postgresql/src/backend/executor/nodeModifyTable.c

2604 lines
82 KiB
C
Raw Normal View History

/*-------------------------------------------------------------------------
*
* nodeModifyTable.c
* routines to handle ModifyTable nodes.
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
2010-09-20 22:08:53 +02:00
* src/backend/executor/nodeModifyTable.c
*
*-------------------------------------------------------------------------
*/
/* INTERFACE ROUTINES
2010-02-26 03:01:40 +01:00
* ExecInitModifyTable - initialize the ModifyTable node
* ExecModifyTable - retrieve the next tuple from the node
* ExecEndModifyTable - shut down the ModifyTable node
* ExecReScanModifyTable - rescan the ModifyTable node
*
* NOTES
* Each ModifyTable node contains a list of one or more subplans,
* much like an Append node. There is one subplan per result relation.
* The key reason for this is that in an inherited UPDATE command, each
* result relation could have a different schema (more or different
* columns) requiring a different plan tree to produce it. In an
* inherited DELETE, all the subplans should produce the same output
* rowtype, but we might still find that different plans are appropriate
* for different child relations.
*
* If the query specifies RETURNING, then the ModifyTable returns a
* RETURNING tuple after completing each row insert, update, or delete.
* It must be called again to continue the operation. Without RETURNING,
* we just loop within the node until all the work is done, then
* return NULL. This avoids useless call/return overhead.
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/xact.h"
#include "commands/trigger.h"
#include "executor/execPartition.h"
#include "executor/executor.h"
#include "executor/nodeModifyTable.h"
#include "foreign/fdwapi.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "storage/bufmgr.h"
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
#include "storage/lmgr.h"
#include "utils/builtins.h"
#include "utils/memutils.h"
#include "utils/rel.h"
#include "utils/tqual.h"
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
static bool ExecOnConflictUpdate(ModifyTableState *mtstate,
ResultRelInfo *resultRelInfo,
ItemPointer conflictTid,
TupleTableSlot *planSlot,
TupleTableSlot *excludedSlot,
EState *estate,
bool canSetTag,
TupleTableSlot **returning);
static ResultRelInfo *getTargetResultRelInfo(ModifyTableState *node);
static void ExecSetupChildParentMapForTcs(ModifyTableState *mtstate);
static void ExecSetupChildParentMapForSubplan(ModifyTableState *mtstate);
static TupleConversionMap *tupconv_map_for_subplan(ModifyTableState *node,
int whichplan);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
/*
* Verify that the tuples to be produced by INSERT or UPDATE match the
* target relation's rowtype
*
* We do this to guard against stale plans. If plan invalidation is
* functioning properly then we should never get a failure here, but better
* safe than sorry. Note that this is called after we have obtained lock
* on the target rel, so the rowtype can't change underneath us.
*
* The plan output is represented by its targetlist, because that makes
* handling the dropped-column case easier.
*/
static void
ExecCheckPlanOutput(Relation resultRel, List *targetList)
{
TupleDesc resultDesc = RelationGetDescr(resultRel);
int attno = 0;
ListCell *lc;
foreach(lc, targetList)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
Form_pg_attribute attr;
if (tle->resjunk)
continue; /* ignore junk tlist items */
if (attno >= resultDesc->natts)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("table row type and query-specified row type do not match"),
errdetail("Query has too many columns.")));
attr = TupleDescAttr(resultDesc, attno);
attno++;
if (!attr->attisdropped)
{
/* Normal case: demand type match */
if (exprType((Node *) tle->expr) != attr->atttypid)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("table row type and query-specified row type do not match"),
errdetail("Table has type %s at ordinal position %d, but query expects %s.",
format_type_be(attr->atttypid),
attno,
format_type_be(exprType((Node *) tle->expr)))));
}
else
{
/*
* For a dropped column, we can't check atttypid (it's likely 0).
* In any case the planner has most likely inserted an INT4 null.
* What we insist on is just *some* NULL constant.
*/
if (!IsA(tle->expr, Const) ||
!((Const *) tle->expr)->constisnull)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("table row type and query-specified row type do not match"),
errdetail("Query provides a value for a dropped column at ordinal position %d.",
attno)));
}
}
if (attno != resultDesc->natts)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("table row type and query-specified row type do not match"),
errdetail("Query has too few columns.")));
}
/*
* ExecProcessReturning --- evaluate a RETURNING list
*
* projectReturning: RETURNING projection info for current result rel
* tupleSlot: slot holding tuple actually inserted/updated/deleted
* planSlot: slot holding tuple returned by top subplan node
*
* Note: If tupleSlot is NULL, the FDW should have already provided econtext's
* scan tuple.
*
* Returns a slot holding the result tuple
*/
static TupleTableSlot *
ExecProcessReturning(ResultRelInfo *resultRelInfo,
TupleTableSlot *tupleSlot,
TupleTableSlot *planSlot)
{
ProjectionInfo *projectReturning = resultRelInfo->ri_projectReturning;
ExprContext *econtext = projectReturning->pi_exprContext;
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous cycle.
*/
ResetExprContext(econtext);
/* Make tuple and any needed join variables available to ExecProject */
if (tupleSlot)
econtext->ecxt_scantuple = tupleSlot;
else
{
HeapTuple tuple;
/*
* RETURNING expressions might reference the tableoid column, so
* initialize t_tableOid before evaluating them.
*/
Assert(!TupIsNull(econtext->ecxt_scantuple));
tuple = ExecMaterializeSlot(econtext->ecxt_scantuple);
tuple->t_tableOid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
}
econtext->ecxt_outertuple = planSlot;
/* Compute the RETURNING expressions */
return ExecProject(projectReturning);
}
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
/*
* ExecCheckHeapTupleVisible -- verify heap tuple is visible
*
* It would not be consistent with guarantees of the higher isolation levels to
* proceed with avoiding insertion (taking speculative insertion's alternative
* path) on the basis of another tuple that is not visible to MVCC snapshot.
* Check for the need to raise a serialization failure, and do so as necessary.
*/
static void
ExecCheckHeapTupleVisible(EState *estate,
HeapTuple tuple,
Buffer buffer)
{
if (!IsolationUsesXactSnapshot())
return;
/*
* We need buffer pin and lock to call HeapTupleSatisfiesVisibility.
* Caller should be holding pin, but not lock.
*/
LockBuffer(buffer, BUFFER_LOCK_SHARE);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
if (!HeapTupleSatisfiesVisibility(tuple, estate->es_snapshot, buffer))
{
/*
* We should not raise a serialization failure if the conflict is
* against a tuple inserted by our own transaction, even if it's not
* visible to our snapshot. (This would happen, for example, if
* conflicting keys are proposed for insertion in a single command.)
*/
if (!TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetXmin(tuple->t_data)))
ereport(ERROR,
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("could not serialize access due to concurrent update")));
}
LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
}
/*
* ExecCheckTIDVisible -- convenience variant of ExecCheckHeapTupleVisible()
*/
static void
ExecCheckTIDVisible(EState *estate,
ResultRelInfo *relinfo,
ItemPointer tid)
{
Relation rel = relinfo->ri_RelationDesc;
Buffer buffer;
HeapTupleData tuple;
/* Redundantly check isolation level */
if (!IsolationUsesXactSnapshot())
return;
tuple.t_self = *tid;
if (!heap_fetch(rel, SnapshotAny, &tuple, &buffer, false, NULL))
elog(ERROR, "failed to fetch conflicting tuple for ON CONFLICT");
ExecCheckHeapTupleVisible(estate, &tuple, buffer);
ReleaseBuffer(buffer);
}
/* ----------------------------------------------------------------
* ExecInsert
*
* For INSERT, we have to insert the tuple into the target relation
* and insert appropriate tuples into the index relations.
*
* Returns RETURNING result if any, otherwise NULL.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
ExecInsert(ModifyTableState *mtstate,
TupleTableSlot *slot,
TupleTableSlot *planSlot,
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
List *arbiterIndexes,
OnConflictAction onconflict,
EState *estate,
bool canSetTag)
{
HeapTuple tuple;
ResultRelInfo *resultRelInfo;
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
ResultRelInfo *saved_resultRelInfo = NULL;
Relation resultRelationDesc;
Oid newId;
List *recheckIndexes = NIL;
TupleTableSlot *result = NULL;
TransitionCaptureState *ar_insert_trig_tcs;
/*
* get the heap tuple out of the tuple table slot, making sure we have a
* writable copy
*/
tuple = ExecMaterializeSlot(slot);
/*
* get information on the (current) result relation
*/
resultRelInfo = estate->es_result_relation_info;
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
/* Determine the partition to heap_insert the tuple into */
if (mtstate->mt_partition_tuple_routing)
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
{
int leaf_part_index;
PartitionTupleRouting *proute = mtstate->mt_partition_tuple_routing;
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
/*
* Away we go ... If we end up not finding a partition after all,
* ExecFindPartition() does not return and errors out instead.
* Otherwise, the returned value is to be used as an index into arrays
* proute->partitions[] and proute->partition_tupconv_maps[] that will
* get us the ResultRelInfo and TupleConversionMap for the partition,
* respectively.
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
*/
leaf_part_index = ExecFindPartition(resultRelInfo,
proute->partition_dispatch_info,
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
slot,
estate);
Assert(leaf_part_index >= 0 &&
leaf_part_index < proute->num_partitions);
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
/*
* Save the old ResultRelInfo and switch to the one corresponding to
* the selected partition. (We might need to initialize it first.)
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
*/
saved_resultRelInfo = resultRelInfo;
resultRelInfo = proute->partitions[leaf_part_index];
if (resultRelInfo == NULL)
{
resultRelInfo = ExecInitPartitionInfo(mtstate,
saved_resultRelInfo,
proute, estate,
leaf_part_index);
Assert(resultRelInfo != NULL);
}
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
/* We do not yet have a way to insert into a foreign partition */
if (resultRelInfo->ri_FdwRoutine)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot route inserted tuples to a foreign table")));
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
/* For ExecInsertIndexTuples() to work on the partition's indexes */
estate->es_result_relation_info = resultRelInfo;
/*
* If we're capturing transition tuples, we might need to convert from
* the partition rowtype to parent rowtype.
*/
if (mtstate->mt_transition_capture != NULL)
{
if (resultRelInfo->ri_TrigDesc &&
(resultRelInfo->ri_TrigDesc->trig_insert_before_row ||
resultRelInfo->ri_TrigDesc->trig_insert_instead_row))
{
/*
* If there are any BEFORE or INSTEAD triggers on the
* partition, we'll have to be ready to convert their result
* back to tuplestore format.
*/
mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;
mtstate->mt_transition_capture->tcs_map =
TupConvMapForLeaf(proute, saved_resultRelInfo,
leaf_part_index);
}
else
{
/*
* Otherwise, just remember the original unconverted tuple, to
* avoid a needless round trip conversion.
*/
mtstate->mt_transition_capture->tcs_original_insert_tuple = tuple;
mtstate->mt_transition_capture->tcs_map = NULL;
}
}
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
if (mtstate->mt_oc_transition_capture != NULL)
{
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
mtstate->mt_oc_transition_capture->tcs_map =
TupConvMapForLeaf(proute, saved_resultRelInfo,
leaf_part_index);
}
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
/*
* We might need to convert from the parent rowtype to the partition
* rowtype.
*/
tuple = ConvertPartitionTupleSlot(proute->parent_child_tupconv_maps[leaf_part_index],
tuple,
proute->partition_tuple_slot,
&slot);
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
}
resultRelationDesc = resultRelInfo->ri_RelationDesc;
/*
* If the result relation has OIDs, force the tuple's OID to zero so that
* heap_insert will assign a fresh OID. Usually the OID already will be
* zero at this point, but there are corner cases where the plan tree can
* return a tuple extracted literally from some table with the same
* rowtype.
