunc> op <pseudoconst> and <pseudoconst> op <wfunc>
* for monotonically decreasing functions.
*/
if ((wfunc_left && (res->monotonic & MONOTONICFUNC_INCREASING)) ||
(!wfunc_left && (res->monotonic & MONOTONICFUNC_DECREASING)))
{
*keep_original = false;
runopexpr = opexpr;
runoperator = opexpr->opno;
}
break;
}
/* handle > / >= */
else if (strategy == BTGreaterStrategyNumber ||
strategy == BTGreaterEqualStrategyNumber)
{
/*
* > / >= is supported for monotonically decreasing functions in
* the form <wfunc> op <pseudoconst> and <pseudoconst> op <wfunc>
* for monotonically increasing functions.
*/
if ((wfunc_left && (res->monotonic & MONOTONICFUNC_DECREASING)) ||
(!wfunc_left && (res->monotonic & MONOTONICFUNC_INCREASING)))
{
*keep_original = false;
runopexpr = opexpr;
runoperator = opexpr->opno;
}
break;
}
/* handle = */
else if (strategy == BTEqualStrategyNumber)
{
int16 newstrategy;
/*
* When both monotonically increasing and decreasing then the
* return value of the window function will be the same each time.
* We can simply use 'opexpr' as the run condition without
* modifying it.
*/
if ((res->monotonic & MONOTONICFUNC_BOTH) == MONOTONICFUNC_BOTH)
{
*keep_original = false;
runopexpr = opexpr;
runoperator = opexpr->opno;
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
break;
}
/*
* When monotonically increasing we make a qual with <wfunc> <=
* <value> or <value> >= <wfunc> in order to filter out values
* which are above the value in the equality condition. For
* monotonically decreasing functions we want to filter values
* below the value in the equality condition.
*/
if (res->monotonic & MONOTONICFUNC_INCREASING)
newstrategy = wfunc_left ? BTLessEqualStrategyNumber : BTGreaterEqualStrategyNumber;
else
newstrategy = wfunc_left ? BTGreaterEqualStrategyNumber : BTLessEqualStrategyNumber;
/* We must keep the original equality qual */
*keep_original = true;
runopexpr = opexpr;
/* determine the operator to use for the runCondition qual */
runoperator = get_opfamily_member(opinfo->opfamily_id,
opinfo->oplefttype,
opinfo->oprighttype,
newstrategy);
break;
}
}
if (runopexpr != NULL)
{
Expr *newexpr;
/*
* Build the qual required for the run condition keeping the
* WindowFunc on the same side as it was originally.
*/
if (wfunc_left)
newexpr = make_opclause(runoperator,
runopexpr->opresulttype,
runopexpr->opretset, (Expr *) wfunc,
otherexpr, runopexpr->opcollid,
runopexpr->inputcollid);
else
newexpr = make_opclause(runoperator,
runopexpr->opresulttype,
runopexpr->opretset,
otherexpr, (Expr *) wfunc,
runopexpr->opcollid,
runopexpr->inputcollid);
wclause->runCondition = lappend(wclause->runCondition, newexpr);
/* record that this attno was used in a run condition */
*run_cond_attrs = bms_add_member(*run_cond_attrs,
attno - FirstLowInvalidHeapAttributeNumber);
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
return true;
}
/* unsupported OpExpr */
return false;
}
/*
* check_and_push_window_quals
* Check if 'clause' is a qual that can be pushed into a WindowFunc's
* WindowClause as a 'runCondition' qual. These, when present, allow
* some unnecessary work to be skipped during execution.
*
* 'run_cond_attrs' will be populated with all targetlist resnos of subquery
* targets (offset by FirstLowInvalidHeapAttributeNumber) that we pushed
* window quals for.
*
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
* Returns true if the caller still must keep the original qual or false if
* the caller can safely ignore the original qual because the WindowAgg node
* will use the runCondition to stop returning tuples.
*/
static bool
check_and_push_window_quals(Query *subquery, RangeTblEntry *rte, Index rti,
Node *clause, Bitmapset **run_cond_attrs)
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
{
OpExpr *opexpr = (OpExpr *) clause;
bool keep_original = true;
Var *var1;
Var *var2;
/* We're only able to use OpExprs with 2 operands */
if (!IsA(opexpr, OpExpr))
return true;
if (list_length(opexpr->args) != 2)
return true;
Fix 32-bit build dangling pointer issue in WindowAgg 9d9c02ccd added window "run conditions", which allows the evaluation of monotonic window functions to be skipped when the run condition is no longer true. Prior to this commit, once the run condition was no longer true and we stopped evaluating the window functions, we simply just left the ecxt_aggvalues[] and ecxt_aggnulls[] arrays alone to store whatever value was stored there the last time the window function was evaluated. Leaving a stale value in there isn't really a problem on 64-bit builds as all of the window functions which we recognize as monotonic all return int8, which is passed by value on 64-bit builds. However, on 32-bit builds, this was a problem as the value stored in the ecxt_values[] element would be a by-ref value and it would be pointing to some memory which would get reset once the tuple context is destroyed. Since the WindowAgg node will output these values in the resulting tupleslot, this could be problematic for the top-level WindowAgg node which must look at these values to filter out the rows that don't meet its filter condition. Here we fix this by just zeroing the ecxt_aggvalues[] and setting the ecxt_aggnulls[] array to true when the run condition first becomes false. This results in the WindowAgg's output having NULLs for the WindowFunc's columns rather than the stale or pointer pointing to possibly freed memory. These tuples with the NULLs can only make it as far as the top-level WindowAgg node before they're filtered out. To ensure that these tuples *are* always filtered out, we now insist that OpExprs making up the run condition are strict OpExprs. Currently, all the window functions which the planner recognizes as monotonic return INT8 and the operator which is used for the run condition must be a member of a btree opclass. In reality, these restrictions exclude nothing that's built-in to Postgres and are unlikely to exclude anyone's custom operators due to the requirement that the operator is part of a btree opclass. It would be unusual if those were not strict. Reported-by: Sergey Shinderuk, using valgrind Reviewed-by: Richard Guo, Sergey Shinderuk Discussion: https://postgr.es/m/29184c50-429a-ebd7-f1fb-0589c6723a35@postgrespro.ru Backpatch-through: 15, where 9d9c02ccd was added
2022-12-06 12:09:36 +01:00
/*
* Currently, we restrict this optimization to strict OpExprs. The reason
* for this is that during execution, once the runcondition becomes false,
* we stop evaluating WindowFuncs. To avoid leaving around stale window
* function result values, we set them to NULL. Having only strict
* OpExprs here ensures that we properly filter out the tuples with NULLs
* in the top-level WindowAgg.
*/
set_opfuncid(opexpr);
if (!func_strict(opexpr->opfuncid))
return true;
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
/*
* Check for plain Vars that reference window functions in the subquery.
* If we find any, we'll ask find_window_run_conditions() if 'opexpr' can
* be used as part of the run condition.
*/
/* Check the left side of the OpExpr */
var1 = linitial(opexpr->args);
if (IsA(var1, Var) && var1->varattno > 0)
{
TargetEntry *tle = list_nth(subquery->targetList, var1->varattno - 1);
WindowFunc *wfunc = (WindowFunc *) tle->expr;
if (find_window_run_conditions(subquery, rte, rti, tle->resno, wfunc,
opexpr, true, &keep_original,
run_cond_attrs))
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
return keep_original;
}
/* and check the right side */
var2 = lsecond(opexpr->args);
if (IsA(var2, Var) && var2->varattno > 0)
{
TargetEntry *tle = list_nth(subquery->targetList, var2->varattno - 1);
WindowFunc *wfunc = (WindowFunc *) tle->expr;
if (find_window_run_conditions(subquery, rte, rti, tle->resno, wfunc,
opexpr, false, &keep_original,
run_cond_attrs))
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
return keep_original;
}
return true;
}
/*
* set_subquery_pathlist
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
* Generate SubqueryScan access paths for a subquery RTE
*
* We don't currently support generating parameterized paths for subqueries
* by pushing join clauses down into them; it seems too expensive to re-plan
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
* the subquery multiple times to consider different alternatives.
* (XXX that could stand to be reconsidered, now that we use Paths.)
* So the paths made here will be parameterized if the subquery contains
* LATERAL references, otherwise not. As long as that's true, there's no need
* for a separate set_subquery_size phase: just make the paths right away.
*/
static void
set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
Query *parse = root->parse;
Query *subquery = rte->subquery;
Estimate cost of elided SubqueryScan, Append, MergeAppend nodes better. setrefs.c contains logic to discard no-op SubqueryScan nodes, that is, ones that have no qual to check and copy the input targetlist unchanged. (Formally it's not very nice to be applying such optimizations so late in the planner, but there are practical reasons for it; mostly that we can't unify relids between the subquery and the parent query until we flatten the rangetable during setrefs.c.) This behavior falsifies our previous cost estimates, since we would've charged cpu_tuple_cost per row just to pass data through the node. Most of the time that's little enough to not matter, but there are cases where this effect visibly changes the plan compared to what you would've gotten with no sub-select. To improve the situation, make the callers of cost_subqueryscan tell it whether they think the targetlist is trivial. cost_subqueryscan already has the qual list, so it can check the other half of the condition easily. It could make its own determination of tlist triviality too, but doing so would be repetitive (for callers that may call it several times) or unnecessarily expensive (for callers that can determine this more cheaply than a general test would do). This isn't a 100% solution, because createplan.c also does things that can falsify any earlier estimate of whether the tlist is trivial. However, it fixes nearly all cases in practice, if results for the regression tests are anything to go by. setrefs.c also contains logic to discard no-op Append and MergeAppend nodes. We did have knowledge of that behavior at costing time, but somebody failed to update it when a check on parallel-awareness was added to the setrefs.c logic. Fix that while we're here. These changes result in two minor changes in query plans shown in our regression tests. Neither is relevant to the purposes of its test case AFAICT. Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/2581077.1651703520@sss.pgh.pa.us
2022-07-19 17:18:19 +02:00
bool trivial_pathtarget;
Relids required_outer;
pushdown_safety_info safetyInfo;
double tuple_fraction;
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
RelOptInfo *sub_final_rel;
Bitmapset *run_cond_attrs = NULL;
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
ListCell *lc;
/*
* Must copy the Query so that planning doesn't mess up the RTE contents
* (really really need to fix the planner to not scribble on its input,
* someday ... but see remove_unused_subquery_outputs to start with).
*/
subquery = copyObject(subquery);
/*
* If it's a LATERAL subquery, it might contain some Vars of the current
* query level, requiring it to be treated as parameterized, even though
* we don't support pushing down join quals into subqueries.
*/
required_outer = rel->lateral_relids;
/*
* Zero out result area for subquery_is_pushdown_safe, so that it can set
* flags as needed while recursing. In particular, we need a workspace
* for keeping track of the reasons why columns are unsafe to reference.
* These reasons are stored in the bits inside unsafeFlags[i] when we
* discover reasons that column i of the subquery is unsafe to be used in
* a pushed-down qual.
*/
memset(&safetyInfo, 0, sizeof(safetyInfo));
safetyInfo.unsafeFlags = (unsigned char *)
palloc0((list_length(subquery->targetList) + 1) * sizeof(unsigned char));
/*
* If the subquery has the "security_barrier" flag, it means the subquery
2021-04-21 08:14:43 +02:00
* originated from a view that must enforce row-level security. Then we
* must not push down quals that contain leaky functions. (Ideally this
* would be checked inside subquery_is_pushdown_safe, but since we don't
* currently pass the RTE to that function, we must do it here.)
*/
safetyInfo.unsafeLeaky = rte->security_barrier;
/*
* If there are any restriction clauses that have been attached to the
* subquery relation, consider pushing them down to become WHERE or HAVING
* quals of the subquery itself. This transformation is useful because it
* may allow us to generate a better plan for the subquery than evaluating
* all the subquery output rows and then filtering them.
*
* There are several cases where we cannot push down clauses. Restrictions
* involving the subquery are checked by subquery_is_pushdown_safe().
* Restrictions on individual clauses are checked by
* qual_is_pushdown_safe(). Also, we don't want to push down
* pseudoconstant clauses; better to have the gating node above the
* subquery.
*
* Non-pushed-down clauses will get evaluated as qpquals of the
* SubqueryScan node.
*
* XXX Are there any cases where we want to make a policy decision not to
* push down a pushable qual, because it'd result in a worse plan?
*/
if (rel->baserestrictinfo != NIL &&
subquery_is_pushdown_safe(subquery, subquery, &safetyInfo))
{
/* OK to consider pushing down individual quals */
List *upperrestrictlist = NIL;
ListCell *l;
foreach(l, rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
Node *clause = (Node *) rinfo->clause;
if (rinfo->pseudoconstant)
{
upperrestrictlist = lappend(upperrestrictlist, rinfo);
continue;
}
switch (qual_is_pushdown_safe(subquery, rti, rinfo, &safetyInfo))
{
case PUSHDOWN_SAFE:
/* Push it down */
subquery_push_qual(subquery, rte, rti, clause);
break;
case PUSHDOWN_WINDOWCLAUSE_RUNCOND:
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
/*
* Since we can't push the qual down into the subquery,
* check if it happens to reference a window function. If
* so then it might be useful to use for the WindowAgg's
* runCondition.
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
*/
if (!subquery->hasWindowFuncs ||
check_and_push_window_quals(subquery, rte, rti, clause,
&run_cond_attrs))
{
/*
* subquery has no window funcs or the clause is not a
* suitable window run condition qual or it is, but
* the original must also be kept in the upper query.
*/
upperrestrictlist = lappend(upperrestrictlist, rinfo);
}
break;
case PUSHDOWN_UNSAFE:
Teach planner and executor about monotonic window funcs Window functions such as row_number() always return a value higher than the previously returned value for tuples in any given window partition. Traditionally queries such as; SELECT * FROM ( SELECT *, row_number() over (order by c) rn FROM t ) t WHERE rn <= 10; were executed fairly inefficiently. Neither the query planner nor the executor knew that once rn made it to 11 that nothing further would match the outer query's WHERE clause. It would blindly continue until all tuples were exhausted from the subquery. Here we implement means to make the above execute more efficiently. This is done by way of adding a pg_proc.prosupport function to various of the built-in window functions and adding supporting code to allow the support function to inform the planner if the window function is monotonically increasing, monotonically decreasing, both or neither. The planner is then able to make use of that information and possibly allow the executor to short-circuit execution by way of adding a "run condition" to the WindowAgg to allow it to determine if some of its execution work can be skipped. This "run condition" is not like a normal filter. These run conditions are only built using quals comparing values to monotonic window functions. For monotonic increasing functions, quals making use of the btree operators for <, <= and = can be used (assuming the window function column is on the left). You can see here that once such a condition becomes false that a monotonic increasing function could never make it subsequently true again. For monotonically decreasing functions the >, >= and = btree operators for the given type can be used for run conditions. The best-case situation for this is when there is a single WindowAgg node without a PARTITION BY clause. Here when the run condition becomes false the WindowAgg node can simply return NULL. No more tuples will ever match the run condition. It's a little more complex when there is a PARTITION BY clause. In this case, we cannot return NULL as we must still process other partitions. To speed this case up we pull tuples from the outer plan to check if they're from the same partition and simply discard them if they are. When we find a tuple belonging to another partition we start processing as normal again until the run condition becomes false or we run out of tuples to process. When there are multiple WindowAgg nodes to evaluate then this complicates the situation. For intermediate WindowAggs we must ensure we always return all tuples to the calling node. Any filtering done could lead to incorrect results in WindowAgg nodes above. For all intermediate nodes, we can still save some work when the run condition becomes false. We've no need to evaluate the WindowFuncs anymore. Other WindowAgg nodes cannot reference the value of these and these tuples will not appear in the final result anyway. The savings here are small in comparison to what can be saved in the top-level WingowAgg, but still worthwhile. Intermediate WindowAgg nodes never filter out tuples, but here we change WindowAgg so that the top-level WindowAgg filters out tuples that don't match the intermediate WindowAgg node's run condition. Such filters appear in the "Filter" clause in EXPLAIN for the top-level WindowAgg node. Here we add prosupport functions to allow the above to work for; row_number(), rank(), dense_rank(), count(*) and count(expr). It appears technically possible to do the same for min() and max(), however, it seems unlikely to be useful enough, so that's not done here. Bump catversion Author: David Rowley Reviewed-by: Andy Fan, Zhihong Yu Discussion: https://postgr.es/m/CAApHDvqvp3At8++yF8ij06sdcoo1S_b2YoaT9D4Nf+MObzsrLQ@mail.gmail.com
2022-04-08 00:34:36 +02:00
upperrestrictlist = lappend(upperrestrictlist, rinfo);
break;
}
}
rel->baserestrictinfo = upperrestrictlist;
Improve RLS planning by marking individual quals with security levels. In an RLS query, we must ensure that security filter quals are evaluated before ordinary query quals, in case the latter contain "leaky" functions that could expose the contents of sensitive rows. The original implementation of RLS planning ensured this by pushing the scan of a secured table into a sub-query that it marked as a security-barrier view. Unfortunately this results in very inefficient plans in many cases, because the sub-query cannot be flattened and gets planned independently of the rest of the query. To fix, drop the use of sub-queries to enforce RLS qual order, and instead mark each qual (RestrictInfo) with a security_level field establishing its priority for evaluation. Quals must be evaluated in security_level order, except that "leakproof" quals can be allowed to go ahead of quals of lower security_level, if it's helpful to do so. This has to be enforced within the ordering of any one list of quals to be evaluated at a table scan node, and we also have to ensure that quals are not chosen for early evaluation (i.e., use as an index qual or TID scan qual) if they're not allowed to go ahead of other quals at the scan node. This is sufficient to fix the problem for RLS quals, since we only support RLS policies on simple tables and thus RLS quals will always exist at the table scan level only. Eventually these qual ordering rules should be enforced for join quals as well, which would permit improving planning for explicit security-barrier views; but that's a task for another patch. Note that FDWs would need to be aware of these rules --- and not, for example, send an insecure qual for remote execution --- but since we do not yet allow RLS policies on foreign tables, the case doesn't arise. This will need to be addressed before we can allow such policies. Patch by me, reviewed by Stephen Frost and Dean Rasheed. Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
2017-01-18 18:58:20 +01:00
/* We don't bother recomputing baserestrict_min_security */
}
pfree(safetyInfo.unsafeFlags);
/*
* The upper query might not use all the subquery's output columns; if
* not, we can simplify. Pass the attributes that were pushed down into
* WindowAgg run conditions to ensure we don't accidentally think those
* are unused.