*
* XXX if we ever wanted to allow users to assign their own OIDs to new
* rows, this'd be the place to do it. For the moment, we make a point of
* doing this before calling triggers, so that a user-supplied trigger
* could hack the OID if desired.
*/
if (resultRelationDesc->rd_rel->relhasoids)
HeapTupleSetOid(tuple, InvalidOid);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
/*
* BEFORE ROW INSERT Triggers.
*
* Note: We fire BEFORE ROW TRIGGERS for every attempted insertion in an
* INSERT ... ON CONFLICT statement. We cannot check for constraint
* violations before firing these triggers, because they can change the
* values to insert. Also, they can run arbitrary user-defined code with
* side-effects that we can't cancel by just not inserting the tuple.
*/
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_insert_before_row)
{
slot = ExecBRInsertTriggers(estate, resultRelInfo, slot);
if (slot == NULL) /* "do nothing" */
return NULL;
/* trigger might have changed tuple */
tuple = ExecMaterializeSlot(slot);
}
/* INSTEAD OF ROW INSERT Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_insert_instead_row)
{
slot = ExecIRInsertTriggers(estate, resultRelInfo, slot);
if (slot == NULL) /* "do nothing" */
return NULL;
/* trigger might have changed tuple */
tuple = ExecMaterializeSlot(slot);
newId = InvalidOid;
}
else if (resultRelInfo->ri_FdwRoutine)
{
/*
* insert into foreign table: let the FDW do it
*/
slot = resultRelInfo->ri_FdwRoutine->ExecForeignInsert(estate,
resultRelInfo,
slot,
planSlot);
if (slot == NULL) /* "do nothing" */
return NULL;
/* FDW might have changed tuple */
tuple = ExecMaterializeSlot(slot);
/*
* AFTER ROW Triggers or RETURNING expressions might reference the
* tableoid column, so initialize t_tableOid before evaluating them.
*/
tuple->t_tableOid = RelationGetRelid(resultRelationDesc);
newId = InvalidOid;
}
else
{
WCOKind wco_kind;
/*
* We always check the partition constraint, including when the tuple
* got here via tuple-routing. However we don't need to in the latter
* case if no BR trigger is defined on the partition. Note that a BR
* trigger might modify the tuple such that the partition constraint
* is no longer satisfied, so we need to check in that case.
*/
bool check_partition_constr =
(resultRelInfo->ri_PartitionCheck != NIL);
/*
* Constraints might reference the tableoid column, so initialize
* t_tableOid before evaluating them.
*/
tuple->t_tableOid = RelationGetRelid(resultRelationDesc);
/*
* Check any RLS WITH CHECK policies.
*
* Normally we should check INSERT policies. But if the insert is the
* result of a partition key update that moved the tuple to a new
* partition, we should instead check UPDATE policies, because we are
* executing policies defined on the target table, and not those
* defined on the child partitions.
*/
wco_kind = (mtstate->operation == CMD_UPDATE) ?
WCO_RLS_UPDATE_CHECK : WCO_RLS_INSERT_CHECK;
/*
2015-05-24 03:35:49 +02:00
* ExecWithCheckOptions() will skip any WCOs which are not of the kind
* we are looking for at this point.
*/
if (resultRelInfo->ri_WithCheckOptions != NIL)
ExecWithCheckOptions(wco_kind, resultRelInfo, slot, estate);
/*
* No need though if the tuple has been routed, and a BR trigger
* doesn't exist.
*/
if (saved_resultRelInfo != NULL &&
!(resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_insert_before_row))
check_partition_constr = false;
/* Check the constraints of the tuple */
if (resultRelationDesc->rd_att->constr || check_partition_constr)
ExecConstraints(resultRelInfo, slot, estate, true);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
if (onconflict != ONCONFLICT_NONE && resultRelInfo->ri_NumIndices > 0)
{
/* Perform a speculative insertion. */
uint32 specToken;
ItemPointerData conflictTid;
bool specConflict;
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
/*
* Do a non-conclusive check for conflicts first.
*
* We're not holding any locks yet, so this doesn't guarantee that
* the later insert won't conflict. But it avoids leaving behind
* a lot of canceled speculative insertions, if you run a lot of
* INSERT ON CONFLICT statements that do conflict.
*
* We loop back here if we find a conflict below, either during
* the pre-check, or when we re-check after inserting the tuple
* speculatively.
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
*/
vlock:
specConflict = false;
if (!ExecCheckIndexConstraints(slot, estate, &conflictTid,
arbiterIndexes))
{
/* committed conflict tuple found */
if (onconflict == ONCONFLICT_UPDATE)
{
/*
* In case of ON CONFLICT DO UPDATE, execute the UPDATE
* part. Be prepared to retry if the UPDATE fails because
* of another concurrent UPDATE/DELETE to the conflict
* tuple.
*/
TupleTableSlot *returning = NULL;
if (ExecOnConflictUpdate(mtstate, resultRelInfo,
&conflictTid, planSlot, slot,
estate, canSetTag, &returning))
{
InstrCountFiltered2(&mtstate->ps, 1);
return returning;
}
else
goto vlock;
}
else
{
/*
2015-05-24 03:35:49 +02:00
* In case of ON CONFLICT DO NOTHING, do nothing. However,
* verify that the tuple is visible to the executor's MVCC
* snapshot at higher isolation levels.
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
*/
Assert(onconflict == ONCONFLICT_NOTHING);
ExecCheckTIDVisible(estate, resultRelInfo, &conflictTid);
InstrCountFiltered2(&mtstate->ps, 1);
return NULL;
}
}
/*
* Before we start insertion proper, acquire our "speculative
* insertion lock". Others can use that to wait for us to decide
* if we're going to go ahead with the insertion, instead of
* waiting for the whole transaction to complete.
*/
specToken = SpeculativeInsertionLockAcquire(GetCurrentTransactionId());
HeapTupleHeaderSetSpeculativeToken(tuple->t_data, specToken);
/* insert the tuple, with the speculative token */
newId = heap_insert(resultRelationDesc, tuple,
estate->es_output_cid,
HEAP_INSERT_SPECULATIVE,
NULL);
/* insert index entries for tuple */
recheckIndexes = ExecInsertIndexTuples(slot, &(tuple->t_self),
estate, true, &specConflict,
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
arbiterIndexes);
/* adjust the tuple's state accordingly */
if (!specConflict)
heap_finish_speculative(resultRelationDesc, tuple);
else
heap_abort_speculative(resultRelationDesc, tuple);
/*
* Wake up anyone waiting for our decision. They will re-check
* the tuple, see that it's no longer speculative, and wait on our
* XID as if this was a regularly inserted tuple all along. Or if
* we killed the tuple, they will see it's dead, and proceed as if
* the tuple never existed.
*/
SpeculativeInsertionLockRelease(GetCurrentTransactionId());
/*
* If there was a conflict, start from the beginning. We'll do
* the pre-check again, which will now find the conflicting tuple
* (unless it aborts before we get there).
*/
if (specConflict)
{
list_free(recheckIndexes);
goto vlock;
}
/* Since there was no insertion conflict, we're done */
}
else
{
/*
* insert the tuple normally.
*
* Note: heap_insert returns the tid (location) of the new tuple
* in the t_self field.
*/
newId = heap_insert(resultRelationDesc, tuple,
estate->es_output_cid,
0, NULL);
/* insert index entries for tuple */
if (resultRelInfo->ri_NumIndices > 0)
recheckIndexes = ExecInsertIndexTuples(slot, &(tuple->t_self),
estate, false, NULL,
arbiterIndexes);
}
}
if (canSetTag)
{
(estate->es_processed)++;
estate->es_lastoid = newId;
setLastTid(&(tuple->t_self));
}
/*
* If this insert is the result of a partition key update that moved the
* tuple to a new partition, put this row into the transition NEW TABLE,
* if there is one. We need to do this separately for DELETE and INSERT
* because they happen on different tables.
*/
ar_insert_trig_tcs = mtstate->mt_transition_capture;
if (mtstate->operation == CMD_UPDATE && mtstate->mt_transition_capture
&& mtstate->mt_transition_capture->tcs_update_new_table)
{
ExecARUpdateTriggers(estate, resultRelInfo, NULL,
NULL,
tuple,
NULL,
mtstate->mt_transition_capture);
/*
* We've already captured the NEW TABLE row, so make sure any AR
* INSERT trigger fired below doesn't capture it again.
*/
ar_insert_trig_tcs = NULL;
}
/* AFTER ROW INSERT Triggers */
ExecARInsertTriggers(estate, resultRelInfo, tuple, recheckIndexes,
ar_insert_trig_tcs);
list_free(recheckIndexes);
/*
2015-05-24 03:35:49 +02:00
* Check any WITH CHECK OPTION constraints from parent views. We are
* required to do this after testing all constraints and uniqueness
* violations per the SQL spec, so we do it after actually inserting the
* record into the heap and all indexes.
*
2015-05-24 03:35:49 +02:00
* ExecWithCheckOptions will elog(ERROR) if a violation is found, so the
* tuple will never be seen, if it violates the WITH CHECK OPTION.
*
2015-05-24 03:35:49 +02:00
* ExecWithCheckOptions() will skip any WCOs which are not of the kind we
* are looking for at this point.
*/
if (resultRelInfo->ri_WithCheckOptions != NIL)
ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo, slot, estate);
/* Process RETURNING if present */
if (resultRelInfo->ri_projectReturning)
result = ExecProcessReturning(resultRelInfo, slot, planSlot);
if (saved_resultRelInfo)
estate->es_result_relation_info = saved_resultRelInfo;
return result;
}
/* ----------------------------------------------------------------
* ExecDelete
*
* DELETE is like UPDATE, except that we delete the tuple and no
* index modifications are needed.
*
* When deleting from a table, tupleid identifies the tuple to
* delete and oldtuple is NULL. When deleting from a view,
* oldtuple is passed to the INSTEAD OF triggers and identifies
* what to delete, and tupleid is invalid. When deleting from a
* foreign table, tupleid is invalid; the FDW has to figure out
* which row to delete using data from the planSlot. oldtuple is
* passed to foreign table triggers; it is NULL when the foreign
* table has no relevant triggers.
*
* Returns RETURNING result if any, otherwise NULL.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecDelete(ModifyTableState *mtstate,
ItemPointer tupleid,
HeapTuple oldtuple,
TupleTableSlot *planSlot,
EPQState *epqstate,
EState *estate,
bool *tupleDeleted,
bool processReturning,
bool canSetTag)
{
ResultRelInfo *resultRelInfo;
Relation resultRelationDesc;
HTSU_Result result;
HeapUpdateFailureData hufd;
TupleTableSlot *slot = NULL;
TransitionCaptureState *ar_delete_trig_tcs;
if (tupleDeleted)
*tupleDeleted = false;
/*
* get information on the (current) result relation
*/
resultRelInfo = estate->es_result_relation_info;
resultRelationDesc = resultRelInfo->ri_RelationDesc;
/* BEFORE ROW DELETE Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_delete_before_row)
{
bool dodelete;
dodelete = ExecBRDeleteTriggers(estate, epqstate, resultRelInfo,
tupleid, oldtuple);
if (!dodelete) /* "do nothing" */
return NULL;
}
/* INSTEAD OF ROW DELETE Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_delete_instead_row)
{
bool dodelete;
Assert(oldtuple != NULL);
dodelete = ExecIRDeleteTriggers(estate, resultRelInfo, oldtuple);
if (!dodelete) /* "do nothing" */
return NULL;
}
else if (resultRelInfo->ri_FdwRoutine)
{
HeapTuple tuple;
/*
* delete from foreign table: let the FDW do it
*
* We offer the trigger tuple slot as a place to store RETURNING data,
* although the FDW can return some other slot if it wants. Set up
* the slot's tupdesc so the FDW doesn't need to do that for itself.