*/
remove_unused_subquery_outputs(subquery, rel, run_cond_attrs);
/*
* We can safely pass the outer tuple_fraction down to the subquery if the
* outer level has no joining, aggregation, or sorting to do. Otherwise
* we'd better tell the subquery to plan for full retrieval. (XXX This
* could probably be made more intelligent ...)
*/
if (parse->hasAggs ||
parse->groupClause ||
Support GROUPING SETS, CUBE and ROLLUP. This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:40:59 +02:00
parse->groupingSets ||
root->hasHavingQual ||
parse->distinctClause ||
parse->sortClause ||
has_multiple_baserels(root))
tuple_fraction = 0.0; /* default case */
else
tuple_fraction = root->tuple_fraction;
Fix PARAM_EXEC assignment mechanism to be safe in the presence of WITH. The planner previously assumed that parameter Vars having the same absolute query level, varno, and varattno could safely be assigned the same runtime PARAM_EXEC slot, even though they might be different Vars appearing in different subqueries. This was (probably) safe before the introduction of CTEs, but the lazy-evalution mechanism used for CTEs means that a CTE can be executed during execution of some other subquery, causing the lifespan of Params at the same syntactic nesting level as the CTE to overlap with use of the same slots inside the CTE. In 9.1 we created additional hazards by using the same parameter-assignment technology for nestloop inner scan parameters, but it was broken before that, as illustrated by the added regression test. To fix, restructure the planner's management of PlannerParamItems so that items having different semantic lifespans are kept rigorously separated. This will probably result in complex queries using more runtime PARAM_EXEC slots than before, but the slots are cheap enough that this hardly matters. Also, stop generating PlannerParamItems containing Params for subquery outputs: all we really need to do is reserve the PARAM_EXEC slot number, and that now only takes incrementing a counter. The planning code is simpler and probably faster than before, as well as being more correct. Per report from Vik Reykja. These changes will mostly also need to be made in the back branches, but I'm going to hold off on that until after 9.2.0 wraps.
2012-09-05 18:54:03 +02:00
/* plan_params should not be in use in current query level */
Assert(root->plan_params == NIL);
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
/* Generate a subroot and Paths for the subquery */
rel->subroot = subquery_planner(root->glob, subquery,
root,
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
false, tuple_fraction);
Fix PARAM_EXEC assignment mechanism to be safe in the presence of WITH. The planner previously assumed that parameter Vars having the same absolute query level, varno, and varattno could safely be assigned the same runtime PARAM_EXEC slot, even though they might be different Vars appearing in different subqueries. This was (probably) safe before the introduction of CTEs, but the lazy-evalution mechanism used for CTEs means that a CTE can be executed during execution of some other subquery, causing the lifespan of Params at the same syntactic nesting level as the CTE to overlap with use of the same slots inside the CTE. In 9.1 we created additional hazards by using the same parameter-assignment technology for nestloop inner scan parameters, but it was broken before that, as illustrated by the added regression test. To fix, restructure the planner's management of PlannerParamItems so that items having different semantic lifespans are kept rigorously separated. This will probably result in complex queries using more runtime PARAM_EXEC slots than before, but the slots are cheap enough that this hardly matters. Also, stop generating PlannerParamItems containing Params for subquery outputs: all we really need to do is reserve the PARAM_EXEC slot number, and that now only takes incrementing a counter. The planning code is simpler and probably faster than before, as well as being more correct. Per report from Vik Reykja. These changes will mostly also need to be made in the back branches, but I'm going to hold off on that until after 9.2.0 wraps.
2012-09-05 18:54:03 +02:00
/* Isolate the params needed by this specific subplan */
rel->subplan_params = root->plan_params;
root->plan_params = NIL;
/*
* It's possible that constraint exclusion proved the subquery empty. If
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
* so, it's desirable to produce an unadorned dummy path so that we will
* recognize appropriate optimizations at this query level.
*/
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
sub_final_rel = fetch_upper_rel(rel->subroot, UPPERREL_FINAL, NULL);
if (IS_DUMMY_REL(sub_final_rel))
{
set_dummy_rel_pathlist(rel);
return;
}
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
/*
* Mark rel with estimated output rows, width, etc. Note that we have to
* do this before generating outer-query paths, else cost_subqueryscan is
* not happy.
*/
set_subquery_size_estimates(root, rel);
Estimate cost of elided SubqueryScan, Append, MergeAppend nodes better. setrefs.c contains logic to discard no-op SubqueryScan nodes, that is, ones that have no qual to check and copy the input targetlist unchanged. (Formally it's not very nice to be applying such optimizations so late in the planner, but there are practical reasons for it; mostly that we can't unify relids between the subquery and the parent query until we flatten the rangetable during setrefs.c.) This behavior falsifies our previous cost estimates, since we would've charged cpu_tuple_cost per row just to pass data through the node. Most of the time that's little enough to not matter, but there are cases where this effect visibly changes the plan compared to what you would've gotten with no sub-select. To improve the situation, make the callers of cost_subqueryscan tell it whether they think the targetlist is trivial. cost_subqueryscan already has the qual list, so it can check the other half of the condition easily. It could make its own determination of tlist triviality too, but doing so would be repetitive (for callers that may call it several times) or unnecessarily expensive (for callers that can determine this more cheaply than a general test would do). This isn't a 100% solution, because createplan.c also does things that can falsify any earlier estimate of whether the tlist is trivial. However, it fixes nearly all cases in practice, if results for the regression tests are anything to go by. setrefs.c also contains logic to discard no-op Append and MergeAppend nodes. We did have knowledge of that behavior at costing time, but somebody failed to update it when a check on parallel-awareness was added to the setrefs.c logic. Fix that while we're here. These changes result in two minor changes in query plans shown in our regression tests. Neither is relevant to the purposes of its test case AFAICT. Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/2581077.1651703520@sss.pgh.pa.us
2022-07-19 17:18:19 +02:00
/*
* Also detect whether the reltarget is trivial, so that we can pass that
* info to cost_subqueryscan (rather than re-deriving it multiple times).
* It's trivial if it fetches all the subplan output columns in order.
*/
if (list_length(rel->reltarget->exprs) != list_length(subquery->targetList))
trivial_pathtarget = false;
else
{
trivial_pathtarget = true;
foreach(lc, rel->reltarget->exprs)
{
Node *node = (Node *) lfirst(lc);
Var *var;
if (!IsA(node, Var))
{
trivial_pathtarget = false;
break;
}
var = (Var *) node;
if (var->varno != rti ||
var->varattno != foreach_current_index(lc) + 1)
{
trivial_pathtarget = false;
break;
}
}
}
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
/*
* For each Path that subquery_planner produced, make a SubqueryScanPath
* in the outer query.
*/
foreach(lc, sub_final_rel->pathlist)
{
Path *subpath = (Path *) lfirst(lc);
List *pathkeys;
/* Convert subpath's pathkeys to outer representation */
pathkeys = convert_subquery_pathkeys(root,
rel,
subpath->pathkeys,
make_tlist_from_pathtarget(subpath->pathtarget));
/* Generate outer path using this subpath */
add_path(rel, (Path *)
create_subqueryscan_path(root, rel, subpath,
Estimate cost of elided SubqueryScan, Append, MergeAppend nodes better. setrefs.c contains logic to discard no-op SubqueryScan nodes, that is, ones that have no qual to check and copy the input targetlist unchanged. (Formally it's not very nice to be applying such optimizations so late in the planner, but there are practical reasons for it; mostly that we can't unify relids between the subquery and the parent query until we flatten the rangetable during setrefs.c.) This behavior falsifies our previous cost estimates, since we would've charged cpu_tuple_cost per row just to pass data through the node. Most of the time that's little enough to not matter, but there are cases where this effect visibly changes the plan compared to what you would've gotten with no sub-select. To improve the situation, make the callers of cost_subqueryscan tell it whether they think the targetlist is trivial. cost_subqueryscan already has the qual list, so it can check the other half of the condition easily. It could make its own determination of tlist triviality too, but doing so would be repetitive (for callers that may call it several times) or unnecessarily expensive (for callers that can determine this more cheaply than a general test would do). This isn't a 100% solution, because createplan.c also does things that can falsify any earlier estimate of whether the tlist is trivial. However, it fixes nearly all cases in practice, if results for the regression tests are anything to go by. setrefs.c also contains logic to discard no-op Append and MergeAppend nodes. We did have knowledge of that behavior at costing time, but somebody failed to update it when a check on parallel-awareness was added to the setrefs.c logic. Fix that while we're here. These changes result in two minor changes in query plans shown in our regression tests. Neither is relevant to the purposes of its test case AFAICT. Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/2581077.1651703520@sss.pgh.pa.us
2022-07-19 17:18:19 +02:00
trivial_pathtarget,
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
pathkeys, required_outer));
}
/* If outer rel allows parallelism, do same for partial paths. */
if (rel->consider_parallel && bms_is_empty(required_outer))
{
/* If consider_parallel is false, there should be no partial paths. */
Assert(sub_final_rel->consider_parallel ||
sub_final_rel->partial_pathlist == NIL);
/* Same for partial paths. */
foreach(lc, sub_final_rel->partial_pathlist)
{
Path *subpath = (Path *) lfirst(lc);
List *pathkeys;
/* Convert subpath's pathkeys to outer representation */
pathkeys = convert_subquery_pathkeys(root,
rel,
subpath->pathkeys,
make_tlist_from_pathtarget(subpath->pathtarget));
/* Generate outer path using this subpath */
add_partial_path(rel, (Path *)
create_subqueryscan_path(root, rel, subpath,
Estimate cost of elided SubqueryScan, Append, MergeAppend nodes better. setrefs.c contains logic to discard no-op SubqueryScan nodes, that is, ones that have no qual to check and copy the input targetlist unchanged. (Formally it's not very nice to be applying such optimizations so late in the planner, but there are practical reasons for it; mostly that we can't unify relids between the subquery and the parent query until we flatten the rangetable during setrefs.c.) This behavior falsifies our previous cost estimates, since we would've charged cpu_tuple_cost per row just to pass data through the node. Most of the time that's little enough to not matter, but there are cases where this effect visibly changes the plan compared to what you would've gotten with no sub-select. To improve the situation, make the callers of cost_subqueryscan tell it whether they think the targetlist is trivial. cost_subqueryscan already has the qual list, so it can check the other half of the condition easily. It could make its own determination of tlist triviality too, but doing so would be repetitive (for callers that may call it several times) or unnecessarily expensive (for callers that can determine this more cheaply than a general test would do). This isn't a 100% solution, because createplan.c also does things that can falsify any earlier estimate of whether the tlist is trivial. However, it fixes nearly all cases in practice, if results for the regression tests are anything to go by. setrefs.c also contains logic to discard no-op Append and MergeAppend nodes. We did have knowledge of that behavior at costing time, but somebody failed to update it when a check on parallel-awareness was added to the setrefs.c logic. Fix that while we're here. These changes result in two minor changes in query plans shown in our regression tests. Neither is relevant to the purposes of its test case AFAICT. Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/2581077.1651703520@sss.pgh.pa.us
2022-07-19 17:18:19 +02:00
trivial_pathtarget,
pathkeys,
required_outer));
}
}
}
/*
* set_function_pathlist
* Build the (single) access path for a function RTE
*/
static void
set_function_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Relids required_outer;
List *pathkeys = NIL;
/*
* We don't support pushing join clauses into the quals of a function
* scan, but it could still have required parameterization due to LATERAL
* refs in the function expression.
*/
required_outer = rel->lateral_relids;
/*
* The result is considered unordered unless ORDINALITY was used, in which
* case it is ordered by the ordinal column (the last one). See if we
* care, by checking for uses of that Var in equivalence classes.
*/
if (rte->funcordinality)
{
AttrNumber ordattno = rel->max_attr;
Var *var = NULL;
ListCell *lc;
/*
Add an explicit representation of the output targetlist to Paths. Up to now, there's been an assumption that all Paths for a given relation compute the same output column set (targetlist). However, there are good reasons to remove that assumption. For example, an indexscan on an expression index might be able to return the value of an expensive function "for free". While we have the ability to generate such a plan today in simple cases, we don't have a way to model that it's cheaper than a plan that computes the function from scratch, nor a way to create such a plan in join cases (where the function computation would normally happen at the topmost join node). Also, we need this so that we can have Paths representing post-scan/join steps, where the targetlist may well change from one step to the next. Therefore, invent a "struct PathTarget" representing the columns we expect a plan step to emit. It's convenient to include the output tuple width and tlist evaluation cost in this struct, and there will likely be additional fields in future. While Path nodes that actually do have custom outputs will need their own PathTargets, it will still be true that most Paths for a given relation will compute the same tlist. To reduce the overhead added by this patch, keep a "default PathTarget" in RelOptInfo, and allow Paths that compute that column set to just point to their parent RelOptInfo's reltarget. (In the patch as committed, actually every Path is like that, since we do not yet have any cases of custom PathTargets.) I took this opportunity to provide some more-honest costing of PlaceHolderVar evaluation. Up to now, the assumption that "scan/join reltargetlists have cost zero" was applied not only to Vars, where it's reasonable, but also PlaceHolderVars where it isn't. Now, we add the eval cost of a PlaceHolderVar's expression to the first plan level where it can be computed, by including it in the PathTarget cost field and adding that to the cost estimates for Paths. This isn't perfect yet but it's much better than before, and there is a way forward to improve it more. This costing change affects the join order chosen for a couple of the regression tests, changing expected row ordering.
2016-02-19 02:01:49 +01:00
* Is there a Var for it in rel's targetlist? If not, the query did
* not reference the ordinality column, or at least not in any way
* that would be interesting for sorting.
*/
foreach(lc, rel->reltarget->exprs)
{
Var *node = (Var *) lfirst(lc);
/* checking varno/varlevelsup is just paranoia */
if (IsA(node, Var) &&
node->varattno == ordattno &&
node->varno == rel->relid &&
node->varlevelsup == 0)
{
var = node;
break;
}
}
/*
* Try to build pathkeys for this Var with int8 sorting. We tell
* build_expression_pathkey not to build any new equivalence class; if
* the Var isn't already mentioned in some EC, it means that nothing
* cares about the ordering.
*/
if (var)
pathkeys = build_expression_pathkey(root,
(Expr *) var,
Int8LessOperator,
rel->relids,
false);
}
/* Generate appropriate path */
add_path(rel, create_functionscan_path(root, rel,
pathkeys, required_outer));
}
/*
* set_values_pathlist
* Build the (single) access path for a VALUES RTE
*/
static void
set_values_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Relids required_outer;
/*
* We don't support pushing join clauses into the quals of a values scan,
* but it could still have required parameterization due to LATERAL refs
* in the values expressions.
*/
required_outer = rel->lateral_relids;
/* Generate appropriate path */
add_path(rel, create_valuesscan_path(root, rel, required_outer));
}
/*
* set_tablefunc_pathlist
* Build the (single) access path for a table func RTE
*/
static void
set_tablefunc_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Relids required_outer;
/*
* We don't support pushing join clauses into the quals of a tablefunc
* scan, but it could still have required parameterization due to LATERAL
* refs in the function expression.
*/
required_outer = rel->lateral_relids;
/* Generate appropriate path */
add_path(rel, create_tablefuncscan_path(root, rel,
required_outer));
}
/*
* set_cte_pathlist
* Build the (single) access path for a non-self-reference CTE RTE
*
* There's no need for a separate set_cte_size phase, since we don't
* support join-qual-parameterized paths for CTEs.
*/
static void
set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Plan *cteplan;
PlannerInfo *cteroot;
Index levelsup;
int ndx;
ListCell *lc;
int plan_id;
Relids required_outer;
/*
* Find the referenced CTE, and locate the plan previously made for it.
*/
levelsup = rte->ctelevelsup;
cteroot = root;
while (levelsup-- > 0)
{
cteroot = cteroot->parent_root;
if (!cteroot) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
}
/*
* Note: cte_plan_ids can be shorter than cteList, if we are still working
* on planning the CTEs (ie, this is a side-reference from another CTE).
* So we mustn't use forboth here.
*/
ndx = 0;
foreach(lc, cteroot->parse->cteList)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
if (strcmp(cte->ctename, rte->ctename) == 0)
break;
ndx++;
}
if (lc == NULL) /* shouldn't happen */
elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
if (ndx >= list_length(cteroot->cte_plan_ids))
elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
if (plan_id <= 0)
elog(ERROR, "no plan was made for CTE \"%s\"", rte->ctename);
cteplan = (Plan *) list_nth(root->glob->subplans, plan_id - 1);
/* Mark rel with estimated output rows, width, etc */
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
set_cte_size_estimates(root, rel, cteplan->plan_rows);
/*
* We don't support pushing join clauses into the quals of a CTE scan, but
* it could still have required parameterization due to LATERAL refs in
* its tlist.
*/
required_outer = rel->lateral_relids;
/* Generate appropriate path */
add_path(rel, create_ctescan_path(root, rel, required_outer));
}
/*
* set_namedtuplestore_pathlist
* Build the (single) access path for a named tuplestore RTE
*
* There's no need for a separate set_namedtuplestore_size phase, since we
* don't support join-qual-parameterized paths for tuplestores.
*/
static void
set_namedtuplestore_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte)
{
Relids required_outer;
/* Mark rel with estimated output rows, width, etc */
set_namedtuplestore_size_estimates(root, rel);
/*
* We don't support pushing join clauses into the quals of a tuplestore
* scan, but it could still have required parameterization due to LATERAL
* refs in its tlist.
*/
required_outer = rel->lateral_relids;
/* Generate appropriate path */
add_path(rel, create_namedtuplestorescan_path(root, rel, required_outer));
/* Select cheapest path (pretty easy in this case...) */
set_cheapest(rel);
}
In the planner, replace an empty FROM clause with a dummy RTE. The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 23:54:10 +01:00
/*
* set_result_pathlist
* Build the (single) access path for an RTE_RESULT RTE
*
* There's no need for a separate set_result_size phase, since we
* don't support join-qual-parameterized paths for these RTEs.
*/
static void
set_result_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte)
{
Relids required_outer;
/* Mark rel with estimated output rows, width, etc */
set_result_size_estimates(root, rel);
/*
* We don't support pushing join clauses into the quals of a Result scan,
* but it could still have required parameterization due to LATERAL refs
* in its tlist.
*/
required_outer = rel->lateral_relids;
/* Generate appropriate path */
add_path(rel, create_resultscan_path(root, rel, required_outer));
/* Select cheapest path (pretty easy in this case...) */
set_cheapest(rel);
}
/*
* set_worktable_pathlist
* Build the (single) access path for a self-reference CTE RTE
*
* There's no need for a separate set_worktable_size phase, since we don't
* support join-qual-parameterized paths for CTEs.
*/
static void
set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
Path *ctepath;
PlannerInfo *cteroot;
Index levelsup;
Relids required_outer;
/*
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
* We need to find the non-recursive term's path, which is in the plan
* level that's processing the recursive UNION, which is one level *below*
* where the CTE comes from.
*/
levelsup = rte->ctelevelsup;
if (levelsup == 0) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
levelsup--;
cteroot = root;
while (levelsup-- > 0)
{
cteroot = cteroot->parent_root;
if (!cteroot) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
}
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
ctepath = cteroot->non_recursive_path;
if (!ctepath) /* shouldn't happen */
elog(ERROR, "could not find path for CTE \"%s\"", rte->ctename);
/* Mark rel with estimated output rows, width, etc */
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
set_cte_size_estimates(root, rel, ctepath->rows);
/*
* We don't support pushing join clauses into the quals of a worktable
* scan, but it could still have required parameterization due to LATERAL
* refs in its tlist. (I'm not sure this is actually possible given the
* restrictions on recursive references, but it's easy enough to support.)
*/
required_outer = rel->lateral_relids;
/* Generate appropriate path */
add_path(rel, create_worktablescan_path(root, rel, required_outer));
}
/*
* generate_gather_paths
* Generate parallel access paths for a relation by pushing a Gather or
* Gather Merge on top of a partial path.
*
* This must not be called until after we're done creating all partial paths
* for the specified relation. (Otherwise, add_partial_path might delete a
* path that some GatherPath or GatherMergePath has a reference to.)
*
* If we're generating paths for a scan or join relation, override_rows will
* be false, and we'll just use the relation's size estimate. When we're
* being called for a partially-grouped path, though, we need to override
* the rowcount estimate. (It's not clear that the particular value we're
* using here is actually best, but the underlying rel has no estimate so
* we must do something.)
*/
void
generate_gather_paths(PlannerInfo *root, RelOptInfo *rel, bool override_rows)
{
Path *cheapest_partial_path;
Path *simple_gather_path;
ListCell *lc;
double rows;
double *rowsp = NULL;
/* If there are no partial paths, there's nothing to do here. */
if (rel->partial_pathlist == NIL)
return;
/* Should we override the rel's rowcount estimate? */
if (override_rows)
rowsp = &rows;
/*
* The output of Gather is always unsorted, so there's only one partial
* path of interest: the cheapest one. That will be the one at the front
* of partial_pathlist because of the way add_partial_path works.
*/
cheapest_partial_path = linitial(rel->partial_pathlist);
rows =
cheapest_partial_path->rows * cheapest_partial_path->parallel_workers;
simple_gather_path = (Path *)
create_gather_path(root, rel, cheapest_partial_path, rel->reltarget,
NULL, rowsp);
add_path(rel, simple_gather_path);
/*
* For each useful ordering, we can consider an order-preserving Gather
* Merge.
*/
foreach(lc, rel->partial_pathlist)
{
Path *subpath = (Path *) lfirst(lc);
GatherMergePath *path;
if (subpath->pathkeys == NIL)
continue;
rows = subpath->rows * subpath->parallel_workers;
path = create_gather_merge_path(root, rel, subpath, rel->reltarget,
subpath->pathkeys, NULL, rowsp);
add_path(rel, &path->path);
}
}
/*
* get_useful_pathkeys_for_relation
* Determine which orderings of a relation might be useful.
*
* Getting data in sorted order can be useful either because the requested
* order matches the final output ordering for the overall query we're
* planning, or because it enables an efficient merge join. Here, we try
* to figure out which pathkeys to consider.
*
* This allows us to do incremental sort on top of an index scan under a gather
* merge node, i.e. parallelized.
*
* If the require_parallel_safe is true, we also require the expressions to
* be parallel safe (which allows pushing the sort below Gather Merge).
*
* XXX At the moment this can only ever return a list with a single element,
* because it looks at query_pathkeys only. So we might return the pathkeys
* directly, but it seems plausible we'll want to consider other orderings
* in the future. For example, we might want to consider pathkeys useful for
* merge joins.
*/
static List *
get_useful_pathkeys_for_relation(PlannerInfo *root, RelOptInfo *rel,
bool require_parallel_safe)
{
List *useful_pathkeys_list = NIL;
/*
* Considering query_pathkeys is always worth it, because it might allow
* us to avoid a total sort when we have a partially presorted path
* available or to push the total sort into the parallel portion of the
* query.
*/
if (root->query_pathkeys)
{
ListCell *lc;
int npathkeys = 0; /* useful pathkeys */
foreach(lc, root->query_pathkeys)
{
PathKey *pathkey = (PathKey *) lfirst(lc);
EquivalenceClass *pathkey_ec = pathkey->pk_eclass;
/*
* We can only build a sort for pathkeys that contain a
* safe-to-compute-early EC member computable from the current
* relation's reltarget, so ignore the remainder of the list as
* soon as we find a pathkey without such a member.
*
* It's still worthwhile to return any prefix of the pathkeys list
* that meets this requirement, as we may be able to do an
* incremental sort.
*
* If requested, ensure the sort expression is parallel-safe too.
*/
if (!relation_can_be_sorted_early(root, rel, pathkey_ec,
require_parallel_safe))
break;
npathkeys++;
}
/*
* The whole query_pathkeys list matches, so append it directly, to
* allow comparing pathkeys easily by comparing list pointer. If we
* have to truncate the pathkeys, we gotta do a copy though.
*/
if (npathkeys == list_length(root->query_pathkeys))
useful_pathkeys_list = lappend(useful_pathkeys_list,
root->query_pathkeys);
else if (npathkeys > 0)
useful_pathkeys_list = lappend(useful_pathkeys_list,
list_copy_head(root->query_pathkeys,
npathkeys));
}
return useful_pathkeys_list;
}
/*
* generate_useful_gather_paths
* Generate parallel access paths for a relation by pushing a Gather or
* Gather Merge on top of a partial path.
*
* Unlike plain generate_gather_paths, this looks both at pathkeys of input
* paths (aiming to preserve the ordering), but also considers ordering that
* might be useful for nodes above the gather merge node, and tries to add
* a sort (regular or incremental) to provide that.
*/
void
generate_useful_gather_paths(PlannerInfo *root, RelOptInfo *rel, bool override_rows)
{
ListCell *lc;
double rows;
double *rowsp = NULL;
List *useful_pathkeys_list = NIL;
Path *cheapest_partial_path = NULL;
/* If there are no partial paths, there's nothing to do here. */
if (rel->partial_pathlist == NIL)
return;
/* Should we override the rel's rowcount estimate? */
if (override_rows)
rowsp = &rows;
/* generate the regular gather (merge) paths */
generate_gather_paths(root, rel, override_rows);
/* consider incremental sort for interesting orderings */
useful_pathkeys_list = get_useful_pathkeys_for_relation(root, rel, true);
/* used for explicit (full) sort paths */
cheapest_partial_path = linitial(rel->partial_pathlist);
/*
* Consider sorted paths for each interesting ordering. We generate both
* incremental and full sort.
*/
foreach(lc, useful_pathkeys_list)
{
List *useful_pathkeys = lfirst(lc);
ListCell *lc2;
bool is_sorted;
int presorted_keys;
foreach(lc2, rel->partial_pathlist)
{
Path *subpath = (Path *) lfirst(lc2);
GatherMergePath *path;
is_sorted = pathkeys_count_contained_in(useful_pathkeys,
subpath->pathkeys,
&presorted_keys);
/*
* We don't need to consider the case where a subpath is already
* fully sorted because generate_gather_paths already creates a
* gather merge path for every subpath that has pathkeys present.
*
* But since the subpath is already sorted, we know we don't need
* to consider adding a sort (full or incremental) on top of it,
* so we can continue here.
*/
if (is_sorted)
continue;
/*
Remove pessimistic cost penalization from Incremental Sort When incremental sorts were added in v13 a 1.5x pessimism factor was added to the cost modal. Seemingly this was done because the cost modal only has an estimate of the total number of input rows and the number of presorted groups. It assumes that the input rows will be evenly distributed throughout the presorted groups. The 1.5x pessimism factor was added to slightly reduce the likelihood of incremental sorts being used in the hope to avoid performance regressions where an incremental sort plan was picked and turned out slower due to a large skew in the number of rows in the presorted groups. An additional quirk with the path generation code meant that we could consider both a sort and an incremental sort on paths with presorted keys. This meant that with the pessimism factor, it was possible that we opted to perform a sort rather than an incremental sort when the given path had presorted keys. Here we remove the 1.5x pessimism factor to allow incremental sorts to have a fairer chance at being chosen against a full sort. Previously we would generally create a sort path on the cheapest input path (if that wasn't sorted already) and incremental sort paths on any path which had presorted keys. This meant that if the cheapest input path wasn't completely sorted but happened to have presorted keys, we would create a full sort path *and* an incremental sort path on that input path. Here we change this logic so that if there are presorted keys, we only create an incremental sort path, and create sort paths only when a full sort is required. Both the removal of the cost pessimism factor and the changes made to the path generation make it more likely that incremental sorts will now be chosen. That, of course, as with teaching the planner any new tricks, means an increased likelihood that the planner will perform an incremental sort when it's not the best method. Our standard escape hatch for these cases is an enable_* GUC. enable_incremental_sort already exists for this. This came out of a report by Pavel Luzanov where he mentioned that the master branch was choosing to perform a Seq Scan -> Sort -> Group Aggregate for his query with an ORDER BY aggregate function. The v15 plan for his query performed an Index Scan -> Group Aggregate, of course, the aggregate performed the final sort internally in nodeAgg.c for the aggregate's ORDER BY. The ideal plan would have been to use the index, which provided partially sorted input then use an incremental sort to provide the aggregate with the sorted input. This was not being chosen due to the pessimism in the incremental sort cost modal, so here we remove that and rationalize the path generation so that sort and incremental sort plans don't have to needlessly compete. We assume that it's senseless to ever use a full sort on a given input path where an incremental sort can be performed. Reported-by: Pavel Luzanov Reviewed-by: Richard Guo Discussion: https://postgr.es/m/9f61ddbf-2989-1536-b31e-6459370a6baa%40postgrespro.ru
2022-12-16 03:22:23 +01:00
* Try at least sorting the cheapest path and also try
* incrementally sorting any path which is partially sorted
* already (no need to deal with paths which have presorted keys
* when incremental sort is disabled unless it's the cheapest
* input path).
*/
if (subpath != cheapest_partial_path &&
(presorted_keys == 0 || !enable_incremental_sort))
continue;
/*
* Consider regular sort for any path that's not presorted or if
* incremental sort is disabled. We've no need to consider both
* sort and incremental sort on the same path. We assume that
* incremental sort is always faster when there are presorted
* keys.
*
* This is not redundant with the gather paths created in
* generate_gather_paths, because that doesn't generate ordered
* output. Here we add an explicit sort to match the useful
* ordering.