*/
slot = estate->es_trig_tuple_slot;
if (slot->tts_tupleDescriptor != RelationGetDescr(resultRelationDesc))
ExecSetSlotDescriptor(slot, RelationGetDescr(resultRelationDesc));
slot = resultRelInfo->ri_FdwRoutine->ExecForeignDelete(estate,
resultRelInfo,
slot,
planSlot);
if (slot == NULL) /* "do nothing" */
return NULL;
/*
* RETURNING expressions might reference the tableoid column, so
* initialize t_tableOid before evaluating them.
*/
if (slot->tts_isempty)
ExecStoreAllNullTuple(slot);
tuple = ExecMaterializeSlot(slot);
tuple->t_tableOid = RelationGetRelid(resultRelationDesc);
}
else
{
/*
* delete the tuple
*
* Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check
* that the row to be deleted is visible to that snapshot, and throw a
* can't-serialize error if not. This is a special-case behavior
* needed for referential integrity updates in transaction-snapshot
* mode transactions.
*/
ldelete:;
result = heap_delete(resultRelationDesc, tupleid,
estate->es_output_cid,
estate->es_crosscheck_snapshot,
true /* wait for commit */ ,
&hufd);
switch (result)
{
case HeapTupleSelfUpdated:
/*
* The target tuple was already updated or deleted by the
* current command, or by a later command in the current
* transaction. The former case is possible in a join DELETE
* where multiple tuples join to the same target tuple. This
* is somewhat questionable, but Postgres has always allowed
* it: we just ignore additional deletion attempts.
*
* The latter case arises if the tuple is modified by a
* command in a BEFORE trigger, or perhaps by a command in a
* volatile function used in the query. In such situations we
* should not ignore the deletion, but it is equally unsafe to
* proceed. We don't want to discard the original DELETE
* while keeping the triggered actions based on its deletion;
* and it would be no better to allow the original DELETE
* while discarding updates that it triggered. The row update
* carries some information that might be important according
* to business rules; so throwing an error is the only safe
* course.
*
* If a trigger actually intends this type of interaction, it
* can re-execute the DELETE and then return NULL to cancel
* the outer delete.
*/
if (hufd.cmax != estate->es_output_cid)
ereport(ERROR,
(errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
errmsg("tuple to be updated was already modified by an operation triggered by the current command"),
errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
/* Else, already deleted by self; nothing to do */
return NULL;
case HeapTupleMayBeUpdated:
break;
case HeapTupleUpdated:
if (IsolationUsesXactSnapshot())
ereport(ERROR,
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("could not serialize access due to concurrent update")));
if (!ItemPointerEquals(tupleid, &hufd.ctid))
{
TupleTableSlot *epqslot;
epqslot = EvalPlanQual(estate,
epqstate,
resultRelationDesc,
resultRelInfo->ri_RangeTableIndex,
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
LockTupleExclusive,
&hufd.ctid,
hufd.xmax);
if (!TupIsNull(epqslot))
{
*tupleid = hufd.ctid;
goto ldelete;
}
}
/* tuple already deleted; nothing to do */
return NULL;
default:
elog(ERROR, "unrecognized heap_delete status: %u", result);
return NULL;
}
/*
* Note: Normally one would think that we have to delete index tuples
* associated with the heap tuple now...
*
* ... but in POSTGRES, we have no need to do this because VACUUM will
* take care of it later. We can't delete index tuples immediately
* anyway, since the tuple is still visible to other transactions.
*/
}
if (canSetTag)
(estate->es_processed)++;
/* Tell caller that the delete actually happened. */
if (tupleDeleted)
*tupleDeleted = true;
/*
* If this delete is the result of a partition key update that moved the
* tuple to a new partition, put this row into the transition OLD TABLE,
* if there is one. We need to do this separately for DELETE and INSERT
* because they happen on different tables.
*/
ar_delete_trig_tcs = mtstate->mt_transition_capture;
if (mtstate->operation == CMD_UPDATE && mtstate->mt_transition_capture
&& mtstate->mt_transition_capture->tcs_update_old_table)
{
ExecARUpdateTriggers(estate, resultRelInfo,
tupleid,
oldtuple,
NULL,
NULL,
mtstate->mt_transition_capture);
/*
* We've already captured the NEW TABLE row, so make sure any AR
* DELETE trigger fired below doesn't capture it again.
*/
ar_delete_trig_tcs = NULL;
}
/* AFTER ROW DELETE Triggers */
ExecARDeleteTriggers(estate, resultRelInfo, tupleid, oldtuple,
ar_delete_trig_tcs);
/* Process RETURNING if present and if requested */
if (processReturning && resultRelInfo->ri_projectReturning)
{
/*
* We have to put the target tuple into a slot, which means first we
* gotta fetch it. We can use the trigger tuple slot.
*/
TupleTableSlot *rslot;
HeapTupleData deltuple;
Buffer delbuffer;
if (resultRelInfo->ri_FdwRoutine)
{
/* FDW must have provided a slot containing the deleted row */
Assert(!TupIsNull(slot));
delbuffer = InvalidBuffer;
}
else
{
slot = estate->es_trig_tuple_slot;
if (oldtuple != NULL)
{
deltuple = *oldtuple;
delbuffer = InvalidBuffer;
}
else
{
deltuple.t_self = *tupleid;
if (!heap_fetch(resultRelationDesc, SnapshotAny,
&deltuple, &delbuffer, false, NULL))
elog(ERROR, "failed to fetch deleted tuple for DELETE RETURNING");
}
if (slot->tts_tupleDescriptor != RelationGetDescr(resultRelationDesc))
ExecSetSlotDescriptor(slot, RelationGetDescr(resultRelationDesc));
ExecStoreTuple(&deltuple, slot, InvalidBuffer, false);
}
rslot = ExecProcessReturning(resultRelInfo, slot, planSlot);
/*
* Before releasing the target tuple again, make sure rslot has a
* local copy of any pass-by-reference values.
*/
ExecMaterializeSlot(rslot);
ExecClearTuple(slot);
if (BufferIsValid(delbuffer))
ReleaseBuffer(delbuffer);
return rslot;
}
return NULL;
}
/* ----------------------------------------------------------------
* ExecUpdate
*
* note: we can't run UPDATE queries with transactions
* off because UPDATEs are actually INSERTs and our
* scan will mistakenly loop forever, updating the tuple
* it just inserted.. This should be fixed but until it
* is, we don't want to get stuck in an infinite loop
* which corrupts your database..
*
* When updating a table, tupleid identifies the tuple to
* update and oldtuple is NULL. When updating a view, oldtuple
* is passed to the INSTEAD OF triggers and identifies what to
* update, and tupleid is invalid. When updating a foreign table,
* tupleid is invalid; the FDW has to figure out which row to
* update using data from the planSlot. oldtuple is passed to
* foreign table triggers; it is NULL when the foreign table has
* no relevant triggers.
*
* Returns RETURNING result if any, otherwise NULL.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecUpdate(ModifyTableState *mtstate,
ItemPointer tupleid,
HeapTuple oldtuple,
TupleTableSlot *slot,
TupleTableSlot *planSlot,
EPQState *epqstate,
EState *estate,
bool canSetTag)
{
HeapTuple tuple;
ResultRelInfo *resultRelInfo;
Relation resultRelationDesc;
HTSU_Result result;
HeapUpdateFailureData hufd;
List *recheckIndexes = NIL;
TupleConversionMap *saved_tcs_map = NULL;
/*
* abort the operation if not running transactions
*/
if (IsBootstrapProcessingMode())
elog(ERROR, "cannot UPDATE during bootstrap");
/*
* get the heap tuple out of the tuple table slot, making sure we have a
* writable copy
*/
tuple = ExecMaterializeSlot(slot);
/*
* get information on the (current) result relation
*/
resultRelInfo = estate->es_result_relation_info;
resultRelationDesc = resultRelInfo->ri_RelationDesc;
/* BEFORE ROW UPDATE Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_update_before_row)
{
slot = ExecBRUpdateTriggers(estate, epqstate, resultRelInfo,
tupleid, oldtuple, slot);
if (slot == NULL) /* "do nothing" */
return NULL;
/* trigger might have changed tuple */
tuple = ExecMaterializeSlot(slot);
}
/* INSTEAD OF ROW UPDATE Triggers */
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_update_instead_row)
{
slot = ExecIRUpdateTriggers(estate, resultRelInfo,
oldtuple, slot);
if (slot == NULL) /* "do nothing" */
return NULL;
/* trigger might have changed tuple */
tuple = ExecMaterializeSlot(slot);
}
else if (resultRelInfo->ri_FdwRoutine)
{
/*
* update in foreign table: let the FDW do it
*/
slot = resultRelInfo->ri_FdwRoutine->ExecForeignUpdate(estate,
resultRelInfo,
slot,
planSlot);
if (slot == NULL) /* "do nothing" */
return NULL;
/* FDW might have changed tuple */
tuple = ExecMaterializeSlot(slot);
/*
* AFTER ROW Triggers or RETURNING expressions might reference the
* tableoid column, so initialize t_tableOid before evaluating them.
*/
tuple->t_tableOid = RelationGetRelid(resultRelationDesc);
}
else
{
LockTupleMode lockmode;
bool partition_constraint_failed;
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
/*
* Constraints might reference the tableoid column, so initialize
* t_tableOid before evaluating them.
*/
tuple->t_tableOid = RelationGetRelid(resultRelationDesc);
/*
* Check any RLS UPDATE WITH CHECK policies
*
* If we generate a new candidate tuple after EvalPlanQual testing, we
* must loop back here and recheck any RLS policies and constraints.
* (We don't need to redo triggers, however. If there are any BEFORE
* triggers then trigger.c will have done heap_lock_tuple to lock the
* correct tuple, so there's no need to do them again.)
*/
lreplace:;
/*
* If partition constraint fails, this row might get moved to another
* partition, in which case we should check the RLS CHECK policy just
* before inserting into the new partition, rather than doing it here.
* This is because a trigger on that partition might again change the
* row. So skip the WCO checks if the partition constraint fails.
*/
partition_constraint_failed =
resultRelInfo->ri_PartitionCheck &&
!ExecPartitionCheck(resultRelInfo, slot, estate);
if (!partition_constraint_failed &&
resultRelInfo->ri_WithCheckOptions != NIL)
{
/*
* ExecWithCheckOptions() will skip any WCOs which are not of the
* kind we are looking for at this point.
*/
ExecWithCheckOptions(WCO_RLS_UPDATE_CHECK,
resultRelInfo, slot, estate);
}
/*
* If a partition check failed, try to move the row into the right
* partition.
*/
if (partition_constraint_failed)
{
bool tuple_deleted;
TupleTableSlot *ret_slot;
PartitionTupleRouting *proute = mtstate->mt_partition_tuple_routing;
int map_index;
TupleConversionMap *tupconv_map;
/*
* When an UPDATE is run on a leaf partition, we will not have
* partition tuple routing set up. In that case, fail with
* partition constraint violation error.
*/
if (proute == NULL)
ExecPartitionCheckEmitError(resultRelInfo, slot, estate);
/*
* Row movement, part 1. Delete the tuple, but skip RETURNING
* processing. We want to return rows from INSERT.