*/
Remove pessimistic cost penalization from Incremental Sort When incremental sorts were added in v13 a 1.5x pessimism factor was added to the cost modal. Seemingly this was done because the cost modal only has an estimate of the total number of input rows and the number of presorted groups. It assumes that the input rows will be evenly distributed throughout the presorted groups. The 1.5x pessimism factor was added to slightly reduce the likelihood of incremental sorts being used in the hope to avoid performance regressions where an incremental sort plan was picked and turned out slower due to a large skew in the number of rows in the presorted groups. An additional quirk with the path generation code meant that we could consider both a sort and an incremental sort on paths with presorted keys. This meant that with the pessimism factor, it was possible that we opted to perform a sort rather than an incremental sort when the given path had presorted keys. Here we remove the 1.5x pessimism factor to allow incremental sorts to have a fairer chance at being chosen against a full sort. Previously we would generally create a sort path on the cheapest input path (if that wasn't sorted already) and incremental sort paths on any path which had presorted keys. This meant that if the cheapest input path wasn't completely sorted but happened to have presorted keys, we would create a full sort path *and* an incremental sort path on that input path. Here we change this logic so that if there are presorted keys, we only create an incremental sort path, and create sort paths only when a full sort is required. Both the removal of the cost pessimism factor and the changes made to the path generation make it more likely that incremental sorts will now be chosen. That, of course, as with teaching the planner any new tricks, means an increased likelihood that the planner will perform an incremental sort when it's not the best method. Our standard escape hatch for these cases is an enable_* GUC. enable_incremental_sort already exists for this. This came out of a report by Pavel Luzanov where he mentioned that the master branch was choosing to perform a Seq Scan -> Sort -> Group Aggregate for his query with an ORDER BY aggregate function. The v15 plan for his query performed an Index Scan -> Group Aggregate, of course, the aggregate performed the final sort internally in nodeAgg.c for the aggregate's ORDER BY. The ideal plan would have been to use the index, which provided partially sorted input then use an incremental sort to provide the aggregate with the sorted input. This was not being chosen due to the pessimism in the incremental sort cost modal, so here we remove that and rationalize the path generation so that sort and incremental sort plans don't have to needlessly compete. We assume that it's senseless to ever use a full sort on a given input path where an incremental sort can be performed. Reported-by: Pavel Luzanov Reviewed-by: Richard Guo Discussion: https://postgr.es/m/9f61ddbf-2989-1536-b31e-6459370a6baa%40postgrespro.ru
2022-12-16 03:22:23 +01:00
if (presorted_keys == 0 || !enable_incremental_sort)
{
Remove pessimistic cost penalization from Incremental Sort When incremental sorts were added in v13 a 1.5x pessimism factor was added to the cost modal. Seemingly this was done because the cost modal only has an estimate of the total number of input rows and the number of presorted groups. It assumes that the input rows will be evenly distributed throughout the presorted groups. The 1.5x pessimism factor was added to slightly reduce the likelihood of incremental sorts being used in the hope to avoid performance regressions where an incremental sort plan was picked and turned out slower due to a large skew in the number of rows in the presorted groups. An additional quirk with the path generation code meant that we could consider both a sort and an incremental sort on paths with presorted keys. This meant that with the pessimism factor, it was possible that we opted to perform a sort rather than an incremental sort when the given path had presorted keys. Here we remove the 1.5x pessimism factor to allow incremental sorts to have a fairer chance at being chosen against a full sort. Previously we would generally create a sort path on the cheapest input path (if that wasn't sorted already) and incremental sort paths on any path which had presorted keys. This meant that if the cheapest input path wasn't completely sorted but happened to have presorted keys, we would create a full sort path *and* an incremental sort path on that input path. Here we change this logic so that if there are presorted keys, we only create an incremental sort path, and create sort paths only when a full sort is required. Both the removal of the cost pessimism factor and the changes made to the path generation make it more likely that incremental sorts will now be chosen. That, of course, as with teaching the planner any new tricks, means an increased likelihood that the planner will perform an incremental sort when it's not the best method. Our standard escape hatch for these cases is an enable_* GUC. enable_incremental_sort already exists for this. This came out of a report by Pavel Luzanov where he mentioned that the master branch was choosing to perform a Seq Scan -> Sort -> Group Aggregate for his query with an ORDER BY aggregate function. The v15 plan for his query performed an Index Scan -> Group Aggregate, of course, the aggregate performed the final sort internally in nodeAgg.c for the aggregate's ORDER BY. The ideal plan would have been to use the index, which provided partially sorted input then use an incremental sort to provide the aggregate with the sorted input. This was not being chosen due to the pessimism in the incremental sort cost modal, so here we remove that and rationalize the path generation so that sort and incremental sort plans don't have to needlessly compete. We assume that it's senseless to ever use a full sort on a given input path where an incremental sort can be performed. Reported-by: Pavel Luzanov Reviewed-by: Richard Guo Discussion: https://postgr.es/m/9f61ddbf-2989-1536-b31e-6459370a6baa%40postgrespro.ru
2022-12-16 03:22:23 +01:00
subpath = (Path *) create_sort_path(root,
rel,
subpath,
useful_pathkeys,
-1.0);
rows = subpath->rows * subpath->parallel_workers;
}
Remove pessimistic cost penalization from Incremental Sort When incremental sorts were added in v13 a 1.5x pessimism factor was added to the cost modal. Seemingly this was done because the cost modal only has an estimate of the total number of input rows and the number of presorted groups. It assumes that the input rows will be evenly distributed throughout the presorted groups. The 1.5x pessimism factor was added to slightly reduce the likelihood of incremental sorts being used in the hope to avoid performance regressions where an incremental sort plan was picked and turned out slower due to a large skew in the number of rows in the presorted groups. An additional quirk with the path generation code meant that we could consider both a sort and an incremental sort on paths with presorted keys. This meant that with the pessimism factor, it was possible that we opted to perform a sort rather than an incremental sort when the given path had presorted keys. Here we remove the 1.5x pessimism factor to allow incremental sorts to have a fairer chance at being chosen against a full sort. Previously we would generally create a sort path on the cheapest input path (if that wasn't sorted already) and incremental sort paths on any path which had presorted keys. This meant that if the cheapest input path wasn't completely sorted but happened to have presorted keys, we would create a full sort path *and* an incremental sort path on that input path. Here we change this logic so that if there are presorted keys, we only create an incremental sort path, and create sort paths only when a full sort is required. Both the removal of the cost pessimism factor and the changes made to the path generation make it more likely that incremental sorts will now be chosen. That, of course, as with teaching the planner any new tricks, means an increased likelihood that the planner will perform an incremental sort when it's not the best method. Our standard escape hatch for these cases is an enable_* GUC. enable_incremental_sort already exists for this. This came out of a report by Pavel Luzanov where he mentioned that the master branch was choosing to perform a Seq Scan -> Sort -> Group Aggregate for his query with an ORDER BY aggregate function. The v15 plan for his query performed an Index Scan -> Group Aggregate, of course, the aggregate performed the final sort internally in nodeAgg.c for the aggregate's ORDER BY. The ideal plan would have been to use the index, which provided partially sorted input then use an incremental sort to provide the aggregate with the sorted input. This was not being chosen due to the pessimism in the incremental sort cost modal, so here we remove that and rationalize the path generation so that sort and incremental sort plans don't have to needlessly compete. We assume that it's senseless to ever use a full sort on a given input path where an incremental sort can be performed. Reported-by: Pavel Luzanov Reviewed-by: Richard Guo Discussion: https://postgr.es/m/9f61ddbf-2989-1536-b31e-6459370a6baa%40postgrespro.ru
2022-12-16 03:22:23 +01:00
else
subpath = (Path *) create_incremental_sort_path(root,
rel,
subpath,
useful_pathkeys,
presorted_keys,
-1);
path = create_gather_merge_path(root, rel,
subpath,
rel->reltarget,
subpath->pathkeys,
NULL,
rowsp);
add_path(rel, &path->path);
}
}
}
/*
* make_rel_from_joinlist
* Build access paths using a "joinlist" to guide the join path search.
*
* See comments for deconstruct_jointree() for definition of the joinlist
* data structure.
*/
static RelOptInfo *
make_rel_from_joinlist(PlannerInfo *root, List *joinlist)
{
int levels_needed;
List *initial_rels;
ListCell *jl;
/*
* Count the number of child joinlist nodes. This is the depth of the
* dynamic-programming algorithm we must employ to consider all ways of
* joining the child nodes.
*/
levels_needed = list_length(joinlist);
if (levels_needed <= 0)
return NULL; /* nothing to do? */
/*
* Construct a list of rels corresponding to the child joinlist nodes.
* This may contain both base rels and rels constructed according to
* sub-joinlists.
*/
initial_rels = NIL;
foreach(jl, joinlist)
{
Node *jlnode = (Node *) lfirst(jl);
RelOptInfo *thisrel;
if (IsA(jlnode, RangeTblRef))
{
int varno = ((RangeTblRef *) jlnode)->rtindex;
thisrel = find_base_rel(root, varno);
}
else if (IsA(jlnode, List))
{
/* Recurse to handle subproblem */
thisrel = make_rel_from_joinlist(root, (List *) jlnode);
}
else
{
elog(ERROR, "unrecognized joinlist node type: %d",
(int) nodeTag(jlnode));
thisrel = NULL; /* keep compiler quiet */
}
initial_rels = lappend(initial_rels, thisrel);
}
if (levels_needed == 1)
{
/*
* Single joinlist node, so we're done.
*/
return (RelOptInfo *) linitial(initial_rels);
}
else
{
/*
* Consider the different orders in which we could join the rels,
* using a plugin, GEQO, or the regular join search code.
*
* We put the initial_rels list into a PlannerInfo field because
* has_legal_joinclause() needs to look at it (ugly :-().
*/
root->initial_rels = initial_rels;
if (join_search_hook)
return (*join_search_hook) (root, levels_needed, initial_rels);
else if (enable_geqo && levels_needed >= geqo_threshold)
return geqo(root, levels_needed, initial_rels);
else
return standard_join_search(root, levels_needed, initial_rels);
}
}
/*
* standard_join_search
* Find possible joinpaths for a query by successively finding ways
* to join component relations into join relations.
*
* 'levels_needed' is the number of iterations needed, ie, the number of
* independent jointree items in the query. This is > 1.
*
* 'initial_rels' is a list of RelOptInfo nodes for each independent
* jointree item. These are the components to be joined together.
* Note that levels_needed == list_length(initial_rels).
*
* Returns the final level of join relations, i.e., the relation that is
* the result of joining all the original relations together.
* At least one implementation path must be provided for this relation and
* all required sub-relations.
*
* To support loadable plugins that modify planner behavior by changing the
* join searching algorithm, we provide a hook variable that lets a plugin
* replace or supplement this function. Any such hook must return the same
* final join relation as the standard code would, but it might have a
* different set of implementation paths attached, and only the sub-joinrels
* needed for these paths need have been instantiated.
*
* Note to plugin authors: the functions invoked during standard_join_search()
* modify root->join_rel_list and root->join_rel_hash. If you want to do more
* than one join-order search, you'll probably need to save and restore the
* original states of those data structures. See geqo_eval() for an example.
*/
RelOptInfo *
standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels)
{
int lev;
1998-08-07 07:02:32 +02:00
RelOptInfo *rel;
/*
* This function cannot be invoked recursively within any one planning
* problem, so join_rel_level[] can't be in use already.
*/
Assert(root->join_rel_level == NULL);
/*
* We employ a simple "dynamic programming" algorithm: we first find all
* ways to build joins of two jointree items, then all ways to build joins
* of three items (from two-item joins and single items), then four-item
* joins, and so on until we have considered all ways to join all the
* items into one rel.
*
* root->join_rel_level[j] is a list of all the j-item rels. Initially we
* set root->join_rel_level[1] to represent all the single-jointree-item
* relations.
*/
root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *));
root->join_rel_level[1] = initial_rels;
for (lev = 2; lev <= levels_needed; lev++)
{
ListCell *lc;
1999-05-25 18:15:34 +02:00
/*
* Determine all possible pairs of relations to be joined at this
* level, and build paths for making each one from every available
* pair of lower-level relations.
*/
join_search_one_level(root, lev);
/*
* Run generate_partitionwise_join_paths() and
* generate_useful_gather_paths() for each just-processed joinrel. We
* could not do this earlier because both regular and partial paths
* can get added to a particular joinrel at multiple times within
* join_search_one_level.
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
*
* After that, we're done creating paths for the joinrel, so run
* set_cheapest().
*/
foreach(lc, root->join_rel_level[lev])
{
rel = (RelOptInfo *) lfirst(lc);
1999-02-18 01:49:48 +01:00
/* Create paths for partitionwise joins. */
generate_partitionwise_join_paths(root, rel);
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
/*
* Except for the topmost scan/join rel, consider gathering
* partial paths. We'll do the same for the topmost scan/join rel
* once we know the final targetlist (see grouping_planner).
*/
Make Vars be outer-join-aware. Traditionally we used the same Var struct to represent the value of a table column everywhere in parse and plan trees. This choice predates our support for SQL outer joins, and it's really a pretty bad idea with outer joins, because the Var's value can depend on where it is in the tree: it might go to NULL above an outer join. So expression nodes that are equal() per equalfuncs.c might not represent the same value, which is a huge correctness hazard for the planner. To improve this, decorate Var nodes with a bitmapset showing which outer joins (identified by RTE indexes) may have nulled them at the point in the parse tree where the Var appears. This allows us to trust that equal() Vars represent the same value. A certain amount of klugery is still needed to cope with cases where we re-order two outer joins, but it's possible to make it work without sacrificing that core principle. PlaceHolderVars receive similar decoration for the same reason. In the planner, we include these outer join bitmapsets into the relids that an expression is considered to depend on, and in consequence also add outer-join relids to the relids of join RelOptInfos. This allows us to correctly perceive whether an expression can be calculated above or below a particular outer join. This change affects FDWs that want to plan foreign joins. They *must* follow suit when labeling foreign joins in order to match with the core planner, but for many purposes (if postgres_fdw is any guide) they'd prefer to consider only base relations within the join. To support both requirements, redefine ForeignScan.fs_relids as base+OJ relids, and add a new field fs_base_relids that's set up by the core planner. Large though it is, this commit just does the minimum necessary to install the new mechanisms and get check-world passing again. Follow-up patches will perform some cleanup. (The README additions and comments mention some stuff that will appear in the follow-up.) Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
2023-01-30 19:16:20 +01:00
if (!bms_equal(rel->relids, root->all_query_rels))
generate_useful_gather_paths(root, rel, false);
/* Find and save the cheapest paths for this rel */
set_cheapest(rel);
1999-02-14 05:57:02 +01:00
#ifdef OPTIMIZER_DEBUG
debug_print_rel(root, rel);
#endif
}
}
/*
* We should have a single rel at the final level.
*/
if (root->join_rel_level[levels_needed] == NIL)
elog(ERROR, "failed to build any %d-way joins", levels_needed);
Assert(list_length(root->join_rel_level[levels_needed]) == 1);
rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]);
root->join_rel_level = NULL;
return rel;
}
/*****************************************************************************
* PUSHING QUALS DOWN INTO SUBQUERIES
*****************************************************************************/
/*
* subquery_is_pushdown_safe - is a subquery safe for pushing down quals?
*
* subquery is the particular component query being checked. topquery
* is the top component of a set-operations tree (the same Query if no
* set-op is involved).
*
* Conditions checked here:
*
* 1. If the subquery has a LIMIT clause, we must not push down any quals,
* since that could change the set of rows returned.
*
* 2. If the subquery contains EXCEPT or EXCEPT ALL set ops we cannot push
* quals into it, because that could change the results.
*
* 3. If the subquery uses DISTINCT, we cannot push volatile quals into it.
* This is because upper-level quals should semantically be evaluated only
* once per distinct row, not once per original row, and if the qual is
* volatile then extra evaluations could change the results. (This issue
* does not apply to other forms of aggregation such as GROUP BY, because
* when those are present we push into HAVING not WHERE, so that the quals
* are still applied after aggregation.)
*
* 4. If the subquery contains window functions, we cannot push volatile quals
* into it. The issue here is a bit different from DISTINCT: a volatile qual
* might succeed for some rows of a window partition and fail for others,
* thereby changing the partition contents and thus the window functions'
* results for rows that remain.
*
* 5. If the subquery contains any set-returning functions in its targetlist,
* we cannot push volatile quals into it. That would push them below the SRFs
* and thereby change the number of times they are evaluated. Also, a
* volatile qual could succeed for some SRF output rows and fail for others,
* a behavior that cannot occur if it's evaluated before SRF expansion.
*
* 6. If the subquery has nonempty grouping sets, we cannot push down any
* quals. The concern here is that a qual referencing a "constant" grouping
* column could get constant-folded, which would be improper because the value
* is potentially nullable by grouping-set expansion. This restriction could
* be removed if we had a parsetree representation that shows that such
* grouping columns are not really constant. (There are other ideas that
* could be used to relax this restriction, but that's the approach most
* likely to get taken in the future. Note that there's not much to be gained
* so long as subquery_planner can't move HAVING clauses to WHERE within such
* a subquery.)