*/
ExecDelete(mtstate, tupleid, oldtuple, planSlot, epqstate, estate,
&tuple_deleted, false, false);
/*
* For some reason if DELETE didn't happen (e.g. trigger prevented
* it, or it was already deleted by self, or it was concurrently
* deleted by another transaction), then we should skip the insert
* as well; otherwise, an UPDATE could cause an increase in the
* total number of rows across all partitions, which is clearly
* wrong.
*
* For a normal UPDATE, the case where the tuple has been the
* subject of a concurrent UPDATE or DELETE would be handled by
* the EvalPlanQual machinery, but for an UPDATE that we've
* translated into a DELETE from this partition and an INSERT into
* some other partition, that's not available, because CTID chains
* can't span relation boundaries. We mimic the semantics to a
* limited extent by skipping the INSERT if the DELETE fails to
* find a tuple. This ensures that two concurrent attempts to
* UPDATE the same tuple at the same time can't turn one tuple
* into two, and that an UPDATE of a just-deleted tuple can't
* resurrect it.
*/
if (!tuple_deleted)
return NULL;
/*
* Updates set the transition capture map only when a new subplan
* is chosen. But for inserts, it is set for each row. So after
* INSERT, we need to revert back to the map created for UPDATE;
* otherwise the next UPDATE will incorrectly use the one created
* for INSERT. So first save the one created for UPDATE.
*/
if (mtstate->mt_transition_capture)
saved_tcs_map = mtstate->mt_transition_capture->tcs_map;
/*
* resultRelInfo is one of the per-subplan resultRelInfos. So we
* should convert the tuple into root's tuple descriptor, since
* ExecInsert() starts the search from root. The tuple conversion
* map list is in the order of mtstate->resultRelInfo[], so to
* retrieve the one for this resultRel, we need to know the
* position of the resultRel in mtstate->resultRelInfo[].
*/
map_index = resultRelInfo - mtstate->resultRelInfo;
Assert(map_index >= 0 && map_index < mtstate->mt_nplans);
tupconv_map = tupconv_map_for_subplan(mtstate, map_index);
tuple = ConvertPartitionTupleSlot(tupconv_map,
tuple,
proute->root_tuple_slot,
&slot);
/*
* For ExecInsert(), make it look like we are inserting into the
* root.
*/
Assert(mtstate->rootResultRelInfo != NULL);
estate->es_result_relation_info = mtstate->rootResultRelInfo;
ret_slot = ExecInsert(mtstate, slot, planSlot, NULL,
ONCONFLICT_NONE, estate, canSetTag);
/*
* Revert back the active result relation and the active
* transition capture map that we changed above.
*/
estate->es_result_relation_info = resultRelInfo;
if (mtstate->mt_transition_capture)
{
mtstate->mt_transition_capture->tcs_original_insert_tuple = NULL;
mtstate->mt_transition_capture->tcs_map = saved_tcs_map;
}
return ret_slot;
}
/*
* Check the constraints of the tuple. Note that we pass the same
* slot for the orig_slot argument, because unlike ExecInsert(), no
* tuple-routing is performed here, hence the slot remains unchanged.
* We've already checked the partition constraint above; however, we
* must still ensure the tuple passes all other constraints, so we
* will call ExecConstraints() and have it validate all remaining
* checks.
*/
if (resultRelationDesc->rd_att->constr)
ExecConstraints(resultRelInfo, slot, estate, false);
/*
* replace the heap tuple
*
* Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check
* that the row to be updated is visible to that snapshot, and throw a
* can't-serialize error if not. This is a special-case behavior
* needed for referential integrity updates in transaction-snapshot
* mode transactions.
*/
result = heap_update(resultRelationDesc, tupleid, tuple,
estate->es_output_cid,
estate->es_crosscheck_snapshot,
true /* wait for commit */ ,
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
&hufd, &lockmode);
switch (result)
{
case HeapTupleSelfUpdated:
/*
* The target tuple was already updated or deleted by the
* current command, or by a later command in the current
* transaction. The former case is possible in a join UPDATE
* where multiple tuples join to the same target tuple. This
* is pretty questionable, but Postgres has always allowed it:
* we just execute the first update action and ignore
* additional update attempts.
*
* The latter case arises if the tuple is modified by a
* command in a BEFORE trigger, or perhaps by a command in a
* volatile function used in the query. In such situations we
* should not ignore the update, but it is equally unsafe to
* proceed. We don't want to discard the original UPDATE
* while keeping the triggered actions based on it; and we
* have no principled way to merge this update with the
* previous ones. So throwing an error is the only safe
* course.
*
* If a trigger actually intends this type of interaction, it
* can re-execute the UPDATE (assuming it can figure out how)
* and then return NULL to cancel the outer update.
*/
if (hufd.cmax != estate->es_output_cid)
ereport(ERROR,
(errcode(ERRCODE_TRIGGERED_DATA_CHANGE_VIOLATION),
errmsg("tuple to be updated was already modified by an operation triggered by the current command"),
errhint("Consider using an AFTER trigger instead of a BEFORE trigger to propagate changes to other rows.")));
/* Else, already updated by self; nothing to do */
return NULL;
case HeapTupleMayBeUpdated:
break;
case HeapTupleUpdated:
if (IsolationUsesXactSnapshot())
ereport(ERROR,
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("could not serialize access due to concurrent update")));
if (!ItemPointerEquals(tupleid, &hufd.ctid))
{
TupleTableSlot *epqslot;
epqslot = EvalPlanQual(estate,
epqstate,
resultRelationDesc,
resultRelInfo->ri_RangeTableIndex,
Improve concurrency of foreign key locking This patch introduces two additional lock modes for tuples: "SELECT FOR KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each other, in contrast with already existing "SELECT FOR SHARE" and "SELECT FOR UPDATE". UPDATE commands that do not modify the values stored in the columns that are part of the key of the tuple now grab a SELECT FOR NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently with tuple locks of the FOR KEY SHARE variety. Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this means the concurrency improvement applies to them, which is the whole point of this patch. The added tuple lock semantics require some rejiggering of the multixact module, so that the locking level that each transaction is holding can be stored alongside its Xid. Also, multixacts now need to persist across server restarts and crashes, because they can now represent not only tuple locks, but also tuple updates. This means we need more careful tracking of lifetime of pg_multixact SLRU files; since they now persist longer, we require more infrastructure to figure out when they can be removed. pg_upgrade also needs to be careful to copy pg_multixact files over from the old server to the new, or at least part of multixact.c state, depending on the versions of the old and new servers. Tuple time qualification rules (HeapTupleSatisfies routines) need to be careful not to consider tuples with the "is multi" infomask bit set as being only locked; they might need to look up MultiXact values (i.e. possibly do pg_multixact I/O) to find out the Xid that updated a tuple, whereas they previously were assured to only use information readily available from the tuple header. This is considered acceptable, because the extra I/O would involve cases that would previously cause some commands to block waiting for concurrent transactions to finish. Another important change is the fact that locking tuples that have previously been updated causes the future versions to be marked as locked, too; this is essential for correctness of foreign key checks. This causes additional WAL-logging, also (there was previously a single WAL record for a locked tuple; now there are as many as updated copies of the tuple there exist.) With all this in place, contention related to tuples being checked by foreign key rules should be much reduced. As a bonus, the old behavior that a subtransaction grabbing a stronger tuple lock than the parent (sub)transaction held on a given tuple and later aborting caused the weaker lock to be lost, has been fixed. Many new spec files were added for isolation tester framework, to ensure overall behavior is sane. There's probably room for several more tests. There were several reviewers of this patch; in particular, Noah Misch and Andres Freund spent considerable time in it. Original idea for the patch came from Simon Riggs, after a problem report by Joel Jacobson. Most code is from me, with contributions from Marti Raudsepp, Alexander Shulgin, Noah Misch and Andres Freund. This patch was discussed in several pgsql-hackers threads; the most important start at the following message-ids: AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com 1290721684-sup-3951@alvh.no-ip.org 1294953201-sup-2099@alvh.no-ip.org 1320343602-sup-2290@alvh.no-ip.org 1339690386-sup-8927@alvh.no-ip.org 4FE5FF020200002500048A3D@gw.wicourts.gov 4FEAB90A0200002500048B7D@gw.wicourts.gov
2013-01-23 16:04:59 +01:00
lockmode,
&hufd.ctid,
hufd.xmax);
if (!TupIsNull(epqslot))
{
*tupleid = hufd.ctid;
slot = ExecFilterJunk(resultRelInfo->ri_junkFilter, epqslot);
tuple = ExecMaterializeSlot(slot);
goto lreplace;
}
}
/* tuple already deleted; nothing to do */
return NULL;
default:
elog(ERROR, "unrecognized heap_update status: %u", result);
return NULL;
}
/*
* Note: instead of having to update the old index tuples associated
2011-04-10 17:42:00 +02:00
* with the heap tuple, all we do is form and insert new index tuples.
* This is because UPDATEs are actually DELETEs and INSERTs, and index
* tuple deletion is done later by VACUUM (see notes in ExecDelete).
* All we do here is insert new index tuples. -cim 9/27/89
*/
/*
* insert index entries for tuple
*
* Note: heap_update returns the tid (location) of the new tuple in
* the t_self field.
*
* If it's a HOT update, we mustn't insert new index entries.
*/
if (resultRelInfo->ri_NumIndices > 0 && !HeapTupleIsHeapOnly(tuple))
recheckIndexes = ExecInsertIndexTuples(slot, &(tuple->t_self),
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
estate, false, NULL, NIL);
}
if (canSetTag)
(estate->es_processed)++;
/* AFTER ROW UPDATE Triggers */
ExecARUpdateTriggers(estate, resultRelInfo, tupleid, oldtuple, tuple,
recheckIndexes,
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
mtstate->operation == CMD_INSERT ?
mtstate->mt_oc_transition_capture :
mtstate->mt_transition_capture);
list_free(recheckIndexes);
/*
2015-05-24 03:35:49 +02:00
* Check any WITH CHECK OPTION constraints from parent views. We are
* required to do this after testing all constraints and uniqueness
* violations per the SQL spec, so we do it after actually updating the
* record in the heap and all indexes.
*
2015-05-24 03:35:49 +02:00
* ExecWithCheckOptions() will skip any WCOs which are not of the kind we
* are looking for at this point.
*/
if (resultRelInfo->ri_WithCheckOptions != NIL)
ExecWithCheckOptions(WCO_VIEW_CHECK, resultRelInfo, slot, estate);
/* Process RETURNING if present */
if (resultRelInfo->ri_projectReturning)
return ExecProcessReturning(resultRelInfo, slot, planSlot);
return NULL;
}
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
/*
* ExecOnConflictUpdate --- execute UPDATE of INSERT ON CONFLICT DO UPDATE
*
* Try to lock tuple for update as part of speculative insertion. If
* a qual originating from ON CONFLICT DO UPDATE is satisfied, update
* (but still lock row, even though it may not satisfy estate's
* snapshot).
*
* Returns true if if we're done (with or without an update), or false if
* the caller must retry the INSERT from scratch.