*
* In addition, we make several checks on the subquery's output columns to see
* if it is safe to reference them in pushed-down quals. If output column k
* is found to be unsafe to reference, we set the reason for that inside
* safetyInfo->unsafeFlags[k], but we don't reject the subquery overall since
* column k might not be referenced by some/all quals. The unsafeFlags[]
* array will be consulted later by qual_is_pushdown_safe(). It's better to
* do it this way than to make the checks directly in qual_is_pushdown_safe(),
* because when the subquery involves set operations we have to check the
* output expressions in each arm of the set op.
*
* Note: pushing quals into a DISTINCT subquery is theoretically dubious:
* we're effectively assuming that the quals cannot distinguish values that
* the DISTINCT's equality operator sees as equal, yet there are many
* counterexamples to that assumption. However use of such a qual with a
* DISTINCT subquery would be unsafe anyway, since there's no guarantee which
* "equal" value will be chosen as the output value by the DISTINCT operation.
* So we don't worry too much about that. Another objection is that if the
* qual is expensive to evaluate, running it for each original row might cost
* more than we save by eliminating rows before the DISTINCT step. But it
* would be very hard to estimate that at this stage, and in practice pushdown
* seldom seems to make things worse, so we ignore that problem too.
*
* Note: likewise, pushing quals into a subquery with window functions is a
* bit dubious: the quals might remove some rows of a window partition while
* leaving others, causing changes in the window functions' results for the
* surviving rows. We insist that such a qual reference only partitioning
* columns, but again that only protects us if the qual does not distinguish
* values that the partitioning equality operator sees as equal. The risks
* here are perhaps larger than for DISTINCT, since no de-duplication of rows
* occurs and thus there is no theoretical problem with such a qual. But
* we'll do this anyway because the potential performance benefits are very
* large, and we've seen no field complaints about the longstanding comparable
* behavior with DISTINCT.
*/
static bool
subquery_is_pushdown_safe(Query *subquery, Query *topquery,
pushdown_safety_info *safetyInfo)
{
SetOperationStmt *topop;
/* Check point 1 */
if (subquery->limitOffset != NULL || subquery->limitCount != NULL)
return false;
/* Check point 6 */
if (subquery->groupClause && subquery->groupingSets)
return false;
/* Check points 3, 4, and 5 */
if (subquery->distinctClause ||
subquery->hasWindowFuncs ||
subquery->hasTargetSRFs)
safetyInfo->unsafeVolatile = true;
/*
* If we're at a leaf query, check for unsafe expressions in its target
* list, and mark any reasons why they're unsafe in unsafeFlags[].
* (Non-leaf nodes in setop trees have only simple Vars in their tlists,
* so no need to check them.)
*/
if (subquery->setOperations == NULL)
check_output_expressions(subquery, safetyInfo);
/* Are we at top level, or looking at a setop component? */
if (subquery == topquery)
{
/* Top level, so check any component queries */
if (subquery->setOperations != NULL)
if (!recurse_pushdown_safe(subquery->setOperations, topquery,
safetyInfo))
return false;
}
else
{
/* Setop component must not have more components (too weird) */
if (subquery->setOperations != NULL)
return false;
/* Check whether setop component output types match top level */
2017-02-21 17:33:07 +01:00
topop = castNode(SetOperationStmt, topquery->setOperations);
Assert(topop);
compare_tlist_datatypes(subquery->targetList,
topop->colTypes,
safetyInfo);
}
return true;
}
/*
* Helper routine to recurse through setOperations tree
*/
static bool
recurse_pushdown_safe(Node *setOp, Query *topquery,
pushdown_safety_info *safetyInfo)
{
if (IsA(setOp, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) setOp;
RangeTblEntry *rte = rt_fetch(rtr->rtindex, topquery->rtable);
Query *subquery = rte->subquery;
Assert(subquery != NULL);
return subquery_is_pushdown_safe(subquery, topquery, safetyInfo);
}
else if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
/* EXCEPT is no good (point 2 for subquery_is_pushdown_safe) */
if (op->op == SETOP_EXCEPT)
return false;
/* Else recurse */
if (!recurse_pushdown_safe(op->larg, topquery, safetyInfo))
return false;
if (!recurse_pushdown_safe(op->rarg, topquery, safetyInfo))
return false;
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(setOp));
}
return true;
}
/*
* check_output_expressions - check subquery's output expressions for safety
*
* There are several cases in which it's unsafe to push down an upper-level
* qual if it references a particular output column of a subquery. We check
* each output column of the subquery and set flags in unsafeFlags[k] when we
* see that column is unsafe for a pushed-down qual to reference. The
* conditions checked here are:
*
* 1. We must not push down any quals that refer to subselect outputs that
* return sets, else we'd introduce functions-returning-sets into the
* subquery's WHERE/HAVING quals.
*
* 2. We must not push down any quals that refer to subselect outputs that
* contain volatile functions, for fear of introducing strange results due
* to multiple evaluation of a volatile function.
*
* 3. If the subquery uses DISTINCT ON, we must not push down any quals that
* refer to non-DISTINCT output columns, because that could change the set
* of rows returned. (This condition is vacuous for DISTINCT, because then
* there are no non-DISTINCT output columns, so we needn't check. Note that
* subquery_is_pushdown_safe already reported that we can't use volatile
* quals if there's DISTINCT or DISTINCT ON.)
*
* 4. If the subquery has any window functions, we must not push down quals
* that reference any output columns that are not listed in all the subquery's
* window PARTITION BY clauses. We can push down quals that use only
* partitioning columns because they should succeed or fail identically for
* every row of any one window partition, and totally excluding some
* partitions will not change a window function's results for remaining
* partitions. (Again, this also requires nonvolatile quals, but
* subquery_is_pushdown_safe handles that.). Subquery columns marked as
* unsafe for this reason can still have WindowClause run conditions pushed
* down.
*/
static void
check_output_expressions(Query *subquery, pushdown_safety_info *safetyInfo)
{
ListCell *lc;
foreach(lc, subquery->targetList)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
if (tle->resjunk)
continue; /* ignore resjunk columns */
/* Functions returning sets are unsafe (point 1) */
Improve parser's and planner's handling of set-returning functions. Teach the parser to reject misplaced set-returning functions during parse analysis using p_expr_kind, in much the same way as we do for aggregates and window functions (cf commit eaccfded9). While this isn't complete (it misses nesting-based restrictions), it's much better than the previous error reporting for such cases, and it allows elimination of assorted ad-hoc expression_returns_set() error checks. We could add nesting checks later if it seems important to catch all cases at parse time. There is one case the parser will now throw error for although previous versions allowed it, which is SRFs in the tlist of an UPDATE. That never behaved sensibly (since it's ill-defined which generated row should be used to perform the update) and it's hard to see why it should not be treated as an error. It's a release-note-worthy change though. Also, add a new Query field hasTargetSRFs reporting whether there are any SRFs in the targetlist (including GROUP BY/ORDER BY expressions). The parser can now set that basically for free during parse analysis, and we can use it in a number of places to avoid expression_returns_set searches. (There will be more such checks soon.) In some places, this allows decontorting the logic since it's no longer expensive to check for SRFs in the tlist --- so I made the checks parallel to the handling of hasAggs/hasWindowFuncs wherever it seemed appropriate. catversion bump because adding a Query field changes stored rules. Andres Freund and Tom Lane Discussion: <24639.1473782855@sss.pgh.pa.us>
2016-09-13 19:54:24 +02:00
if (subquery->hasTargetSRFs &&
(safetyInfo->unsafeFlags[tle->resno] &
UNSAFE_HAS_SET_FUNC) == 0 &&
Improve parser's and planner's handling of set-returning functions. Teach the parser to reject misplaced set-returning functions during parse analysis using p_expr_kind, in much the same way as we do for aggregates and window functions (cf commit eaccfded9). While this isn't complete (it misses nesting-based restrictions), it's much better than the previous error reporting for such cases, and it allows elimination of assorted ad-hoc expression_returns_set() error checks. We could add nesting checks later if it seems important to catch all cases at parse time. There is one case the parser will now throw error for although previous versions allowed it, which is SRFs in the tlist of an UPDATE. That never behaved sensibly (since it's ill-defined which generated row should be used to perform the update) and it's hard to see why it should not be treated as an error. It's a release-note-worthy change though. Also, add a new Query field hasTargetSRFs reporting whether there are any SRFs in the targetlist (including GROUP BY/ORDER BY expressions). The parser can now set that basically for free during parse analysis, and we can use it in a number of places to avoid expression_returns_set searches. (There will be more such checks soon.) In some places, this allows decontorting the logic since it's no longer expensive to check for SRFs in the tlist --- so I made the checks parallel to the handling of hasAggs/hasWindowFuncs wherever it seemed appropriate. catversion bump because adding a Query field changes stored rules. Andres Freund and Tom Lane Discussion: <24639.1473782855@sss.pgh.pa.us>
2016-09-13 19:54:24 +02:00
expression_returns_set((Node *) tle->expr))
{
safetyInfo->unsafeFlags[tle->resno] |= UNSAFE_HAS_SET_FUNC;
continue;
}
/* Volatile functions are unsafe (point 2) */
if ((safetyInfo->unsafeFlags[tle->resno] &
UNSAFE_HAS_VOLATILE_FUNC) == 0 &&
contain_volatile_functions((Node *) tle->expr))
{
safetyInfo->unsafeFlags[tle->resno] |= UNSAFE_HAS_VOLATILE_FUNC;
continue;
}
/* If subquery uses DISTINCT ON, check point 3 */
if (subquery->hasDistinctOn &&
(safetyInfo->unsafeFlags[tle->resno] &
UNSAFE_NOTIN_DISTINCTON_CLAUSE) == 0 &&
!targetIsInSortList(tle, InvalidOid, subquery->distinctClause))
{
/* non-DISTINCT column, so mark it unsafe */
safetyInfo->unsafeFlags[tle->resno] |= UNSAFE_NOTIN_DISTINCTON_CLAUSE;
continue;
}
/* If subquery uses window functions, check point 4 */
if (subquery->hasWindowFuncs &&
(safetyInfo->unsafeFlags[tle->resno] &
UNSAFE_NOTIN_DISTINCTON_CLAUSE) == 0 &&
!targetIsInAllPartitionLists(tle, subquery))
{
/* not present in all PARTITION BY clauses, so mark it unsafe */
safetyInfo->unsafeFlags[tle->resno] |= UNSAFE_NOTIN_PARTITIONBY_CLAUSE;
continue;
}
}
}
/*
* For subqueries using UNION/UNION ALL/INTERSECT/INTERSECT ALL, we can
* push quals into each component query, but the quals can only reference
* subquery columns that suffer no type coercions in the set operation.
* Otherwise there are possible semantic gotchas. So, we check the
* component queries to see if any of them have output types different from
* the top-level setop outputs. We set the UNSAFE_TYPE_MISMATCH bit in
* unsafeFlags[k] if column k has different type in any component.
*
* We don't have to care about typmods here: the only allowed difference
* between set-op input and output typmods is input is a specific typmod
* and output is -1, and that does not require a coercion.
*
* tlist is a subquery tlist.
* colTypes is an OID list of the top-level setop's output column types.
* safetyInfo is the pushdown_safety_info to set unsafeFlags[] for.
*/
static void
compare_tlist_datatypes(List *tlist, List *colTypes,
pushdown_safety_info *safetyInfo)
{
ListCell *l;
ListCell *colType = list_head(colTypes);
foreach(l, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(l);
if (tle->resjunk)
continue; /* ignore resjunk columns */
if (colType == NULL)
elog(ERROR, "wrong number of tlist entries");
if (exprType((Node *) tle->expr) != lfirst_oid(colType))
safetyInfo->unsafeFlags[tle->resno] |= UNSAFE_TYPE_MISMATCH;
Represent Lists as expansible arrays, not chains of cons-cells. Originally, Postgres Lists were a more or less exact reimplementation of Lisp lists, which consist of chains of separately-allocated cons cells, each having a value and a next-cell link. We'd hacked that once before (commit d0b4399d8) to add a separate List header, but the data was still in cons cells. That makes some operations -- notably list_nth() -- O(N), and it's bulky because of the next-cell pointers and per-cell palloc overhead, and it's very cache-unfriendly if the cons cells end up scattered around rather than being adjacent. In this rewrite, we still have List headers, but the data is in a resizable array of values, with no next-cell links. Now we need at most two palloc's per List, and often only one, since we can allocate some values in the same palloc call as the List header. (Of course, extending an existing List may require repalloc's to enlarge the array. But this involves just O(log N) allocations not O(N).) Of course this is not without downsides. The key difficulty is that addition or deletion of a list entry may now cause other entries to move, which it did not before. For example, that breaks foreach() and sister macros, which historically used a pointer to the current cons-cell as loop state. We can repair those macros transparently by making their actual loop state be an integer list index; the exposed "ListCell *" pointer is no longer state carried across loop iterations, but is just a derived value. (In practice, modern compilers can optimize things back to having just one loop state value, at least for simple cases with inline loop bodies.) In principle, this is a semantics change for cases where the loop body inserts or deletes list entries ahead of the current loop index; but I found no such cases in the Postgres code. The change is not at all transparent for code that doesn't use foreach() but chases lists "by hand" using lnext(). The largest share of such code in the backend is in loops that were maintaining "prev" and "next" variables in addition to the current-cell pointer, in order to delete list cells efficiently using list_delete_cell(). However, we no longer need a previous-cell pointer to delete a list cell efficiently. Keeping a next-cell pointer doesn't work, as explained above, but we can improve matters by changing such code to use a regular foreach() loop and then using the new macro foreach_delete_current() to delete the current cell. (This macro knows how to update the associated foreach loop's state so that no cells will be missed in the traversal.) There remains a nontrivial risk of code assuming that a ListCell * pointer will remain good over an operation that could now move the list contents. To help catch such errors, list.c can be compiled with a new define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents whenever that could possibly happen. This makes list operations significantly more expensive so it's not normally turned on (though it is on by default if USE_VALGRIND is on). There are two notable API differences from the previous code: * lnext() now requires the List's header pointer in addition to the current cell's address. * list_delete_cell() no longer requires a previous-cell argument. These changes are somewhat unfortunate, but on the other hand code using either function needs inspection to see if it is assuming anything it shouldn't, so it's not all bad. Programmers should be aware of these significant performance changes: * list_nth() and related functions are now O(1); so there's no major access-speed difference between a list and an array. * Inserting or deleting a list element now takes time proportional to the distance to the end of the list, due to moving the array elements. (However, it typically *doesn't* require palloc or pfree, so except in long lists it's probably still faster than before.) Notably, lcons() used to be about the same cost as lappend(), but that's no longer true if the list is long. Code that uses lcons() and list_delete_first() to maintain a stack might usefully be rewritten to push and pop at the end of the list rather than the beginning. * There are now list_insert_nth...() and list_delete_nth...() functions that add or remove a list cell identified by index. These have the data-movement penalty explained above, but there's no search penalty. * list_concat() and variants now copy the second list's data into storage belonging to the first list, so there is no longer any sharing of cells between the input lists. The second argument is now declared "const List *" to reflect that it isn't changed. This patch just does the minimum needed to get the new implementation in place and fix bugs exposed by the regression tests. As suggested by the foregoing, there's a fair amount of followup work remaining to do. Also, the ENABLE_LIST_COMPAT macros are finally removed in this commit. Code using those should have been gone a dozen years ago. Patch by me; thanks to David Rowley, Jesper Pedersen, and others for review. Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 19:41:58 +02:00
colType = lnext(colTypes, colType);
}
if (colType != NULL)
elog(ERROR, "wrong number of tlist entries");
}
/*
* targetIsInAllPartitionLists
* True if the TargetEntry is listed in the PARTITION BY clause
* of every window defined in the query.
*
* It would be safe to ignore windows not actually used by any window
* function, but it's not easy to get that info at this stage; and it's
* unlikely to be useful to spend any extra cycles getting it, since
* unreferenced window definitions are probably infrequent in practice.
*/
static bool
targetIsInAllPartitionLists(TargetEntry *tle, Query *query)
{
ListCell *lc;
foreach(lc, query->windowClause)
{
WindowClause *wc = (WindowClause *) lfirst(lc);
if (!targetIsInSortList(tle, InvalidOid, wc->partitionClause))
return false;
}
return true;
}
/*
* qual_is_pushdown_safe - is a particular rinfo safe to push down?
*
* rinfo is a restriction clause applying to the given subquery (whose RTE
* has index rti in the parent query).