*/
static bool
ExecOnConflictUpdate(ModifyTableState *mtstate,
ResultRelInfo *resultRelInfo,
ItemPointer conflictTid,
TupleTableSlot *planSlot,
TupleTableSlot *excludedSlot,
EState *estate,
bool canSetTag,
TupleTableSlot **returning)
{
ExprContext *econtext = mtstate->ps.ps_ExprContext;
Relation relation = resultRelInfo->ri_RelationDesc;
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState *onConflictSetWhere = resultRelInfo->ri_onConflictSetWhere;
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
HeapTupleData tuple;
HeapUpdateFailureData hufd;
LockTupleMode lockmode;
HTSU_Result test;
Buffer buffer;
/* Determine lock mode to use */
lockmode = ExecUpdateLockMode(estate, resultRelInfo);
/*
* Lock tuple for update. Don't follow updates when tuple cannot be
* locked without doing so. A row locking conflict here means our
* previous conclusion that the tuple is conclusively committed is not
* true anymore.
*/
tuple.t_self = *conflictTid;
test = heap_lock_tuple(relation, &tuple, estate->es_output_cid,
lockmode, LockWaitBlock, false, &buffer,
&hufd);
switch (test)
{
case HeapTupleMayBeUpdated:
/* success! */
break;
case HeapTupleInvisible:
/*
* This can occur when a just inserted tuple is updated again in
* the same command. E.g. because multiple rows with the same
* conflicting key values are inserted.
*
* This is somewhat similar to the ExecUpdate()
* HeapTupleSelfUpdated case. We do not want to proceed because
* it would lead to the same row being updated a second time in
* some unspecified order, and in contrast to plain UPDATEs
* there's no historical behavior to break.
*
* It is the user's responsibility to prevent this situation from
* occurring. These problems are why SQL-2003 similarly specifies
* that for SQL MERGE, an exception must be raised in the event of
* an attempt to update the same row twice.
*/
if (TransactionIdIsCurrentTransactionId(HeapTupleHeaderGetXmin(tuple.t_data)))
ereport(ERROR,
(errcode(ERRCODE_CARDINALITY_VIOLATION),
errmsg("ON CONFLICT DO UPDATE command cannot affect row a second time"),
errhint("Ensure that no rows proposed for insertion within the same command have duplicate constrained values.")));
/* This shouldn't happen */
elog(ERROR, "attempted to lock invisible tuple");
case HeapTupleSelfUpdated:
/*
* This state should never be reached. As a dirty snapshot is used
* to find conflicting tuples, speculative insertion wouldn't have
* seen this row to conflict with.
*/
elog(ERROR, "unexpected self-updated tuple");
case HeapTupleUpdated:
if (IsolationUsesXactSnapshot())
ereport(ERROR,
(errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
errmsg("could not serialize access due to concurrent update")));
/*
* Tell caller to try again from the very start.
*
* It does not make sense to use the usual EvalPlanQual() style
* loop here, as the new version of the row might not conflict
* anymore, or the conflicting tuple has actually been deleted.
*/
ReleaseBuffer(buffer);
return false;
default:
elog(ERROR, "unrecognized heap_lock_tuple status: %u", test);
}
/*
* Success, the tuple is locked.
*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous cycle.
*/
ResetExprContext(econtext);
/*
* Verify that the tuple is visible to our MVCC snapshot if the current
* isolation level mandates that.
*
* It's not sufficient to rely on the check within ExecUpdate() as e.g.
* CONFLICT ... WHERE clause may prevent us from reaching that.
*
* This means we only ever continue when a new command in the current
* transaction could see the row, even though in READ COMMITTED mode the
* tuple will not be visible according to the current statement's
* snapshot. This is in line with the way UPDATE deals with newer tuple
* versions.
*/
ExecCheckHeapTupleVisible(estate, &tuple, buffer);
/* Store target's existing tuple in the state's dedicated slot */
ExecStoreTuple(&tuple, mtstate->mt_existing, buffer, false);
/*
* Make tuple and any needed join variables available to ExecQual and
* ExecProject. The EXCLUDED tuple is installed in ecxt_innertuple, while
2015-05-24 03:35:49 +02:00
* the target's existing tuple is installed in the scantuple. EXCLUDED
* has been made to reference INNER_VAR in setrefs.c, but there is no
* other redirection.
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
*/
econtext->ecxt_scantuple = mtstate->mt_existing;
econtext->ecxt_innertuple = excludedSlot;
econtext->ecxt_outertuple = NULL;
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
if (!ExecQual(onConflictSetWhere, econtext))
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
{
ReleaseBuffer(buffer);
InstrCountFiltered1(&mtstate->ps, 1);
return true; /* done with the tuple */
}
if (resultRelInfo->ri_WithCheckOptions != NIL)
{
/*
* Check target's existing tuple against UPDATE-applicable USING
* security barrier quals (if any), enforced here as RLS checks/WCOs.
*
* The rewriter creates UPDATE RLS checks/WCOs for UPDATE security
* quals, and stores them as WCOs of "kind" WCO_RLS_CONFLICT_CHECK,
* but that's almost the extent of its special handling for ON
* CONFLICT DO UPDATE.
*
* The rewriter will also have associated UPDATE applicable straight
* RLS checks/WCOs for the benefit of the ExecUpdate() call that
* follows. INSERTs and UPDATEs naturally have mutually exclusive WCO
* kinds, so there is no danger of spurious over-enforcement in the
* INSERT or UPDATE path.
*/
ExecWithCheckOptions(WCO_RLS_CONFLICT_CHECK, resultRelInfo,
mtstate->mt_existing,
mtstate->ps.state);
}
/* Project the new tuple version */
ExecProject(resultRelInfo->ri_onConflictSetProj);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
/*
* Note that it is possible that the target tuple has been modified in
* this session, after the above heap_lock_tuple. We choose to not error
2016-06-10 00:02:36 +02:00
* out in that case, in line with ExecUpdate's treatment of similar cases.
* This can happen if an UPDATE is triggered from within ExecQual(),
* ExecWithCheckOptions() or ExecProject() above, e.g. by selecting from a
* wCTE in the ON CONFLICT's SET.
*/
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
/* Execute UPDATE with projection */
*returning = ExecUpdate(mtstate, &tuple.t_self, NULL,
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
mtstate->mt_conflproj, planSlot,
&mtstate->mt_epqstate, mtstate->ps.state,
canSetTag);
ReleaseBuffer(buffer);
return true;
}
/*
* Process BEFORE EACH STATEMENT triggers
*/
static void
fireBSTriggers(ModifyTableState *node)
{
ResultRelInfo *resultRelInfo = node->resultRelInfo;
/*
* If the node modifies a partitioned table, we must fire its triggers.
* Note that in that case, node->resultRelInfo points to the first leaf
* partition, not the root table.
*/
if (node->rootResultRelInfo != NULL)
resultRelInfo = node->rootResultRelInfo;
switch (node->operation)
{
case CMD_INSERT:
ExecBSInsertTriggers(node->ps.state, resultRelInfo);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
if (node->mt_onconflict == ONCONFLICT_UPDATE)
ExecBSUpdateTriggers(node->ps.state,
resultRelInfo);
break;
case CMD_UPDATE:
ExecBSUpdateTriggers(node->ps.state, resultRelInfo);
break;
case CMD_DELETE:
ExecBSDeleteTriggers(node->ps.state, resultRelInfo);
break;
default:
elog(ERROR, "unknown operation");
break;
}
}
/*
* Return the target rel ResultRelInfo.
*
* This relation is the same as :
* - the relation for which we will fire AFTER STATEMENT triggers.
* - the relation into whose tuple format all captured transition tuples must
* be converted.
* - the root partitioned table.
*/
static ResultRelInfo *
getTargetResultRelInfo(ModifyTableState *node)
{
/*
* Note that if the node modifies a partitioned table, node->resultRelInfo
* points to the first leaf partition, not the root table.
*/
if (node->rootResultRelInfo != NULL)
return node->rootResultRelInfo;
else
return node->resultRelInfo;
}
/*
* Process AFTER EACH STATEMENT triggers
*/
static void
fireASTriggers(ModifyTableState *node)
{
ResultRelInfo *resultRelInfo = getTargetResultRelInfo(node);
switch (node->operation)
{
case CMD_INSERT:
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
if (node->mt_onconflict == ONCONFLICT_UPDATE)
ExecASUpdateTriggers(node->ps.state,
resultRelInfo,
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
node->mt_oc_transition_capture);
ExecASInsertTriggers(node->ps.state, resultRelInfo,
node->mt_transition_capture);
break;
case CMD_UPDATE:
ExecASUpdateTriggers(node->ps.state, resultRelInfo,
node->mt_transition_capture);
break;
case CMD_DELETE:
ExecASDeleteTriggers(node->ps.state, resultRelInfo,
node->mt_transition_capture);
break;
default:
elog(ERROR, "unknown operation");
break;
}
}
/*
* Set up the state needed for collecting transition tuples for AFTER
* triggers.
*/
static void
ExecSetupTransitionCaptureState(ModifyTableState *mtstate, EState *estate)
{
ResultRelInfo *targetRelInfo = getTargetResultRelInfo(mtstate);
/* Check for transition tables on the directly targeted relation. */
mtstate->mt_transition_capture =
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
MakeTransitionCaptureState(targetRelInfo->ri_TrigDesc,
RelationGetRelid(targetRelInfo->ri_RelationDesc),
mtstate->operation);
if (mtstate->operation == CMD_INSERT &&
mtstate->mt_onconflict == ONCONFLICT_UPDATE)
mtstate->mt_oc_transition_capture =
MakeTransitionCaptureState(targetRelInfo->ri_TrigDesc,
RelationGetRelid(targetRelInfo->ri_RelationDesc),
CMD_UPDATE);
/*
* If we found that we need to collect transition tuples then we may also
* need tuple conversion maps for any children that have TupleDescs that
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
* aren't compatible with the tuplestores. (We can share these maps
* between the regular and ON CONFLICT cases.)
*/
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
if (mtstate->mt_transition_capture != NULL ||
mtstate->mt_oc_transition_capture != NULL)
{
ExecSetupChildParentMapForTcs(mtstate);
/*
* Install the conversion map for the first plan for UPDATE and DELETE
* operations. It will be advanced each time we switch to the next
* plan. (INSERT operations set it every time, so we need not update
* mtstate->mt_oc_transition_capture here.)
*/
if (mtstate->mt_transition_capture && mtstate->operation != CMD_INSERT)
mtstate->mt_transition_capture->tcs_map =
tupconv_map_for_subplan(mtstate, 0);
}
}
/*
* Initialize the child-to-root tuple conversion map array for UPDATE subplans.
*
* This map array is required to convert the tuple from the subplan result rel
* to the target table descriptor. This requirement arises for two independent
* scenarios:
* 1. For update-tuple-routing.
* 2. For capturing tuples in transition tables.
*/
static void
ExecSetupChildParentMapForSubplan(ModifyTableState *mtstate)
{
ResultRelInfo *targetRelInfo = getTargetResultRelInfo(mtstate);
ResultRelInfo *resultRelInfos = mtstate->resultRelInfo;
TupleDesc outdesc;
int numResultRelInfos = mtstate->mt_nplans;
int i;
/*
* First check if there is already a per-subplan array allocated. Even if
* there is already a per-leaf map array, we won't require a per-subplan
* one, since we will use the subplan offset array to convert the subplan
* index to per-leaf index.
*/
if (mtstate->mt_per_subplan_tupconv_maps ||
(mtstate->mt_partition_tuple_routing &&
mtstate->mt_partition_tuple_routing->child_parent_tupconv_maps))
return;
/*
* Build array of conversion maps from each child's TupleDesc to the one
* used in the target relation. The map pointers may be NULL when no
* conversion is necessary, which is hopefully a common case.
*/
/* Get tuple descriptor of the target rel. */
outdesc = RelationGetDescr(targetRelInfo->ri_RelationDesc);
mtstate->mt_per_subplan_tupconv_maps = (TupleConversionMap **)
palloc(sizeof(TupleConversionMap *) * numResultRelInfos);
for (i = 0; i < numResultRelInfos; ++i)
{
mtstate->mt_per_subplan_tupconv_maps[i] =
convert_tuples_by_name(RelationGetDescr(resultRelInfos[i].ri_RelationDesc),
outdesc,
gettext_noop("could not convert row type"));
}
}
/*
* Initialize the child-to-root tuple conversion map array required for
* capturing transition tuples.
*
* The map array can be indexed either by subplan index or by leaf-partition
* index. For transition tables, we need a subplan-indexed access to the map,
* and where tuple-routing is present, we also require a leaf-indexed access.
*/
static void
ExecSetupChildParentMapForTcs(ModifyTableState *mtstate)
{
PartitionTupleRouting *proute = mtstate->mt_partition_tuple_routing;
/*
* If partition tuple routing is set up, we will require partition-indexed
* access. In that case, create the map array indexed by partition; we
* will still be able to access the maps using a subplan index by
* converting the subplan index to a partition index using
* subplan_partition_offsets. If tuple routing is not set up, it means we
* don't require partition-indexed access. In that case, create just a
* subplan-indexed map.
*/
if (proute)
{
/*
* If a partition-indexed map array is to be created, the subplan map
* array has to be NULL. If the subplan map array is already created,
* we won't be able to access the map using a partition index.
*/
Assert(mtstate->mt_per_subplan_tupconv_maps == NULL);
ExecSetupChildParentMapForLeaf(proute);
}
else
ExecSetupChildParentMapForSubplan(mtstate);
}
/*
* For a given subplan index, get the tuple conversion map.
*/
static TupleConversionMap *
tupconv_map_for_subplan(ModifyTableState *mtstate, int whichplan)
{
/*
* If a partition-index tuple conversion map array is allocated, we need
* to first get the index into the partition array. Exactly *one* of the
* two arrays is allocated. This is because if there is a partition array
* required, we don't require subplan-indexed array since we can translate
* subplan index into partition index. And, we create a subplan-indexed
* array *only* if partition-indexed array is not required.
*/
if (mtstate->mt_per_subplan_tupconv_maps == NULL)
{
int leaf_index;
PartitionTupleRouting *proute = mtstate->mt_partition_tuple_routing;
/*
* If subplan-indexed array is NULL, things should have been arranged
* to convert the subplan index to partition index.
*/
Assert(proute && proute->subplan_partition_offsets != NULL &&
whichplan < proute->num_subplan_partition_offsets);
leaf_index = proute->subplan_partition_offsets[whichplan];
return TupConvMapForLeaf(proute, getTargetResultRelInfo(mtstate),
leaf_index);
}
else
{
Assert(whichplan >= 0 && whichplan < mtstate->mt_nplans);
return mtstate->mt_per_subplan_tupconv_maps[whichplan];
}
}
/* ----------------------------------------------------------------
* ExecModifyTable
*
* Perform table modifications as required, and return RETURNING results
* if needed.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecModifyTable(PlanState *pstate)
{
ModifyTableState *node = castNode(ModifyTableState, pstate);
2010-02-26 03:01:40 +01:00
EState *estate = node->ps.state;
CmdType operation = node->operation;
ResultRelInfo *saved_resultRelInfo;
ResultRelInfo *resultRelInfo;
2010-02-26 03:01:40 +01:00
PlanState *subplanstate;
JunkFilter *junkfilter;
TupleTableSlot *slot;
TupleTableSlot *planSlot;
Fix creation of resjunk tlist entries for inherited mixed UPDATE/DELETE. rewriteTargetListUD's processing is dependent on the relkind of the query's target table. That was fine at the time it was made to act that way, even for queries on inheritance trees, because all tables in an inheritance tree would necessarily be plain tables. However, the 9.5 feature addition allowing some members of an inheritance tree to be foreign tables broke the assumption that rewriteTargetListUD's output tlist could be applied to all child tables with nothing more than column-number mapping. This led to visible failures if foreign child tables had row-level triggers, and would also break in cases where child tables belonged to FDWs that used methods other than CTID for row identification. To fix, delay running rewriteTargetListUD until after the planner has expanded inheritance, so that it is applied separately to the (already mapped) tlist for each child table. We can conveniently call it from preprocess_targetlist. Refactor associated code slightly to avoid the need to heap_open the target relation multiple times during preprocess_targetlist. (The APIs remain a bit ugly, particularly around the point of which steps scribble on parse->targetList and which don't. But avoiding such scribbling would require a change in FDW callback APIs, which is more pain than it's worth.) Also fix ExecModifyTable to ensure that "tupleid" is reset to NULL when we transition from rows providing a CTID to rows that don't. (That's really an independent bug, but it manifests in much the same cases.) Add a regression test checking one manifestation of this problem, which was that row-level triggers on a foreign child table did not work right. Back-patch to 9.5 where the problem was introduced. Etsuro Fujita, reviewed by Ildus Kurbangaliev and Ashutosh Bapat Discussion: https://postgr.es/m/20170514150525.0346ba72@postgrespro.ru
2017-11-27 23:53:56 +01:00
ItemPointer tupleid;
ItemPointerData tuple_ctid;
HeapTupleData oldtupdata;
HeapTuple oldtuple;
CHECK_FOR_INTERRUPTS();
/*
* This should NOT get called during EvalPlanQual; we should have passed a
* subplan tree to EvalPlanQual, instead. Use a runtime test not just
* Assert because this condition is easy to miss in testing. (Note:
* although ModifyTable should not get executed within an EvalPlanQual
* operation, we do have to allow it to be initialized and shut down in
* case it is within a CTE subplan. Hence this test must be here, not in
* ExecInitModifyTable.)
*/
if (estate->es_epqTuple != NULL)
elog(ERROR, "ModifyTable should not be called during EvalPlanQual");
/*
* If we've already completed processing, don't try to do more. We need
* this test because ExecPostprocessPlan might call us an extra time, and
* our subplan's nodes aren't necessarily robust against being called
* extra times.
*/
if (node->mt_done)
return NULL;
/*
* On first call, fire BEFORE STATEMENT triggers before proceeding.
*/
if (node->fireBSTriggers)
{
fireBSTriggers(node);
node->fireBSTriggers = false;
}
/* Preload local variables */
resultRelInfo = node->resultRelInfo + node->mt_whichplan;
subplanstate = node->mt_plans[node->mt_whichplan];
junkfilter = resultRelInfo->ri_junkFilter;
/*
* es_result_relation_info must point to the currently active result
* relation while we are within this ModifyTable node. Even though
* ModifyTable nodes can't be nested statically, they can be nested
* dynamically (since our subplan could include a reference to a modifying
* CTE). So we have to save and restore the caller's value.
*/
saved_resultRelInfo = estate->es_result_relation_info;
estate->es_result_relation_info = resultRelInfo;
/*
* Fetch rows from subplan(s), and execute the required table modification
* for each row.
*/
for (;;)
{
/*
* Reset the per-output-tuple exprcontext. This is needed because
* triggers expect to use that context as workspace. It's a bit ugly
* to do this below the top level of the plan, however. We might need
* to rethink this later.
*/
ResetPerTupleExprContext(estate);
planSlot = ExecProcNode(subplanstate);
if (TupIsNull(planSlot))
{
/* advance to next subplan if any */
node->mt_whichplan++;
if (node->mt_whichplan < node->mt_nplans)
{
resultRelInfo++;
subplanstate = node->mt_plans[node->mt_whichplan];
junkfilter = resultRelInfo->ri_junkFilter;
estate->es_result_relation_info = resultRelInfo;
EvalPlanQualSetPlan(&node->mt_epqstate, subplanstate->plan,
node->mt_arowmarks[node->mt_whichplan]);
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
/* Prepare to convert transition tuples from this child. */
if (node->mt_transition_capture != NULL)
{
node->mt_transition_capture->tcs_map =
tupconv_map_for_subplan(node, node->mt_whichplan);
}
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
if (node->mt_oc_transition_capture != NULL)
{
node->mt_oc_transition_capture->tcs_map =
tupconv_map_for_subplan(node, node->mt_whichplan);
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
}
continue;
}
else
break;
}
/*
* If resultRelInfo->ri_usesFdwDirectModify is true, all we need to do
* here is compute the RETURNING expressions.
*/
if (resultRelInfo->ri_usesFdwDirectModify)
{
Assert(resultRelInfo->ri_projectReturning);
/*
* A scan slot containing the data that was actually inserted,
* updated or deleted has already been made available to
* ExecProcessReturning by IterateDirectModify, so no need to
* provide it here.
*/
slot = ExecProcessReturning(resultRelInfo, NULL, planSlot);
estate->es_result_relation_info = saved_resultRelInfo;
return slot;
}
EvalPlanQualSetSlot(&node->mt_epqstate, planSlot);
slot = planSlot;
Fix creation of resjunk tlist entries for inherited mixed UPDATE/DELETE. rewriteTargetListUD's processing is dependent on the relkind of the query's target table. That was fine at the time it was made to act that way, even for queries on inheritance trees, because all tables in an inheritance tree would necessarily be plain tables. However, the 9.5 feature addition allowing some members of an inheritance tree to be foreign tables broke the assumption that rewriteTargetListUD's output tlist could be applied to all child tables with nothing more than column-number mapping. This led to visible failures if foreign child tables had row-level triggers, and would also break in cases where child tables belonged to FDWs that used methods other than CTID for row identification. To fix, delay running rewriteTargetListUD until after the planner has expanded inheritance, so that it is applied separately to the (already mapped) tlist for each child table. We can conveniently call it from preprocess_targetlist. Refactor associated code slightly to avoid the need to heap_open the target relation multiple times during preprocess_targetlist. (The APIs remain a bit ugly, particularly around the point of which steps scribble on parse->targetList and which don't. But avoiding such scribbling would require a change in FDW callback APIs, which is more pain than it's worth.) Also fix ExecModifyTable to ensure that "tupleid" is reset to NULL when we transition from rows providing a CTID to rows that don't. (That's really an independent bug, but it manifests in much the same cases.) Add a regression test checking one manifestation of this problem, which was that row-level triggers on a foreign child table did not work right. Back-patch to 9.5 where the problem was introduced. Etsuro Fujita, reviewed by Ildus Kurbangaliev and Ashutosh Bapat Discussion: https://postgr.es/m/20170514150525.0346ba72@postgrespro.ru
2017-11-27 23:53:56 +01:00
tupleid = NULL;
oldtuple = NULL;
if (junkfilter != NULL)
{
/*
* extract the 'ctid' or 'wholerow' junk attribute.
*/
if (operation == CMD_UPDATE || operation == CMD_DELETE)
{
char relkind;
Datum datum;
bool isNull;
relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind;
if (relkind == RELKIND_RELATION || relkind == RELKIND_MATVIEW)
{
datum = ExecGetJunkAttribute(slot,
junkfilter->jf_junkAttNo,
&isNull);
/* shouldn't ever get a null result... */
if (isNull)
elog(ERROR, "ctid is NULL");
tupleid = (ItemPointer) DatumGetPointer(datum);
Phase 2 of pgindent updates. Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
2017-06-21 21:18:54 +02:00
tuple_ctid = *tupleid; /* be sure we don't free ctid!! */
tupleid = &tuple_ctid;
}
/*
* Use the wholerow attribute, when available, to reconstruct
* the old relation tuple.
*
* Foreign table updates have a wholerow attribute when the
* relation has a row-level trigger. Note that the wholerow
* attribute does not carry system columns. Foreign table
* triggers miss seeing those, except that we know enough here
* to set t_tableOid. Quite separately from this, the FDW may
* fetch its own junk attrs to identify the row.