*
* Conditions checked here:
*
* 1. rinfo's clause must not contain any SubPlans (mainly because it's
* unclear that it will work correctly: SubLinks will already have been
* transformed into SubPlans in the qual, but not in the subquery). Note that
* SubLinks that transform to initplans are safe, and will be accepted here
* because what we'll see in the qual is just a Param referencing the initplan
* output.
*
* 2. If unsafeVolatile is set, rinfo's clause must not contain any volatile
* functions.
*
* 3. If unsafeLeaky is set, rinfo's clause must not contain any leaky
* functions that are passed Var nodes, and therefore might reveal values from
* the subquery as side effects.
*
* 4. rinfo's clause must not refer to the whole-row output of the subquery
* (since there is no easy way to name that within the subquery itself).
*
* 5. rinfo's clause must not refer to any subquery output columns that were
* found to be unsafe to reference by subquery_is_pushdown_safe().
*/
static pushdown_safe_type
qual_is_pushdown_safe(Query *subquery, Index rti, RestrictInfo *rinfo,
pushdown_safety_info *safetyInfo)
{
pushdown_safe_type safe = PUSHDOWN_SAFE;
Node *qual = (Node *) rinfo->clause;
List *vars;
ListCell *vl;
/* Refuse subselects (point 1) */
if (contain_subplans(qual))
return PUSHDOWN_UNSAFE;
/* Refuse volatile quals if we found they'd be unsafe (point 2) */
if (safetyInfo->unsafeVolatile &&
contain_volatile_functions((Node *) rinfo))
return PUSHDOWN_UNSAFE;
/* Refuse leaky quals if told to (point 3) */
if (safetyInfo->unsafeLeaky &&
contain_leaked_vars(qual))
return PUSHDOWN_UNSAFE;
/*
* Examine all Vars used in clause. Since it's a restriction clause, all
* such Vars must refer to subselect output columns ... unless this is
* part of a LATERAL subquery, in which case there could be lateral
* references.
*
* By omitting the relevant flags, this also gives us a cheap sanity check
* that no aggregates or window functions appear in the qual. Those would
* be unsafe to push down, but at least for the moment we could never see
* any in a qual anyhow.
*/
vars = pull_var_clause(qual, PVC_INCLUDE_PLACEHOLDERS);
foreach(vl, vars)
{
Var *var = (Var *) lfirst(vl);
/*
* XXX Punt if we find any PlaceHolderVars in the restriction clause.
* It's not clear whether a PHV could safely be pushed down, and even
* less clear whether such a situation could arise in any cases of
* practical interest anyway. So for the moment, just refuse to push
* down.
*/
if (!IsA(var, Var))
{
safe = PUSHDOWN_UNSAFE;
break;
}
/*
* Punt if we find any lateral references. It would be safe to push
* these down, but we'd have to convert them into outer references,
* which subquery_push_qual lacks the infrastructure to do. The case
* arises so seldom that it doesn't seem worth working hard on.
*/
if (var->varno != rti)
{
safe = PUSHDOWN_UNSAFE;
break;
}
/* Subqueries have no system columns */
Assert(var->varattno >= 0);
2003-08-04 02:43:34 +02:00
/* Check point 4 */
if (var->varattno == 0)
{
safe = PUSHDOWN_UNSAFE;
break;
}
/* Check point 5 */
if (safetyInfo->unsafeFlags[var->varattno] != 0)
{
if (safetyInfo->unsafeFlags[var->varattno] &
(UNSAFE_HAS_VOLATILE_FUNC | UNSAFE_HAS_SET_FUNC |
UNSAFE_NOTIN_DISTINCTON_CLAUSE | UNSAFE_TYPE_MISMATCH))
{
safe = PUSHDOWN_UNSAFE;
break;
}
else
{
/* UNSAFE_NOTIN_PARTITIONBY_CLAUSE is ok for run conditions */
safe = PUSHDOWN_WINDOWCLAUSE_RUNCOND;
/* don't break, we might find another Var that's unsafe */
}
}
}
list_free(vars);
return safe;
}
/*
* subquery_push_qual - push down a qual that we have determined is safe
*/
static void
subquery_push_qual(Query *subquery, RangeTblEntry *rte, Index rti, Node *qual)
{
if (subquery->setOperations != NULL)
{
/* Recurse to push it separately to each component query */
recurse_push_qual(subquery->setOperations, subquery,
rte, rti, qual);
}
else
{
/*
* We need to replace Vars in the qual (which must refer to outputs of
* the subquery) with copies of the subquery's targetlist expressions.
* Note that at this point, any uplevel Vars in the qual should have
* been replaced with Params, so they need no work.
*
* This step also ensures that when we are pushing into a setop tree,
* each component query gets its own copy of the qual.
*/
qual = ReplaceVarsFromTargetList(qual, rti, 0, rte,
subquery->targetList,
REPLACEVARS_REPORT_ERROR, 0,
&subquery->hasSubLinks);
/*
* Now attach the qual to the proper place: normally WHERE, but if the
* subquery uses grouping or aggregation, put it in HAVING (since the
* qual really refers to the group-result rows).
*/
Support GROUPING SETS, CUBE and ROLLUP. This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
2015-05-16 03:40:59 +02:00
if (subquery->hasAggs || subquery->groupClause || subquery->groupingSets || subquery->havingQual)
subquery->havingQual = make_and_qual(subquery->havingQual, qual);
else
subquery->jointree->quals =
make_and_qual(subquery->jointree->quals, qual);
/*
Improve RLS planning by marking individual quals with security levels. In an RLS query, we must ensure that security filter quals are evaluated before ordinary query quals, in case the latter contain "leaky" functions that could expose the contents of sensitive rows. The original implementation of RLS planning ensured this by pushing the scan of a secured table into a sub-query that it marked as a security-barrier view. Unfortunately this results in very inefficient plans in many cases, because the sub-query cannot be flattened and gets planned independently of the rest of the query. To fix, drop the use of sub-queries to enforce RLS qual order, and instead mark each qual (RestrictInfo) with a security_level field establishing its priority for evaluation. Quals must be evaluated in security_level order, except that "leakproof" quals can be allowed to go ahead of quals of lower security_level, if it's helpful to do so. This has to be enforced within the ordering of any one list of quals to be evaluated at a table scan node, and we also have to ensure that quals are not chosen for early evaluation (i.e., use as an index qual or TID scan qual) if they're not allowed to go ahead of other quals at the scan node. This is sufficient to fix the problem for RLS quals, since we only support RLS policies on simple tables and thus RLS quals will always exist at the table scan level only. Eventually these qual ordering rules should be enforced for join quals as well, which would permit improving planning for explicit security-barrier views; but that's a task for another patch. Note that FDWs would need to be aware of these rules --- and not, for example, send an insecure qual for remote execution --- but since we do not yet allow RLS policies on foreign tables, the case doesn't arise. This will need to be addressed before we can allow such policies. Patch by me, reviewed by Stephen Frost and Dean Rasheed. Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
2017-01-18 18:58:20 +01:00
* We need not change the subquery's hasAggs or hasSubLinks flags,
* since we can't be pushing down any aggregates that weren't there
* before, and we don't push down subselects at all.
*/
}
}
/*
* Helper routine to recurse through setOperations tree
*/
static void
recurse_push_qual(Node *setOp, Query *topquery,
RangeTblEntry *rte, Index rti, Node *qual)
{
if (IsA(setOp, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) setOp;
RangeTblEntry *subrte = rt_fetch(rtr->rtindex, topquery->rtable);
Query *subquery = subrte->subquery;
Assert(subquery != NULL);
subquery_push_qual(subquery, rte, rti, qual);
}
else if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
recurse_push_qual(op->larg, topquery, rte, rti, qual);
recurse_push_qual(op->rarg, topquery, rte, rti, qual);
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(setOp));
}
}
/*****************************************************************************
* SIMPLIFYING SUBQUERY TARGETLISTS
*****************************************************************************/
/*
* remove_unused_subquery_outputs
* Remove subquery targetlist items we don't need
*
* It's possible, even likely, that the upper query does not read all the
* output columns of the subquery. We can remove any such outputs that are
* not needed by the subquery itself (e.g., as sort/group columns) and do not
* affect semantics otherwise (e.g., volatile functions can't be removed).
* This is useful not only because we might be able to remove expensive-to-
* compute expressions, but because deletion of output columns might allow
* optimizations such as join removal to occur within the subquery.
*
* extra_used_attrs can be passed as non-NULL to mark any columns (offset by
* FirstLowInvalidHeapAttributeNumber) that we should not remove. This
* parameter is modified by the function, so callers must make a copy if they
* need to use the passed in Bitmapset after calling this function.
*
* To avoid affecting column numbering in the targetlist, we don't physically
* remove unused tlist entries, but rather replace their expressions with NULL
* constants. This is implemented by modifying subquery->targetList.
*/
static void
remove_unused_subquery_outputs(Query *subquery, RelOptInfo *rel,
Bitmapset *extra_used_attrs)
{
Bitmapset *attrs_used;
ListCell *lc;
/*
* Just point directly to extra_used_attrs. No need to bms_copy as none of
* the current callers use the Bitmapset after calling this function.
*/
attrs_used = extra_used_attrs;
/*
* Do nothing if subquery has UNION/INTERSECT/EXCEPT: in principle we
* could update all the child SELECTs' tlists, but it seems not worth the
* trouble presently.
*/
if (subquery->setOperations)
return;
/*
* If subquery has regular DISTINCT (not DISTINCT ON), we're wasting our
* time: all its output columns must be used in the distinctClause.
*/
if (subquery->distinctClause && !subquery->hasDistinctOn)
return;
/*
* Collect a bitmap of all the output column numbers used by the upper
* query.
*
* Add all the attributes needed for joins or final output. Note: we must
Add an explicit representation of the output targetlist to Paths. Up to now, there's been an assumption that all Paths for a given relation compute the same output column set (targetlist). However, there are good reasons to remove that assumption. For example, an indexscan on an expression index might be able to return the value of an expensive function "for free". While we have the ability to generate such a plan today in simple cases, we don't have a way to model that it's cheaper than a plan that computes the function from scratch, nor a way to create such a plan in join cases (where the function computation would normally happen at the topmost join node). Also, we need this so that we can have Paths representing post-scan/join steps, where the targetlist may well change from one step to the next. Therefore, invent a "struct PathTarget" representing the columns we expect a plan step to emit. It's convenient to include the output tuple width and tlist evaluation cost in this struct, and there will likely be additional fields in future. While Path nodes that actually do have custom outputs will need their own PathTargets, it will still be true that most Paths for a given relation will compute the same tlist. To reduce the overhead added by this patch, keep a "default PathTarget" in RelOptInfo, and allow Paths that compute that column set to just point to their parent RelOptInfo's reltarget. (In the patch as committed, actually every Path is like that, since we do not yet have any cases of custom PathTargets.) I took this opportunity to provide some more-honest costing of PlaceHolderVar evaluation. Up to now, the assumption that "scan/join reltargetlists have cost zero" was applied not only to Vars, where it's reasonable, but also PlaceHolderVars where it isn't. Now, we add the eval cost of a PlaceHolderVar's expression to the first plan level where it can be computed, by including it in the PathTarget cost field and adding that to the cost estimates for Paths. This isn't perfect yet but it's much better than before, and there is a way forward to improve it more. This costing change affects the join order chosen for a couple of the regression tests, changing expected row ordering.
2016-02-19 02:01:49 +01:00
* look at rel's targetlist, not the attr_needed data, because attr_needed
* isn't computed for inheritance child rels, cf set_append_rel_size().
* (XXX might be worth changing that sometime.)
*/
pull_varattnos((Node *) rel->reltarget->exprs, rel->relid, &attrs_used);
/* Add all the attributes used by un-pushed-down restriction clauses. */
foreach(lc, rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
pull_varattnos((Node *) rinfo->clause, rel->relid, &attrs_used);
}
/*
* If there's a whole-row reference to the subquery, we can't remove
* anything.
*/
if (bms_is_member(0 - FirstLowInvalidHeapAttributeNumber, attrs_used))
return;
/*
* Run through the tlist and zap entries we don't need. It's okay to
* modify the tlist items in-place because set_subquery_pathlist made a
* copy of the subquery.
*/
foreach(lc, subquery->targetList)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
Node *texpr = (Node *) tle->expr;
/*
* If it has a sortgroupref number, it's used in some sort/group
* clause so we'd better not remove it. Also, don't remove any
* resjunk columns, since their reason for being has nothing to do
* with anybody reading the subquery's output. (It's likely that
* resjunk columns in a sub-SELECT would always have ressortgroupref
* set, but even if they don't, it seems imprudent to remove them.)
*/
if (tle->ressortgroupref || tle->resjunk)
continue;
/*
* If it's used by the upper query, we can't remove it.
*/
if (bms_is_member(tle->resno - FirstLowInvalidHeapAttributeNumber,
attrs_used))
continue;
/*
* If it contains a set-returning function, we can't remove it since
* that could change the number of rows returned by the subquery.
*/
Improve parser's and planner's handling of set-returning functions. Teach the parser to reject misplaced set-returning functions during parse analysis using p_expr_kind, in much the same way as we do for aggregates and window functions (cf commit eaccfded9). While this isn't complete (it misses nesting-based restrictions), it's much better than the previous error reporting for such cases, and it allows elimination of assorted ad-hoc expression_returns_set() error checks. We could add nesting checks later if it seems important to catch all cases at parse time. There is one case the parser will now throw error for although previous versions allowed it, which is SRFs in the tlist of an UPDATE. That never behaved sensibly (since it's ill-defined which generated row should be used to perform the update) and it's hard to see why it should not be treated as an error. It's a release-note-worthy change though. Also, add a new Query field hasTargetSRFs reporting whether there are any SRFs in the targetlist (including GROUP BY/ORDER BY expressions). The parser can now set that basically for free during parse analysis, and we can use it in a number of places to avoid expression_returns_set searches. (There will be more such checks soon.) In some places, this allows decontorting the logic since it's no longer expensive to check for SRFs in the tlist --- so I made the checks parallel to the handling of hasAggs/hasWindowFuncs wherever it seemed appropriate. catversion bump because adding a Query field changes stored rules. Andres Freund and Tom Lane Discussion: <24639.1473782855@sss.pgh.pa.us>
2016-09-13 19:54:24 +02:00
if (subquery->hasTargetSRFs &&
expression_returns_set(texpr))
continue;
/*
* If it contains volatile functions, we daren't remove it for fear
* that the user is expecting their side-effects to happen.
*/
if (contain_volatile_functions(texpr))
continue;
/*
* OK, we don't need it. Replace the expression with a NULL constant.
* Preserve the exposed type of the expression, in case something
* looks at the rowtype of the subquery's result.
*/
tle->expr = (Expr *) makeNullConst(exprType(texpr),
exprTypmod(texpr),
exprCollation(texpr));
}
}
/*
* create_partial_bitmap_paths
* Build partial bitmap heap path for the relation
*/
void
create_partial_bitmap_paths(PlannerInfo *root, RelOptInfo *rel,
Path *bitmapqual)
{
int parallel_workers;
double pages_fetched;
/* Compute heap pages for bitmap heap scan */
pages_fetched = compute_bitmap_pages(root, rel, bitmapqual, 1.0,
NULL, NULL);
parallel_workers = compute_parallel_worker(rel, pages_fetched, -1,
max_parallel_workers_per_gather);
if (parallel_workers <= 0)
return;
add_partial_path(rel, (Path *) create_bitmap_heap_path(root, rel,
bitmapqual, rel->lateral_relids, 1.0, parallel_workers));
}
/*
* Compute the number of parallel workers that should be used to scan a
* relation. We compute the parallel workers based on the size of the heap to
* be scanned and the size of the index to be scanned, then choose a minimum
* of those.
*
* "heap_pages" is the number of pages from the table that we expect to scan, or
* -1 if we don't expect to scan any.
*
* "index_pages" is the number of pages from the index that we expect to scan, or
* -1 if we don't expect to scan any.
*
* "max_workers" is caller's limit on the number of workers. This typically
* comes from a GUC.
*/
int
compute_parallel_worker(RelOptInfo *rel, double heap_pages, double index_pages,
int max_workers)
{
int parallel_workers = 0;
/*
* If the user has set the parallel_workers reloption, use that; otherwise
* select a default number of workers.