*
* Other relevant relkinds, currently limited to views, always
* have a wholerow attribute.
*/
else if (AttributeNumberIsValid(junkfilter->jf_junkAttNo))
{
datum = ExecGetJunkAttribute(slot,
junkfilter->jf_junkAttNo,
&isNull);
/* shouldn't ever get a null result... */
if (isNull)
elog(ERROR, "wholerow is NULL");
oldtupdata.t_data = DatumGetHeapTupleHeader(datum);
oldtupdata.t_len =
HeapTupleHeaderGetDatumLength(oldtupdata.t_data);
ItemPointerSetInvalid(&(oldtupdata.t_self));
/* Historically, view triggers see invalid t_tableOid. */
oldtupdata.t_tableOid =
(relkind == RELKIND_VIEW) ? InvalidOid :
RelationGetRelid(resultRelInfo->ri_RelationDesc);
oldtuple = &oldtupdata;
}
else
Assert(relkind == RELKIND_FOREIGN_TABLE);
}
/*
* apply the junkfilter if needed.
*/
if (operation != CMD_DELETE)
slot = ExecFilterJunk(junkfilter, slot);
}
switch (operation)
{
case CMD_INSERT:
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
slot = ExecInsert(node, slot, planSlot,
node->mt_arbiterindexes, node->mt_onconflict,
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
estate, node->canSetTag);
break;
case CMD_UPDATE:
slot = ExecUpdate(node, tupleid, oldtuple, slot, planSlot,
&node->mt_epqstate, estate, node->canSetTag);
break;
case CMD_DELETE:
slot = ExecDelete(node, tupleid, oldtuple, planSlot,
&node->mt_epqstate, estate,
NULL, true, node->canSetTag);
break;
default:
elog(ERROR, "unknown operation");
break;
}
/*
* If we got a RETURNING result, return it to caller. We'll continue
* the work on next call.
*/
if (slot)
{
estate->es_result_relation_info = saved_resultRelInfo;
return slot;
}
}
/* Restore es_result_relation_info before exiting */
estate->es_result_relation_info = saved_resultRelInfo;
/*
* We're done, but fire AFTER STATEMENT triggers before exiting.
*/
fireASTriggers(node);
node->mt_done = true;
return NULL;
}
/* ----------------------------------------------------------------
* ExecInitModifyTable
* ----------------------------------------------------------------
*/
ModifyTableState *
ExecInitModifyTable(ModifyTable *node, EState *estate, int eflags)
{
ModifyTableState *mtstate;
CmdType operation = node->operation;
int nplans = list_length(node->plans);
ResultRelInfo *saved_resultRelInfo;
ResultRelInfo *resultRelInfo;
Plan *subplan;
ListCell *l;
int i;
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
Relation rel;
bool update_tuple_routing_needed = node->partColsUpdated;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
/*
* create state structure
*/
mtstate = makeNode(ModifyTableState);
mtstate->ps.plan = (Plan *) node;
mtstate->ps.state = estate;
mtstate->ps.ExecProcNode = ExecModifyTable;
mtstate->operation = operation;
mtstate->canSetTag = node->canSetTag;
mtstate->mt_done = false;
mtstate->mt_plans = (PlanState **) palloc0(sizeof(PlanState *) * nplans);
mtstate->resultRelInfo = estate->es_result_relations + node->resultRelIndex;
/* If modifying a partitioned table, initialize the root table info */
if (node->rootResultRelIndex >= 0)
mtstate->rootResultRelInfo = estate->es_root_result_relations +
node->rootResultRelIndex;
mtstate->mt_arowmarks = (List **) palloc0(sizeof(List *) * nplans);
mtstate->mt_nplans = nplans;
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
mtstate->mt_onconflict = node->onConflictAction;
mtstate->mt_arbiterindexes = node->arbiterIndexes;
/* set up epqstate with dummy subplan data for the moment */
EvalPlanQualInit(&mtstate->mt_epqstate, estate, NULL, NIL, node->epqParam);
mtstate->fireBSTriggers = true;
/*
* call ExecInitNode on each of the plans to be executed and save the
2011-04-10 17:42:00 +02:00
* results into the array "mt_plans". This is also a convenient place to
* verify that the proposed target relations are valid and open their
* indexes for insertion of new index entries. Note we *must* set
* estate->es_result_relation_info correctly while we initialize each
* sub-plan; ExecContextForcesOids depends on that!
*/
saved_resultRelInfo = estate->es_result_relation_info;
resultRelInfo = mtstate->resultRelInfo;
i = 0;
foreach(l, node->plans)
{
subplan = (Plan *) lfirst(l);
/* Initialize the usesFdwDirectModify flag */
resultRelInfo->ri_usesFdwDirectModify = bms_is_member(i,
node->fdwDirectModifyPlans);
/*
* Verify result relation is a valid target for the current operation
*/
CheckValidResultRel(resultRelInfo, operation);
/*
* If there are indices on the result relation, open them and save
* descriptors in the result relation info, so that we can add new
* index entries for the tuples we add/update. We need not do this
* for a DELETE, however, since deletion doesn't affect indexes. Also,
* inside an EvalPlanQual operation, the indexes might be open
* already, since we share the resultrel state with the original
* query.
*/
if (resultRelInfo->ri_RelationDesc->rd_rel->relhasindex &&
operation != CMD_DELETE &&
resultRelInfo->ri_IndexRelationDescs == NULL)
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
ExecOpenIndices(resultRelInfo, mtstate->mt_onconflict != ONCONFLICT_NONE);
/*
* If this is an UPDATE and a BEFORE UPDATE trigger is present, the
* trigger itself might modify the partition-key values. So arrange
* for tuple routing.
*/
if (resultRelInfo->ri_TrigDesc &&
resultRelInfo->ri_TrigDesc->trig_update_before_row &&
operation == CMD_UPDATE)
update_tuple_routing_needed = true;
/* Now init the plan for this result rel */
estate->es_result_relation_info = resultRelInfo;
mtstate->mt_plans[i] = ExecInitNode(subplan, estate, eflags);
/* Also let FDWs init themselves for foreign-table result rels */
if (!resultRelInfo->ri_usesFdwDirectModify &&
resultRelInfo->ri_FdwRoutine != NULL &&
resultRelInfo->ri_FdwRoutine->BeginForeignModify != NULL)
{
List *fdw_private = (List *) list_nth(node->fdwPrivLists, i);
resultRelInfo->ri_FdwRoutine->BeginForeignModify(mtstate,
resultRelInfo,
fdw_private,
i,
eflags);
}
resultRelInfo++;
i++;
}
estate->es_result_relation_info = saved_resultRelInfo;
/* Get the target relation */
rel = (getTargetResultRelInfo(mtstate))->ri_RelationDesc;
/*
* If it's not a partitioned table after all, UPDATE tuple routing should
* not be attempted.
*/
if (rel->rd_rel->relkind != RELKIND_PARTITIONED_TABLE)
update_tuple_routing_needed = false;
/*
* Build state for tuple routing if it's an INSERT or if it's an UPDATE of
* partition key.
*/
if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE &&
(operation == CMD_INSERT || update_tuple_routing_needed))
mtstate->mt_partition_tuple_routing =
ExecSetupPartitionTupleRouting(mtstate, rel);
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
Fix SQL-spec incompatibilities in new transition table feature. The standard says that all changes of the same kind (insert, update, or delete) caused in one table by a single SQL statement should be reported in a single transition table; and by that, they mean to include foreign key enforcement actions cascading from the statement's direct effects. It's also reasonable to conclude that if the standard had wCTEs, they would say that effects of wCTEs applying to the same table as each other or the outer statement should be merged into one transition table. We weren't doing it like that. Hence, arrange to merge tuples from multiple update actions into a single transition table as much as we can. There is a problem, which is that if the firing of FK enforcement triggers and after-row triggers with transition tables is interspersed, we might need to report more tuples after some triggers have already seen the transition table. It seems like a bad idea for the transition table to be mutable between trigger calls. There's no good way around this without a major redesign of the FK logic, so for now, resolve it by opening a new transition table each time this happens. Also, ensure that AFTER STATEMENT triggers fire just once per statement, or once per transition table when we're forced to make more than one. Previous versions of Postgres have allowed each FK enforcement query to cause an additional firing of the AFTER STATEMENT triggers for the referencing table, but that's certainly not per spec. (We're still doing multiple firings of BEFORE STATEMENT triggers, though; is that something worth changing?) Also, forbid using transition tables with column-specific UPDATE triggers. The spec requires such transition tables to show only the tuples for which the UPDATE trigger would have fired, which means maintaining multiple transition tables or else somehow filtering the contents at readout. Maybe someday we'll bother to support that option, but it looks like a lot of trouble for a marginal feature. The transition tables are now managed by the AfterTriggers data structures, rather than being directly the responsibility of ModifyTable nodes. This removes a subtransaction-lifespan memory leak introduced by my previous band-aid patch 3c4359521. In passing, refactor the AfterTriggers data structures to reduce the management overhead for them, by using arrays of structs rather than several parallel arrays for per-query-level and per-subtransaction state. I failed to resist the temptation to do some copy-editing on the SGML docs about triggers, above and beyond merely documenting the effects of this patch. Back-patch to v10, because we don't want the semantics of transition tables to change post-release. Patch by me, with help and review from Thomas Munro. Discussion: https://postgr.es/m/20170909064853.25630.12825@wrigleys.postgresql.org
2017-09-16 19:20:32 +02:00
/*
* Build state for collecting transition tuples. This requires having a
* valid trigger query context, so skip it in explain-only mode.
*/
if (!(eflags & EXEC_FLAG_EXPLAIN_ONLY))
ExecSetupTransitionCaptureState(mtstate, estate);
/*
* Construct mapping from each of the per-subplan partition attnos to the
* root attno. This is required when during update row movement the tuple
* descriptor of a source partition does not match the root partitioned
* table descriptor. In such a case we need to convert tuples to the root
* tuple descriptor, because the search for destination partition starts
* from the root. Skip this setup if it's not a partition key update.
*/
if (update_tuple_routing_needed)
ExecSetupChildParentMapForSubplan(mtstate);
/*
* Initialize any WITH CHECK OPTION constraints if needed.
*/
resultRelInfo = mtstate->resultRelInfo;
i = 0;
foreach(l, node->withCheckOptionLists)
{
List *wcoList = (List *) lfirst(l);
List *wcoExprs = NIL;
ListCell *ll;
foreach(ll, wcoList)
{
WithCheckOption *wco = (WithCheckOption *) lfirst(ll);
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExprState *wcoExpr = ExecInitQual((List *) wco->qual,
mtstate->mt_plans[i]);
wcoExprs = lappend(wcoExprs, wcoExpr);
}
resultRelInfo->ri_WithCheckOptions = wcoList;
resultRelInfo->ri_WithCheckOptionExprs = wcoExprs;
resultRelInfo++;
i++;
}
/*
* Initialize RETURNING projections if needed.
*/
if (node->returningLists)
{
TupleTableSlot *slot;
ExprContext *econtext;
/*
2010-02-26 03:01:40 +01:00
* Initialize result tuple slot and assign its rowtype using the first
* RETURNING list. We assume the rest will look the same.
*/
mtstate->ps.plan->targetlist = (List *) linitial(node->returningLists);
/* Set up a slot for the output of the RETURNING projection(s) */
ExecInitResultTupleSlotTL(estate, &mtstate->ps);
slot = mtstate->ps.ps_ResultTupleSlot;
/* Need an econtext too */
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
if (mtstate->ps.ps_ExprContext == NULL)
ExecAssignExprContext(estate, &mtstate->ps);
econtext = mtstate->ps.ps_ExprContext;
/*
* Build a projection for each result rel.