*/
if (rel->rel_parallel_workers != -1)
parallel_workers = rel->rel_parallel_workers;
else
{
/*
* If the number of pages being scanned is insufficient to justify a
* parallel scan, just return zero ... unless it's an inheritance
* child. In that case, we want to generate a parallel path here
* anyway. It might not be worthwhile just for this relation, but
* when combined with all of its inheritance siblings it may well pay
* off.
*/
if (rel->reloptkind == RELOPT_BASEREL &&
((heap_pages >= 0 && heap_pages < min_parallel_table_scan_size) ||
(index_pages >= 0 && index_pages < min_parallel_index_scan_size)))
return 0;
if (heap_pages >= 0)
{
int heap_parallel_threshold;
int heap_parallel_workers = 1;
/*
* Select the number of workers based on the log of the size of
* the relation. This probably needs to be a good deal more
* sophisticated, but we need something here for now. Note that
* the upper limit of the min_parallel_table_scan_size GUC is
* chosen to prevent overflow here.
*/
heap_parallel_threshold = Max(min_parallel_table_scan_size, 1);
while (heap_pages >= (BlockNumber) (heap_parallel_threshold * 3))
{
heap_parallel_workers++;
heap_parallel_threshold *= 3;
if (heap_parallel_threshold > INT_MAX / 3)
break; /* avoid overflow */
}
parallel_workers = heap_parallel_workers;
}
if (index_pages >= 0)
{
int index_parallel_workers = 1;
int index_parallel_threshold;
/* same calculation as for heap_pages above */
index_parallel_threshold = Max(min_parallel_index_scan_size, 1);
while (index_pages >= (BlockNumber) (index_parallel_threshold * 3))
{
index_parallel_workers++;
index_parallel_threshold *= 3;
if (index_parallel_threshold > INT_MAX / 3)
break; /* avoid overflow */
}
if (parallel_workers > 0)
parallel_workers = Min(parallel_workers, index_parallel_workers);
else
parallel_workers = index_parallel_workers;
}
}
/* In no case use more than caller supplied maximum number of workers */
parallel_workers = Min(parallel_workers, max_workers);
return parallel_workers;
}
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
/*
* generate_partitionwise_join_paths
* Create paths representing partitionwise join for given partitioned
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
* join relation.
*
* This must not be called until after we are done adding paths for all
* child-joins. Otherwise, add_path might delete a path to which some path
* generated here has a reference.
*/
void
generate_partitionwise_join_paths(PlannerInfo *root, RelOptInfo *rel)
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
{
List *live_children = NIL;
int cnt_parts;
int num_parts;
RelOptInfo **part_rels;
/* Handle only join relations here. */
if (!IS_JOIN_REL(rel))
return;
/* We've nothing to do if the relation is not partitioned. */
if (!IS_PARTITIONED_REL(rel))
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
return;
Disable support for partitionwise joins in problematic cases. Commit f49842d, which added support for partitionwise joins, built the child's tlist by applying adjust_appendrel_attrs() to the parent's. So in the case where the parent's included a whole-row Var for the parent, the child's contained a ConvertRowtypeExpr. To cope with that, that commit added code to the planner, such as setrefs.c, but some code paths still assumed that the tlist for a scan (or join) rel would only include Vars and PlaceHolderVars, which was true before that commit, causing errors: * When creating an explicit sort node for an input path for a mergejoin path for a child join, prepare_sort_from_pathkeys() threw the 'could not find pathkey item to sort' error. * When deparsing a relation participating in a pushed down child join as a subquery in contrib/postgres_fdw, get_relation_column_alias_ids() threw the 'unexpected expression in subquery output' error. * When performing set_plan_references() on a local join plan generated by contrib/postgres_fdw for EvalPlanQual support for a pushed down child join, fix_join_expr() threw the 'variable not found in subplan target lists' error. To fix these, two approaches have been proposed: one by Ashutosh Bapat and one by me. While the former keeps building the child's tlist with a ConvertRowtypeExpr, the latter builds it with a whole-row Var for the child not to violate the planner assumption, and tries to fix it up later, But both approaches need more work, so refuse to generate partitionwise join paths when whole-row Vars are involved, instead. We don't need to handle ConvertRowtypeExprs in the child's tlists for now, so this commit also removes the changes to the planner. Previously, partitionwise join computed attr_needed data for each child separately, and built the child join's tlist using that data, which also required an extra step for adding PlaceHolderVars to that tlist, but it would be more efficient to build it from the parent join's tlist through the adjust_appendrel_attrs() transformation. So this commit builds that list that way, and simplifies build_joinrel_tlist() and placeholder.c as well as part of set_append_rel_size() to basically what they were before partitionwise join went in. Back-patch to PG11 where partitionwise join was introduced. Report by Rajkumar Raghuwanshi. Analysis by Ashutosh Bapat, who also provided some of regression tests. Patch by me, reviewed by Robert Haas. Discussion: https://postgr.es/m/CAKcux6ktu-8tefLWtQuuZBYFaZA83vUzuRd7c1YHC-yEWyYFpg@mail.gmail.com
2018-08-31 13:34:06 +02:00
/* The relation should have consider_partitionwise_join set. */
Assert(rel->consider_partitionwise_join);
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
/* Guard against stack overflow due to overly deep partition hierarchy. */
check_stack_depth();
num_parts = rel->nparts;
part_rels = rel->part_rels;
/* Collect non-dummy child-joins. */
for (cnt_parts = 0; cnt_parts < num_parts; cnt_parts++)
{
RelOptInfo *child_rel = part_rels[cnt_parts];
Avoid crash in partitionwise join planning under GEQO. While trying to plan a partitionwise join, we may be faced with cases where one or both input partitions for a particular segment of the join have been pruned away. In HEAD and v11, this is problematic because earlier processing didn't bother to make a pruned RelOptInfo fully valid. With an upcoming patch to make partition pruning more efficient, this'll be even more problematic because said RelOptInfo won't exist at all. The existing code attempts to deal with this by retroactively making the RelOptInfo fully valid, but that causes crashes under GEQO because join planning is done in a short-lived memory context. In v11 we could probably have fixed this by switching to the planner's main context while fixing up the RelOptInfo, but that idea doesn't scale well to the upcoming patch. It would be better not to mess with the base-relation data structures during join planning, anyway --- that's just a recipe for order-of-operations bugs. In many cases, though, we don't actually need the child RelOptInfo, because if the input is certainly empty then the join segment's result is certainly empty, so we can skip making a join plan altogether. (The existing code ultimately arrives at the same conclusion, but only after doing a lot more work.) This approach works except when the pruned-away partition is on the nullable side of a LEFT, ANTI, or FULL join, and the other side isn't pruned. But in those cases the existing code leaves a lot to be desired anyway --- the correct output is just the result of the unpruned side of the join, but we were emitting a useless outer join against a dummy Result. Pending somebody writing code to handle that more nicely, let's just abandon the partitionwise-join optimization in such cases. When the modified code skips making a join plan, it doesn't make a join RelOptInfo either; this requires some upper-level code to cope with nulls in part_rels[] arrays. We would have had to have that anyway after the upcoming patch. Back-patch to v11 since the crash is demonstrable there. Discussion: https://postgr.es/m/8305.1553884377@sss.pgh.pa.us
2019-03-30 17:48:19 +01:00
/* If it's been pruned entirely, it's certainly dummy. */
if (child_rel == NULL)
continue;
/* Make partitionwise join paths for this partitioned child-join. */
generate_partitionwise_join_paths(root, child_rel);
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
/* If we failed to make any path for this child, we must give up. */
if (child_rel->pathlist == NIL)
{
/*
* Mark the parent joinrel as unpartitioned so that later
* functions treat it correctly.
*/
rel->nparts = 0;
return;
}
/* Else, identify the cheapest path for it. */
Fix handling of targetlist SRFs when scan/join relation is known empty. When we introduced separate ProjectSetPath nodes for application of set-returning functions in v10, we inadvertently broke some cases where we're supposed to recognize that the result of a subquery is known to be empty (contain zero rows). That's because IS_DUMMY_REL was just looking for a childless AppendPath without allowing for a ProjectSetPath being possibly stuck on top. In itself, this didn't do anything much worse than produce slightly worse plans for some corner cases. Then in v11, commit 11cf92f6e rearranged things to allow the scan/join targetlist to be applied directly to partial paths before they get gathered. But it inserted a short-circuit path for dummy relations that was a little too short: it failed to insert a ProjectSetPath node at all for a targetlist containing set-returning functions, resulting in bogus "set-valued function called in context that cannot accept a set" errors, as reported in bug #15669 from Madelaine Thibaut. The best way to fix this mess seems to be to reimplement IS_DUMMY_REL so that it drills down through any ProjectSetPath nodes that might be there (and it seems like we'd better allow for ProjectionPath as well). While we're at it, make it look at rel->pathlist not cheapest_total_path, so that it gives the right answer independently of whether set_cheapest has been done lately. That dependency looks pretty shaky in the context of code like apply_scanjoin_target_to_paths, and even if it's not broken today it'd certainly bite us at some point. (Nastily, unsafe use of the old coding would almost always work; the hazard comes down to possibly looking through a dangling pointer, and only once in a blue moon would you find something there that resulted in the wrong answer.) It now looks like it was a mistake for IS_DUMMY_REL to be a macro: if there are any extensions using it, they'll continue to use the old inadequate logic until they're recompiled, after which they'll fail to load into server versions predating this fix. Hopefully there are few such extensions. Having fixed IS_DUMMY_REL, the special path for dummy rels in apply_scanjoin_target_to_paths is unnecessary as well as being wrong, so we can just drop it. Also change a few places that were testing for partitioned-ness of a planner relation but not using IS_PARTITIONED_REL for the purpose; that seems unsafe as well as inconsistent, plus it required an ugly hack in apply_scanjoin_target_to_paths. In passing, save a few cycles in apply_scanjoin_target_to_paths by skipping processing of pre-existing paths for partitioned rels, and do some cosmetic cleanup and comment adjustment in that function. I renamed IS_DUMMY_PATH to IS_DUMMY_APPEND with the intention of breaking any code that might be using it, since in almost every case that would be wrong; IS_DUMMY_REL is what to be using instead. In HEAD, also make set_dummy_rel_pathlist static (since it's no longer used from outside allpaths.c), and delete is_dummy_plan, since it's no longer used anywhere. Back-patch as appropriate into v11 and v10. Tom Lane and Julien Rouhaud Discussion: https://postgr.es/m/15669-02fb3296cca26203@postgresql.org
2019-03-07 20:21:52 +01:00
set_cheapest(child_rel);
/* Dummy children need not be scanned, so ignore those. */
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
if (IS_DUMMY_REL(child_rel))
continue;
#ifdef OPTIMIZER_DEBUG
debug_print_rel(root, child_rel);
Basic partition-wise join functionality. Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
2017-10-06 17:11:10 +02:00
#endif
live_children = lappend(live_children, child_rel);
}
/* If all child-joins are dummy, parent join is also dummy. */
if (!live_children)
{
mark_dummy_rel(rel);
return;
}
/* Build additional paths for this rel from child-join paths. */
add_paths_to_append_rel(root, rel, live_children);
list_free(live_children);
}
/*****************************************************************************
* DEBUG SUPPORT
*****************************************************************************/
#ifdef OPTIMIZER_DEBUG
static void
print_relids(PlannerInfo *root, Relids relids)
{
int x;
bool first = true;
x = -1;
while ((x = bms_next_member(relids, x)) >= 0)
{
if (!first)
printf(" ");
if (x < root->simple_rel_array_size &&
root->simple_rte_array[x])
printf("%s", root->simple_rte_array[x]->eref->aliasname);
else
printf("%d", x);
first = false;
}
}
static void
print_restrictclauses(PlannerInfo *root, List *clauses)
{
ListCell *l;
foreach(l, clauses)
{
RestrictInfo *c = lfirst(l);
print_expr((Node *) c->clause, root->parse->rtable);
Represent Lists as expansible arrays, not chains of cons-cells. Originally, Postgres Lists were a more or less exact reimplementation of Lisp lists, which consist of chains of separately-allocated cons cells, each having a value and a next-cell link. We'd hacked that once before (commit d0b4399d8) to add a separate List header, but the data was still in cons cells. That makes some operations -- notably list_nth() -- O(N), and it's bulky because of the next-cell pointers and per-cell palloc overhead, and it's very cache-unfriendly if the cons cells end up scattered around rather than being adjacent. In this rewrite, we still have List headers, but the data is in a resizable array of values, with no next-cell links. Now we need at most two palloc's per List, and often only one, since we can allocate some values in the same palloc call as the List header. (Of course, extending an existing List may require repalloc's to enlarge the array. But this involves just O(log N) allocations not O(N).) Of course this is not without downsides. The key difficulty is that addition or deletion of a list entry may now cause other entries to move, which it did not before. For example, that breaks foreach() and sister macros, which historically used a pointer to the current cons-cell as loop state. We can repair those macros transparently by making their actual loop state be an integer list index; the exposed "ListCell *" pointer is no longer state carried across loop iterations, but is just a derived value. (In practice, modern compilers can optimize things back to having just one loop state value, at least for simple cases with inline loop bodies.) In principle, this is a semantics change for cases where the loop body inserts or deletes list entries ahead of the current loop index; but I found no such cases in the Postgres code. The change is not at all transparent for code that doesn't use foreach() but chases lists "by hand" using lnext(). The largest share of such code in the backend is in loops that were maintaining "prev" and "next" variables in addition to the current-cell pointer, in order to delete list cells efficiently using list_delete_cell(). However, we no longer need a previous-cell pointer to delete a list cell efficiently. Keeping a next-cell pointer doesn't work, as explained above, but we can improve matters by changing such code to use a regular foreach() loop and then using the new macro foreach_delete_current() to delete the current cell. (This macro knows how to update the associated foreach loop's state so that no cells will be missed in the traversal.) There remains a nontrivial risk of code assuming that a ListCell * pointer will remain good over an operation that could now move the list contents. To help catch such errors, list.c can be compiled with a new define symbol DEBUG_LIST_MEMORY_USAGE that forcibly moves list contents whenever that could possibly happen. This makes list operations significantly more expensive so it's not normally turned on (though it is on by default if USE_VALGRIND is on). There are two notable API differences from the previous code: * lnext() now requires the List's header pointer in addition to the current cell's address. * list_delete_cell() no longer requires a previous-cell argument. These changes are somewhat unfortunate, but on the other hand code using either function needs inspection to see if it is assuming anything it shouldn't, so it's not all bad. Programmers should be aware of these significant performance changes: * list_nth() and related functions are now O(1); so there's no major access-speed difference between a list and an array. * Inserting or deleting a list element now takes time proportional to the distance to the end of the list, due to moving the array elements. (However, it typically *doesn't* require palloc or pfree, so except in long lists it's probably still faster than before.) Notably, lcons() used to be about the same cost as lappend(), but that's no longer true if the list is long. Code that uses lcons() and list_delete_first() to maintain a stack might usefully be rewritten to push and pop at the end of the list rather than the beginning. * There are now list_insert_nth...() and list_delete_nth...() functions that add or remove a list cell identified by index. These have the data-movement penalty explained above, but there's no search penalty. * list_concat() and variants now copy the second list's data into storage belonging to the first list, so there is no longer any sharing of cells between the input lists. The second argument is now declared "const List *" to reflect that it isn't changed. This patch just does the minimum needed to get the new implementation in place and fix bugs exposed by the regression tests. As suggested by the foregoing, there's a fair amount of followup work remaining to do. Also, the ENABLE_LIST_COMPAT macros are finally removed in this commit. Code using those should have been gone a dozen years ago. Patch by me; thanks to David Rowley, Jesper Pedersen, and others for review. Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
2019-07-15 19:41:58 +02:00
if (lnext(clauses, l))
printf(", ");
}
}
static void
print_path(PlannerInfo *root, Path *path, int indent)
{
const char *ptype;
bool join = false;
Path *subpath = NULL;
int i;
switch (nodeTag(path))
{
case T_Path:
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
switch (path->pathtype)
{
case T_SeqScan:
ptype = "SeqScan";
break;
case T_SampleScan:
ptype = "SampleScan";
break;
case T_FunctionScan:
ptype = "FunctionScan";
break;
case T_TableFuncScan:
ptype = "TableFuncScan";
break;
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
case T_ValuesScan:
ptype = "ValuesScan";
break;
case T_CteScan:
ptype = "CteScan";
break;
In the planner, replace an empty FROM clause with a dummy RTE. The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 23:54:10 +01:00
case T_NamedTuplestoreScan:
ptype = "NamedTuplestoreScan";
break;
case T_Result:
ptype = "Result";
break;
Redesign tablesample method API, and do extensive code review. The original implementation of TABLESAMPLE modeled the tablesample method API on index access methods, which wasn't a good choice because, without specialized DDL commands, there's no way to build an extension that can implement a TSM. (Raw inserts into system catalogs are not an acceptable thing to do, because we can't undo them during DROP EXTENSION, nor will pg_upgrade behave sanely.) Instead adopt an API more like procedural language handlers or foreign data wrappers, wherein the only SQL-level support object needed is a single handler function identified by having a special return type. This lets us get rid of the supporting catalog altogether, so that no custom DDL support is needed for the feature. Adjust the API so that it can support non-constant tablesample arguments (the original coding assumed we could evaluate the argument expressions at ExecInitSampleScan time, which is undesirable even if it weren't outright unsafe), and discourage sampling methods from looking at invisible tuples. Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable within and across queries, as required by the SQL standard, and deal more honestly with methods that can't support that requirement. Make a full code-review pass over the tablesample additions, and fix assorted bugs, omissions, infelicities, and cosmetic issues (such as failure to put the added code stanzas in a consistent ordering). Improve EXPLAIN's output of tablesample plans, too. Back-patch to 9.5 so that we don't have to support the original API in production.
2015-07-25 20:39:00 +02:00
case T_WorkTableScan:
ptype = "WorkTableScan";
break;
default:
ptype = "???Path";
break;
}
break;
case T_IndexPath:
ptype = "IdxScan";
break;
case T_BitmapHeapPath:
ptype = "BitmapHeapScan";
break;
case T_BitmapAndPath:
ptype = "BitmapAndPath";
break;
case T_BitmapOrPath:
ptype = "BitmapOrPath";
break;
case T_TidPath:
ptype = "TidScan";
break;
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
case T_SubqueryScanPath:
In the planner, replace an empty FROM clause with a dummy RTE. The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 23:54:10 +01:00
ptype = "SubqueryScan";
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
break;
case T_ForeignPath:
ptype = "ForeignScan";
break;
case T_CustomPath:
ptype = "CustomScan";
break;
case T_NestPath:
ptype = "NestLoop";
join = true;
break;
case T_MergePath:
ptype = "MergeJoin";
join = true;
break;
case T_HashPath:
ptype = "HashJoin";
join = true;
break;
case T_AppendPath:
ptype = "Append";
break;
case T_MergeAppendPath:
ptype = "MergeAppend";
break;
In the planner, replace an empty FROM clause with a dummy RTE. The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
2019-01-28 23:54:10 +01:00
case T_GroupResultPath:
ptype = "GroupResult";
break;
case T_MaterialPath:
ptype = "Material";
subpath = ((MaterialPath *) path)->subpath;
break;
case T_MemoizePath:
ptype = "Memoize";
subpath = ((MemoizePath *) path)->subpath;
Add Result Cache executor node (take 2) Here we add a new executor node type named "Result Cache". The planner can include this node type in the plan to have the executor cache the results from the inner side of parameterized nested loop joins. This allows caching of tuples for sets of parameters so that in the event that the node sees the same parameter values again, it can just return the cached tuples instead of rescanning the inner side of the join all over again. Internally, result cache uses a hash table in order to quickly find tuples that have been previously cached. For certain data sets, this can significantly improve the performance of joins. The best cases for using this new node type are for join problems where a large portion of the tuples from the inner side of the join have no join partner on the outer side of the join. In such cases, hash join would have to hash values that are never looked up, thus bloating the hash table and possibly causing it to multi-batch. Merge joins would have to skip over all of the unmatched rows. If we use a nested loop join with a result cache, then we only cache tuples that have at least one join partner on the outer side of the join. The benefits of using a parameterized nested loop with a result cache increase when there are fewer distinct values being looked up and the number of lookups of each value is large. Also, hash probes to lookup the cache can be much faster than the hash probe in a hash join as it's common that the result cache's hash table is much smaller than the hash join's due to result cache only caching useful tuples rather than all tuples from the inner side of the join. This variation in hash probe performance is more significant when the hash join's hash table no longer fits into the CPU's L3 cache, but the result cache's hash table does. The apparent "random" access of hash buckets with each hash probe can cause a poor L3 cache hit ratio for large hash tables. Smaller hash tables generally perform better. The hash table used for the cache limits itself to not exceeding work_mem * hash_mem_multiplier in size. We maintain a dlist of keys for this cache and when we're adding new tuples and realize we've exceeded the memory budget, we evict cache entries starting with the least recently used ones until we have enough memory to add the new tuples to the cache. For parameterized nested loop joins, we now consider using one of these result cache nodes in between the nested loop node and its inner node. We determine when this might be useful based on cost, which is primarily driven off of what the expected cache hit ratio will be. Estimating the cache hit ratio relies on having good distinct estimates on the nested loop's parameters. For now, the planner will only consider using a result cache for parameterized nested loop joins. This works for both normal joins and also for LATERAL type joins to subqueries. It is possible to use this new node for other uses in the future. For example, to cache results from correlated subqueries. However, that's not done here due to some difficulties obtaining a distinct estimation on the outer plan to calculate the estimated cache hit ratio. Currently we plan the inner plan before planning the outer plan so there is no good way to know if a result cache would be useful or not since we can't estimate the number of times the subplan will be called until the outer plan is generated. The functionality being added here is newly introducing a dependency on the return value of estimate_num_groups() during the join search. Previously, during the join search, we only ever needed to perform selectivity estimations. With this commit, we need to use estimate_num_groups() in order to estimate what the hit ratio on the result cache will be. In simple terms, if we expect 10 distinct values and we expect 1000 outer rows, then we'll estimate the hit ratio to be 99%. Since cache hits are very cheap compared to scanning the underlying nodes on the inner side of the nested loop join, then this will significantly reduce the planner's cost for the join. However, it's fairly easy to see here that things will go bad when estimate_num_groups() incorrectly returns a value that's significantly lower than the actual number of distinct values. If this happens then that may cause us to make use of a nested loop join with a result cache instead of some other join type, such as a merge or hash join. Our distinct estimations have been known to be a source of trouble in the past, so the extra reliance on them here could cause the planner to choose slower plans than it did previous to having this feature. Distinct estimations are also fairly hard to estimate accurately when several tables have been joined already or when a WHERE clause filters out a set of values that are correlated to the expressions we're estimating the number of distinct value for. For now, the costing we perform during query planning for result caches does put quite a bit of faith in the distinct estimations being accurate. When these are accurate then we should generally see faster execution times for plans containing a result cache. However, in the real world, we may find that we need to either change the costings to put less trust in the distinct estimations being accurate or perhaps even disable this feature by default. There's always an element of risk when we teach the query planner to do new tricks that it decides to use that new trick at the wrong time and causes a regression. Users may opt to get the old behavior by turning the feature off using the enable_resultcache GUC. Currently, this is enabled by default. It remains to be seen if we'll maintain that setting for the release. Additionally, the name "Result Cache" is the best name I could think of for this new node at the time I started writing the patch. Nobody seems to strongly dislike the name. A few people did suggest other names but no other name seemed to dominate in the brief discussion that there was about names. Let's allow the beta period to see if the current name pleases enough people. If there's some consensus on a better name, then we can change it before the release. Please see the 2nd discussion link below for the discussion on the "Result Cache" name. Author: David Rowley Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu, Hou Zhijie Tested-By: Konstantin Knizhnik Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
2021-04-02 03:10:56 +02:00
break;
case T_UniquePath:
ptype = "Unique";
subpath = ((UniquePath *) path)->subpath;
break;
case T_GatherPath:
ptype = "Gather";
subpath = ((GatherPath *) path)->subpath;
break;
case T_GatherMergePath:
ptype = "GatherMerge";
subpath = ((GatherMergePath *) path)->subpath;
break;
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
case T_ProjectionPath:
ptype = "Projection";
subpath = ((ProjectionPath *) path)->subpath;
break;
Move targetlist SRF handling from expression evaluation to new executor node. Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT generate_series(1,5)) so far was done in the expression evaluation (i.e. ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code. This meant that most executor nodes performing projection, and most expression evaluation functions, had to deal with the possibility that an evaluated expression could return a set of return values. That's bad because it leads to repeated code in a lot of places. It also, and that's my (Andres's) motivation, made it a lot harder to implement a more efficient way of doing expression evaluation. To fix this, introduce a new executor node (ProjectSet) that can evaluate targetlists containing one or more SRFs. To avoid the complexity of the old way of handling nested expressions returning sets (e.g. having to pass up ExprDoneCond, and dealing with arguments to functions returning sets etc.), those SRFs can only be at the top level of the node's targetlist. The planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is only necessary in ProjectSet nodes and that SRFs are only present at the top level of the node's targetlist. If there are nested SRFs the planner creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get input from an underlying node. We also discussed and prototyped evaluating targetlist SRFs using ROWS FROM(), but that turned out to be more complicated than we'd hoped. While moving SRF evaluation to ProjectSet would allow to retain the old "least common multiple" behavior when multiple SRFs are present in one targetlist (i.e. continue returning rows until all SRFs are at the end of their input at the same time), we decided to instead only return rows till all SRFs are exhausted, returning NULL for already exhausted ones. We deemed the previous behavior to be too confusing, unexpected and actually not particularly useful. As a side effect, the previously prohibited case of multiple set returning arguments to a function, is now allowed. Not because it's particularly desirable, but because it ends up working and there seems to be no argument for adding code to prohibit it. Currently the behavior for COALESCE and CASE containing SRFs has changed, returning multiple rows from the expression, even when the SRF containing "arm" of the expression is not evaluated. That's because the SRFs are evaluated in a separate ProjectSet node. As that's quite confusing, we're likely to instead prohibit SRFs in those places. But that's still being discussed, and the code would reside in places not touched here, so that's a task for later. There's a lot of, now superfluous, code dealing with set return expressions around. But as the changes to get rid of those are verbose largely boring, it seems better for readability to keep the cleanup as a separate commit. Author: Tom Lane and Andres Freund Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
2017-01-18 21:46:50 +01:00
case T_ProjectSetPath:
ptype = "ProjectSet";
subpath = ((ProjectSetPath *) path)->subpath;
break;
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
case T_SortPath:
ptype = "Sort";
subpath = ((SortPath *) path)->subpath;
break;
Implement Incremental Sort Incremental Sort is an optimized variant of multikey sort for cases when the input is already sorted by a prefix of the requested sort keys. For example when the relation is already sorted by (key1, key2) and we need to sort it by (key1, key2, key3) we can simply split the input rows into groups having equal values in (key1, key2), and only sort/compare the remaining column key3. This has a number of benefits: - Reduced memory consumption, because only a single group (determined by values in the sorted prefix) needs to be kept in memory. This may also eliminate the need to spill to disk. - Lower startup cost, because Incremental Sort produce results after each prefix group, which is beneficial for plans where startup cost matters (like for example queries with LIMIT clause). We consider both Sort and Incremental Sort, and decide based on costing. The implemented algorithm operates in two different modes: - Fetching a minimum number of tuples without check of equality on the prefix keys, and sorting on all columns when safe. - Fetching all tuples for a single prefix group and then sorting by comparing only the remaining (non-prefix) keys. We always start in the first mode, and employ a heuristic to switch into the second mode if we believe it's beneficial - the goal is to minimize the number of unnecessary comparions while keeping memory consumption below work_mem. This is a very old patch series. The idea was originally proposed by Alexander Korotkov back in 2013, and then revived in 2017. In 2018 the patch was taken over by James Coleman, who wrote and rewrote most of the current code. There were many reviewers/contributors since 2013 - I've done my best to pick the most active ones, and listed them in this commit message. Author: James Coleman, Alexander Korotkov Reviewed-by: Tomas Vondra, Andreas Karlsson, Marti Raudsepp, Peter Geoghegan, Robert Haas, Thomas Munro, Antonin Houska, Andres Freund, Alexander Kuzmenkov Discussion: https://postgr.es/m/CAPpHfdscOX5an71nHd8WSUH6GNOCf=V7wgDaTXdDd9=goN-gfA@mail.gmail.com Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
2020-04-06 21:33:28 +02:00
case T_IncrementalSortPath:
ptype = "IncrementalSort";
subpath = ((SortPath *) path)->subpath;
break;
Make the upper part of the planner work by generating and comparing Paths. I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
2016-03-07 21:58:22 +01:00
case T_GroupPath:
ptype = "Group";
subpath = ((GroupPath *) path)->subpath;
break;
case T_UpperUniquePath:
ptype = "UpperUnique";
subpath = ((UpperUniquePath *) path)->subpath;
break;
case T_AggPath:
ptype = "Agg";
subpath = ((AggPath *) path)->subpath;
break;
case T_GroupingSetsPath:
ptype = "GroupingSets";
subpath = ((GroupingSetsPath *) path)->subpath;
break;
case T_MinMaxAggPath:
ptype = "MinMaxAgg";
break;
case T_WindowAggPath:
ptype = "WindowAgg";
subpath = ((WindowAggPath *) path)->subpath;
break;
case T_SetOpPath:
ptype = "SetOp";
subpath = ((SetOpPath *) path)->subpath;
break;
case T_RecursiveUnionPath:
ptype = "RecursiveUnion";
break;
case T_LockRowsPath:
ptype = "LockRows";
subpath = ((LockRowsPath *) path)->subpath;
break;
case T_ModifyTablePath:
ptype = "ModifyTable";
break;
case T_LimitPath:
ptype = "Limit";
subpath = ((LimitPath *) path)->subpath;
break;
default:
ptype = "???Path";
break;
}
for (i = 0; i < indent; i++)
printf("\t");
printf("%s", ptype);
if (path->parent)
{
printf("(");
print_relids(root, path->parent->relids);
printf(")");
}
if (path->param_info)
{
printf(" required_outer (");
print_relids(root, path->param_info->ppi_req_outer);
printf(")");
}
printf(" rows=%.0f cost=%.2f..%.2f\n",
path->rows, path->startup_cost, path->total_cost);
if (path->pathkeys)
{
for (i = 0; i < indent; i++)
printf("\t");
printf(" pathkeys: ");
print_pathkeys(path->pathkeys, root->parse->rtable);
}
if (join)
{
JoinPath *jp = (JoinPath *) path;
for (i = 0; i < indent; i++)
printf("\t");
printf(" clauses: ");
print_restrictclauses(root, jp->joinrestrictinfo);
printf("\n");
if (IsA(path, MergePath))
{
MergePath *mp = (MergePath *) path;
for (i = 0; i < indent; i++)
printf("\t");
printf(" sortouter=%d sortinner=%d materializeinner=%d\n",
((mp->outersortkeys) ? 1 : 0),
((mp->innersortkeys) ? 1 : 0),
((mp->materialize_inner) ? 1 : 0));
}
print_path(root, jp->outerjoinpath, indent + 1);
print_path(root, jp->innerjoinpath, indent + 1);
}
if (subpath)
print_path(root, subpath, indent + 1);
}
void
debug_print_rel(PlannerInfo *root, RelOptInfo *rel)
{
ListCell *l;
printf("RELOPTINFO (");
print_relids(root, rel->relids);
printf("): rows=%.0f width=%d\n", rel->rows, rel->reltarget->width);
if (rel->baserestrictinfo)
{
printf("\tbaserestrictinfo: ");
print_restrictclauses(root, rel->baserestrictinfo);
printf("\n");
}
if (rel->joininfo)
{
printf("\tjoininfo: ");
print_restrictclauses(root, rel->joininfo);
printf("\n");
}
printf("\tpath list:\n");
foreach(l, rel->pathlist)
print_path(root, lfirst(l), 1);
if (rel->cheapest_parameterized_paths)
{
printf("\n\tcheapest parameterized paths:\n");
foreach(l, rel->cheapest_parameterized_paths)
print_path(root, lfirst(l), 1);
}
if (rel->cheapest_startup_path)
{
printf("\n\tcheapest startup path:\n");
print_path(root, rel->cheapest_startup_path, 1);
}
if (rel->cheapest_total_path)
{
printf("\n\tcheapest total path:\n");
print_path(root, rel->cheapest_total_path, 1);
}
printf("\n");
fflush(stdout);
}
#endif /* OPTIMIZER_DEBUG */