*/
resultRelInfo = mtstate->resultRelInfo;
foreach(l, node->returningLists)
{
List *rlist = (List *) lfirst(l);
resultRelInfo->ri_projectReturning =
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExecBuildProjectionInfo(rlist, econtext, slot, &mtstate->ps,
resultRelInfo->ri_RelationDesc->rd_att);
resultRelInfo++;
}
}
else
{
/*
2010-02-26 03:01:40 +01:00
* We still must construct a dummy result tuple type, because InitPlan
* expects one (maybe should change that?).
*/
mtstate->ps.plan->targetlist = NIL;
ExecInitResultTupleSlotTL(estate, &mtstate->ps);
mtstate->ps.ps_ExprContext = NULL;
}
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
/*
* If needed, Initialize target list, projection and qual for ON CONFLICT
* DO UPDATE.
*/
resultRelInfo = mtstate->resultRelInfo;
if (node->onConflictAction == ONCONFLICT_UPDATE)
{
ExprContext *econtext;
TupleDesc relationDesc;
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
TupleDesc tupDesc;
/* insert may only have one plan, inheritance is not expanded */
Assert(nplans == 1);
/* already exists if created by RETURNING processing above */
if (mtstate->ps.ps_ExprContext == NULL)
ExecAssignExprContext(estate, &mtstate->ps);
econtext = mtstate->ps.ps_ExprContext;
relationDesc = resultRelInfo->ri_RelationDesc->rd_att;
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
/* initialize slot for the existing tuple */
mtstate->mt_existing =
ExecInitExtraTupleSlot(mtstate->ps.state, relationDesc);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
/* carried forward solely for the benefit of explain */
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
mtstate->mt_excludedtlist = node->exclRelTlist;
/* create target slot for UPDATE SET projection */
tupDesc = ExecTypeFromTL((List *) node->onConflictSet,
relationDesc->tdhasoid);
mtstate->mt_conflproj =
ExecInitExtraTupleSlot(mtstate->ps.state, tupDesc);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
/* build UPDATE SET projection state */
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
resultRelInfo->ri_onConflictSetProj =
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
ExecBuildProjectionInfo(node->onConflictSet, econtext,
mtstate->mt_conflproj, &mtstate->ps,
relationDesc);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
/* build DO UPDATE WHERE clause expression */
if (node->onConflictWhere)
{
ExprState *qualexpr;
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
qualexpr = ExecInitQual((List *) node->onConflictWhere,
&mtstate->ps);
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
Faster expression evaluation and targetlist projection. This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
2017-03-14 23:45:36 +01:00
resultRelInfo->ri_onConflictSetWhere = qualexpr;
Add support for INSERT ... ON CONFLICT DO NOTHING/UPDATE. The newly added ON CONFLICT clause allows to specify an alternative to raising a unique or exclusion constraint violation error when inserting. ON CONFLICT refers to constraints that can either be specified using a inference clause (by specifying the columns of a unique constraint) or by naming a unique or exclusion constraint. DO NOTHING avoids the constraint violation, without touching the pre-existing row. DO UPDATE SET ... [WHERE ...] updates the pre-existing tuple, and has access to both the tuple proposed for insertion and the existing tuple; the optional WHERE clause can be used to prevent an update from being executed. The UPDATE SET and WHERE clauses have access to the tuple proposed for insertion using the "magic" EXCLUDED alias, and to the pre-existing tuple using the table name or its alias. This feature is often referred to as upsert. This is implemented using a new infrastructure called "speculative insertion". It is an optimistic variant of regular insertion that first does a pre-check for existing tuples and then attempts an insert. If a violating tuple was inserted concurrently, the speculatively inserted tuple is deleted and a new attempt is made. If the pre-check finds a matching tuple the alternative DO NOTHING or DO UPDATE action is taken. If the insertion succeeds without detecting a conflict, the tuple is deemed inserted. To handle the possible ambiguity between the excluded alias and a table named excluded, and for convenience with long relation names, INSERT INTO now can alias its target table. Bumps catversion as stored rules change. Author: Peter Geoghegan, with significant contributions from Heikki Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes. Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs, Dean Rasheed, Stephen Frost and many others.
2015-05-08 05:31:36 +02:00
}
}
/*
2010-02-26 03:01:40 +01:00
* If we have any secondary relations in an UPDATE or DELETE, they need to
* be treated like non-locked relations in SELECT FOR UPDATE, ie, the
* EvalPlanQual mechanism needs to be told about them. Locate the
2010-02-26 03:01:40 +01:00
* relevant ExecRowMarks.
*/
foreach(l, node->rowMarks)
{
PlanRowMark *rc = lfirst_node(PlanRowMark, l);
ExecRowMark *erm;
/* ignore "parent" rowmarks; they are irrelevant at runtime */
if (rc->isParent)
continue;
/* find ExecRowMark (same for all subplans) */
erm = ExecFindRowMark(estate, rc->rti, false);
/* build ExecAuxRowMark for each subplan */
for (i = 0; i < nplans; i++)
{
ExecAuxRowMark *aerm;
subplan = mtstate->mt_plans[i]->plan;
aerm = ExecBuildAuxRowMark(erm, subplan->targetlist);
mtstate->mt_arowmarks[i] = lappend(mtstate->mt_arowmarks[i], aerm);
}
}
/* select first subplan */
mtstate->mt_whichplan = 0;
subplan = (Plan *) linitial(node->plans);
EvalPlanQualSetPlan(&mtstate->mt_epqstate, subplan,
mtstate->mt_arowmarks[0]);
/*
* Initialize the junk filter(s) if needed. INSERT queries need a filter
2010-02-26 03:01:40 +01:00
* if there are any junk attrs in the tlist. UPDATE and DELETE always
* need a filter, since there's always at least one junk attribute present
* --- no need to look first. Typically, this will be a 'ctid' or
* 'wholerow' attribute, but in the case of a foreign data wrapper it
* might be a set of junk attributes sufficient to identify the remote
* row.
*
* If there are multiple result relations, each one needs its own junk
* filter. Note multiple rels are only possible for UPDATE/DELETE, so we
* can't be fooled by some needing a filter and some not.
*
* This section of code is also a convenient place to verify that the
* output of an INSERT or UPDATE matches the target table(s).
*/
{
bool junk_filter_needed = false;
switch (operation)
{
case CMD_INSERT:
foreach(l, subplan->targetlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(l);
if (tle->resjunk)
{
junk_filter_needed = true;
break;
}
}
break;
case CMD_UPDATE:
case CMD_DELETE:
junk_filter_needed = true;
break;
default:
elog(ERROR, "unknown operation");
break;
}
if (junk_filter_needed)
{
resultRelInfo = mtstate->resultRelInfo;
for (i = 0; i < nplans; i++)
{
JunkFilter *j;
subplan = mtstate->mt_plans[i]->plan;
if (operation == CMD_INSERT || operation == CMD_UPDATE)
ExecCheckPlanOutput(resultRelInfo->ri_RelationDesc,
subplan->targetlist);
j = ExecInitJunkFilter(subplan->targetlist,
resultRelInfo->ri_RelationDesc->rd_att->tdhasoid,
ExecInitExtraTupleSlot(estate, NULL));
if (operation == CMD_UPDATE || operation == CMD_DELETE)
{
/* For UPDATE/DELETE, find the appropriate junk attr now */
char relkind;
relkind = resultRelInfo->ri_RelationDesc->rd_rel->relkind;
if (relkind == RELKIND_RELATION ||
Implement table partitioning. Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
2016-12-07 19:17:43 +01:00
relkind == RELKIND_MATVIEW ||
relkind == RELKIND_PARTITIONED_TABLE)
{
j->jf_junkAttNo = ExecFindJunkAttribute(j, "ctid");
if (!AttributeNumberIsValid(j->jf_junkAttNo))
elog(ERROR, "could not find junk ctid column");
}
else if (relkind == RELKIND_FOREIGN_TABLE)
{
/*
2017-08-14 23:29:33 +02:00
* When there is a row-level trigger, there should be
* a wholerow attribute.
*/
j->jf_junkAttNo = ExecFindJunkAttribute(j, "wholerow");
}
else
{
j->jf_junkAttNo = ExecFindJunkAttribute(j, "wholerow");
if (!AttributeNumberIsValid(j->jf_junkAttNo))
elog(ERROR, "could not find junk wholerow column");
}
}
resultRelInfo->ri_junkFilter = j;
resultRelInfo++;
}
}
else
{
if (operation == CMD_INSERT)
ExecCheckPlanOutput(mtstate->resultRelInfo->ri_RelationDesc,
subplan->targetlist);
}
}
/*
2010-02-26 03:01:40 +01:00
* Set up a tuple table slot for use for trigger output tuples. In a plan
* containing multiple ModifyTable nodes, all can share one such slot, so
* we keep it in the estate.
*/
if (estate->es_trig_tuple_slot == NULL)
estate->es_trig_tuple_slot = ExecInitExtraTupleSlot(estate, NULL);
/*
* Lastly, if this is not the primary (canSetTag) ModifyTable node, add it
* to estate->es_auxmodifytables so that it will be run to completion by
* ExecPostprocessPlan. (It'd actually work fine to add the primary
2011-04-10 17:42:00 +02:00
* ModifyTable node too, but there's no need.) Note the use of lcons not
* lappend: we need later-initialized ModifyTable nodes to be shut down
* before earlier ones. This ensures that we don't throw away RETURNING
* rows that need to be seen by a later CTE subplan.
*/
if (!mtstate->canSetTag)
estate->es_auxmodifytables = lcons(mtstate,
estate->es_auxmodifytables);
return mtstate;
}
/* ----------------------------------------------------------------
* ExecEndModifyTable
*
* Shuts down the plan.
*
* Returns nothing of interest.
* ----------------------------------------------------------------
*/
void
ExecEndModifyTable(ModifyTableState *node)
{
2010-02-26 03:01:40 +01:00
int i;
/*
* Allow any FDWs to shut down
*/
for (i = 0; i < node->mt_nplans; i++)
{
ResultRelInfo *resultRelInfo = node->resultRelInfo + i;
if (!resultRelInfo->ri_usesFdwDirectModify &&
resultRelInfo->ri_FdwRoutine != NULL &&
resultRelInfo->ri_FdwRoutine->EndForeignModify != NULL)
resultRelInfo->ri_FdwRoutine->EndForeignModify(node->ps.state,
resultRelInfo);
}
/* Close all the partitioned tables, leaf partitions, and their indices */
if (node->mt_partition_tuple_routing)
ExecCleanupTupleRouting(node->mt_partition_tuple_routing);
/*
* Free the exprcontext
*/
ExecFreeExprContext(&node->ps);
/*
* clean out the tuple table
*/
ExecClearTuple(node->ps.ps_ResultTupleSlot);
/*
* Terminate EPQ execution if active
*/
EvalPlanQualEnd(&node->mt_epqstate);
/*
* shut down subplans
*/
2010-02-26 03:01:40 +01:00
for (i = 0; i < node->mt_nplans; i++)
ExecEndNode(node->mt_plans[i]);
}
void
ExecReScanModifyTable(ModifyTableState *node)
{
/*
2010-02-26 03:01:40 +01:00
* Currently, we don't need to support rescan on ModifyTable nodes. The
* semantics of that would be a bit debatable anyway.
*/
elog(ERROR, "ExecReScanModifyTable is not implemented");
}